105 Commits

Author SHA1 Message Date
10e4e10431 function signature for push back 2025-04-07 15:33:37 +02:00
017960d963 added push_back property
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 37s
2025-04-07 13:41:14 +02:00
a12e43b176 underlying container of ClusterVcetor is now a std::vector 2025-04-07 12:27:44 +02:00
9de84a7f87 added some python tests
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 41s
2025-04-04 17:19:15 +02:00
885309d97c fix build
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 43s
2025-04-03 17:14:28 +02:00
e24ed68416 fixed include 2025-04-03 16:50:02 +02:00
248d25486f refactored python files 2025-04-03 16:38:12 +02:00
a24bbd9cf9 started to do python refactoring
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 44s
2025-04-03 11:56:25 +02:00
d7ef9bb1d8 missed some refactoring of datatypes
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 49s
2025-04-03 11:36:15 +02:00
de9fc16e89 generalize is_selected 2025-04-03 09:28:54 +02:00
85a6b5b95e suppress compiler warnings 2025-04-03 09:28:02 +02:00
50eeba4005 restructured GainMap to have own class and generalized
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 40s
2025-04-02 17:58:26 +02:00
98d2d6098e refactored other cpp files 2025-04-02 16:00:46 +02:00
61af1105a1 templated eta and updated test 2025-04-02 14:42:38 +02:00
240960d3e7 generalized FindCluster to read in general cluster sizes - assuming that finding cluster center is equal for all clusters 2025-04-02 12:05:16 +02:00
04728929cb implemented sum_2x2() for general clusters, only one calculate_eta2 function for all clusters
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 37s
2025-04-01 18:29:08 +02:00
3083d51699 merge conflict 2025-04-01 17:50:11 +02:00
4240942cec solved merge conflict 2025-04-01 17:48:48 +02:00
745d09fbe9 changed push_back to take Cluster as input argument 2025-04-01 15:30:10 +02:00
a42c0d645b added roi, noise and gain (#143)
- Moved definitions of Cluster_2x2 and Cluster_3x3 to it's own file
- Added optional members for ROI, noise_map and gain_map in ClusterFile

**API:**

After creating the ClusterFile the user can set one or all of: roi,
noise_map, gain_map

```python
f = ClusterFile(fname)
f.set_roi(roi) #aare.ROI
f.set_noise_map(noise_map) #numpy array
f.set_gain_map(gain_map) #numpy array
```

**When reading clusters they are evaluated in the order:**

1. If ROI is enabled check that the cluster is within the ROI
1. If noise_map is enabled check that the cluster meets one of the
conditions
    - Center pixel above noise
    - Highest 2x2 sum above 2x noise
    - 3x3 sum above 3x noise
1. If gain_map is set apply the gain map before returning the clusters
(not used for noise cut)

**Open questions:**
1. Check for out of bounds access in noise and gain map?

closes #139 
closes #135 
closes #90
2025-04-01 14:31:25 +02:00
508adf5016 refactoring of remaining files
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 40s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-04-01 10:01:23 +02:00
e038bd1646 refactored and put calculate_eta function in seperate file 2025-03-31 17:35:39 +02:00
7e5f91c6ec added benchmark to time generalize calculate_eta - twice as long so will keep specific version for 2x2 and 3x3 clusters 2025-03-31 17:04:57 +02:00
ed9ef7c600 removed analyze_cluster function as not used anymore
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 52s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-03-31 12:26:29 +02:00
57bb6c71ae ClusterSize should be larger than 1
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 51s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-03-28 14:49:55 +01:00
f8f98b6ec3 Generalized calculate_eta2 function to work with general cluster types 2025-03-28 14:29:20 +01:00
0876b6891a cpp Cluster and ClusterVector and ClusterFile are templated now, they support generic cluster types 2025-03-25 21:42:50 +01:00
6ad76f63c1 Fixed reading clusters with ROI (#142)
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 9s
Fixed incorrect reading of clusters with ROI


closes #141
2025-03-24 14:28:10 +01:00
6e7e81b36b complete mess but need to install RedHat 9 2025-03-21 16:32:54 +01:00
b529b6d33b Merge branch 'main' into developer
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m33s
2025-03-19 19:29:15 +01:00
602b04e49f bumped version number
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m35s
2025-03-18 17:47:05 +01:00
11cd2ec654 Interpolate (#137)
- added eta based interpolation
2025-03-18 17:45:38 +01:00
e59a361b51 removed workspace
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 48s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-03-17 15:23:55 +01:00
1ad362ccfc added action for gitea (#136)
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m30s
2025-03-17 15:21:59 +01:00
332bdeb02b modified algo 2025-03-14 11:07:09 +01:00
3a987319d4 WIP 2025-03-05 21:51:23 +01:00
5614cb4673 WIP 2025-03-05 17:40:08 +01:00
8ae6bb76f8 removed warnings added clang-tidy 2025-02-21 11:18:39 +01:00
1d2c38c1d4 Enable VarClusterFinder (#134)
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
2025-02-19 16:11:24 +01:00
b7a47576a1 Multi threaded fitting and returning chi2 (#132)
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
2025-02-19 07:19:59 +01:00
fc1c9f35d6 Merge branch 'main' into developer 2025-02-18 21:52:20 +01:00
5d2f25a6e9 bumped version number 2025-02-18 21:44:03 +01:00
6a83988485 Added chi2 to fit results (#131)
- fit_gaus and fit_pol1 now return a dict
- calculate chi2 after fit
- cleaned up code
2025-02-18 21:13:27 +01:00
8abfc68138 fixed linking to lmfit (#130)
using "$<BUILD_INTERFACE:lmfit>" to exclude the target lmfit from being
included in the installed aare target
2025-02-18 15:54:52 +01:00
8ff6f9f506 fixed linking to lmfit 2025-02-18 15:49:46 +01:00
dadf5f4869 Added fitting, fixed roi etc (#129)
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
2025-02-12 16:50:31 +01:00
dcb9a98faa bumped version 2025-02-12 16:49:30 +01:00
7309cff47c Added fitting with lmfit (#128)
- added stand alone fitting using:
https://jugit.fz-juelich.de/mlz/lmfit.git
- fit_gaus, fit_pol1 with and without errors
- multi threaded fitting

---------

Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
2025-02-12 16:35:48 +01:00
c0c5e07ad8 added decoding of adc_sar_04 (#127) 2025-02-12 16:17:32 +01:00
2faa317bdf removed debug line 2025-02-12 10:59:18 +01:00
f7031d7f87 Update CMakeLists.txt
Removed flto=auto which caused issues with gcc 8.5
2025-02-12 10:52:55 +01:00
d86cb533c8 Fix minor warnings (#126)
- Unused variables
- signed vs. unsigned
- added -flto=auto
2025-02-11 11:48:01 +01:00
4c750cc3be Fixing ROI read of RawFile (#125)
- Bugfixes
- New abstraction for detector geometry
- Tests for updating geo with ROI
2025-02-11 11:08:22 +01:00
e96fe31f11 removed main and token 2025-02-05 15:55:55 +01:00
cd5a738696 disable upload on dev 2025-02-05 15:44:45 +01:00
1ba43b69d3 fix 2025-02-05 15:16:16 +01:00
fff536782b disable auto upload 2025-02-05 15:13:53 +01:00
5a3ca2ae2d Decoding for ADC SAR 05 64->16bit (#124)
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
2025-02-05 14:40:26 +01:00
078e5d81ec docs 2025-01-15 16:40:34 +01:00
6cde968c60 summing 2x2 2025-01-15 16:12:06 +01:00
f6d736facd docs for ClusterFile 2025-01-15 09:15:41 +01:00
e1cc774d6c Multi threaded cluster finder (#117) 2025-01-14 21:36:25 +01:00
d0f435a7ab bounds checking on subfiles 2025-01-10 19:02:50 +01:00
7ce02006f2 clear pedestal 2025-01-10 17:26:23 +01:00
7550a2cb97 fixing read bug 2025-01-10 15:33:56 +01:00
caf7b4ecdb added docs for ClusterFinderMT 2025-01-10 10:22:04 +01:00
72d10b7735 Multi threaded cluster finder. (#115)
Added a prototype for the multi threaded cluster finder including python
bindings
2025-01-09 16:55:35 +01:00
cc95561eda MultiThreaded Cluster finder 2025-01-09 16:53:22 +01:00
dc9e10016d WIP 2025-01-08 16:45:24 +01:00
21ce7a3efa bumped version 2025-01-07 16:33:16 +01:00
acdce8454b moved pd to double 2025-01-07 15:01:43 +01:00
d07da42745 bitdepths 2025-01-07 12:27:01 +01:00
7d6223d52d Cluster finder improvements (#113) 2024-12-16 14:42:18 +01:00
da67f58323 Cluster finder improvements (#112) 2024-12-16 14:26:35 +01:00
e6098c02ef bumped version 2024-12-16 14:24:46 +01:00
29b1dc8df3 missing header 2024-12-13 14:57:36 +01:00
f88b53387f WIP 2024-12-12 17:58:04 +01:00
a0f481c0ee mod pedestal 2024-12-12 14:34:10 +01:00
b3a9e9576b WIP 2024-12-11 16:27:36 +01:00
60534add92 WIP 2024-12-11 09:54:33 +01:00
7f2a23d5b1 accumulating clusters in one array 2024-12-10 22:00:12 +01:00
6a150e8d98 WIP 2024-12-10 17:21:05 +01:00
b43003966f build pkg on all branched deploy docs on main 2024-11-29 16:41:42 +01:00
c2d039a5bd fix conda build 2024-11-29 16:37:42 +01:00
6fd52f6b8d added missing enums (#111)
- Missing enums
- Matching values to slsDetectorPackage
- tests
2024-11-29 15:28:19 +01:00
659f1f36c5 AARE_INSTALL_PYTHONEXT (#109)
- added AARE_INSTALL_PYTHONEXT option to install also python files in
aare folder
2024-11-29 15:28:02 +01:00
0047d15de1 removed print flip 2024-11-29 15:00:18 +01:00
a1b7fb8fc8 added missing enums 2024-11-29 14:56:39 +01:00
2e4a491d7a CMAKE_INSTALL_PREFIX not needed to specify destination folder and removed 2024-11-29 14:38:32 +01:00
fdce2f69b9 python 3.10 required in cmake 2024-11-29 11:07:05 +01:00
ada4d41f4a bugfix on iteration and returning master file (#110) 2024-11-29 08:52:04 +01:00
115dfc0abf bugfix on iteration and returning master file 2024-11-28 21:14:40 +01:00
31b834c3fd added AARE_INSTALL_PYTHONEXT option to install python in make install, which also installs the python files in the aare folder 2024-11-28 15:18:13 +01:00
feed4860a6 Developer (#108)
- Support for very old moench
- read_n in RawFile
2024-11-27 21:22:01 +01:00
0df8e4bb7d added support for old old moench files 2024-11-27 16:27:55 +01:00
8bf9ac55ce modified read_n also for File and RawFile 2024-11-27 09:31:57 +01:00
2d33fd4813 Streamlined build, new transforms (#106) 2024-11-26 16:27:00 +01:00
996a8861f6 roll back conda-build 2024-11-26 15:53:06 +01:00
06670a7e24 read_n returns remaining frames (#105)
Modified read_n to return the number of frames available if less than
the number of frames requested.

```python
#f is a CtbRawFile containing 10 frames

f.read_n(7) # you get 7 frames
f.read_n(7) # you get 3 frames
f.read_n(7) # RuntimeError
```

Also added support for chunk_size when iterating over a file:

```python
# The file contains 10 frames


with CtbRawFile(fname, chunk_size = 7) as f:
    for headers, frames in f:
        #do something with the data
        # 1 iteration 7 frames
        # 2 iteration 3 frames
        # 3 iteration stops
```
2024-11-26 14:07:21 +01:00
8e3d997bed read_n returns remaining frames 2024-11-26 12:07:17 +01:00
a3f813f9b4 Modified moench05 transform (#103)
Moench05 transforms: 
- moench05: Works with the updated firmware and better data compression
(adcenable10g=0xFF0F)
- moench05_old: Works with the previous data and can be used with
adcenable10g=0xFFFFFFFF
- moench05_1g: For the 1g data acquisition only with adcenable=0x2202
2024-11-26 09:02:33 +01:00
d48482e9da Modified moench05 transform: new firmware (moench05), legacy firmware (moench05_old), 1g readout (moench05_1g) 2024-11-25 16:39:08 +01:00
8f729fc83e Developer (#102) 2024-11-21 10:27:26 +01:00
f9a2d49244 removed extra print 2024-11-21 10:22:22 +01:00
9f7cdbcb48 conversion warnings 2024-11-18 18:18:55 +01:00
100 changed files with 5969 additions and 1143 deletions

42
.clang-tidy Normal file
View File

@ -0,0 +1,42 @@
---
Checks: '*,
-altera-*,
-android-cloexec-fopen,
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
-cppcoreguidelines-pro-bounds-pointer-arithmetic,
-fuchsia*,
-readability-else-after-return,
-readability-avoid-const-params-in-decls,
-readability-identifier-length,
-cppcoreguidelines-pro-bounds-constant-array-index,
-cppcoreguidelines-pro-type-reinterpret-cast,
-llvm-header-guard,
-modernize-use-nodiscard,
-misc-non-private-member-variables-in-classes,
-readability-static-accessed-through-instance,
-readability-braces-around-statements,
-readability-isolate-declaration,
-readability-implicit-bool-conversion,
-readability-identifier-length,
-readability-identifier-naming,
-hicpp-signed-bitwise,
-hicpp-no-array-decay,
-hicpp-braces-around-statements,
-google-runtime-references,
-google-readability-todo,
-google-readability-braces-around-statements,
-modernize-use-trailing-return-type,
-llvmlibc-*'
HeaderFilterRegex: \.hpp
FormatStyle: none
CheckOptions:
- { key: readability-identifier-naming.NamespaceCase, value: lower_case }
# - { key: readability-identifier-naming.FunctionCase, value: lower_case }
- { key: readability-identifier-naming.ClassCase, value: CamelCase }
# - { key: readability-identifier-naming.MethodCase, value: CamelCase }
# - { key: readability-identifier-naming.StructCase, value: CamelCase }
# - { key: readability-identifier-naming.VariableCase, value: lower_case }
- { key: readability-identifier-naming.GlobalConstantCase, value: UPPER_CASE }
...

View File

@ -0,0 +1,58 @@
name: Build the package using cmake then documentation
on:
workflow_dispatch:
push:
permissions:
contents: read
pages: write
id-token: write
jobs:
build:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ] # macos-12, windows-2019]
python-version: ["3.12",]
runs-on: ${{ matrix.platform }}
# The setup-miniconda action needs this to activate miniconda
defaults:
run:
shell: "bash -l {0}"
steps:
- uses: actions/checkout@v4
- name: Setup dev env
run: |
sudo apt-get update
sudo apt-get -y install cmake gcc g++
- name: Get conda
uses: conda-incubator/setup-miniconda@v3.0.4
with:
python-version: ${{ matrix.python-version }}
channels: conda-forge
- name: Prepare
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy
- name: Build library
run: |
mkdir build
cd build
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
make -j 2
make docs

View File

@ -1,7 +1,9 @@
name: Deploy to slsdetectorgroup conda channel
name: Build pkgs and deploy if on main
on:
workflow_dispatch
push:
branches:
- main
jobs:
build:
@ -28,7 +30,7 @@ jobs:
channels: conda-forge
- name: Prepare
run: conda install conda-build conda-verify pytest anaconda-client
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
- name: Enable upload
run: conda config --set anaconda_upload yes

View File

@ -1,14 +1,10 @@
name: Build packages but don't deploy
name: Build pkgs and deploy if on main
on:
workflow_dispatch:
push:
branches:
- main
- developer
#run on PRs as well?
jobs:
build:
strategy:
@ -34,10 +30,11 @@ jobs:
channels: conda-forge
- name: Prepare
run: conda install conda-build conda-verify pytest anaconda-client
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
- name: Disable upload
run: conda config --set anaconda_upload no
- name: Build
env:
CONDA_TOKEN: ${{ secrets.CONDA_TOKEN }}
run: conda build conda-recipe
run: conda build conda-recipe

View File

@ -3,8 +3,7 @@ name: Build the package using cmake then documentation
on:
workflow_dispatch:
push:
branches:
- main
permissions:
@ -58,6 +57,7 @@ jobs:
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-latest
needs: build
if: github.ref == 'refs/heads/main'
steps:
- name: Deploy to GitHub Pages
id: deployment

View File

@ -31,7 +31,7 @@ set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
# General options
option(AARE_PYTHON_BINDINGS "Build python bindings" ON)
option(AARE_PYTHON_BINDINGS "Build python bindings" OFF)
option(AARE_TESTS "Build tests" OFF)
option(AARE_BENCHMARKS "Build benchmarks" OFF)
option(AARE_EXAMPLES "Build examples" OFF)
@ -39,7 +39,8 @@ option(AARE_IN_GITHUB_ACTIONS "Running in Github Actions" OFF)
option(AARE_DOCS "Build documentation" OFF)
option(AARE_VERBOSE "Verbose output" OFF)
option(AARE_CUSTOM_ASSERT "Use custom assert" OFF)
option(AARE_INSTALL_PYTHONEXT "Install the python extension in the install tree under CMAKE_INSTALL_PREFIX/aare/" OFF)
option(AARE_ASAN "Enable AddressSanitizer" OFF)
# Configure which of the dependencies to use FetchContent for
option(AARE_FETCH_FMT "Use FetchContent to download fmt" ON)
@ -47,6 +48,7 @@ option(AARE_FETCH_PYBIND11 "Use FetchContent to download pybind11" ON)
option(AARE_FETCH_CATCH "Use FetchContent to download catch2" ON)
option(AARE_FETCH_JSON "Use FetchContent to download nlohmann::json" ON)
option(AARE_FETCH_ZMQ "Use FetchContent to download libzmq" ON)
option(AARE_FETCH_LMFIT "Use FetchContent to download lmfit" ON)
#Convenience option to use system libraries only (no FetchContent)
@ -58,6 +60,8 @@ if(AARE_SYSTEM_LIBRARIES)
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
# on conda-forge
endif()
if(AARE_VERBOSE)
@ -75,16 +79,66 @@ endif()
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if(AARE_FETCH_LMFIT)
#TODO! Should we fetch lmfit from the web or inlcude a tar.gz in the repo?
set(LMFIT_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
# For cmake < 3.28 we can't supply EXCLUDE_FROM_ALL to FetchContent_Declare
# so we need this workaround
if (${CMAKE_VERSION} VERSION_LESS "3.28")
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
else()
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL 1
)
endif()
#Disable what we don't need from lmfit
set(BUILD_TESTING OFF CACHE BOOL "")
set(LMFIT_CPPTEST OFF CACHE BOOL "")
set(LIB_MAN OFF CACHE BOOL "")
set(LMFIT_CPPTEST OFF CACHE BOOL "")
set(BUILD_SHARED_LIBS OFF CACHE BOOL "")
if (${CMAKE_VERSION} VERSION_LESS "3.28")
if(NOT lmfit_POPULATED)
FetchContent_Populate(lmfit)
add_subdirectory(${lmfit_SOURCE_DIR} ${lmfit_BINARY_DIR} EXCLUDE_FROM_ALL)
endif()
else()
FetchContent_MakeAvailable(lmfit)
endif()
set_property(TARGET lmfit PROPERTY POSITION_INDEPENDENT_CODE ON)
else()
find_package(lmfit REQUIRED)
endif()
if(AARE_FETCH_ZMQ)
# Fetchcontent_Declare is deprecated need to find a way to update this
# for now setting the policy to old is enough
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
cmake_policy(SET CMP0169 OLD)
endif()
set(ZMQ_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/libzmq_cmake_version.patch)
FetchContent_Declare(
libzmq
GIT_REPOSITORY https://github.com/zeromq/libzmq.git
GIT_TAG v4.3.4
PATCH_COMMAND ${ZMQ_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
# Disable unwanted options from libzmq
set(BUILD_TESTS OFF CACHE BOOL "Switch off libzmq test build")
@ -126,8 +180,8 @@ if (AARE_FETCH_FMT)
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
else()
find_package(fmt 6 REQUIRED)
endif()
@ -145,7 +199,6 @@ if (AARE_FETCH_JSON)
install(
TARGETS nlohmann_json
EXPORT "${TARGETS_EXPORT_NAME}"
)
message(STATUS "target: ${NLOHMANN_JSON_TARGET_NAME}")
else()
@ -224,13 +277,6 @@ if(CMAKE_BUILD_TYPE STREQUAL "Release")
target_compile_options(aare_compiler_flags INTERFACE -O3)
else()
message(STATUS "Debug build")
target_compile_options(
aare_compiler_flags
INTERFACE
-Og
-ggdb3
)
endif()
# Common flags for GCC and Clang
@ -241,6 +287,7 @@ target_compile_options(
-Wextra
-pedantic
-Wshadow
-Wold-style-cast
-Wnon-virtual-dtor
-Woverloaded-virtual
-Wdouble-promotion
@ -254,7 +301,21 @@ target_compile_options(
endif() #GCC/Clang specific
if(AARE_ASAN)
message(STATUS "AddressSanitizer enabled")
target_compile_options(
aare_compiler_flags
INTERFACE
-fsanitize=address,undefined,pointer-compare
-fno-omit-frame-pointer
)
target_link_libraries(
aare_compiler_flags
INTERFACE
-fsanitize=address,undefined,pointer-compare
-fno-omit-frame-pointer
)
endif()
@ -270,14 +331,21 @@ endif()
set(PUBLICHEADERS
include/aare/ArrayExpr.hpp
include/aare/CalculateEta.hpp
include/aare/Cluster.hpp
include/aare/ClusterFinder.hpp
include/aare/ClusterFile.hpp
include/aare/CtbRawFile.hpp
include/aare/ClusterVector.hpp
include/aare/decode.hpp
include/aare/defs.hpp
include/aare/Dtype.hpp
include/aare/File.hpp
include/aare/Fit.hpp
include/aare/FileInterface.hpp
include/aare/Frame.hpp
include/aare/GainMap.hpp
include/aare/geo_helpers.hpp
include/aare/NDArray.hpp
include/aare/NDView.hpp
include/aare/NumpyFile.hpp
@ -288,30 +356,34 @@ set(PUBLICHEADERS
include/aare/RawMasterFile.hpp
include/aare/RawSubFile.hpp
include/aare/VarClusterFinder.hpp
include/aare/utils/task.hpp
)
set(SourceFiles
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/PixelMap.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
)
add_library(aare_core STATIC ${SourceFiles})
target_include_directories(aare_core PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)
target_link_libraries(
@ -322,6 +394,8 @@ target_link_libraries(
${STD_FS_LIB} # from helpers.cmake
PRIVATE
aare_compiler_flags
$<BUILD_INTERFACE:lmfit>
)
set_target_properties(aare_core PROPERTIES
@ -335,17 +409,24 @@ endif()
if(AARE_TESTS)
set(TestSources
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Cluster.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/CalculateEta.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.test.cpp
)
target_sources(tests PRIVATE ${TestSources} )
@ -413,7 +494,7 @@ endif()
add_custom_target(
clang-tidy
COMMAND find \( -path "./src/*" -a -not -path "./src/python/*" -a \( -name "*.cpp" -not -name "*.test.cpp"\) \) -not -name "CircularFifo.hpp" -not -name "ProducerConsumerQueue.hpp" -not -name "VariableSizeClusterFinder.hpp" | xargs -I {} -n 1 -P 10 bash -c "${CLANG_TIDY_COMMAND} --config-file=.clang-tidy -p build {}"
COMMAND find \( -path "./src/*" -a -not -path "./src/python/*" -a \( -name "*.cpp" -not -name "*.test.cpp" \) \) -not -name "CircularFifo.hpp" -not -name "ProducerConsumerQueue.hpp" -not -name "VariableSizeClusterFinder.hpp" | xargs -I {} -n 1 -P 10 bash -c "${CLANG_TIDY_COMMAND} --config-file=.clang-tidy -p build {}"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
COMMENT "linting with clang-tidy"
VERBATIM
@ -423,4 +504,4 @@ if(AARE_MASTER_PROJECT)
set(CMAKE_INSTALL_DIR "share/cmake/${PROJECT_NAME}")
set(PROJECT_LIBRARIES aare-core aare-compiler-flags )
include(cmake/package_config.cmake)
endif()
endif()

View File

@ -1,11 +1,27 @@
find_package(benchmark REQUIRED)
add_executable(ndarray_benchmark ndarray_benchmark.cpp)
include(FetchContent)
target_link_libraries(ndarray_benchmark benchmark::benchmark aare_core aare_compiler_flags)
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
set_target_properties(ndarray_benchmark PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
# OUTPUT_NAME run_tests
FetchContent_Declare(
benchmark
GIT_REPOSITORY https://github.com/google/benchmark.git
GIT_TAG v1.8.3 # Change to the latest version if needed
)
# Ensure Google Benchmark is built correctly
set(BENCHMARK_ENABLE_TESTING OFF CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(benchmark)
add_executable(benchmarks)
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp)
# Link Google Benchmark and other necessary libraries
target_link_libraries(benchmarks PRIVATE benchmark::benchmark aare_core aare_compiler_flags)
# Set output properties
set_target_properties(benchmarks PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
OUTPUT_NAME run_benchmarks
)

View File

@ -0,0 +1,70 @@
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
#include <benchmark/benchmark.h>
using namespace aare;
class ClusterFixture : public benchmark::Fixture {
public:
Cluster<int, 2, 2> cluster_2x2{};
Cluster<int, 3, 3> cluster_3x3{};
private:
using benchmark::Fixture::SetUp;
void SetUp([[maybe_unused]] const benchmark::State &state) override {
int temp_data[4] = {1, 2, 3, 1};
std::copy(std::begin(temp_data), std::end(temp_data),
std::begin(cluster_2x2.data));
cluster_2x2.x = 0;
cluster_2x2.y = 0;
int temp_data2[9] = {1, 2, 3, 1, 3, 4, 5, 1, 20};
std::copy(std::begin(temp_data2), std::end(temp_data2),
std::begin(cluster_3x3.data));
cluster_3x3.x = 0;
cluster_3x3.y = 0;
}
// void TearDown(::benchmark::State& state) {
// }
};
BENCHMARK_F(ClusterFixture, Calculate2x2Eta)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2(cluster_2x2);
benchmark::DoNotOptimize(eta);
}
}
// almost takes double the time
BENCHMARK_F(ClusterFixture,
CalculateGeneralEtaFor2x2Cluster)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2<int, 2, 2>(cluster_2x2);
benchmark::DoNotOptimize(eta);
}
}
BENCHMARK_F(ClusterFixture, Calculate3x3Eta)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2(cluster_3x3);
benchmark::DoNotOptimize(eta);
}
}
// almost takes double the time
BENCHMARK_F(ClusterFixture,
CalculateGeneralEtaFor3x3Cluster)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2<int, 3, 3>(cluster_3x3);
benchmark::DoNotOptimize(eta);
}
}
// BENCHMARK_MAIN();

View File

@ -1,6 +1,8 @@
package:
name: aare
version: 2024.11.15.dev0 #TODO! how to not duplicate this?
version: 2025.4.1 #TODO! how to not duplicate this?
source:

View File

@ -12,28 +12,7 @@ set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR})
file(GLOB SPHINX_SOURCE_FILES CONFIGURE_DEPENDS "src/*.rst")
# set(SPHINX_SOURCE_FILES
# src/index.rst
# src/Installation.rst
# src/Requirements.rst
# src/NDArray.rst
# src/NDView.rst
# src/File.rst
# src/Frame.rst
# src/Dtype.rst
# src/ClusterFinder.rst
# src/ClusterFile.rst
# src/Pedestal.rst
# src/RawFile.rst
# src/RawSubFile.rst
# src/RawMasterFile.rst
# src/VarClusterFinder.rst
# src/pyVarClusterFinder.rst
# src/pyFile.rst
# src/pyCtbRawFile.rst
# src/pyRawFile.rst
# src/pyRawMasterFile.rst
# )
foreach(filename ${SPHINX_SOURCE_FILES})

View File

@ -29,7 +29,6 @@ version = '@PROJECT_VERSION@'
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['breathe',
'sphinx_rtd_theme',
'sphinx.ext.autodoc',
'sphinx.ext.napoleon',
]

View File

@ -0,0 +1,7 @@
ClusterFinderMT
==================
.. doxygenclass:: aare::ClusterFinderMT
:members:
:undoc-members:

View File

@ -0,0 +1,6 @@
ClusterVector
=============
.. doxygenclass:: aare::ClusterVector
:members:
:undoc-members:

View File

@ -30,10 +30,13 @@ AARE
pyFile
pyCtbRawFile
pyClusterFile
pyClusterVector
pyRawFile
pyRawMasterFile
pyVarClusterFinder
pyFit
.. toctree::
:caption: C++ API
@ -45,7 +48,9 @@ AARE
File
Dtype
ClusterFinder
ClusterFinderMT
ClusterFile
ClusterVector
Pedestal
RawFile
RawSubFile

View File

@ -0,0 +1,33 @@
ClusterVector
================
The ClusterVector, holds clusters from the ClusterFinder. Since it is templated
in C++ we use a suffix indicating the data type in python. The suffix is
``_i`` for integer, ``_f`` for float, and ``_d`` for double.
At the moment the functionality from python is limited and it is not supported
to push_back clusters to the vector. The intended use case is to pass it to
C++ functions that support the ClusterVector or to view it as a numpy array.
**View ClusterVector as numpy array**
.. code:: python
from aare import ClusterFile
with ClusterFile("path/to/file") as f:
cluster_vector = f.read_frame()
# Create a copy of the cluster data in a numpy array
clusters = np.array(cluster_vector)
# Avoid copying the data by passing copy=False
clusters = np.array(cluster_vector, copy = False)
.. py:currentmodule:: aare
.. autoclass:: ClusterVector_i
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

19
docs/src/pyFit.rst Normal file
View File

@ -0,0 +1,19 @@
Fit
========
.. py:currentmodule:: aare
**Functions**
.. autofunction:: gaus
.. autofunction:: pol1
**Fitting**
.. autofunction:: fit_gaus
.. autofunction:: fit_pol1

View File

@ -0,0 +1,122 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
namespace aare {
typedef enum {
cBottomLeft = 0,
cBottomRight = 1,
cTopLeft = 2,
cTopRight = 3
} corner;
typedef enum {
pBottomLeft = 0,
pBottom = 1,
pBottomRight = 2,
pLeft = 3,
pCenter = 4,
pRight = 5,
pTopLeft = 6,
pTop = 7,
pTopRight = 8
} pixel;
template <typename T> struct Eta2 {
double x;
double y;
int c;
T sum;
};
/**
* @brief Calculate the eta2 values for all clusters in a Clsutervector
*/
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
return eta2;
}
/**
* @brief Calculate the eta2 values for a generic sized cluster and return them
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
* subcluster.
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
Eta2<T>
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
Eta2<T> eta{};
auto max_sum = cl.max_sum_2x2();
eta.sum = max_sum.first;
auto c = max_sum.second;
size_t index_bottom_left_max_2x2_subcluster =
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
if ((cl.data[index_bottom_left_max_2x2_subcluster] +
cl.data[index_bottom_left_max_2x2_subcluster + 1]) != 0)
eta.x = static_cast<double>(
cl.data[index_bottom_left_max_2x2_subcluster + 1]) /
static_cast<double>(
(cl.data[index_bottom_left_max_2x2_subcluster] +
cl.data[index_bottom_left_max_2x2_subcluster + 1]));
if ((cl.data[index_bottom_left_max_2x2_subcluster] +
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]) != 0)
eta.y =
static_cast<double>(
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]) /
static_cast<double>(
(cl.data[index_bottom_left_max_2x2_subcluster] +
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]));
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
// underyling enum class
return eta;
}
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
// TODO only supported for 3x3 Clusters
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
Eta2<T> eta{};
T sum = 0;
std::for_each(std::begin(cl.data), std::end(cl.data),
[&sum](T x) { sum += x; });
eta.sum = sum;
eta.c = corner::cBottomLeft;
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
(cl.data[3] + cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
(cl.data[1] + cl.data[4] + cl.data[7]);
return eta;
}
} // namespace aare

View File

@ -0,0 +1,97 @@
#pragma once
#include <chrono>
#include <fmt/color.h>
#include <fmt/format.h>
#include <memory>
#include <thread>
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
template <class ItemType> class CircularFifo {
uint32_t fifo_size;
aare::ProducerConsumerQueue<ItemType> free_slots;
aare::ProducerConsumerQueue<ItemType> filled_slots;
public:
CircularFifo() : CircularFifo(100){};
CircularFifo(uint32_t size) : fifo_size(size), free_slots(size + 1), filled_slots(size + 1) {
// TODO! how do we deal with alignment for writing? alignas???
// Do we give the user a chance to provide memory locations?
// Templated allocator?
for (size_t i = 0; i < fifo_size; ++i) {
free_slots.write(ItemType{});
}
}
bool next() {
// TODO! avoid default constructing ItemType
ItemType it;
if (!filled_slots.read(it))
return false;
if (!free_slots.write(std::move(it)))
return false;
return true;
}
~CircularFifo() {}
using value_type = ItemType;
auto numFilledSlots() const noexcept { return filled_slots.sizeGuess(); }
auto numFreeSlots() const noexcept { return free_slots.sizeGuess(); }
auto isFull() const noexcept { return filled_slots.isFull(); }
ItemType pop_free() {
ItemType v;
while (!free_slots.read(v))
;
return std::move(v);
// return v;
}
bool try_pop_free(ItemType &v) { return free_slots.read(v); }
ItemType pop_value(std::chrono::nanoseconds wait, std::atomic<bool> &stopped) {
ItemType v;
while (!filled_slots.read(v) && !stopped) {
std::this_thread::sleep_for(wait);
}
return std::move(v);
}
ItemType pop_value() {
ItemType v;
while (!filled_slots.read(v))
;
return std::move(v);
}
ItemType *frontPtr() { return filled_slots.frontPtr(); }
// TODO! Add function to move item from filled to free to be used
// with the frontPtr function
template <class... Args> void push_value(Args &&...recordArgs) {
while (!filled_slots.write(std::forward<Args>(recordArgs)...))
;
}
template <class... Args> bool try_push_value(Args &&...recordArgs) {
return filled_slots.write(std::forward<Args>(recordArgs)...);
}
template <class... Args> void push_free(Args &&...recordArgs) {
while (!free_slots.write(std::forward<Args>(recordArgs)...))
;
}
template <class... Args> bool try_push_free(Args &&...recordArgs) {
return free_slots.write(std::forward<Args>(recordArgs)...);
}
};
} // namespace aare

121
include/aare/Cluster.hpp Normal file
View File

@ -0,0 +1,121 @@
/************************************************
* @file Cluster.hpp
* @short definition of cluster, where CoordType (x,y) give
* the cluster center coordinates and data the actual cluster data
* cluster size is given as template parameters
***********************************************/
#pragma once
#include <algorithm>
#include <array>
#include <cstdint>
#include <numeric>
#include <type_traits>
namespace aare {
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
constexpr bool is_valid_cluster =
std::is_arithmetic_v<T> && std::is_integral_v<CoordType> &&
(ClusterSizeX > 0) && (ClusterSizeY > 0);
// requires clause c++20 maybe update
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t,
typename Enable = std::enable_if_t<
is_valid_cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>>
struct Cluster {
CoordType x;
CoordType y;
T data[ClusterSizeX * ClusterSizeY];
T sum() const {
return std::accumulate(data, data + ClusterSizeX * ClusterSizeY, 0);
}
std::pair<T, int> max_sum_2x2() const {
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
data[i * ClusterSizeX + j] +
data[i * ClusterSizeX + j + 1] +
data[(i + 1) * ClusterSizeX + j] +
data[(i + 1) * ClusterSizeX + j + 1];
}
int index = std::max_element(sum_2x2_subcluster.begin(),
sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
return std::make_pair(sum_2x2_subcluster[index], index);
}
};
// Specialization for 2x2 clusters (only one sum exists)
template <typename T> struct Cluster<T, 2, 2, int16_t> {
int16_t x;
int16_t y;
T data[4];
T sum() const { return std::accumulate(data, data + 4, 0); }
std::pair<T, int> max_sum_2x2() const {
return std::make_pair(data[0] + data[1] + data[2] + data[3],
0); // Only one possible 2x2 sum
}
};
// Specialization for 3x3 clusters
template <typename T> struct Cluster<T, 3, 3, int16_t> {
int16_t x;
int16_t y;
T data[9];
T sum() const { return std::accumulate(data, data + 9, 0); }
std::pair<T, int> max_sum_2x2() const {
std::array<T, 4> sum_2x2_subclusters;
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
int index = std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subclusters.end()) -
sum_2x2_subclusters.begin();
return std::make_pair(sum_2x2_subclusters[index], index);
}
};
// Type Traits for is_cluster_type
template <typename T>
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
struct extract_template_arguments; // Forward declaration
// helper struct to extract template argument
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
struct extract_template_arguments<
Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
using value_type = T;
static constexpr int cluster_size_x = ClusterSizeX;
static constexpr int cluster_size_y = ClusterSizeY;
using coordtype = CoordType;
};
} // namespace aare

View File

@ -0,0 +1,54 @@
#pragma once
#include <atomic>
#include <thread>
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterCollector {
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::vector<ClusterVector<ClusterType>> m_clusters;
void process() {
m_stopped = false;
fmt::print("ClusterCollector started\n");
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
clusters != nullptr) {
m_clusters.push_back(std::move(*clusters));
m_source->popFront();
} else {
std::this_thread::sleep_for(m_default_wait);
}
}
fmt::print("ClusterCollector stopped\n");
m_stopped = true;
}
public:
ClusterCollector(ClusterFinderMT<ClusterType, uint16_t, double> *source) {
m_source = source->sink();
m_thread = std::thread(&ClusterCollector::process, this);
}
void stop() {
m_stop_requested = true;
m_thread.join();
}
std::vector<ClusterVector<ClusterType>> steal_clusters() {
if (!m_stopped) {
throw std::runtime_error("ClusterCollector is still running");
}
return std::move(m_clusters);
}
};
} // namespace aare

View File

@ -1,65 +1,455 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/GainMap.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
#include <filesystem>
#include <fstream>
#include <optional>
namespace aare {
struct Cluster {
int16_t x;
int16_t y;
int32_t data[9];
};
typedef enum {
cBottomLeft = 0,
cBottomRight = 1,
cTopLeft = 2,
cTopRight = 3
} corner;
typedef enum {
pBottomLeft = 0,
pBottom = 1,
pBottomRight = 2,
pLeft = 3,
pCenter = 4,
pRight = 5,
pTopLeft = 6,
pTop = 7,
pTopRight = 8
} pixel;
struct ClusterAnalysis {
uint32_t c;
int32_t tot;
double etax;
double etay;
};
/*
Binary cluster file. Expects data to be layed out as:
int32_t frame_number
uint32_t number_of_clusters
int16_t x, int16_t y, int32_t data[9] x number_of_clusters
int32_t frame_number
uint32_t number_of_clusters
....
*/
// TODO: change to support any type of clusters, e.g. header line with
// clsuter_size_x, cluster_size_y,
/**
* @brief Class to read and write cluster files
* Expects data to be laid out as:
*
*
* int32_t frame_number
* uint32_t number_of_clusters
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
* int32_t frame_number
* uint32_t number_of_clusters
* etc.
*/
template <typename ClusterType,
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{};
size_t m_chunk_size{};
uint32_t m_num_left{}; /*Number of photons left in frame*/
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
const std::string m_mode; /*Mode to open the file in*/
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
std::optional<NDArray<int32_t, 2>>
m_noise_map; /*Noise map to cut photons, will be applied if set*/
std::optional<GainMap> m_gain_map; /*Gain map to apply to the clusters, will
be applied if set*/
public:
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000);
std::vector<Cluster> read_clusters(size_t n_clusters);
std::vector<Cluster> read_frame(int32_t &out_fnum);
std::vector<Cluster>
read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
/**
* @brief Construct a new Cluster File object
* @param fname path to the file
* @param chunk_size number of clusters to read at a time when iterating
* over the file
* @param mode mode to open the file in. "r" for reading, "w" for writing,
* "a" for appending
* @throws std::runtime_error if the file could not be opened
*/
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
const std::string &mode = "r");
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y);
~ClusterFile();
/**
* @brief Read n_clusters clusters from the file discarding frame numbers.
* If EOF is reached the returned vector will have less than n_clusters
* clusters
*/
ClusterVector<ClusterType> read_clusters(size_t n_clusters);
/**
* @brief Read a single frame from the file and return the clusters. The
* cluster vector will have the frame number set.
* @throws std::runtime_error if the file is not opened for reading or the
* file pointer not at the beginning of a frame
*/
ClusterVector<ClusterType> read_frame();
void write_frame(const ClusterVector<ClusterType> &clusters);
/**
* @brief Return the chunk size
*/
size_t chunk_size() const { return m_chunk_size; }
/**
* @brief Set the region of interest to use when reading clusters. If set
* only clusters within the ROI will be read.
*/
void set_roi(ROI roi);
/**
* @brief Set the noise map to use when reading clusters. If set clusters
* below the noise level will be discarded. Selection criteria one of:
* Central pixel above noise, highest 2x2 sum above 2 * noise, total sum
* above 3 * noise.
*/
void set_noise_map(const NDView<int32_t, 2> noise_map);
/**
* @brief Set the gain map to use when reading clusters. If set the gain map
* will be applied to the clusters that pass ROI and noise_map selection.
*/
void set_gain_map(const NDView<double, 2> gain_map);
void set_gain_map(const GainMap &gain_map);
void set_gain_map(const GainMap &&gain_map);
/**
* @brief Close the file. If not closed the file will be closed in the
* destructor
*/
void close();
private:
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
ClusterVector<ClusterType> read_frame_with_cut();
ClusterVector<ClusterType> read_frame_without_cut();
bool is_selected(ClusterType &cl);
ClusterType read_one_cluster();
};
template <typename ClusterType, typename Enable>
ClusterFile<ClusterType, Enable>::ClusterFile(
const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
template <typename ClusterType, typename Enable>
ClusterFile<ClusterType, Enable>::~ClusterFile() {
close();
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_roi(ROI roi) {
m_roi = roi;
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_noise_map(
const NDView<int32_t, 2> noise_map) {
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_gain_map(
const NDView<double, 2> gain_map) {
m_gain_map = GainMap(gain_map);
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_gain_map(const GainMap &gain_map) {
m_gain_map = gain_map;
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::set_gain_map(const GainMap &&gain_map) {
m_gain_map = gain_map;
}
// TODO generally supported for all clsuter types
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::write_frame(
const ClusterVector<ClusterType> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
int32_t frame_number = clusters.frame_number();
fwrite(&frame_number, sizeof(frame_number), 1, fp);
uint32_t n_clusters = clusters.size();
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi) {
return read_clusters_with_cut(n_clusters);
} else {
return read_clusters_without_cut(n_clusters);
}
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<ClusterType> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((buf + nph_read * clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read += fread((buf + nph_read * clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<ClusterType> clusters;
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
if (m_num_left) {
while (m_num_left && clusters.size() < n_clusters) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
}
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(
LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(
frame_number); // cluster vector will hold the last frame
// number
while (m_num_left && clusters.size() < n_clusters) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
ClusterType c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType> ClusterFile<ClusterType, Enable>::read_frame() {
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi) {
return read_frame_with_cut();
} else {
return read_frame_without_cut();
}
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION +
"Could not read number of clusters");
}
ClusterVector<ClusterType> clusters(n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
ClusterVector<ClusterType> clusters;
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
while (m_num_left) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
// Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
auto cluster_size_x = extract_template_arguments<
std::remove_reference_t<decltype(cl)>>::cluster_size_x;
auto cluster_size_y = extract_template_arguments<
std::remove_reference_t<decltype(cl)>>::cluster_size_y;
size_t cluster_center_index =
(cluster_size_x / 2) + (cluster_size_y / 2) * cluster_size_x;
if (m_noise_map) {
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
auto total_sum = cl.sum(); // sum of all pixels
auto noise =
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise ||
total_sum <= 3 * noise) {
return false;
}
}
// we passed all checks
return true;
}
} // namespace aare

View File

@ -0,0 +1,62 @@
#pragma once
#include <atomic>
#include <filesystem>
#include <thread>
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterFileSink {
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::ofstream m_file;
void process() {
m_stopped = false;
fmt::print("ClusterFileSink started\n");
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
clusters != nullptr) {
// Write clusters to file
int32_t frame_number =
clusters->frame_number(); // TODO! Should we store frame
// number already as int?
uint32_t num_clusters = clusters->size();
m_file.write(reinterpret_cast<const char *>(&frame_number),
sizeof(frame_number));
m_file.write(reinterpret_cast<const char *>(&num_clusters),
sizeof(num_clusters));
m_file.write(reinterpret_cast<const char *>(clusters->data()),
clusters->size() * clusters->item_size());
m_source->popFront();
} else {
std::this_thread::sleep_for(m_default_wait);
}
}
fmt::print("ClusterFileSink stopped\n");
m_stopped = true;
}
public:
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
const std::filesystem::path &fname) {
m_source = source->sink();
m_thread = std::thread(&ClusterFileSink::process, this);
m_file.open(fname, std::ios::binary);
}
void stop() {
m_stop_requested = true;
m_thread.join();
m_file.close();
}
};
} // namespace aare

View File

@ -1,15 +1,16 @@
#pragma once
#include "aare/core/defs.hpp"
#include <filesystem>
#include <string>
#include <fmt/format.h>
#include <string>
namespace aare {
struct ClusterHeader {
int32_t frame_number;
int32_t n_clusters;
std::string to_string() const {
return "frame_number: " + std::to_string(frame_number) + ", n_clusters: " + std::to_string(n_clusters);
return "frame_number: " + std::to_string(frame_number) +
", n_clusters: " + std::to_string(n_clusters);
}
};
@ -24,7 +25,8 @@ struct ClusterV2_ {
data_str += std::to_string(d) + ", ";
}
data_str += "]";
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) + ", data: " + data_str;
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) +
", data: " + data_str;
}
return "x: " + std::to_string(x) + ", y: " + std::to_string(y);
}
@ -34,27 +36,31 @@ struct ClusterV2 {
ClusterV2_ cluster;
int32_t frame_number;
std::string to_string() const {
return "frame_number: " + std::to_string(frame_number) + ", " + cluster.to_string();
return "frame_number: " + std::to_string(frame_number) + ", " +
cluster.to_string();
}
};
/**
* @brief
* important not: fp always points to the clusters header and does not point to individual clusters
* important not: fp always points to the clusters header and does not point to
* individual clusters
*
*/
class ClusterFileV2 {
std::filesystem::path m_fpath;
std::filesystem::path m_fpath;
std::string m_mode;
FILE *fp{nullptr};
void check_open(){
void check_open() {
if (!fp)
throw std::runtime_error(fmt::format("File: {} not open", m_fpath.string()));
throw std::runtime_error(
fmt::format("File: {} not open", m_fpath.string()));
}
public:
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode): m_fpath(fpath), m_mode(mode) {
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode)
: m_fpath(fpath), m_mode(mode) {
if (m_mode != "r" && m_mode != "w")
throw std::invalid_argument("mode must be 'r' or 'w'");
if (m_mode == "r" && !std::filesystem::exists(m_fpath))
@ -77,7 +83,7 @@ class ClusterFileV2 {
check_open();
ClusterHeader header;
fread(&header, sizeof(ClusterHeader), 1, fp);
fread(&header, sizeof(ClusterHeader), 1, fp);
std::vector<ClusterV2_> clusters_(header.n_clusters);
fread(clusters_.data(), sizeof(ClusterV2_), header.n_clusters, fp);
std::vector<ClusterV2> clusters;
@ -117,7 +123,7 @@ class ClusterFileV2 {
size_t write(std::vector<std::vector<ClusterV2>> const &clusters) {
check_open();
if (m_mode != "w")
if (m_mode != "w")
throw std::runtime_error("File not opened in write mode");
size_t n_clusters = 0;

View File

@ -1,4 +1,6 @@
#pragma once
#include "aare/ClusterFile.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/Dtype.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
@ -8,251 +10,154 @@
namespace aare {
/** enum to define the event types */
enum eventType {
PEDESTAL, /** pedestal */
NEIGHBOUR, /** neighbour i.e. below threshold, but in the cluster of a
photon */
PHOTON, /** photon i.e. above threshold */
PHOTON_MAX, /** maximum of a cluster satisfying the photon conditions */
NEGATIVE_PEDESTAL, /** negative value, will not be accounted for as pedestal
in order to avoid drift of the pedestal towards
negative values */
UNDEFINED_EVENT = -1 /** undefined */
};
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
template <typename ClusterType = Cluster<int32_t, 3, 3>,
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
class ClusterFinder {
Shape<2> m_image_size;
const int m_cluster_sizeX;
const int m_cluster_sizeY;
const double m_threshold;
const double m_nSigma;
const double c2;
const double c3;
const PEDESTAL_TYPE m_nSigma;
const PEDESTAL_TYPE c2;
const PEDESTAL_TYPE c3;
Pedestal<PEDESTAL_TYPE> m_pedestal;
ClusterVector<ClusterType> m_clusters;
static const uint8_t ClusterSizeX =
extract_template_arguments<ClusterType>::cluster_size_x;
static const uint8_t ClusterSizeY =
extract_template_arguments<ClusterType>::cluster_size_x;
using CT = typename extract_template_arguments<ClusterType>::value_type;
public:
ClusterFinder(Shape<2> image_size, Shape<2>cluster_size, double nSigma = 5.0,
double threshold = 0.0)
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]), m_cluster_sizeY(cluster_size[1]),
m_threshold(threshold), m_nSigma(nSigma),
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
m_pedestal(image_size[0], image_size[1]) {
// c2 = sqrt((cluster_sizeY + 1) / 2 * (cluster_sizeX + 1) / 2);
// c3 = sqrt(cluster_sizeX * cluster_sizeY);
};
/**
* @brief Construct a new ClusterFinder object
* @param image_size size of the image
* @param cluster_size size of the cluster (x, y)
* @param nSigma number of sigma above the pedestal to consider a photon
* @param capacity initial capacity of the cluster vector
*
*/
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 1000000)
: m_image_size(image_size), m_nSigma(nSigma),
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
c3(sqrt(ClusterSizeX * ClusterSizeY)),
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {};
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
m_pedestal.push(frame);
}
NDArray<PEDESTAL_TYPE, 2> pedestal() {
return m_pedestal.mean();
NDArray<PEDESTAL_TYPE, 2> pedestal() { return m_pedestal.mean(); }
NDArray<PEDESTAL_TYPE, 2> noise() { return m_pedestal.std(); }
void clear_pedestal() { m_pedestal.clear(); }
/**
* @brief Move the clusters from the ClusterVector in the ClusterFinder to a
* new ClusterVector and return it.
* @param realloc_same_capacity if true the new ClusterVector will have the
* same capacity as the old one
*
*/
ClusterVector<ClusterType>
steal_clusters(bool realloc_same_capacity = false) {
ClusterVector<ClusterType> tmp = std::move(m_clusters);
if (realloc_same_capacity)
m_clusters = ClusterVector<ClusterType>(tmp.capacity());
else
m_clusters = ClusterVector<ClusterType>{};
return tmp;
}
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
// // TODO! deal with even size clusters
// // currently 3,3 -> +/- 1
// // 4,4 -> +/- 2
int dy = ClusterSizeY / 2;
int dx = ClusterSizeX / 2;
int has_center_pixel_x =
ClusterSizeX %
2; // for even sized clusters there is no proper cluster center and
// even amount of pixels around the center
int has_center_pixel_y = ClusterSizeY % 2;
std::vector<DynamicCluster>
find_clusters_without_threshold(NDView<FRAME_TYPE, 2> frame,
// Pedestal<PEDESTAL_TYPE> &pedestal,
bool late_update = false) {
struct pedestal_update {
int x;
int y;
FRAME_TYPE value;
};
std::vector<pedestal_update> pedestal_updates;
std::vector<DynamicCluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
long double val;
long double max;
m_clusters.set_frame_number(frame_number);
std::vector<CT> cluster_data(ClusterSizeX * ClusterSizeY);
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
// initialize max and total
max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
eventMask[iy][ix] = PEDESTAL;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
PEDESTAL_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
PEDESTAL_TYPE total = 0;
// What can we short circuit here?
PEDESTAL_TYPE rms = m_pedestal.std(iy, ix);
PEDESTAL_TYPE value = (frame(iy, ix) - m_pedestal.mean(iy, ix));
if (value < -m_nSigma * rms)
continue; // NEGATIVE_PEDESTAL go to next pixel
// TODO! No pedestal update???
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
val = frame(iy + ir, ix + ic) -
m_pedestal.mean(iy + ir, ix + ic);
PEDESTAL_TYPE val =
frame(iy + ir, ix + ic) -
m_pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
max = std::max(max, val);
}
}
}
auto rms = m_pedestal.std(iy, ix);
if (frame(iy, ix) - m_pedestal.mean(iy, ix) < -m_nSigma * rms) {
eventMask[iy][ix] = NEGATIVE_PEDESTAL;
continue;
} else if (max > m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
if ((max > m_nSigma * rms)) {
if (value < max)
continue; // Not max go to the next pixel
// but also no pedestal update
} else if (total > c3 * m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
// pass
} else {
if (late_update) {
pedestal_updates.push_back({ix, iy, frame(iy, ix)});
} else {
m_pedestal.push(iy, ix, frame(iy, ix));
}
continue;
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
m_pedestal.push_fast(
iy, ix,
frame(iy,
ix)); // Assume we have reached n_samples in the
// pedestal, slight performance improvement
continue; // It was a pedestal value nothing to store
}
if (eventMask[iy][ix] == PHOTON &&
(frame(iy, ix) - m_pedestal.mean(iy, ix)) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
Dtype(typeid(PEDESTAL_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
// Store cluster
if (value == max) {
// Zero out the cluster data
std::fill(cluster_data.begin(), cluster_data.end(), 0);
// Fill the cluster data since we have a photon to store
// It's worth redoing the look since most of the time we
// don't have a photon
int i = 0;
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
PEDESTAL_TYPE tmp =
static_cast<PEDESTAL_TYPE>(
frame(iy + ir, ix + ic)) -
m_pedestal.mean(iy + ir, ix + ic);
cluster.set<PEDESTAL_TYPE>(i, tmp);
CT tmp =
static_cast<CT>(frame(iy + ir, ix + ic)) -
static_cast<CT>(
m_pedestal.mean(iy + ir, ix + ic));
cluster_data[i] =
tmp; // Watch for out of bounds access
i++;
}
}
}
clusters.push_back(cluster);
ClusterType new_cluster{};
new_cluster.x = ix;
new_cluster.y = iy;
std::copy(cluster_data.begin(), cluster_data.end(),
new_cluster.data);
// Add the cluster to the output ClusterVector
m_clusters.push_back(new_cluster);
}
}
}
if (late_update) {
for (auto &update : pedestal_updates) {
m_pedestal.push(update.y, update.x, update.value);
}
}
return clusters;
}
// template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
std::vector<DynamicCluster>
find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
Pedestal<PEDESTAL_TYPE> &pedestal) {
assert(m_threshold > 0);
std::vector<DynamicCluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
double tthr, tthr1, tthr2;
NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
// convert to n photons
// nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can be
// optimized with expression templates?
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
auto val = frame(iy, ix) - pedestal.mean(iy, ix);
nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
rest(iy, ix) = val - nph(iy, ix) * m_threshold;
}
}
// iterate over frame pixels
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
eventMask[iy][ix] = PEDESTAL;
// initialize max and total
FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
if (rest(iy, ix) <= 0.25 * m_threshold) {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
eventMask[iy][ix] = NEIGHBOUR;
// iterate over cluster pixels around the current pixel (ix,iy)
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto val = frame(iy + ir, ix + ic) -
pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
}
}
}
auto rms = pedestal.std(iy, ix);
if (m_nSigma == 0) {
tthr = m_threshold;
tthr1 = m_threshold;
tthr2 = m_threshold;
} else {
tthr = m_nSigma * rms;
tthr1 = m_nSigma * rms * c3;
tthr2 = m_nSigma * rms * c2;
if (m_threshold > 2 * tthr)
tthr = m_threshold - tthr;
if (m_threshold > 2 * tthr1)
tthr1 = tthr - tthr1;
if (m_threshold > 2 * tthr2)
tthr2 = tthr - tthr2;
}
if (total > tthr1 || max > tthr) {
eventMask[iy][ix] = PHOTON;
nph(iy, ix) += 1;
rest(iy, ix) -= m_threshold;
} else {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
if (eventMask[iy][ix] == PHOTON &&
frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
Dtype(typeid(FRAME_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto tmp = frame(iy + ir, ix + ic) -
pedestal.mean(iy + ir, ix + ic);
cluster.set<FRAME_TYPE>(i, tmp);
i++;
}
}
}
clusters.push_back(cluster);
}
}
}
return clusters;
}
};

View File

@ -0,0 +1,274 @@
#pragma once
#include <atomic>
#include <cstdint>
#include <memory>
#include <thread>
#include <vector>
#include "aare/ClusterFinder.hpp"
#include "aare/NDArray.hpp"
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
enum class FrameType {
DATA,
PEDESTAL,
};
struct FrameWrapper {
FrameType type;
uint64_t frame_number;
NDArray<uint16_t, 2> data;
};
/**
* @brief ClusterFinderMT is a multi-threaded version of ClusterFinder. It uses
* a producer-consumer queue to distribute the frames to the threads. The
* clusters are collected in a single output queue.
* @tparam FRAME_TYPE type of the frame data
* @tparam PEDESTAL_TYPE type of the pedestal data
* @tparam CT type of the cluster data
*/
template <typename ClusterType = Cluster<int32_t, 3, 3>,
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
class ClusterFinderMT {
using CT = typename extract_template_arguments<ClusterType>::value_type;
size_t m_current_thread{0};
size_t m_n_threads{0};
using Finder = ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>;
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
using OutputQueue = ProducerConsumerQueue<ClusterVector<ClusterType>>;
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
OutputQueue m_sink{1000}; // All clusters go into this queue
std::vector<std::unique_ptr<Finder>> m_cluster_finders;
std::vector<std::thread> m_threads;
std::thread m_collect_thread;
std::chrono::milliseconds m_default_wait{1};
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_processing_threads_stopped{true};
/**
* @brief Function called by the processing threads. It reads the frames
* from the input queue and processes them.
*/
void process(int thread_id) {
auto cf = m_cluster_finders[thread_id].get();
auto q = m_input_queues[thread_id].get();
bool realloc_same_capacity = true;
while (!m_stop_requested || !q->isEmpty()) {
if (FrameWrapper *frame = q->frontPtr(); frame != nullptr) {
switch (frame->type) {
case FrameType::DATA:
cf->find_clusters(frame->data.view(), frame->frame_number);
m_output_queues[thread_id]->write(
cf->steal_clusters(realloc_same_capacity));
break;
case FrameType::PEDESTAL:
m_cluster_finders[thread_id]->push_pedestal_frame(
frame->data.view());
break;
}
// frame is processed now discard it
m_input_queues[thread_id]->popFront();
} else {
std::this_thread::sleep_for(m_default_wait);
}
}
}
/**
* @brief Collect all the clusters from the output queues and write them to
* the sink
*/
void collect() {
bool empty = true;
while (!m_stop_requested || !empty || !m_processing_threads_stopped) {
empty = true;
for (auto &queue : m_output_queues) {
if (!queue->isEmpty()) {
while (!m_sink.write(std::move(*queue->frontPtr()))) {
std::this_thread::sleep_for(m_default_wait);
}
queue->popFront();
empty = false;
}
}
}
}
public:
/**
* @brief Construct a new ClusterFinderMT object
* @param image_size size of the image
* @param cluster_size size of the cluster
* @param nSigma number of sigma above the pedestal to consider a photon
* @param capacity initial capacity of the cluster vector. Should match
* expected number of clusters in a frame per frame.
* @param n_threads number of threads to use
*/
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3)
: m_n_threads(n_threads) {
for (size_t i = 0; i < n_threads; i++) {
m_cluster_finders.push_back(
std::make_unique<
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
image_size, nSigma, capacity));
}
for (size_t i = 0; i < n_threads; i++) {
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
}
// TODO! Should we start automatically?
start();
}
/**
* @brief Return the sink queue where all the clusters are collected
* @warning You need to empty this queue otherwise the cluster finder will
* wait forever
*/
ProducerConsumerQueue<ClusterVector<ClusterType>> *sink() {
return &m_sink;
}
/**
* @brief Start all processing threads
*/
void start() {
m_processing_threads_stopped = false;
m_stop_requested = false;
for (size_t i = 0; i < m_n_threads; i++) {
m_threads.push_back(
std::thread(&ClusterFinderMT::process, this, i));
}
m_collect_thread = std::thread(&ClusterFinderMT::collect, this);
}
/**
* @brief Stop all processing threads
*/
void stop() {
m_stop_requested = true;
for (auto &thread : m_threads) {
thread.join();
}
m_threads.clear();
m_processing_threads_stopped = true;
m_collect_thread.join();
}
/**
* @brief Wait for all the queues to be empty. Mostly used for timing tests.
*/
void sync() {
for (auto &q : m_input_queues) {
while (!q->isEmpty()) {
std::this_thread::sleep_for(m_default_wait);
}
}
for (auto &q : m_output_queues) {
while (!q->isEmpty()) {
std::this_thread::sleep_for(m_default_wait);
}
}
while (!m_sink.isEmpty()) {
std::this_thread::sleep_for(m_default_wait);
}
}
/**
* @brief Push a pedestal frame to all the cluster finders. The frames is
* expected to be dark. No photon finding is done. Just pedestal update.
*/
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
FrameWrapper fw{FrameType::PEDESTAL, 0,
NDArray(frame)}; // TODO! copies the data!
for (auto &queue : m_input_queues) {
while (!queue->write(fw)) {
std::this_thread::sleep_for(m_default_wait);
}
}
}
/**
* @brief Push the frame to the queue of the next available thread. Function
* returns once the frame is in a queue.
* @note Spin locks with a default wait if the queue is full.
*/
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
FrameWrapper fw{FrameType::DATA, frame_number,
NDArray(frame)}; // TODO! copies the data!
while (!m_input_queues[m_current_thread % m_n_threads]->write(fw)) {
std::this_thread::sleep_for(m_default_wait);
}
m_current_thread++;
}
void clear_pedestal() {
if (!m_processing_threads_stopped) {
throw std::runtime_error("ClusterFinderMT is still running");
}
for (auto &cf : m_cluster_finders) {
cf->clear_pedestal();
}
}
/**
* @brief Return the pedestal currently used by the cluster finder
* @param thread_index index of the thread
*/
auto pedestal(size_t thread_index = 0) {
if (m_cluster_finders.empty()) {
throw std::runtime_error("No cluster finders available");
}
if (!m_processing_threads_stopped) {
throw std::runtime_error("ClusterFinderMT is still running");
}
if (thread_index >= m_cluster_finders.size()) {
throw std::runtime_error("Thread index out of range");
}
return m_cluster_finders[thread_index]->pedestal();
}
/**
* @brief Return the noise currently used by the cluster finder
* @param thread_index index of the thread
*/
auto noise(size_t thread_index = 0) {
if (m_cluster_finders.empty()) {
throw std::runtime_error("No cluster finders available");
}
if (!m_processing_threads_stopped) {
throw std::runtime_error("ClusterFinderMT is still running");
}
if (thread_index >= m_cluster_finders.size()) {
throw std::runtime_error("Thread index out of range");
}
return m_cluster_finders[thread_index]->noise();
}
// void push(FrameWrapper&& frame) {
// //TODO! need to loop until we are successful
// auto rc = m_input_queue.write(std::move(frame));
// fmt::print("pushed frame {}\n", rc);
// }
};
} // namespace aare

View File

@ -0,0 +1,389 @@
#pragma once
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <numeric>
#include <vector>
#include <fmt/core.h>
#include "aare/Cluster.hpp"
#include "aare/NDView.hpp"
namespace aare {
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterVector; // Forward declaration
/**
* @brief ClusterVector is a container for clusters of various sizes. It uses a
* contiguous memory buffer to store the clusters. It is templated on the data
* type and the coordinate type of the clusters.
* @note push_back can invalidate pointers to elements in the container
* @warning ClusterVector is currently move only to catch unintended copies, but
* this might change since there are probably use cases where copying is needed.
* @tparam T data type of the pixels in the cluster
* @tparam CoordType data type of the x and y coordinates of the cluster
* (normally int16_t)
*/
#if 0
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
std::byte *m_data{};
size_t m_size{0};
size_t m_capacity;
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
/**
Format string used in the python bindings to create a numpy
array from the buffer
= - native byte order
h - short
d - double
i - int
*/
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
public:
using value_type = T;
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
/**
* @brief Construct a new ClusterVector object
* @param capacity initial capacity of the buffer in number of clusters
* @param frame_number frame number of the clusters. Default is 0, which is
* also used to indicate that the clusters come from many frames
*/
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
: m_capacity(capacity), m_frame_number(frame_number) {
allocate_buffer(m_capacity);
}
~ClusterVector() { delete[] m_data; }
// Move constructor
ClusterVector(ClusterVector &&other) noexcept
: m_data(other.m_data), m_size(other.m_size),
m_capacity(other.m_capacity), m_frame_number(other.m_frame_number) {
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
}
// Move assignment operator
ClusterVector &operator=(ClusterVector &&other) noexcept {
if (this != &other) {
delete[] m_data;
m_data = other.m_data;
m_size = other.m_size;
m_capacity = other.m_capacity;
m_frame_number = other.m_frame_number;
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
other.m_frame_number = 0;
}
return *this;
}
/**
* @brief Reserve space for at least capacity clusters
* @param capacity number of clusters to reserve space for
* @note If capacity is less than the current capacity, the function does
* nothing.
*/
void reserve(size_t capacity) {
if (capacity > m_capacity) {
allocate_buffer(capacity);
}
}
/**
* @brief Add a cluster to the vector
*/
void push_back(const ClusterType &cluster) {
if (m_size == m_capacity) {
allocate_buffer(m_capacity * 2);
}
std::byte *ptr = element_ptr(m_size);
*reinterpret_cast<CoordType *>(ptr) = cluster.x;
ptr += sizeof(CoordType);
*reinterpret_cast<CoordType *>(ptr) = cluster.y;
ptr += sizeof(CoordType);
std::memcpy(ptr, cluster.data, ClusterSizeX * ClusterSizeY * sizeof(T));
m_size++;
}
ClusterVector &operator+=(const ClusterVector &other) {
if (m_size + other.m_size > m_capacity) {
allocate_buffer(m_capacity + other.m_size);
}
std::copy(other.m_data, other.m_data + other.m_size * item_size(),
m_data + m_size * item_size());
m_size += other.m_size;
return *this;
}
/**
* @brief Sum the pixels in each cluster
* @return std::vector<T> vector of sums for each cluster
*/
/*
std::vector<T> sum() {
std::vector<T> sums(m_size);
const size_t stride = item_size();
const size_t n_pixels = ClusterSizeX * ClusterSizeY;
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
for (size_t i = 0; i < m_size; i++) {
sums[i] =
std::accumulate(reinterpret_cast<T *>(ptr),
reinterpret_cast<T *>(ptr) + n_pixels, T{});
ptr += stride;
}
return sums;
}
*/
/**
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
* each cluster
* @return std::vector<T> vector of sums for each cluster
*/ //TODO if underlying container is a vector use std::for_each
/*
std::vector<T> sum_2x2() {
std::vector<T> sums_2x2(m_size);
for (size_t i = 0; i < m_size; i++) {
sums_2x2[i] = at(i).max_sum_2x2;
}
return sums_2x2;
}
*/
/**
* @brief Return the number of clusters in the vector
*/
size_t size() const { return m_size; }
uint8_t cluster_size_x() const { return ClusterSizeX; }
uint8_t cluster_size_y() const { return ClusterSizeY; }
/**
* @brief Return the capacity of the buffer in number of clusters. This is
* the number of clusters that can be stored in the current buffer without
* reallocation.
*/
size_t capacity() const { return m_capacity; }
/**
* @brief Return the size in bytes of a single cluster
*/
size_t item_size() const {
return 2 * sizeof(CoordType) + ClusterSizeX * ClusterSizeY * sizeof(T);
}
/**
* @brief Return the offset in bytes for the i-th cluster
*/
size_t element_offset(size_t i) const { return item_size() * i; }
/**
* @brief Return a pointer to the i-th cluster
*/
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
/**
* @brief Return a pointer to the i-th cluster
*/
const std::byte *element_ptr(size_t i) const {
return m_data + element_offset(i);
}
std::byte *data() { return m_data; }
std::byte const *data() const { return m_data; }
/**
* @brief Return a reference to the i-th cluster casted to type V
* @tparam V type of the cluster
*/
ClusterType &at(size_t i) {
return *reinterpret_cast<ClusterType *>(element_ptr(i));
}
const ClusterType &at(size_t i) const {
return *reinterpret_cast<const ClusterType *>(element_ptr(i));
}
template <typename V> const V &at(size_t i) const {
return *reinterpret_cast<const V *>(element_ptr(i));
}
const std::string_view fmt_base() const {
// TODO! how do we match on coord_t?
return m_fmt_base;
}
/**
* @brief Return the frame number of the clusters. 0 is used to indicate
* that the clusters come from many frames
*/
uint64_t frame_number() const { return m_frame_number; }
void set_frame_number(uint64_t frame_number) {
m_frame_number = frame_number;
}
/**
* @brief Resize the vector to contain new_size clusters. If new_size is
* greater than the current capacity, a new buffer is allocated. If the size
* is smaller no memory is freed, size is just updated.
* @param new_size new size of the vector
* @warning The additional clusters are not initialized
*/
void resize(size_t new_size) {
// TODO! Should we initialize the new clusters?
if (new_size > m_capacity) {
allocate_buffer(new_size);
}
m_size = new_size;
}
private:
void allocate_buffer(size_t new_capacity) {
size_t num_bytes = item_size() * new_capacity;
std::byte *new_data = new std::byte[num_bytes]{};
std::copy(m_data, m_data + item_size() * m_size, new_data);
delete[] m_data;
m_data = new_data;
m_capacity = new_capacity;
}
};
#endif
/**
* @brief ClusterVector is a container for clusters of various sizes. It
* uses a contiguous memory buffer to store the clusters. It is templated on
* the data type and the coordinate type of the clusters.
* @note push_back can invalidate pointers to elements in the container
* @warning ClusterVector is currently move only to catch unintended copies,
* but this might change since there are probably use cases where copying is
* needed.
* @tparam T data type of the pixels in the cluster
* @tparam CoordType data type of the x and y coordinates of the cluster
* (normally int16_t)
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
public:
using value_type = T;
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
/**
* @brief Construct a new ClusterVector object
* @param capacity initial capacity of the buffer in number of clusters
* @param frame_number frame number of the clusters. Default is 0, which is
* also used to indicate that the clusters come from many frames
*/
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
: m_frame_number(frame_number) {
m_data.reserve(capacity);
}
// Move constructor
ClusterVector(ClusterVector &&other) noexcept
: m_data(other.m_data), m_frame_number(other.m_frame_number) {
other.m_data.clear();
}
// Move assignment operator
ClusterVector &operator=(ClusterVector &&other) noexcept {
if (this != &other) {
m_data = other.m_data;
m_frame_number = other.m_frame_number;
other.m_data.clear();
other.m_frame_number = 0;
}
return *this;
}
/**
* @brief Reserve space for at least capacity clusters
* @param capacity number of clusters to reserve space for
* @note If capacity is less than the current capacity, the function does
* nothing.
*/
void reserve(size_t capacity) { m_data.reserve(capacity); }
void resize(size_t size) { m_data.resize(size); }
void push_back(const ClusterType &cluster) { m_data.push_back(cluster); }
ClusterVector &operator+=(const ClusterVector &other) {
m_data.insert(m_data.end(), other.begin(), other.end());
return *this;
}
/**
* @brief Return the number of clusters in the vector
*/
size_t size() const { return m_data.size(); }
uint8_t cluster_size_x() const { return ClusterSizeX; }
uint8_t cluster_size_y() const { return ClusterSizeY; }
/**
* @brief Return the capacity of the buffer in number of clusters. This is
* the number of clusters that can be stored in the current buffer without
* reallocation.
*/
size_t capacity() const { return m_data.capacity(); }
const auto begin() const { return m_data.begin(); }
const auto end() const { return m_data.end(); }
/**
* @brief Return the size in bytes of a single cluster
*/
size_t item_size() const {
return 2 * sizeof(CoordType) + ClusterSizeX * ClusterSizeY * sizeof(T);
}
ClusterType *data() { return m_data.data(); }
ClusterType const *data() const { return m_data.data(); }
/**
* @brief Return a reference to the i-th cluster casted to type V
* @tparam V type of the cluster
*/
ClusterType &at(size_t i) { return m_data[i]; }
const ClusterType &at(size_t i) const { return m_data[i]; }
/**
* @brief Return the frame number of the clusters. 0 is used to indicate
* that the clusters come from many frames
*/
uint64_t frame_number() const { return m_frame_number; }
void set_frame_number(uint64_t frame_number) {
m_frame_number = frame_number;
}
};
} // namespace aare

View File

@ -36,6 +36,8 @@ class File {
File(File &&other) noexcept;
File& operator=(File &&other) noexcept;
~File() = default;
// void close(); //!< close the file
Frame read_frame(); //!< read one frame from the file at the current position
Frame read_frame(size_t frame_index); //!< read one frame at the position given by frame number
@ -44,6 +46,7 @@ class File {
void read_into(std::byte *image_buf);
void read_into(std::byte *image_buf, size_t n_frames);
size_t frame_number(); //!< get the frame number at the current position
size_t frame_number(size_t frame_index); //!< get the frame number at the given frame index
size_t bytes_per_frame() const;
size_t pixels_per_frame() const;

92
include/aare/Fit.hpp Normal file
View File

@ -0,0 +1,92 @@
#pragma once
#include <cmath>
#include <fmt/core.h>
#include <vector>
#include "aare/NDArray.hpp"
namespace aare {
namespace func {
double gaus(const double x, const double *par);
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par);
double pol1(const double x, const double *par);
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
} // namespace func
/**
* @brief Estimate the initial parameters for a Gaussian fit
*/
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
static constexpr int DEFAULT_NUM_THREADS = 4;
/**
* @brief Fit a 1D Gaussian to data.
* @param data data to fit
* @param x x values
*/
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
/**
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param n_threads number of threads to use
*/
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
/**
* @brief Fit a 1D Gaussian with error estimates
* @param x x values
* @param y y vales, layout [row, col, values]
* @param y_err error in y, layout [row, col, values]
* @param par_out output parameters
* @param par_err_out output error parameters
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double& chi2);
/**
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
* [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param y_err error in y, layout [row, col, values]
* @param par_out output parameters, layout [row, col, values]
* @param par_err_out output parameter errors, layout [row, col, values]
* @param n_threads number of threads to use
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS
);
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
// TODO! not sure we need to offer the different version in C++
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS);
} // namespace aare

58
include/aare/GainMap.hpp Normal file
View File

@ -0,0 +1,58 @@
/************************************************
* @file ApplyGainMap.hpp
* @short function to apply gain map of image size to a vector of clusters
***********************************************/
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include <memory>
namespace aare {
class GainMap {
public:
explicit GainMap(const NDArray<double, 2> &gain_map)
: m_gain_map(gain_map) {};
explicit GainMap(const NDView<double, 2> gain_map) {
m_gain_map = NDArray<double, 2>(gain_map);
}
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
void apply_gain_map(ClusterVector<ClusterType> &clustervec) {
// in principle we need to know the size of the image for this lookup
size_t ClusterSizeX = clustervec.cluster_size_x();
size_t ClusterSizeY = clustervec.cluster_size_y();
using T = typename ClusterVector<ClusterType>::value_type;
int64_t index_cluster_center_x = ClusterSizeX / 2;
int64_t index_cluster_center_y = ClusterSizeY / 2;
for (size_t i = 0; i < clustervec.size(); i++) {
auto &cl = clustervec.at(i);
if (cl.x > 0 && cl.y > 0 && cl.x < m_gain_map.shape(1) - 1 &&
cl.y < m_gain_map.shape(0) - 1) {
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
size_t x = cl.x + j % ClusterSizeX - index_cluster_center_x;
size_t y = cl.y + j / ClusterSizeX - index_cluster_center_y;
cl.data[j] = cl.data[j] * static_cast<T>(m_gain_map(y, x));
}
} else {
memset(cl.data, 0,
ClusterSizeX * ClusterSizeY *
sizeof(T)); // clear edge clusters
}
}
}
private:
NDArray<double, 2> m_gain_map{};
};
} // end of namespace aare

View File

@ -0,0 +1,132 @@
#pragma once
#include "aare/CalculateEta.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp" //Cluster_3x3
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/algorithm.hpp"
namespace aare {
struct Photon {
double x;
double y;
double energy;
};
class Interpolator {
NDArray<double, 3> m_ietax;
NDArray<double, 3> m_ietay;
NDArray<double, 1> m_etabinsx;
NDArray<double, 1> m_etabinsy;
NDArray<double, 1> m_energy_bins;
public:
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins);
NDArray<double, 3> get_ietax() { return m_ietax; }
NDArray<double, 3> get_ietay() { return m_ietay; }
template <typename ClusterType,
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
};
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
// to only take Cluster2x2 and Cluster3x3
template <typename ClusterType, typename Enable>
std::vector<Photon>
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i < clusters.size(); i++) {
auto cluster = clusters.at(i);
auto eta = calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
double dX, dY;
// cBottomLeft = 0,
// cBottomRight = 1,
// cTopLeft = 2,
// cTopRight = 3
switch (eta.c) {
case cTopLeft:
dX = -1.;
dY = 0;
break;
case cTopRight:;
dX = 0;
dY = 0;
break;
case cBottomLeft:
dX = -1.;
dY = -1.;
break;
case cBottomRight:
dX = 0.;
dY = -1.;
break;
}
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
photons.push_back(photon);
}
} else if (clusters.cluster_size_x() == 2 ||
clusters.cluster_size_y() == 2) {
for (size_t i = 0; i < clusters.size(); i++) {
auto cluster = clusters.at(i);
auto eta = calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
// Now do some actual interpolation.
// Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
photon.x += m_ietax(ix, iy, ie) *
2; // eta goes between 0 and 1 but we could move the hit
// anywhere in the 2x2
photon.y += m_ietay(ix, iy, ie) * 2;
photons.push_back(photon);
}
} else {
throw std::runtime_error(
"Only 3x3 and 2x2 clusters are supported for interpolation");
}
return photons;
}
} // namespace aare

View File

@ -69,6 +69,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::copy(v.begin(), v.end(), begin());
}
template<size_t Size>
NDArray(const std::array<T, Size>& arr) : NDArray<T,1>({Size}) {
std::copy(arr.begin(), arr.end(), begin());
}
// Move constructor
NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
@ -87,7 +92,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
// Conversion operator from array expression to array
template <typename E>
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
for (int i = 0; i < size_; ++i) {
for (size_t i = 0; i < size_; ++i) {
data_[i] = expr[i];
}
}
@ -97,6 +102,9 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
auto begin() { return data_; }
auto end() { return data_ + size_; }
auto begin() const { return data_; }
auto end() const { return data_ + size_; }
using value_type = T;
NDArray &operator=(NDArray &&other) noexcept; // Move assign
@ -105,6 +113,20 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator-=(const NDArray &other);
NDArray &operator*=(const NDArray &other);
//Write directly to the data array, or create a new one
template<size_t Size>
NDArray<T,1>& operator=(const std::array<T,Size> &other){
if(Size != size_){
delete[] data_;
size_ = Size;
data_ = new T[size_];
}
for (size_t i = 0; i < Size; ++i) {
data_[i] = other[i];
}
return *this;
}
// NDArray& operator/=(const NDArray& other);
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
@ -135,6 +157,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator&=(const T & /*mask*/);
void sqrt() {
for (int i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
@ -159,11 +186,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
}
// TODO! is int the right type for index?
T &operator()(int i) { return data_[i]; }
const T &operator()(int i) const { return data_[i]; }
T &operator()(int64_t i) { return data_[i]; }
const T &operator()(int64_t i) const { return data_[i]; }
T &operator[](int i) { return data_[i]; }
const T &operator[](int i) const { return data_[i]; }
T &operator[](int64_t i) { return data_[i]; }
const T &operator[](int64_t i) const { return data_[i]; }
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
@ -318,6 +345,9 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
return *this;
}
template <typename T, int64_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
NDArray result = *this;
@ -361,12 +391,12 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
result *= value;
return result;
}
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
if (shape_[0] < 20 && shape_[1] < 20)
Print_all();
else
Print_some();
}
// template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
// if (shape_[0] < 20 && shape_[1] < 20)
// Print_all();
// else
// Print_some();
// }
template <typename T, int64_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
@ -418,4 +448,6 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
} // namespace aare

View File

@ -1,5 +1,5 @@
#pragma once
#include "aare/defs.hpp"
#include "aare/ArrayExpr.hpp"
#include <algorithm>
@ -99,6 +99,15 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
template<size_t Size>
NDView& operator=(const std::array<T, Size> &arr) {
if(size() != arr.size())
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
std::copy(arr.begin(), arr.end(), begin());
return *this;
}
NDView &operator=(const T val) {
for (auto it = begin(); it != end(); ++it)
*it = val;

View File

@ -18,34 +18,48 @@ template <typename SUM_TYPE = double> class Pedestal {
uint32_t m_samples;
NDArray<uint32_t, 2> m_cur_samples;
//TODO! in case of int needs to be changed to uint64_t
NDArray<SUM_TYPE, 2> m_sum;
NDArray<SUM_TYPE, 2> m_sum2;
//Cache mean since it is used over and over in the ClusterFinder
//This optimization is related to the access pattern of the ClusterFinder
//Relies on having more reads than pushes to the pedestal
NDArray<SUM_TYPE, 2> m_mean;
public:
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
: m_rows(rows), m_cols(cols), m_samples(n_samples),
m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),
m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})),
m_mean(NDArray<SUM_TYPE, 2>({rows, cols})) {
assert(rows > 0 && cols > 0 && n_samples > 0);
m_sum = 0;
m_sum2 = 0;
m_mean = 0;
}
~Pedestal() = default;
NDArray<SUM_TYPE, 2> mean() {
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
}
return mean_array;
return m_mean;
}
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
return m_mean(row, col);
}
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
return std::sqrt(variance(row, col));
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum(row, col) / m_cur_samples(row, col);
return m_sum2(row, col) / m_cur_samples(row, col) -
mean(row, col) * mean(row, col);
}
NDArray<SUM_TYPE, 2> variance() {
@ -57,13 +71,7 @@ template <typename SUM_TYPE = double> class Pedestal {
return variance_array;
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum2(row, col) / m_cur_samples(row, col) -
mean(row, col) * mean(row, col);
}
NDArray<SUM_TYPE, 2> std() {
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
@ -75,14 +83,13 @@ template <typename SUM_TYPE = double> class Pedestal {
return standard_deviation_array;
}
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
return std::sqrt(variance(row, col));
}
void clear() {
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
clear(i / m_cols, i % m_cols);
}
m_sum = 0;
m_sum2 = 0;
m_cur_samples = 0;
m_mean = 0;
}
@ -91,8 +98,11 @@ template <typename SUM_TYPE = double> class Pedestal {
m_sum(row, col) = 0;
m_sum2(row, col) = 0;
m_cur_samples(row, col) = 0;
m_mean(row, col) = 0;
}
// frame level operations
template <typename T> void push(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
@ -102,17 +112,37 @@ template <typename SUM_TYPE = double> class Pedestal {
"Frame shape does not match pedestal shape");
}
for (uint32_t row = 0; row < m_rows; row++) {
for (uint32_t col = 0; col < m_cols; col++) {
for (size_t row = 0; row < m_rows; row++) {
for (size_t col = 0; col < m_cols; col++) {
push<T>(row, col, frame(row, col));
}
}
// // TODO: test the effect of #pragma omp parallel for
// for (uint32_t index = 0; index < m_rows * m_cols; index++) {
// push<T>(index / m_cols, index % m_cols, frame(index));
// }
}
/**
* Push but don't update the cached mean. Speeds up the process
* when initializing the pedestal.
*
*/
template <typename T> void push_no_update(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
// TODO! move away from m_rows, m_cols
if (frame.shape() != std::array<int64_t, 2>{m_rows, m_cols}) {
throw std::runtime_error(
"Frame shape does not match pedestal shape");
}
for (size_t row = 0; row < m_rows; row++) {
for (size_t col = 0; col < m_cols; col++) {
push_no_update<T>(row, col, frame(row, col));
}
}
}
template <typename T> void push(Frame &frame) {
assert(frame.rows() == static_cast<size_t>(m_rows) &&
frame.cols() == static_cast<size_t>(m_cols));
@ -132,18 +162,48 @@ template <typename SUM_TYPE = double> class Pedestal {
template <typename T>
void push(const uint32_t row, const uint32_t col, const T val_) {
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
const uint32_t idx = index(row, col);
if (m_cur_samples(idx) < m_samples) {
m_sum(idx) += val;
m_sum2(idx) += val * val;
m_cur_samples(idx)++;
if (m_cur_samples(row, col) < m_samples) {
m_sum(row, col) += val;
m_sum2(row, col) += val * val;
m_cur_samples(row, col)++;
} else {
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
m_sum(row, col) += val - m_sum(row, col) / m_samples;
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
}
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
}
template <typename T>
void push_no_update(const uint32_t row, const uint32_t col, const T val_) {
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
if (m_cur_samples(row, col) < m_samples) {
m_sum(row, col) += val;
m_sum2(row, col) += val * val;
m_cur_samples(row, col)++;
} else {
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
}
}
uint32_t index(const uint32_t row, const uint32_t col) const {
return row * m_cols + col;
};
/**
* @brief Update the mean of the pedestal. This is used after having done
* push_no_update. It is not necessary to call this function after push.
*/
void update_mean(){
m_mean = m_sum / m_cur_samples;
}
template<typename T>
void push_fast(const uint32_t row, const uint32_t col, const T val_){
//Assume we reached the steady state where all pixels have
//m_samples samples
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
m_sum(row, col) += val - m_sum(row, col) / m_samples;
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
m_mean(row, col) = m_sum(row, col) / m_samples;
}
};
} // namespace aare

View File

@ -7,6 +7,8 @@ namespace aare {
NDArray<ssize_t, 2> GenerateMoench03PixelMap();
NDArray<ssize_t, 2> GenerateMoench05PixelMap();
NDArray<ssize_t, 2> GenerateMoench05PixelMap1g();
NDArray<ssize_t, 2> GenerateMoench05PixelMapOld();
//Matterhorn02
NDArray<ssize_t, 2>GenerateMH02SingleCounterPixelMap();

View File

@ -0,0 +1,203 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// @author Bo Hu (bhu@fb.com)
// @author Jordan DeLong (delong.j@fb.com)
// Changes made by PSD Detector Group:
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size = 128; from folly/lang/Align.h
// Changed extension to .hpp
// Changed namespace to aare
#pragma once
#include <atomic>
#include <cassert>
#include <cstdlib>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <utility>
constexpr std::size_t hardware_destructive_interference_size = 128;
namespace aare {
/*
* ProducerConsumerQueue is a one producer and one consumer queue
* without locks.
*/
template <class T> struct ProducerConsumerQueue {
typedef T value_type;
ProducerConsumerQueue(const ProducerConsumerQueue &) = delete;
ProducerConsumerQueue &operator=(const ProducerConsumerQueue &) = delete;
ProducerConsumerQueue(ProducerConsumerQueue &&other){
size_ = other.size_;
records_ = other.records_;
other.records_ = nullptr;
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
}
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other){
size_ = other.size_;
records_ = other.records_;
other.records_ = nullptr;
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
return *this;
}
ProducerConsumerQueue():ProducerConsumerQueue(2){};
// size must be >= 2.
//
// Also, note that the number of usable slots in the queue at any
// given time is actually (size-1), so if you start with an empty queue,
// isFull() will return true after size-1 insertions.
explicit ProducerConsumerQueue(uint32_t size)
: size_(size), records_(static_cast<T *>(std::malloc(sizeof(T) * size))), readIndex_(0), writeIndex_(0) {
assert(size >= 2);
if (!records_) {
throw std::bad_alloc();
}
}
~ProducerConsumerQueue() {
// We need to destruct anything that may still exist in our queue.
// (No real synchronization needed at destructor time: only one
// thread can be doing this.)
if (!std::is_trivially_destructible<T>::value) {
size_t readIndex = readIndex_;
size_t endIndex = writeIndex_;
while (readIndex != endIndex) {
records_[readIndex].~T();
if (++readIndex == size_) {
readIndex = 0;
}
}
}
std::free(records_);
}
template <class... Args> bool write(Args &&...recordArgs) {
auto const currentWrite = writeIndex_.load(std::memory_order_relaxed);
auto nextRecord = currentWrite + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
new (&records_[currentWrite]) T(std::forward<Args>(recordArgs)...);
writeIndex_.store(nextRecord, std::memory_order_release);
return true;
}
// queue is full
return false;
}
// move (or copy) the value at the front of the queue to given variable
bool read(T &record) {
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
// queue is empty
return false;
}
auto nextRecord = currentRead + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
record = std::move(records_[currentRead]);
records_[currentRead].~T();
readIndex_.store(nextRecord, std::memory_order_release);
return true;
}
// pointer to the value at the front of the queue (for use in-place) or
// nullptr if empty.
T *frontPtr() {
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
// queue is empty
return nullptr;
}
return &records_[currentRead];
}
// queue must not be empty
void popFront() {
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
assert(currentRead != writeIndex_.load(std::memory_order_acquire));
auto nextRecord = currentRead + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
records_[currentRead].~T();
readIndex_.store(nextRecord, std::memory_order_release);
}
bool isEmpty() const {
return readIndex_.load(std::memory_order_acquire) == writeIndex_.load(std::memory_order_acquire);
}
bool isFull() const {
auto nextRecord = writeIndex_.load(std::memory_order_acquire) + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
return false;
}
// queue is full
return true;
}
// * If called by consumer, then true size may be more (because producer may
// be adding items concurrently).
// * If called by producer, then true size may be less (because consumer may
// be removing items concurrently).
// * It is undefined to call this from any other thread.
size_t sizeGuess() const {
int ret = writeIndex_.load(std::memory_order_acquire) - readIndex_.load(std::memory_order_acquire);
if (ret < 0) {
ret += size_;
}
return ret;
}
// maximum number of items in the queue.
size_t capacity() const { return size_ - 1; }
private:
using AtomicIndex = std::atomic<unsigned int>;
char pad0_[hardware_destructive_interference_size];
// const uint32_t size_;
uint32_t size_;
// T *const records_;
T* records_;
alignas(hardware_destructive_interference_size) AtomicIndex readIndex_;
alignas(hardware_destructive_interference_size) AtomicIndex writeIndex_;
char pad1_[hardware_destructive_interference_size - sizeof(AtomicIndex)];
};
} // namespace aare

View File

@ -34,15 +34,19 @@ class RawFile : public FileInterface {
size_t n_subfile_parts{}; // d0,d1...dn
//TODO! move to vector of SubFile instead of pointers
std::vector<std::vector<RawSubFile *>> subfiles; //subfiles[f0,f1...fn][d0,d1...dn]
std::vector<xy> positions;
std::vector<ModuleGeometry> m_module_pixel_0;
// std::vector<xy> positions;
ModuleConfig cfg{0, 0};
RawMasterFile m_master;
size_t m_current_frame{};
size_t m_rows{};
size_t m_cols{};
// std::vector<ModuleGeometry> m_module_pixel_0;
// size_t m_rows{};
// size_t m_cols{};
DetectorGeometry m_geometry;
public:
/**
@ -111,11 +115,12 @@ class RawFile : public FileInterface {
*/
static DetectorHeader read_header(const std::filesystem::path &fname);
void update_geometry_with_roi();
// void update_geometry_with_roi();
int find_number_of_subfiles();
void open_subfiles();
void find_geometry();
};
} // namespace aare

View File

@ -14,6 +14,7 @@ namespace aare {
* @brief Implementation used in RawMasterFile to parse the file name
*/
class RawFileNameComponents {
bool m_old_scheme{false};
std::filesystem::path m_base_path{};
std::string m_base_name{};
std::string m_ext{};
@ -35,6 +36,7 @@ class RawFileNameComponents {
const std::string &base_name() const;
const std::string &ext() const;
int file_index() const;
void set_old_scheme(bool old_scheme);
};
class ScanParameters {
@ -60,17 +62,6 @@ class ScanParameters {
};
struct ROI{
size_t xmin{};
size_t xmax{};
size_t ymin{};
size_t ymax{};
size_t height() const { return ymax - ymin; }
size_t width() const { return xmax - xmin; }
}__attribute__((packed));
/**
* @brief Class for parsing a master file either in our .json format or the old
* .raw format
@ -88,10 +79,10 @@ class RawMasterFile {
size_t m_pixels_x{};
size_t m_bitdepth{};
xy m_geometry;
xy m_geometry{};
size_t m_max_frames_per_file{};
uint32_t m_adc_mask{};
// uint32_t m_adc_mask{}; // TODO! implement reading
FrameDiscardPolicy m_frame_discard_policy{};
size_t m_frame_padding{};

View File

@ -16,6 +16,7 @@ namespace aare {
class RawSubFile {
protected:
std::ifstream m_file;
DetectorType m_detector_type;
size_t m_bitdepth;
std::filesystem::path m_fname;
size_t m_rows{};
@ -25,7 +26,7 @@ class RawSubFile {
uint32_t m_pos_row{};
uint32_t m_pos_col{};
DetectorType m_detector_type;
std::optional<NDArray<ssize_t, 2>> m_pixel_map;
public:
@ -63,8 +64,11 @@ class RawSubFile {
size_t bytes_per_frame() const { return m_bytes_per_frame; }
size_t pixels_per_frame() const { return m_rows * m_cols; }
size_t bytes_per_pixel() const { return m_bitdepth / 8; }
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
private:
template <typename T>
void read_with_map(std::byte *image_buf);
};

View File

@ -7,7 +7,7 @@
#include "aare/NDArray.hpp"
const int MAX_CLUSTER_SIZE = 200;
const int MAX_CLUSTER_SIZE = 50;
namespace aare {
template <typename T> class VarClusterFinder {
@ -226,7 +226,7 @@ template <typename T> void VarClusterFinder<T>::single_pass(NDView<T, 2> img) {
template <typename T> void VarClusterFinder<T>::first_pass() {
for (int i = 0; i < original_.size(); ++i) {
for (size_t i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
@ -250,17 +250,17 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
template <typename T> void VarClusterFinder<T>::second_pass() {
for (int64_t i = 0; i != labeled_.size(); ++i) {
auto current_label = labeled_(i);
if (current_label != 0) {
auto it = child.find(current_label);
for (size_t i = 0; i != labeled_.size(); ++i) {
auto cl = labeled_(i);
if (cl != 0) {
auto it = child.find(cl);
while (it != child.end()) {
current_label = it->second;
it = child.find(current_label);
cl = it->second;
it = child.find(cl);
// do this once before doing the second pass?
// all values point to the final one...
}
labeled_(i) = current_label;
labeled_(i) = cl;
}
}
}
@ -271,7 +271,7 @@ template <typename T> void VarClusterFinder<T>::store_clusters() {
// Do we always have monotonic increasing
// labels? Then vector?
// here the translation is label -> Hit
std::unordered_map<int, Hit> h_size;
std::unordered_map<int, Hit> h_map;
for (int i = 0; i < shape_[0]; ++i) {
for (int j = 0; j < shape_[1]; ++j) {
if (labeled_(i, j) != 0 || false
@ -280,7 +280,7 @@ template <typename T> void VarClusterFinder<T>::store_clusters() {
// (i+1 < shape_[0] and labeled_(i+1, j) != 0) or
// (j+1 < shape_[1] and labeled_(i, j+1) != 0)
) {
Hit &record = h_size[labeled_(i, j)];
Hit &record = h_map[labeled_(i, j)];
if (record.size < MAX_CLUSTER_SIZE) {
record.rows[record.size] = i;
record.cols[record.size] = j;
@ -300,7 +300,7 @@ template <typename T> void VarClusterFinder<T>::store_clusters() {
}
}
for (const auto &h : h_size)
for (const auto &h : h_map)
hits.push_back(h.second);
}

View File

@ -0,0 +1,55 @@
#pragma once
#include <algorithm>
#include <array>
#include <vector>
#include <aare/NDArray.hpp>
namespace aare {
/**
* @brief Find the index of the last element smaller than val
* assume a sorted array
*/
template <typename T>
size_t last_smaller(const T* first, const T* last, T val) {
for (auto iter = first+1; iter != last; ++iter) {
if (*iter > val) {
return std::distance(first, iter-1);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t last_smaller(const NDArray<T, 1>& arr, T val) {
return last_smaller(arr.begin(), arr.end(), val);
}
template <typename T>
size_t nearest_index(const T* first, const T* last, T val) {
auto iter = std::min_element(first, last,
[val](T a, T b) {
return std::abs(a - val) < std::abs(b - val);
});
return std::distance(first, iter);
}
template <typename T>
size_t nearest_index(const NDArray<T, 1>& arr, T val) {
return nearest_index(arr.begin(), arr.end(), val);
}
template <typename T>
size_t nearest_index(const std::vector<T>& vec, T val) {
return nearest_index(vec.data(), vec.data()+vec.size(), val);
}
template <typename T, size_t N>
size_t nearest_index(const std::array<T,N>& arr, T val) {
return nearest_index(arr.data(), arr.data()+arr.size(), val);
}
} // namespace aare

13
include/aare/decode.hpp Normal file
View File

@ -0,0 +1,13 @@
#pragma once
#include <cstdint>
#include <aare/NDView.hpp>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input);
uint16_t adc_sar_04_decode64to16(uint64_t input);
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
} // namespace aare

View File

@ -1,11 +1,9 @@
#pragma once
#include "aare/Dtype.hpp"
// #include "aare/utils/logger.hpp"
#include <array>
#include <stdexcept>
#include <cassert>
#include <cstdint>
#include <cstring>
@ -38,16 +36,19 @@
namespace aare {
inline constexpr size_t bits_per_byte = 8;
void assert_failed(const std::string &msg);
class DynamicCluster {
public:
int cluster_sizeX;
int cluster_sizeY;
int16_t x;
int16_t y;
Dtype dt;
Dtype dt; // 4 bytes
private:
std::byte *m_data;
@ -93,7 +94,7 @@ class DynamicCluster {
(sizeof(T) == dt.bytes())
? 0
: throw std::invalid_argument("[ERROR] Type size mismatch");
return memcpy(m_data + idx * dt.bytes(), &val, (size_t)dt.bytes());
return memcpy(m_data + idx * dt.bytes(), &val, dt.bytes());
}
template <typename T> std::string to_string() const {
@ -179,25 +180,70 @@ template <typename T> struct t_xy {
using xy = t_xy<uint32_t>;
/**
* @brief Class to hold the geometry of a module. Where pixel 0 is located and the size of the module
*/
struct ModuleGeometry{
int x{};
int y{};
int origin_x{};
int origin_y{};
int height{};
int width{};
int row_index{};
int col_index{};
};
/**
* @brief Class to hold the geometry of a detector. Number of modules, their size and where pixel 0
* for each module is located
*/
struct DetectorGeometry{
int modules_x{};
int modules_y{};
int pixels_x{};
int pixels_y{};
int module_gap_row{};
int module_gap_col{};
std::vector<ModuleGeometry> module_pixel_0;
};
struct ROI{
int64_t xmin{};
int64_t xmax{};
int64_t ymin{};
int64_t ymax{};
int64_t height() const { return ymax - ymin; }
int64_t width() const { return xmax - xmin; }
bool contains(int64_t x, int64_t y) const {
return x >= xmin && x < xmax && y >= ymin && y < ymax;
}
};
using dynamic_shape = std::vector<int64_t>;
//TODO! Can we uniform enums between the libraries?
/**
* @brief Enum class to identify different detectors.
* The values are the same as in slsDetectorPackage
* Different spelling to avoid confusion with the slsDetectorPackage
*/
enum class DetectorType {
Jungfrau,
//Standard detectors match the enum values from slsDetectorPackage
Generic,
Eiger,
Mythen3,
Moench,
Moench03,
Moench03_old,
Gotthard,
Jungfrau,
ChipTestBoard,
Moench,
Mythen3,
Gotthard2,
Xilinx_ChipTestBoard,
//Additional detectors used for defining processing. Variants of the standard ones.
Moench03=100,
Moench03_old,
Unknown
};

View File

@ -0,0 +1,16 @@
#pragma once
#include "aare/defs.hpp"
#include "aare/RawMasterFile.hpp" //ROI refactor away
namespace aare{
/**
* @brief Update the detector geometry given a region of interest
*
* @param geo
* @param roi
* @return DetectorGeometry
*/
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, ROI roi);
} // namespace aare

View File

@ -0,0 +1,18 @@
#include <thread>
#include <vector>
#include <utility>
namespace aare {
template<typename F>
void RunInParallel(F func, const std::vector<std::pair<int, int>>& tasks) {
// auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(func, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
}
} // namespace aare

View File

@ -0,0 +1,8 @@
#include <utility>
#include <vector>
namespace aare {
std::vector<std::pair<int, int>> split_task(int first, int last, int n_threads);
} // namespace aare

View File

@ -0,0 +1,18 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index dd3d8eb9..c0187747 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,11 +1,8 @@
# CMake build script for ZeroMQ
project(ZeroMQ)
-if(${CMAKE_SYSTEM_NAME} STREQUAL Darwin)
- cmake_minimum_required(VERSION 3.0.2)
-else()
- cmake_minimum_required(VERSION 2.8.12)
-endif()
+cmake_minimum_required(VERSION 3.15)
+message(STATUS "Patched cmake version")
include(CheckIncludeFiles)
include(CheckCCompilerFlag)

13
patches/lmfit.patch Normal file
View File

@ -0,0 +1,13 @@
diff --git a/lib/CMakeLists.txt b/lib/CMakeLists.txt
index 4efb7ed..6533660 100644
--- a/lib/CMakeLists.txt
+++ b/lib/CMakeLists.txt
@@ -11,7 +11,7 @@ target_compile_definitions(${lib} PRIVATE "LMFIT_EXPORT") # for Windows DLL expo
target_include_directories(${lib}
PUBLIC
- $<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/>
+ $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/>
$<INSTALL_INTERFACE:include/>
)

View File

@ -4,7 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "aare"
version = "2024.11.15.dev0"
version = "2025.4.1"
[tool.scikit-build]
@ -12,4 +13,5 @@ cmake.verbose = true
[tool.scikit-build.cmake.define]
AARE_PYTHON_BINDINGS = "ON"
AARE_SYSTEM_LIBRARIES = "ON"
AARE_SYSTEM_LIBRARIES = "ON"
AARE_INSTALL_PYTHONEXT = "ON"

View File

@ -1,5 +1,5 @@
find_package (Python 3.10 COMPONENTS Interpreter Development)
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
# Download or find pybind11 depending on configuration
if(AARE_FETCH_PYBIND11)
@ -28,8 +28,11 @@ target_link_libraries(_aare PRIVATE aare_core aare_compiler_flags)
set( PYTHON_FILES
aare/__init__.py
aare/CtbRawFile.py
aare/func.py
aare/RawFile.py
aare/transform.py
aare/ScanParameters.py
aare/utils.py
)
# Copy the python files to the build directory
@ -41,10 +44,24 @@ set_target_properties(_aare PROPERTIES
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/aare
)
set(PYTHON_EXAMPLES
examples/play.py
examples/fits.py
)
# Copy the examples/scripts to the build directory
configure_file(examples/play.py ${CMAKE_BINARY_DIR}/play.py)
# Copy the python examples to the build directory
foreach(FILE ${PYTHON_EXAMPLES})
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
endforeach(FILE ${PYTHON_EXAMPLES})
install(TARGETS _aare DESTINATION aare)
if(AARE_INSTALL_PYTHONEXT)
install(TARGETS _aare
EXPORT "${TARGETS_EXPORT_NAME}"
LIBRARY DESTINATION aare
)
install(FILES ${PYTHON_FILES} DESTINATION aare)
endif()

View File

@ -2,18 +2,21 @@
from . import _aare
import numpy as np
from .ScanParameters import ScanParameters
class CtbRawFile(_aare.CtbRawFile):
"""File reader for the CTB raw file format.
Args:
fname (pathlib.Path | str): Path to the file to be read.
chunk_size (int): Number of frames to read at a time. Default is 1.
transform (function): Function to apply to the data after reading it.
The function should take a numpy array of type uint8 and return one
or several numpy arrays.
"""
def __init__(self, fname, transform = None):
def __init__(self, fname, chunk_size = 1, transform = None):
super().__init__(fname)
self.transform = transform
self._chunk_size = chunk_size
self._transform = transform
def read_frame(self, frame_index: int | None = None ) -> tuple:
@ -42,8 +45,8 @@ class CtbRawFile(_aare.CtbRawFile):
header = header[0]
if self.transform:
res = self.transform(data)
if self._transform:
res = self._transform(data)
if isinstance(res, tuple):
return header, *res
else:
@ -59,6 +62,10 @@ class CtbRawFile(_aare.CtbRawFile):
Uses the position of the file pointer :py:meth:`~CtbRawFile.tell` to determine
where to start reading from.
If the number of frames requested is larger than the number of frames left in the file,
the function will read the remaining frames. If no frames are left in the file
a RuntimeError is raised.
Args:
n_frames (int): Number of frames to read.
@ -68,6 +75,12 @@ class CtbRawFile(_aare.CtbRawFile):
Raises:
RuntimeError: If EOF is reached.
"""
# Calculate the number of frames to actually read
n_frames = min(n_frames, self.frames_in_file - self.tell())
if n_frames == 0:
raise RuntimeError("No frames left in file.")
# Do the first read to figure out what we have
tmp_header, tmp_data = self.read_frame()
@ -87,10 +100,12 @@ class CtbRawFile(_aare.CtbRawFile):
def read(self) -> tuple:
"""Read the entire file.
Seeks to the beginning of the file before reading.
Returns:
tuple: header, data
"""
self.seek(0)
return self.read_n(self.frames_in_file)
def seek(self, frame_index:int) -> None:
@ -101,7 +116,7 @@ class CtbRawFile(_aare.CtbRawFile):
"""
super().seek(frame_index)
def tell() -> int:
def tell(self) -> int:
"""Return the current frame position in the file.
Returns:
@ -164,7 +179,12 @@ class CtbRawFile(_aare.CtbRawFile):
def __next__(self):
try:
return self.read_frame()
if self._chunk_size == 1:
return self.read_frame()
else:
return self.read_n(self._chunk_size)
except RuntimeError:
# TODO! find a good way to check that we actually have the right exception
raise StopIteration

66
python/aare/RawFile.py Normal file
View File

@ -0,0 +1,66 @@
from . import _aare
import numpy as np
from .ScanParameters import ScanParameters
class RawFile(_aare.RawFile):
def __init__(self, fname, chunk_size = 1):
super().__init__(fname)
self._chunk_size = chunk_size
def read(self) -> tuple:
"""Read the entire file.
Seeks to the beginning of the file before reading.
Returns:
tuple: header, data
"""
self.seek(0)
return self.read_n(self.total_frames)
@property
def scan_parameters(self):
"""Return the scan parameters.
Returns:
ScanParameters: Scan parameters.
"""
return ScanParameters(self.master.scan_parameters)
@property
def master(self):
"""Return the master file.
Returns:
RawMasterFile: Master file.
"""
return super().master
def __len__(self) -> int:
"""Return the number of frames in the file.
Returns:
int: Number of frames in file.
"""
return super().frames_in_file
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
pass
def __iter__(self):
return self
def __next__(self):
try:
if self._chunk_size == 1:
return self.read_frame()
else:
return self.read_n(self._chunk_size)
except RuntimeError:
# TODO! find a good way to check that we actually have the right exception
raise StopIteration

View File

@ -2,10 +2,23 @@
from . import _aare
from ._aare import File, RawFile, RawMasterFile, RawSubFile
from ._aare import Pedestal, ClusterFinder, VarClusterFinder
# from ._aare import File, RawMasterFile, RawSubFile
# from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
from ._aare import DetectorType
from ._aare import ClusterFile
from ._aare import ClusterFile_Cluster3x3i as ClusterFile
from ._aare import hitmap
from ._aare import ROI
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
from ._aare import fit_gaus, fit_pol1
from ._aare import Interpolator
from .CtbRawFile import CtbRawFile
from .ScanParameters import ScanParameters
from .RawFile import RawFile
from .ScanParameters import ScanParameters
from .utils import random_pixels, random_pixel, flat_list
#make functions available in the top level API
from .func import *

1
python/aare/func.py Normal file
View File

@ -0,0 +1 @@
from ._aare import gaus, pol1

View File

@ -2,6 +2,14 @@ import numpy as np
from . import _aare
class AdcSar04Transform64to16:
def __call__(self, data):
return _aare.adc_sar_04_decode64to16(data)
class AdcSar05Transform64to16:
def __call__(self, data):
return _aare.adc_sar_05_decode64to16(data)
class Moench05Transform:
#Could be moved to C++ without changing the interface
def __init__(self):
@ -9,6 +17,24 @@ class Moench05Transform:
def __call__(self, data):
return np.take(data.view(np.uint16), self.pixel_map)
class Moench05Transform1g:
#Could be moved to C++ without changing the interface
def __init__(self):
self.pixel_map = _aare.GenerateMoench05PixelMap1g()
def __call__(self, data):
return np.take(data.view(np.uint16), self.pixel_map)
class Moench05TransformOld:
#Could be moved to C++ without changing the interface
def __init__(self):
self.pixel_map = _aare.GenerateMoench05PixelMapOld()
def __call__(self, data):
return np.take(data.view(np.uint16), self.pixel_map)
class Matterhorn02Transform:
@ -25,4 +51,8 @@ class Matterhorn02Transform:
#on import generate the pixel maps to avoid doing it every time
moench05 = Moench05Transform()
matterhorn02 = Matterhorn02Transform()
moench05_1g = Moench05Transform1g()
moench05_old = Moench05TransformOld()
matterhorn02 = Matterhorn02Transform()
adc_sar_04_64to16 = AdcSar04Transform64to16()
adc_sar_05_64to16 = AdcSar05Transform64to16()

27
python/aare/utils.py Normal file
View File

@ -0,0 +1,27 @@
import numpy as np
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
"""Return a list of random pixels.
Args:
n_pixels (int): Number of pixels to return.
rows (int): Number of rows in the image.
cols (int): Number of columns in the image.
Returns:
list: List of (row, col) tuples.
"""
return [(np.random.randint(ymin, ymax), np.random.randint(xmin, xmax)) for _ in range(n_pixels)]
def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
"""Return a random pixel.
Returns:
tuple: (row, col)
"""
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
def flat_list(xss):
"""Flatten a list of lists."""
return [x for xs in xss for x in xs]

79
python/examples/fits.py Normal file
View File

@ -0,0 +1,79 @@
import matplotlib.pyplot as plt
import numpy as np
from aare import fit_gaus, fit_pol1
from aare import gaus, pol1
textpm = f"±" #
textmu = f"μ" #
textsigma = f"σ" #
# ================================= Gauss fit =================================
# Parameters
mu = np.random.uniform(1, 100) # Mean of Gaussian
sigma = np.random.uniform(4, 20) # Standard deviation
num_points = 10000 # Number of points for smooth distribution
noise_sigma = 100
# Generate Gaussian distribution
data = np.random.normal(mu, sigma, num_points)
# Generate errors for each point
errors = np.abs(np.random.normal(0, sigma, num_points)) # Errors with mean 0, std 0.5
# Create subplot
fig0, ax0 = plt.subplots(1, 1, num=0, figsize=(12, 8))
x = np.histogram(data, bins=30)[1][:-1] + 0.05
y = np.histogram(data, bins=30)[0]
yerr = errors[:30]
# Add the errors as error bars in the step plot
ax0.errorbar(x, y, yerr=yerr, fmt=". ", capsize=5)
ax0.grid()
par, err = fit_gaus(x, y, yerr)
print(par, err)
x = np.linspace(x[0], x[-1], 1000)
ax0.plot(x, gaus(x, par), marker="")
ax0.set(xlabel="x", ylabel="Counts", title=f"A0 = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
f"{textmu} = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
f"{textsigma} = {par[2]:0.2f}{textpm}{err[2]:0.2f}\n"
f"(init: {textmu}: {mu:0.2f}, {textsigma}: {sigma:0.2f})")
fig0.tight_layout()
# ================================= pol1 fit =================================
# Parameters
n_points = 40
# Generate random slope and intercept (origin)
slope = np.random.uniform(-10, 10) # Random slope between 0.5 and 2.0
intercept = np.random.uniform(-10, 10) # Random intercept between -10 and 10
# Generate random x values
x_values = np.random.uniform(-10, 10, n_points)
# Calculate y values based on the linear function y = mx + b + error
errors = np.abs(np.random.normal(0, np.random.uniform(1, 5), n_points))
var_points = np.random.normal(0, np.random.uniform(0.1, 2), n_points)
y_values = slope * x_values + intercept + var_points
fig1, ax1 = plt.subplots(1, 1, num=1, figsize=(12, 8))
ax1.errorbar(x_values, y_values, yerr=errors, fmt=". ", capsize=5)
par, err = fit_pol1(x_values, y_values, errors)
x = np.linspace(np.min(x_values), np.max(x_values), 1000)
ax1.plot(x, pol1(x, par), marker="")
ax1.set(xlabel="x", ylabel="y", title=f"a = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
f"b = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
f"(init: {slope:0.2f}, {intercept:0.2f})")
fig1.tight_layout()
plt.show()

View File

@ -1,15 +1,79 @@
import matplotlib.pyplot as plt
import sys
sys.path.append('/home/l_msdetect/erik/aare/build')
from aare._aare import ClusterVector_i, Interpolator
import pickle
import numpy as np
plt.ion()
from pathlib import Path
from aare import ClusterFile
base = Path('~/data/aare_test_data/clusters').expanduser()
f = ClusterFile(base / 'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust')
# f = ClusterFile(base / 'single_frame_97_clustrers.clust')
import matplotlib.pyplot as plt
import boost_histogram as bh
import torch
import math
import time
for i in range(10):
fn, cl = f.read_frame()
print(fn, cl.size)
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
"""
Generate a 2D gaussian as position mx, my, with sigma=sigma.
The gaussian is placed on a 2x2 pixel matrix with resolution
res in one dimesion.
"""
x = torch.linspace(0, pixel_size*grid_size, res)
x,y = torch.meshgrid(x,x, indexing="ij")
return 1 / (2*math.pi*sigma**2) * \
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
scale = 1000 #Scale factor when converting to integer
pixel_size = 25 #um
grid = 2
resolution = 100
sigma_um = 10
xa = np.linspace(0,grid*pixel_size,resolution)
ticks = [0, 25, 50]
hit = np.array((20,20))
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
local_resolution = 99
grid_size = 3
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
pixels = pixels.numpy()
pixels = (pixels*scale).astype(np.int32)
v = ClusterVector_i(3,3)
v.push_back(1,1, pixels)
with open(etahist_fname, "rb") as f:
hist = pickle.load(f)
eta = hist.view().copy()
etabinsx = np.array(hist.axes.edges.T[0].flat)
etabinsy = np.array(hist.axes.edges.T[1].flat)
ebins = np.array(hist.axes.edges.T[2].flat)
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
#Generate the hit
tmp = p.interpolate(v)
print(f'tmp:{tmp}')
pos = np.array((tmp['x'], tmp['y']))*25
print(pixels)
fig, ax = plt.subplots(figsize = (7,7))
ax.pcolormesh(xaxis, xaxis, t)
ax.plot(*pos, 'o')
ax.set_xticks([0,25,50,75])
ax.set_yticks([0,25,50,75])
ax.set_xlim(0,75)
ax.set_ylim(0,75)
ax.grid()
print(f'{hit=}')
print(f'{pos=}')

View File

@ -1,4 +1,8 @@
#include "aare/ClusterCollector.hpp"
#include "aare/ClusterFileSink.hpp"
#include "aare/ClusterFinder.hpp"
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDView.hpp"
#include "aare/Pedestal.hpp"
#include "np_helper.hpp"
@ -7,46 +11,276 @@
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
namespace py = pybind11;
using pd_type = double;
void define_cluster_finder_bindings(py::module &m) {
py::class_<ClusterFinder<uint16_t, double>>(m, "ClusterFinder")
.def(py::init<Shape<2>, Shape<2>>())
using namespace aare;
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
void define_cluster(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("Cluster{}", typestr);
using ClusterType =
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>;
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>>(
m, class_name.c_str())
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
py::buffer_info buf_info = data.request();
Type *ptr = static_cast<Type *>(buf_info.ptr);
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void> cluster;
cluster.x = x;
cluster.y = y;
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
cluster.data); // Copy array contents
return cluster;
}))
//.def(py::init<>())
.def_readwrite("x", &ClusterType::x)
.def_readwrite("y", &ClusterType::y)
.def_property(
"data",
[](ClusterType &c) -> py::array {
return py::array(py::buffer_info(
c.data, sizeof(Type),
py::format_descriptor<Type>::format(), // Type
// format
1, // Number of dimensions
{static_cast<ssize_t>(ClusterSizeX *
ClusterSizeY)}, // Shape (flattened)
{sizeof(Type)} // Stride (step size between elements)
));
},
[](ClusterType &c, py::array_t<Type> arr) {
py::buffer_info buf_info = arr.request();
Type *ptr = static_cast<Type *>(buf_info.ptr);
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
c.data); // TODO dont iterate over centers!!!
});
}
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_cluster_vector(py::module &m, const std::string &typestr) {
using ClusterType =
Cluster<Type, ClusterSizeX, ClusterSizeY, uint16_t, void>;
auto class_name = fmt::format("ClusterVector_{}", typestr);
py::class_<ClusterVector<ClusterType>>(m, class_name.c_str(),
py::buffer_protocol())
.def(py::init()) // TODO change!!!
/*
.def("push_back",
[](ClusterVector<ClusterType> &self, ClusterType &cl) {
// auto view = make_view_2d(data);
self.push_back(cl);
})
*/
/*
.def(
"push_back",
[](ClusterVector<ClusterType> &self, py::object obj) {
ClusterType &cl = py::cast<ClusterType &>(obj);
self.push_back(cl);
},
py::arg("cluster"))
*/
.def("push_back",
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
self.push_back(cluster);
})
//.def("push_back", &ClusterVector<ClusterType>::push_back) //TODO
// implement push_back
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
.def("item_size", &ClusterVector<ClusterType>::item_size)
.def_property_readonly("fmt",
[typestr]() { return fmt_format<ClusterType>; })
/*
.def("sum",
[](ClusterVector<ClusterType> &self) {
auto *vec = new std::vector<T>(self.sum());
return return_vector(vec);
})
.def("sum_2x2",
[](ClusterVector<ClusterType> &self) {
auto *vec = new std::vector<T>(self.sum_2x2());
return return_vector(vec);
})
*/
.def_property_readonly("cluster_size_x",
&ClusterVector<ClusterType>::cluster_size_x)
.def_property_readonly("cluster_size_y",
&ClusterVector<ClusterType>::cluster_size_y)
.def_property_readonly("capacity",
&ClusterVector<ClusterType>::capacity)
.def_property("frame_number", &ClusterVector<ClusterType>::frame_number,
&ClusterVector<ClusterType>::set_frame_number)
.def_buffer(
[typestr](ClusterVector<ClusterType> &self) -> py::buffer_info {
return py::buffer_info(
self.data(), /* Pointer to buffer */
self.item_size(), /* Size of one scalar */
fmt_format<ClusterType>, /* Format descriptor */
1, /* Number of dimensions */
{self.size()}, /* Buffer dimensions */
{self.item_size()} /* Strides (in bytes) for each index */
);
});
}
template <typename ClusterType>
void define_cluster_finder_mt_bindings(py::module &m,
const std::string &typestr) {
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
py::arg("image_size"), py::arg("n_sigma") = 5.0,
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
.def("push_pedestal_frame",
[](ClusterFinder<uint16_t, double> &self,
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
self.push_pedestal_frame(view);
})
.def("pedestal",
[](ClusterFinder<uint16_t, double> &self) {
auto m = new NDArray<double, 2>{};
*m = self.pedestal();
return return_image_data(m);
})
.def("find_clusters_without_threshold",
[](ClusterFinder<uint16_t, double> &self,
.def(
"find_clusters",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame, uint64_t frame_number) {
auto view = make_view_2d(frame);
self.find_clusters(view, frame_number);
return;
},
py::arg(), py::arg("frame_number") = 0)
.def("clear_pedestal",
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
.def(
"pedestal",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
size_t thread_index) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal(thread_index);
return return_image_data(pd);
},
py::arg("thread_index") = 0)
.def(
"noise",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
size_t thread_index) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise(thread_index);
return return_image_data(arr);
},
py::arg("thread_index") = 0);
}
template <typename ClusterType>
void define_cluster_collector_bindings(py::module &m,
const std::string &typestr) {
auto class_name = fmt::format("ClusterCollector_{}", typestr);
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
.def("stop", &ClusterCollector<ClusterType>::stop)
.def(
"steal_clusters",
[](ClusterCollector<ClusterType> &self) {
auto v = new std::vector<ClusterVector<ClusterType>>(
self.steal_clusters());
return v;
},
py::return_value_policy::take_ownership);
}
template <typename ClusterType>
void define_cluster_file_sink_bindings(py::module &m,
const std::string &typestr) {
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
const std::filesystem::path &>())
.def("stop", &ClusterFileSink<ClusterType>::stop);
}
template <typename ClusterType>
void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("ClusterFinder_{}", typestr);
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
.def("push_pedestal_frame",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
auto clusters = self.find_clusters_without_threshold(view);
return clusters;
});
self.push_pedestal_frame(view);
})
.def("clear_pedestal",
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
.def_property_readonly(
"pedestal",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal();
return return_image_data(pd);
})
.def_property_readonly(
"noise",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise();
return return_image_data(arr);
})
.def(
"steal_clusters",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
bool realloc_same_capacity) {
auto v = new ClusterVector<ClusterType>(
self.steal_clusters(realloc_same_capacity));
return v;
},
py::arg("realloc_same_capacity") = false)
.def(
"find_clusters",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame, uint64_t frame_number) {
auto view = make_view_2d(frame);
self.find_clusters(view, frame_number);
return;
},
py::arg(), py::arg("frame_number") = 0);
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
.def(py::init<int, int, Dtype>())
.def("size", &DynamicCluster::size)
.def("begin", &DynamicCluster::begin)
.def("end", &DynamicCluster::end)
.def_readwrite("x", &DynamicCluster::x)
.def_readwrite("y", &DynamicCluster::y)
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
1, {c.size()}, {c.dt.bytes()});
})
m.def("hitmap",
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
py::array_t<int32_t> hitmap(image_size);
auto r = hitmap.mutable_unchecked<2>();
.def("__repr__", [](const DynamicCluster &a) {
return "<DynamicCluster: x: " + std::to_string(a.x) +
", y: " + std::to_string(a.y) + ">";
});
}
// Initialize hitmap to 0
for (py::ssize_t i = 0; i < r.shape(0); i++)
for (py::ssize_t j = 0; j < r.shape(1); j++)
r(i, j) = 0;
size_t stride = cv.item_size();
auto ptr = cv.data();
for (size_t i = 0; i < cv.size(); i++) {
auto x = *reinterpret_cast<int16_t *>(ptr);
auto y = *reinterpret_cast<int16_t *>(ptr + sizeof(int16_t));
r(y, x) += 1;
ptr += stride;
}
return hitmap;
});
}

View File

@ -1,7 +1,7 @@
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
#include "aare/defs.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
@ -11,40 +11,81 @@
#include <pybind11/stl/filesystem.h>
#include <string>
// Disable warnings for unused parameters, as we ignore some
// in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
namespace py = pybind11;
using namespace ::aare;
void define_cluster_file_io_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(Cluster, x, y, data);
template <typename ClusterType>
void define_cluster_file_io_bindings(py::module &m,
const std::string &typestr) {
// PYBIND11_NUMPY_DTYPE(Cluster<int, 3, 3>, x, y,
// data); // is this used - maybe use as cluster type
py::class_<ClusterFile>(m, "ClusterFile")
.def(py::init<const std::filesystem::path &, size_t>(), py::arg(), py::arg("chunk_size") = 1000)
.def("read_clusters",
[](ClusterFile &self, size_t n_clusters) {
auto* vec = new std::vector<Cluster>(self.read_clusters(n_clusters));
return return_vector(vec);
})
auto class_name = fmt::format("ClusterFile_{}", typestr);
py::class_<ClusterFile<ClusterType>>(m, class_name.c_str())
.def(py::init<const std::filesystem::path &, size_t,
const std::string &>(),
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
.def(
"read_clusters",
[](ClusterFile<ClusterType> &self, size_t n_clusters) {
auto v = new ClusterVector<ClusterType>(
self.read_clusters(n_clusters));
return v;
},
py::return_value_policy::take_ownership)
.def("read_frame",
[](ClusterFile &self) {
int32_t frame_number;
auto* vec = new std::vector<Cluster>(self.read_frame(frame_number));
return py::make_tuple(frame_number, return_vector(vec));
[](ClusterFile<ClusterType> &self) {
auto v = new ClusterVector<ClusterType>(self.read_frame());
return v;
})
.def("read_cluster_with_cut",
[](ClusterFile &self, size_t n_clusters, py::array_t<double> noise_map, int nx, int ny) {
auto view = make_view_2d(noise_map);
auto* vec = new std::vector<Cluster>(self.read_cluster_with_cut(n_clusters, view.data(), nx, ny));
return return_vector(vec);
.def("set_roi", &ClusterFile<ClusterType>::set_roi)
.def(
"set_noise_map",
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
auto view = make_view_2d(noise_map);
self.set_noise_map(view);
})
.def("set_gain_map",
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
auto view = make_view_2d(gain_map);
self.set_gain_map(view);
})
.def("__enter__", [](ClusterFile &self) { return &self; })
.def("__exit__", [](ClusterFile &self, py::args args) { return; })
.def("__iter__", [](ClusterFile &self) { return &self; })
.def("__next__", [](ClusterFile &self) {
auto vec = new std::vector<Cluster>(self.read_clusters(self.chunk_size()));
if(vec->size() == 0) {
// void set_gain_map(const GainMap &gain_map); //TODO do i need a
// gainmap constructor?
.def("close", &ClusterFile<ClusterType>::close)
.def("write_frame", &ClusterFile<ClusterType>::write_frame)
.def("__enter__", [](ClusterFile<ClusterType> &self) { return &self; })
.def("__exit__",
[](ClusterFile<ClusterType> &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
self.close();
})
.def("__iter__", [](ClusterFile<ClusterType> &self) { return &self; })
.def("__next__", [](ClusterFile<ClusterType> &self) {
auto v = new ClusterVector<ClusterType>(
self.read_clusters(self.chunk_size()));
if (v->size() == 0) {
throw py::stop_iteration();
}
return return_vector(vec);
return v;
});
}
m.def("calculate_eta2",
[](const aare::ClusterVector<ClusterType> &clusters) {
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
return return_image_data(eta2);
});
}
#pragma GCC diagnostic pop

View File

@ -0,0 +1,99 @@
#include "aare/CtbRawFile.hpp"
#include "aare/File.hpp"
#include "aare/Frame.hpp"
#include "aare/RawFile.hpp"
#include "aare/RawMasterFile.hpp"
#include "aare/RawSubFile.hpp"
#include "aare/defs.hpp"
#include "aare/decode.hpp"
// #include "aare/fClusterFileV2.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
void define_ctb_raw_file_io_bindings(py::module &m) {
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
if(input.ndim() != 2){
throw std::runtime_error("Only 2D arrays are supported at this moment");
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
adc_sar_05_decode64to16(input_view, output_view);
return output;
});
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
if(input.ndim() != 2){
throw std::runtime_error("Only 2D arrays are supported at this moment");
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
adc_sar_04_decode64to16(input_view, output_view);
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
py::array_t<DetectorHeader> header(1);
// always read bytes
image = py::array_t<uint8_t>(shape);
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
}

View File

@ -20,6 +20,11 @@
namespace py = pybind11;
using namespace ::aare;
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
void define_file_io_bindings(py::module &m) {
@ -38,36 +43,7 @@ void define_file_io_bindings(py::module &m) {
bunchId, timestamp, modId, row, column, reserved,
debug, roundRNumber, detType, version, packetMask);
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
py::array_t<DetectorHeader> header(1);
// always read bytes
image = py::array_t<uint8_t>(shape);
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
py::class_<File>(m, "File")
.def(py::init([](const std::filesystem::path &fname) {
@ -80,7 +56,8 @@ void define_file_io_bindings(py::module &m) {
.def(py::init<const std::filesystem::path &, const std::string &,
const FileConfig &>())
.def("frame_number", &File::frame_number)
.def("frame_number", py::overload_cast<>(&File::frame_number))
.def("frame_number", py::overload_cast<size_t>(&File::frame_number))
.def_property_readonly("bytes_per_frame", &File::bytes_per_frame)
.def_property_readonly("pixels_per_frame", &File::pixels_per_frame)
.def("seek", &File::seek)
@ -133,13 +110,15 @@ void define_file_io_bindings(py::module &m) {
return image;
})
.def("read_n", [](File &self, size_t n_frames) {
const uint8_t item_size = self.bytes_per_pixel();
//adjust for actual frames left in the file
n_frames = std::min(n_frames, self.total_frames()-self.tell());
if(n_frames == 0){
throw std::runtime_error("No frames left in file");
}
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
py::array image;
std::vector<ssize_t> shape;
shape.reserve(3);
shape.push_back(n_frames);
shape.push_back(self.rows());
shape.push_back(self.cols());
const uint8_t item_size = self.bytes_per_pixel();
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
@ -150,8 +129,41 @@ void define_file_io_bindings(py::module &m) {
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames);
return image;
})
.def("__enter__", [](File &self) { return &self; })
.def("__exit__",
[](File &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
// self.close();
})
.def("__iter__", [](File &self) { return &self; })
.def("__next__", [](File &self) {
try{
const uint8_t item_size = self.bytes_per_pixel();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(self.rows());
shape.push_back(self.cols());
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()));
return image;
}catch(std::runtime_error &e){
throw py::stop_iteration();
}
});
py::class_<FileConfig>(m, "FileConfig")
.def(py::init<>())
.def_readwrite("rows", &FileConfig::rows)
@ -183,6 +195,8 @@ void define_file_io_bindings(py::module &m) {
py::class_<ROI>(m, "ROI")
.def(py::init<>())
.def(py::init<int64_t, int64_t, int64_t, int64_t>(), py::arg("xmin"),
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
.def_readwrite("xmin", &ROI::xmin)
.def_readwrite("xmax", &ROI::xmax)
.def_readwrite("ymin", &ROI::ymin)
@ -194,7 +208,7 @@ void define_file_io_bindings(py::module &m) {
return fmt::format("<ROI: xmin: {} xmax: {} ymin: {} ymax: {}>", self.xmin, self.xmax, self.ymin, self.ymax);
})
.def("__iter__", [](const ROI &self) {
return py::make_iterator(&self.xmin, &self.ymax+1);
return py::make_iterator(&self.xmin, &self.ymax+1); //NOLINT
});
@ -231,7 +245,7 @@ void define_file_io_bindings(py::module &m) {
return image;
});
#pragma GCC diagnostic pop
// py::class_<ClusterHeader>(m, "ClusterHeader")
// .def(py::init<>())
// .def_readwrite("frame_number", &ClusterHeader::frame_number)

250
python/src/fit.hpp Normal file
View File

@ -0,0 +1,250 @@
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include "aare/Fit.hpp"
namespace py = pybind11;
using namespace pybind11::literals;
void define_fit_bindings(py::module &m) {
// TODO! Evaluate without converting to double
m.def(
"gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
auto x_view = make_view_1d(x);
auto par_view = make_view_1d(par);
auto y = new NDArray<double, 1>{aare::func::gaus(x_view, par_view)};
return return_image_data(y);
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)",
py::arg("x"), py::arg("par"));
m.def(
"pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
auto x_view = make_view_1d(x);
auto par_view = make_view_1d(par);
auto y = new NDArray<double, 1>{aare::func::pol1(x_view, par_view)};
return return_image_data(y);
},
R"(
Evaluate a 1D polynomial function for all points in x using parameters par. (p0+p1*x)
Parameters
----------
x : array_like
The points at which to evaluate the polynomial function.
par : array_like
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
)",
py::arg("x"), py::arg("par"));
m.def(
"fit_gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
int n_threads) {
if (y.ndim() == 3) {
auto par = new NDArray<double, 3>{};
auto y_view = make_view_3d(y);
auto x_view = make_view_1d(x);
*par = aare::fit_gaus(x_view, y_view, n_threads);
return return_image_data(par);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>{};
auto y_view = make_view_1d(y);
auto x_view = make_view_1d(x);
*par = aare::fit_gaus(x_view, y_view);
return return_image_data(par);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
Fit a 1D Gaussian to data.
Parameters
----------
x : array_like
The x values.
y : array_like
The y values.
n_threads : int, optional
The number of threads to use. Default is 4.
)",
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
m.def(
"fit_gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
// the memory
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
// Make views of the numpy arrays
auto y_view = make_view_3d(y);
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 3);
} else if (y.ndim() == 1) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
// the memory
auto par = new NDArray<double, 1>({3});
auto par_err = new NDArray<double, 1>({3});
// Decode the numpy arrays
auto y_view = make_view_1d(y);
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
Fit a 1D Gaussian to data with error estimates.
Parameters
----------
x : array_like
The x values.
y : array_like
The y values.
y_err : array_like
The error in the y values.
n_threads : int, optional
The number of threads to use. Default is 4.
)",
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
m.def(
"fit_pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
int n_threads) {
if (y.ndim() == 3) {
auto par = new NDArray<double, 3>{};
auto x_view = make_view_1d(x);
auto y_view = make_view_3d(y);
*par = aare::fit_pol1(x_view, y_view, n_threads);
return return_image_data(par);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>{};
auto x_view = make_view_1d(x);
auto y_view = make_view_1d(y);
*par = aare::fit_pol1(x_view, y_view);
return return_image_data(par);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
m.def(
"fit_pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto y_view = make_view_3d(y);
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 2);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>({2});
auto par_err = new NDArray<double, 1>({2});
auto y_view = make_view_1d(y);
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
Fit a 1D polynomial to data with error estimates.
Parameters
----------
x : array_like
The x values.
y : array_like
The y values.
y_err : array_like
The error in the y values.
n_threads : int, optional
The number of threads to use. Default is 4.
)",
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
}

View File

@ -0,0 +1,81 @@
#include "aare/Interpolator.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
template <typename ClusterType>
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
const std::string &typestr) {
auto name = fmt::format("interpolate_{}", typestr);
interpolator.def(name.c_str(),
[](aare::Interpolator &self,
const ClusterVector<ClusterType> &clusters) {
auto photons = self.interpolate<ClusterType>(clusters);
auto *ptr = new std::vector<Photon>{photons};
return return_vector(ptr);
});
}
void define_interpolation_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
auto interpolator =
py::class_<aare::Interpolator>(m, "Interpolator")
.def(py::init([](py::array_t<double, py::array::c_style |
py::array::forcecast>
etacube,
py::array_t<double> xbins,
py::array_t<double> ybins,
py::array_t<double> ebins) {
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
make_view_1d(ybins), make_view_1d(ebins));
}))
.def("get_ietax",
[](Interpolator &self) {
auto *ptr = new NDArray<double, 3>{};
*ptr = self.get_ietax();
return return_image_data(ptr);
})
.def("get_ietay", [](Interpolator &self) {
auto *ptr = new NDArray<double, 3>{};
*ptr = self.get_ietay();
return return_image_data(ptr);
});
register_interpolate<Cluster<int, 3, 3>>(interpolator, "Cluster3x3i");
register_interpolate<Cluster<float, 3, 3>>(interpolator, "Cluster3x3f");
register_interpolate<Cluster<double, 3, 3>>(interpolator, "Cluster3x3d");
register_interpolate<Cluster<int, 2, 2>>(interpolator, "Cluster2x2i");
register_interpolate<Cluster<float, 2, 2>>(interpolator, "Cluster2x2f");
register_interpolate<Cluster<double, 2, 2>>(interpolator, "Cluster2x2d");
// TODO! Evaluate without converting to double
m.def(
"hej",
[]() {
// auto boost_histogram = py::module_::import("boost_histogram");
// py::object axis =
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
// py::object histogram = boost_histogram.attr("Histogram")(axis);
// return histogram;
// return h;
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)");
}

View File

@ -1,14 +1,17 @@
//Files with bindings to the different classes
// Files with bindings to the different classes
#include "cluster.hpp"
#include "cluster_file.hpp"
#include "ctb_raw_file.hpp"
#include "file.hpp"
#include "fit.hpp"
#include "interpolation.hpp"
#include "pedestal.hpp"
#include "pixel_map.hpp"
#include "raw_file.hpp"
#include "raw_master_file.hpp"
#include "var_cluster.hpp"
#include "pixel_map.hpp"
#include "pedestal.hpp"
#include "cluster.hpp"
#include "cluster_file.hpp"
//Pybind stuff
// Pybind stuff
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
@ -17,11 +20,61 @@ namespace py = pybind11;
PYBIND11_MODULE(_aare, m) {
define_file_io_bindings(m);
define_raw_file_io_bindings(m);
define_ctb_raw_file_io_bindings(m);
define_raw_master_file_bindings(m);
define_var_cluster_finder_bindings(m);
define_pixel_map_bindings(m);
define_pedestal_bindings<double>(m, "Pedestal");
define_pedestal_bindings<float>(m, "Pedestal_float32");
define_cluster_finder_bindings(m);
define_cluster_file_io_bindings(m);
}
define_pedestal_bindings<double>(m, "Pedestal_d");
define_pedestal_bindings<float>(m, "Pedestal_f");
define_fit_bindings(m);
define_interpolation_bindings(m);
define_cluster_file_io_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
define_cluster_file_io_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
define_cluster_file_io_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
define_cluster_file_io_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
define_cluster_file_io_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
define_cluster_file_io_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
define_cluster_vector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_cluster_vector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
define_cluster_vector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
define_cluster_vector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_cluster_vector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
define_cluster_vector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_finder_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
define_cluster_finder_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
define_cluster_finder_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
define_cluster_finder_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
define_cluster_finder_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
define_cluster_finder_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
define_cluster_finder_mt_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
define_cluster_finder_mt_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
define_cluster_finder_mt_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
define_cluster_finder_mt_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
define_cluster_finder_mt_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
define_cluster_finder_mt_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
define_cluster_file_sink_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
define_cluster_file_sink_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
define_cluster_file_sink_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
define_cluster_file_sink_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
define_cluster_file_sink_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
define_cluster_file_sink_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
define_cluster_collector_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
define_cluster_collector_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3f");
define_cluster_collector_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3d");
define_cluster_collector_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
define_cluster_collector_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2f");
define_cluster_collector_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2d");
define_cluster<int, 3, 3, uint16_t>(m, "3x3i");
define_cluster<float, 3, 3, uint16_t>(m, "3x3f");
define_cluster<double, 3, 3, uint16_t>(m, "3x3d");
define_cluster<int, 2, 2, uint16_t>(m, "2x2i");
define_cluster<float, 2, 2, uint16_t>(m, "2x2f");
define_cluster<double, 2, 2, uint16_t>(m, "2x2d");
}

View File

@ -10,6 +10,7 @@
#include "aare/NDView.hpp"
namespace py = pybind11;
using namespace aare;
// Pass image data back to python as a numpy array
template <typename T, int64_t Ndim>
@ -39,78 +40,47 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
free_when_done); // numpy array references this parent
}
// template <typename Reader> py::array do_read(Reader &r, size_t n_frames) {
// py::array image;
// if (n_frames == 0)
// n_frames = r.total_frames();
// std::array<ssize_t, 3> shape{static_cast<ssize_t>(n_frames), r.rows(),
// r.cols()};
// const uint8_t item_size = r.bytes_per_pixel();
// if (item_size == 1) {
// image = py::array_t<uint8_t, py::array::c_style | py::array::forcecast>(
// shape);
// } else if (item_size == 2) {
// image =
// py::array_t<uint16_t, py::array::c_style | py::array::forcecast>(
// shape);
// } else if (item_size == 4) {
// image =
// py::array_t<uint32_t, py::array::c_style | py::array::forcecast>(
// shape);
// }
// r.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames);
// return image;
// }
// py::array return_frame(pl::Frame *ptr) {
// py::capsule free_when_done(ptr, [](void *f) {
// pl::Frame *foo = reinterpret_cast<pl::Frame *>(f);
// delete foo;
// });
// const uint8_t item_size = ptr->bytes_per_pixel();
// std::vector<ssize_t> shape;
// for (auto val : ptr->shape())
// if (val > 1)
// shape.push_back(val);
// std::vector<ssize_t> strides;
// if (shape.size() == 1)
// strides.push_back(item_size);
// else if (shape.size() == 2) {
// strides.push_back(item_size * shape[1]);
// strides.push_back(item_size);
// }
// if (item_size == 1)
// return py::array_t<uint8_t>(
// shape, strides,
// reinterpret_cast<uint8_t *>(ptr->data()), free_when_done);
// else if (item_size == 2)
// return py::array_t<uint16_t>(shape, strides,
// reinterpret_cast<uint16_t *>(ptr->data()),
// free_when_done);
// else if (item_size == 4)
// return py::array_t<uint32_t>(shape, strides,
// reinterpret_cast<uint32_t *>(ptr->data()),
// free_when_done);
// return {};
// }
// todo rewrite generic
template <class T, int Flags> auto get_shape_3d(py::array_t<T, Flags> arr) {
template <class T, int Flags>
auto get_shape_3d(const py::array_t<T, Flags> &arr) {
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
}
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> &arr) {
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
}
template <class T, int Flags> auto get_shape_2d(py::array_t<T, Flags> arr) {
template <class T, int Flags>
auto get_shape_2d(const py::array_t<T, Flags> &arr) {
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
}
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> arr) {
template <class T, int Flags>
auto get_shape_1d(const py::array_t<T, Flags> &arr) {
return aare::Shape<1>{arr.shape(0)};
}
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> &arr) {
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
}
}
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> &arr) {
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
}
template <typename ClusterType> struct fmt_format_trait; // forward declaration
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
struct fmt_format_trait<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
static std::string value() {
return fmt::format("T{{{}:x;{}:y;{}:data;}}",
py::format_descriptor<CoordType>::format(),
py::format_descriptor<CoordType>::format(),
fmt::format("{}{}", ClusterSizeX * ClusterSizeY,
py::format_descriptor<T>::format()));
}
};
template <typename ClusterType>
auto fmt_format = fmt_format_trait<ClusterType>::value();

View File

@ -15,19 +15,19 @@ template <typename SUM_TYPE> void define_pedestal_bindings(py::module &m, const
.def(py::init<int, int>())
.def("mean",
[](Pedestal<SUM_TYPE> &self) {
auto m = new NDArray<SUM_TYPE, 2>{};
*m = self.mean();
return return_image_data(m);
auto mea = new NDArray<SUM_TYPE, 2>{};
*mea = self.mean();
return return_image_data(mea);
})
.def("variance", [](Pedestal<SUM_TYPE> &self) {
auto m = new NDArray<SUM_TYPE, 2>{};
*m = self.variance();
return return_image_data(m);
auto var = new NDArray<SUM_TYPE, 2>{};
*var = self.variance();
return return_image_data(var);
})
.def("std", [](Pedestal<SUM_TYPE> &self) {
auto m = new NDArray<SUM_TYPE, 2>{};
*m = self.std();
return return_image_data(m);
auto std = new NDArray<SUM_TYPE, 2>{};
*std = self.std();
return return_image_data(std);
})
.def("clear", py::overload_cast<>(&Pedestal<SUM_TYPE>::clear))
.def_property_readonly("rows", &Pedestal<SUM_TYPE>::rows)
@ -43,5 +43,10 @@ template <typename SUM_TYPE> void define_pedestal_bindings(py::module &m, const
.def("push", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t> &f) {
auto v = make_view_2d(f);
pedestal.push(v);
});
})
.def("push_no_update", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t, py::array::c_style> &f) {
auto v = make_view_2d(f);
pedestal.push_no_update(v);
}, py::arg().noconvert())
.def("update_mean", &Pedestal<SUM_TYPE>::update_mean);
}

View File

@ -20,6 +20,14 @@ void define_pixel_map_bindings(py::module &m) {
.def("GenerateMoench05PixelMap", []() {
auto ptr = new NDArray<ssize_t,2>(GenerateMoench05PixelMap());
return return_image_data(ptr);
})
.def("GenerateMoench05PixelMap1g", []() {
auto ptr = new NDArray<ssize_t,2>(GenerateMoench05PixelMap1g());
return return_image_data(ptr);
})
.def("GenerateMoench05PixelMapOld", []() {
auto ptr = new NDArray<ssize_t,2>(GenerateMoench05PixelMapOld());
return return_image_data(ptr);
})
.def("GenerateMH02SingleCounterPixelMap", []() {
auto ptr = new NDArray<ssize_t,2>(GenerateMH02SingleCounterPixelMap());

View File

@ -25,7 +25,6 @@ void define_raw_file_io_bindings(py::module &m) {
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](RawFile &self) {
size_t image_size = self.bytes_per_frame();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
@ -49,32 +48,44 @@ void define_raw_file_io_bindings(py::module &m) {
return py::make_tuple(header, image);
})
.def("read_n",
[](RawFile &self, size_t n_frames) {
py::array image;
std::vector<ssize_t> shape;
shape.reserve(3);
shape.push_back(n_frames);
shape.push_back(self.rows());
shape.push_back(self.cols());
.def(
"read_n",
[](RawFile &self, size_t n_frames) {
// adjust for actual frames left in the file
n_frames =
std::min(n_frames, self.total_frames() - self.tell());
if (n_frames == 0) {
throw std::runtime_error("No frames left in file");
}
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
// return headers from all subfiles
py::array_t<DetectorHeader> header;
if (self.n_mod() == 1) {
header = py::array_t<DetectorHeader>(n_frames);
} else {
header = py::array_t<DetectorHeader>({self.n_mod(), n_frames});
}
// py::array_t<DetectorHeader> header({self.n_mod(), n_frames});
// return headers from all subfiles
py::array_t<DetectorHeader> header({self.n_mod(), n_frames});
py::array image;
const uint8_t item_size = self.bytes_per_pixel();
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames, header.mutable_data());
const uint8_t item_size = self.bytes_per_pixel();
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames, header.mutable_data());
return py::make_tuple(header, image);
})
return py::make_tuple(header, image);
},
R"(
Read n frames from the file.
)")
.def("frame_number", &RawFile::frame_number)
.def_property_readonly("bytes_per_frame", &RawFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame", &RawFile::pixels_per_frame)

View File

@ -19,15 +19,24 @@ using namespace::aare;
void define_var_cluster_finder_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
reserved, energy, max);
reserved, energy, max, rows, cols, enes);
py::class_<VarClusterFinder<double>>(m, "VarClusterFinder")
.def(py::init<Shape<2>, double>())
.def("labeled",
[](VarClusterFinder<double> &self) {
auto ptr = new NDArray<int, 2>(self.labeled());
auto *ptr = new NDArray<int, 2>(self.labeled());
return return_image_data(ptr);
})
.def("set_noiseMap",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
noise_map) {
auto noise_map_span = make_view_2d(noise_map);
self.set_noiseMap(noise_map_span);
})
.def("set_peripheralThresholdFactor",
&VarClusterFinder<double>::set_peripheralThresholdFactor)
.def("find_clusters",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
@ -35,6 +44,30 @@ void define_var_cluster_finder_bindings(py::module &m) {
auto view = make_view_2d(img);
self.find_clusters(view);
})
.def("find_clusters_X",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.find_clusters_X(img_span);
})
.def("single_pass",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.single_pass(img_span);
})
.def("hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
self.steal_hits());
return return_vector(ptr);
})
.def("clear_hits",
[](VarClusterFinder<double> &self) {
self.clear_hits();
})
.def("steal_hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(

View File

@ -0,0 +1,64 @@
import pytest
import numpy as np
from _aare import ClusterVector_Cluster3x3i, Interpolator, Cluster3x3i, ClusterFinder_Cluster3x3i
def test_ClusterVector():
"""Test ClusterVector"""
clustervector = ClusterVector_Cluster3x3i()
assert clustervector.cluster_size_x == 3
assert clustervector.cluster_size_y == 3
assert clustervector.item_size() == 4+9*4
assert clustervector.frame_number == 0
assert clustervector.capacity == 1024
assert clustervector.size == 0
cluster = Cluster3x3i(0,0,np.ones(9, dtype=np.int32))
clustervector.push_back(cluster)
assert clustervector.size == 1
#push_back - check size
def test_Interpolator():
"""Test Interpolator"""
ebins = np.linspace(0,10, 20, dtype=np.float64)
xbins = np.linspace(0, 5, 30, dtype=np.float64)
ybins = np.linspace(0, 5, 30, dtype=np.float64)
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
interpolator = Interpolator(etacube, xbins, ybins, ebins)
assert interpolator.get_ietax().shape == (30,30,20)
assert interpolator.get_ietay().shape == (30,30,20)
clustervector = ClusterVector_Cluster3x3i()
cluster = Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
#clustervector.push_back(cluster)
#num_clusters = 1;
#assert interpolator.interpolate_Cluster3x3i(clustervector).shape == (num_clusters, 3)
#def test_cluster_file():
#def test_cluster_finder():
#"""Test ClusterFinder"""
#clusterfinder = ClusterFinder_Cluster3x3i([100,100])
#clusterfinder.find_clusters()
#clusters = clusterfinder.steal_clusters()
#print("cluster size: ", clusters.size())

62
src/CalculateEta.test.cpp Normal file
View File

@ -0,0 +1,62 @@
/************************************************
* @file CalculateEta.test.cpp
* @short test case to calculate_eta2
***********************************************/
#include "aare/CalculateEta.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
using ClusterTypes =
std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>, Cluster<int, 5, 5>,
Cluster<int, 4, 2>, Cluster<int, 2, 3>>;
auto get_test_parameters() {
return GENERATE(
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
Eta2<int>{2. / 3, 3. / 4, corner::cBottomLeft, 7}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
Eta2<int>{6. / 11, 2. / 7, corner::cTopRight, 20}),
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 8, 8, 9, 2,
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
Eta2<int>{9. / 17, 5. / 13, 8, 28}),
std::make_tuple(
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
Eta2<int>{7. / 11, 6. / 10, 1, 21}),
std::make_tuple(
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
Eta2<int>{3. / 5, 4. / 6, 1, 11}));
}
TEST_CASE("compute_largest_2x2_subcluster", "[.eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto [sum, index] = std::visit(
[](const auto &clustertype) { return clustertype.max_sum_2x2(); },
cluster);
CHECK(expected_eta.c == index);
CHECK(expected_eta.sum == sum);
}
TEST_CASE("calculate_eta2", "[.eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto eta = std::visit(
[](const auto &clustertype) { return calculate_eta2(clustertype); },
cluster);
CHECK(eta.x == expected_eta.x);
CHECK(eta.y == expected_eta.y);
CHECK(eta.c == expected_eta.c);
CHECK(eta.sum == expected_eta.sum);
}

28
src/Cluster.test.cpp Normal file
View File

@ -0,0 +1,28 @@
/************************************************
* @file test-Cluster.cpp
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
***********************************************/
#include "aare/Cluster.hpp"
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
TEST_CASE("Correct Instantiation of Cluster and ClusterVector",
"[.cluster][.instantiation]") {
CHECK(is_valid_cluster<double, 3, 3>);
CHECK(is_valid_cluster<double, 3, 2>);
CHECK(not is_valid_cluster<int, 0, 0>);
CHECK(not is_valid_cluster<std::string, 2, 2>);
CHECK(not is_valid_cluster<int, 2, 2, double>);
CHECK(not is_cluster_v<int>);
CHECK(is_cluster_v<Cluster<int, 3, 3>>);
}

View File

@ -1,312 +0,0 @@
#include "aare/ClusterFile.hpp"
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size): m_chunk_size(chunk_size) {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file: " + fname.string());
}
}
std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
std::vector<Cluster> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
auto buf = reinterpret_cast<Cluster *>(clusters.data());
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read +=
fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
return clusters;
}
std::vector<Cluster> ClusterFile::read_frame(int32_t &out_fnum) {
if (m_num_left) {
throw std::runtime_error("There are still photons left in the last frame");
}
if (fread(&out_fnum, sizeof(out_fnum), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
int n_clusters;
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
std::vector<Cluster> clusters(n_clusters);
if (fread(clusters.data(), sizeof(Cluster), n_clusters, fp) != n_clusters) {
throw std::runtime_error("Could not read clusters");
}
return clusters;
}
std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
double *noise_map,
int nx, int ny) {
std::vector<Cluster> clusters(n_clusters);
// size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
// uint32_t *n_left, double *noise_map, int
// nx, int ny) {
int iframe = 0;
// uint32_t nph = *n_left;
uint32_t nph = m_num_left;
// uint32_t nn = *n_left;
uint32_t nn = m_num_left;
size_t nph_read = 0;
int32_t t2max, tot1;
int32_t tot3;
// Cluster *ptr = buf;
Cluster *ptr = clusters.data();
int good = 1;
double noise;
// read photons left from previous frame
if (noise_map)
printf("Using noise map\n");
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to
// read we read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
for (size_t iph = 0; iph < nn; iph++) {
// read photons 1 by 1
size_t n_read = fread((void *)(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
}
// TODO! error handling on read
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
NULL);
noise = noise_map[ptr->y * nx + ptr->x];
if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
;
} else {
good = 0;
printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
tot1, t2max, tot3);
}
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (nph_read < n_clusters) {
// // keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // printf("%d\n",nph_read);
if (fread(&nph, sizeof(nph), 1, fp)) {
// // printf("** %d\n",nph);
m_num_left = nph;
for (size_t iph = 0; iph < nph; iph++) {
// // read photons 1 by 1
size_t n_read =
fread((void *)(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
// return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL,
NULL,
NULL, NULL, NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
noise = noise_map[ptr->y + ny * ptr->x];
if (tot1 > noise || t2max > 2 * noise ||
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x,
ptr->y); good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (nph_read >= n_clusters)
break;
}
}
// printf("%d\n",nph_read);
clusters.resize(nph_read);
return clusters;
}
int ClusterFile::analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
}
int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
//printf("*** %d %d %d %d -- %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = (double)(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = (double)(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = (double)(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = (double)(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = (double)(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = (double)(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = (double)(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = (double)(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = (double)(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = (double)(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return ok;
}
} // namespace aare

75
src/ClusterFile.test.cpp Normal file
View File

@ -0,0 +1,75 @@
#include "aare/ClusterFile.hpp"
#include "test_config.hpp"
#include "aare/defs.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
using aare::Cluster;
using aare::ClusterFile;
TEST_CASE("Read one frame from a a cluster file", "[.integration]") {
// We know that the frame has 97 clusters
auto fpath =
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
TEST_CASE("Read one frame using ROI", "[.integration]") {
// We know that the frame has 97 clusters
auto fpath =
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 49);
REQUIRE(clusters.frame_number() == 135);
// Check that all clusters are within the ROI
for (size_t i = 0; i < clusters.size(); i++) {
auto c = clusters.at(i);
REQUIRE(c.x >= roi.xmin);
REQUIRE(c.x <= roi.xmax);
REQUIRE(c.y >= roi.ymin);
REQUIRE(c.y <= roi.ymax);
}
}
TEST_CASE("Read clusters from single frame file", "[.integration]") {
auto fpath =
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
SECTION("Read fewer clusters than available") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(50);
REQUIRE(clusters.size() == 50);
REQUIRE(clusters.frame_number() == 135);
}
SECTION("Read more clusters than available") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
// 100 is the maximum number of clusters read
auto clusters = f.read_clusters(100);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
SECTION("Read all clusters") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(97);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
}

View File

@ -1,19 +1,18 @@
#include "aare/ClusterFinder.hpp"
#include "aare/Pedestal.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <chrono>
#include <random>
using namespace aare;
//TODO! Find a way to test the cluster finder
// TODO! Find a way to test the cluster finder
// class ClusterFinderUnitTest : public ClusterFinder {
// public:
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
// = 5.0, double threshold = 0.0)
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
// double get_c2() { return c2; }
// double get_c3() { return c3; }
@ -37,8 +36,8 @@ using namespace aare;
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
// }
TEST_CASE("Construct a cluster finder"){
ClusterFinder clusterFinder({400,400}, {3,3});
TEST_CASE("Construct a cluster finder") {
ClusterFinder clusterFinder({400, 400});
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
// REQUIRE(clusterFinder.get_threshold() == 1);
@ -49,16 +48,17 @@ TEST_CASE("Construct a cluster finder"){
// aare::Pedestal pedestal(10, 10, 5);
// NDArray<double, 2> frame({10, 10});
// frame = 0;
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
// threshold
// auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// auto clusters =
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 0);
// frame(5, 5) = 10;
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 1);
// REQUIRE(clusters[0].x == 5);
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
// REQUIRE(clusters[0].y == 5);
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < 3; j++) {

233
src/ClusterVector.test.cpp Normal file
View File

@ -0,0 +1,233 @@
#include "aare/ClusterVector.hpp"
#include <cstdint>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
using aare::Cluster;
using aare::ClusterVector;
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(4);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 2);
// int16_t, int16_t, 2x2 int32_t = 20 bytes
REQUIRE(cv.item_size() == 20);
// Create a cluster and push back into the vector
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 4);
auto c2 = cv.at(0);
// Check that the data is the same
REQUIRE(c1.x == c2.x);
REQUIRE(c1.y == c2.y);
for (size_t i = 0; i < 4; i++) {
REQUIRE(c1.data[i] == c2.data[i]);
}
}
TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 3, 1>> cv(2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 3);
REQUIRE(cv.cluster_size_y() == 1);
// Create a cluster and push back into the vector
Cluster<int32_t, 3, 1> c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster<int32_t, 3, 1> c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
Cluster<int32_t, 3, 1> c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 3);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 3);
REQUIRE(sums[0] == 12);
REQUIRE(sums[1] == 27);
REQUIRE(sums[2] == 42);
*/
}
TEST_CASE("Storing floats", "[.ClusterVector]") {
ClusterVector<Cluster<float, 2, 4>> cv(10);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 4);
// Create a cluster and push back into the vector
Cluster<float, 2, 4> c1 = {1, 2, {3.0, 4.0, 5.0, 6.0, 3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 1);
Cluster<float, 2, 4> c2 = {
6, 7, {8.0, 9.0, 10.0, 11.0, 8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 2);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 2);
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
*/
}
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(2);
auto initial_data = cv.data();
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 2);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2);
REQUIRE(cv.size() == 2);
REQUIRE(cv.capacity() == 2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3);
REQUIRE(cv.size() == 3);
REQUIRE(cv.capacity() == 4);
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
// We should have allocated a new buffer, since we outgrew the initial
// capacity
REQUIRE(initial_data != cv.data());
}
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(12);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 12);
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
TEST_CASE("Concatenate two cluster vectors where we need to allocate",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(2);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 4);
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
struct ClusterTestData {
uint8_t ClusterSizeX;
uint8_t ClusterSizeY;
std::vector<int64_t> index_map_x;
std::vector<int64_t> index_map_y;
};
TEST_CASE("Gain Map Calculation Index Map", "[.ClusterVector][.gain_map]") {
auto clustertestdata = GENERATE(
ClusterTestData{3,
3,
{-1, 0, 1, -1, 0, 1, -1, 0, 1},
{-1, -1, -1, 0, 0, 0, 1, 1, 1}},
ClusterTestData{
4,
4,
{-2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1},
{-2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1}},
ClusterTestData{2, 2, {-1, 0, -1, 0}, {-1, -1, 0, 0}},
ClusterTestData{5,
5,
{-2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0,
1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2},
{-2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}});
uint8_t ClusterSizeX = clustertestdata.ClusterSizeX;
uint8_t ClusterSizeY = clustertestdata.ClusterSizeY;
std::vector<int64_t> index_map_x(ClusterSizeX * ClusterSizeY);
std::vector<int64_t> index_map_y(ClusterSizeX * ClusterSizeY);
int64_t index_cluster_center_x = ClusterSizeX / 2;
int64_t index_cluster_center_y = ClusterSizeY / 2;
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
index_map_x[j] = j % ClusterSizeX - index_cluster_center_x;
index_map_y[j] = j / ClusterSizeX - index_cluster_center_y;
}
CHECK(index_map_x == clustertestdata.index_map_x);
CHECK(index_map_y == clustertestdata.index_map_y);
}

View File

@ -16,7 +16,7 @@ CtbRawFile::CtbRawFile(const std::filesystem::path &fname) : m_master(fname) {
void CtbRawFile::read_into(std::byte *image_buf, DetectorHeader* header) {
if(m_current_frame >= m_master.frames_in_file()){
throw std::runtime_error(LOCATION + "End of file reached");
throw std::runtime_error(LOCATION + " End of file reached");
}
if(m_current_frame != 0 && m_current_frame % m_master.max_frames_per_file() == 0){

View File

@ -70,7 +70,7 @@ uint8_t Dtype::bitdepth() const {
/**
* @brief Get the number of bytes of the data type
*/
size_t Dtype::bytes() const { return bitdepth() / 8; }
size_t Dtype::bytes() const { return bitdepth() / bits_per_byte; }
/**
* @brief Construct a DType object from a TypeIndex

View File

@ -45,6 +45,8 @@ File& File::operator=(File &&other) noexcept {
return *this;
}
// void File::close() { file_impl->close(); }
Frame File::read_frame() { return file_impl->read_frame(); }
Frame File::read_frame(size_t frame_index) {
return file_impl->read_frame(frame_index);
@ -58,6 +60,8 @@ void File::read_into(std::byte *image_buf) { file_impl->read_into(image_buf); }
void File::read_into(std::byte *image_buf, size_t n_frames) {
file_impl->read_into(image_buf, n_frames);
}
size_t File::frame_number() { return file_impl->frame_number(tell()); }
size_t File::frame_number(size_t frame_index) {
return file_impl->frame_number(frame_index);
}
@ -69,7 +73,7 @@ size_t File::tell() const { return file_impl->tell(); }
size_t File::rows() const { return file_impl->rows(); }
size_t File::cols() const { return file_impl->cols(); }
size_t File::bitdepth() const { return file_impl->bitdepth(); }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / 8; }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
DetectorType File::detector_type() const { return file_impl->detector_type(); }

276
src/Fit.cpp Normal file
View File

@ -0,0 +1,276 @@
#include "aare/Fit.hpp"
#include "aare/utils/task.hpp"
#include "aare/utils/par.hpp"
#include <lmcurve2.h>
#include <lmfit.hpp>
#include <thread>
#include <array>
namespace aare {
namespace func {
double gaus(const double x, const double *par) {
return par[0] * exp(-pow(x - par[1], 2) / (2 * pow(par[2], 2)));
}
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape(0)}, 0);
for (size_t i = 0; i < x.size(); i++) {
y(i) = gaus(x(i), par.data());
}
return y;
}
double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (size_t i = 0; i < x.size(); i++) {
y(i) = pol1(x(i), par.data());
}
return y;
}
} // namespace func
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result = gaus_init_par(x, y);
lm_status_struct status;
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &lm_control_double, &status);
return result;
}
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 3}, 0);
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_gaus(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
result(row, col, 2) = res(2);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
std::array<double, 3> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
// For sigma we estimate the fwhm and divide by 2.35
// assuming equally spaced x values
auto delta = x[1] - x[0];
start_par[2] =
std::count_if(y.begin(), y.end(),
[e, delta](double val) { return val > *e / 2; }) *
delta / 2.35;
return start_par;
}
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 2> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
return start_par;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double &chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 3");
}
// /* Collection of output parameters for status info. */
// typedef struct {
// double fnorm; /* norm of the residue vector fvec. */
// int nfev; /* actual number of iterations. */
// int outcome; /* Status indicator. Nonnegative values are used as
// index
// for the message text lm_infmsg, set in lmmin.c. */
// int userbreak; /* Set when function evaluation requests termination.
// */
// } lm_status_struct;
lm_status_struct status;
par_out = gaus_init_par(x, y);
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
// n_par - Number of free variables. Length of parameter vector par.
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
// dy - Array of length m_dat. Contains the standard deviations of the values y.
// f - A user-supplied parametric function f(ti;par).
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (size_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
}
lm_status_struct status;
par_out = pol1_init_par(x, y);
std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (size_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// // Check that we have the correct sizes
// if (y.size() != x.size() || y.size() != y_err.size() ||
// par_out.size() != 2 || par_err_out.size() != 2) {
// throw std::runtime_error("Data, x, data_err must have the same size "
// "and par_out, par_err_out must have size 2");
// }
NDArray<double, 1> par = pol1_init_par(x, y);
lm_status_struct status;
lmcurve(par.size(), par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &lm_control_double, &status);
return par;
}
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 2}, 0);
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_pol1(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
} // namespace aare

View File

@ -19,7 +19,7 @@ TEST_CASE("Construct a frame") {
// data should be initialized to 0
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
REQUIRE(*data == 0);
}
@ -40,7 +40,7 @@ TEST_CASE("Set a value in a 8 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@ -65,7 +65,7 @@ TEST_CASE("Set a value in a 64 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint64_t *data = (uint64_t *)frame.pixel_ptr(i, j);
uint64_t *data = reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@ -149,4 +149,5 @@ TEST_CASE("test explicit copy constructor") {
REQUIRE(frame2.bitdepth() == bitdepth);
REQUIRE(frame2.bytes() == rows * cols * bitdepth / 8);
REQUIRE(frame2.data() != data);
}
}

56
src/Interpolator.cpp Normal file
View File

@ -0,0 +1,56 @@
#include "aare/Interpolator.hpp"
namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
"The shape of the etacube does not match the shape of the bins");
}
// Cumulative sum in the x direction
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
}
}
}
// Normalize by the highest row, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
double norm = val < 1 ? 1 : val;
m_ietax(i, j, k) /= norm;
}
}
}
// Cumulative sum in the y direction
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
}
}
}
// Normalize by the highest column, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
double norm = val < 1 ? 1 : val;
m_ietay(i, j, k) /= norm;
}
}
}
}
} // namespace aare

View File

@ -2,6 +2,7 @@
#include <array>
#include <catch2/benchmark/catch_benchmark.hpp>
#include <catch2/catch_test_macros.hpp>
#include <numeric>
using aare::NDArray;
using aare::NDView;
@ -34,6 +35,24 @@ TEST_CASE("Construct from an NDView") {
}
}
TEST_CASE("3D NDArray from NDView"){
std::vector<int> data(27);
std::iota(data.begin(), data.end(), 0);
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
NDArray<int, 3> image(view);
REQUIRE(image.shape() == view.shape());
REQUIRE(image.size() == view.size());
REQUIRE(image.data() != view.data());
for(int64_t i=0; i<image.shape(0); i++){
for(int64_t j=0; j<image.shape(1); j++){
for(int64_t k=0; k<image.shape(2); k++){
REQUIRE(image(i, j, k) == view(i, j, k));
}
}
}
}
TEST_CASE("1D image") {
std::array<int64_t, 1> shape{{20}};
NDArray<short, 1> img(shape, 3);
@ -379,4 +398,32 @@ TEST_CASE("Elementwise operations on images") {
REQUIRE(A(i) == a_val);
}
}
}
TEST_CASE("Assign an std::array to a 1D NDArray") {
NDArray<int, 1> a{{5}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Assign an std::array to a 1D NDArray of a different size") {
NDArray<int, 1> a{{3}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
REQUIRE(a.size() == 5);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Construct an NDArray from an std::array") {
std::array<int, 5> b{1, 2, 3, 4, 5};
NDArray<int, 1> a(b);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}

View File

@ -31,6 +31,49 @@ NDArray<ssize_t, 2> GenerateMoench03PixelMap() {
}
NDArray<ssize_t, 2> GenerateMoench05PixelMap() {
std::array<int, 3> adc_numbers = {5, 9, 1};
NDArray<ssize_t, 2> order_map({160, 150});
int n_pixel = 0;
for (int row = 0; row < 160; row++) {
for (int i_col = 0; i_col < 50; i_col++) {
n_pixel = row * 50 + i_col;
for (int i_sc = 0; i_sc < 3; i_sc++) {
int col = 50 * i_sc + i_col;
int adc_nr = adc_numbers[i_sc];
int i_analog = n_pixel * 12 + adc_nr;
// analog_frame[row * 150 + col] = analog_data[i_analog] & 0x3FFF;
order_map(row, col) = i_analog;
}
}
}
return order_map;
}
NDArray<ssize_t, 2> GenerateMoench05PixelMap1g() {
std::array<int, 3> adc_numbers = {1, 2, 0};
NDArray<ssize_t, 2> order_map({160, 150});
int n_pixel = 0;
for (int row = 0; row < 160; row++) {
for (int i_col = 0; i_col < 50; i_col++) {
n_pixel = row * 50 + i_col;
for (int i_sc = 0; i_sc < 3; i_sc++) {
int col = 50 * i_sc + i_col;
int adc_nr = adc_numbers[i_sc];
int i_analog = n_pixel * 3 + adc_nr;
// analog_frame[row * 150 + col] = analog_data[i_analog] & 0x3FFF;
order_map(row, col) = i_analog;
}
}
}
return order_map;
}
NDArray<ssize_t, 2> GenerateMoench05PixelMapOld() {
std::array<int, 3> adc_numbers = {9, 13, 1};
NDArray<ssize_t, 2> order_map({160, 150});
int n_pixel = 0;

View File

@ -1,6 +1,7 @@
#include "aare/RawFile.hpp"
#include "aare/PixelMap.hpp"
#include "aare/defs.hpp"
#include "aare/geo_helpers.hpp"
#include <fmt/format.h>
#include <nlohmann/json.hpp>
@ -17,9 +18,15 @@ RawFile::RawFile(const std::filesystem::path &fname, const std::string &mode)
n_subfiles = find_number_of_subfiles(); // f0,f1...fn
n_subfile_parts =
m_master.geometry().col * m_master.geometry().row; // d0,d1...dn
find_geometry();
update_geometry_with_roi();
find_geometry();
if (m_master.roi()){
m_geometry = update_geometry_with_roi(m_geometry, m_master.roi().value());
}
open_subfiles();
} else {
throw std::runtime_error(LOCATION +
@ -69,9 +76,12 @@ size_t RawFile::n_mod() const { return n_subfile_parts; }
size_t RawFile::bytes_per_frame() {
return m_rows * m_cols * m_master.bitdepth() / 8;
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / bits_per_byte;
}
size_t RawFile::pixels_per_frame() {
// return m_rows * m_cols;
return m_geometry.pixels_x * m_geometry.pixels_y;
}
size_t RawFile::pixels_per_frame() { return m_rows * m_cols; }
DetectorType RawFile::detector_type() const { return m_master.detector_type(); }
@ -89,8 +99,8 @@ void RawFile::seek(size_t frame_index) {
size_t RawFile::tell() { return m_current_frame; };
size_t RawFile::total_frames() const { return m_master.frames_in_file(); }
size_t RawFile::rows() const { return m_rows; }
size_t RawFile::cols() const { return m_cols; }
size_t RawFile::rows() const { return m_geometry.pixels_y; }
size_t RawFile::cols() const { return m_geometry.pixels_x; }
size_t RawFile::bitdepth() const { return m_master.bitdepth(); }
xy RawFile::geometry() { return m_master.geometry(); }
@ -99,14 +109,11 @@ void RawFile::open_subfiles() {
for (size_t i = 0; i != n_subfiles; ++i) {
auto v = std::vector<RawSubFile *>(n_subfile_parts);
for (size_t j = 0; j != n_subfile_parts; ++j) {
fmt::print("{} pos: {},{}\n", j,positions[j].row, positions[j].col);
auto pos = m_module_pixel_0[j];
fmt::print("{} pos: {},{}\n", j,pos.y, pos.x);
auto pos = m_geometry.module_pixel_0[j];
v[j] = new RawSubFile(m_master.data_fname(j, i),
m_master.detector_type(), pos.height,
pos.width, m_master.bitdepth(),
positions[j].row, positions[j].col);
pos.row_index, pos.col_index);
}
subfiles.push_back(v);
@ -149,112 +156,49 @@ int RawFile::find_number_of_subfiles() {
RawMasterFile RawFile::master() const { return m_master; }
/**
* @brief Find the geometry of the detector by opening all the subfiles and
* reading the headers.
*/
void RawFile::find_geometry() {
//Hold the maximal row and column number found
//Later used for calculating the total number of rows and columns
uint16_t r{};
uint16_t c{};
for (size_t i = 0; i < n_subfile_parts; i++) {
auto h = this->read_header(m_master.data_fname(i, 0));
auto h = read_header(m_master.data_fname(i, 0));
r = std::max(r, h.row);
c = std::max(c, h.column);
positions.push_back({h.row, h.column});
// positions.push_back({h.row, h.column});
ModuleGeometry g;
g.x = h.column * m_master.pixels_x();
g.y = h.row * m_master.pixels_y();
g.origin_x = h.column * m_master.pixels_x();
g.origin_y = h.row * m_master.pixels_y();
g.row_index = h.row;
g.col_index = h.column;
g.width = m_master.pixels_x();
g.height = m_master.pixels_y();
m_module_pixel_0.push_back(g);
m_geometry.module_pixel_0.push_back(g);
}
r++;
c++;
m_rows = (r * m_master.pixels_y());
m_cols = (c * m_master.pixels_x());
m_rows += static_cast<size_t>((r - 1) * cfg.module_gap_row);
#ifdef AARE_VERBOSE
fmt::print("\nRawFile::find_geometry()\n");
for (size_t i = 0; i < m_module_pixel_0.size(); i++) {
fmt::print("Module {} at position: (r:{},c:{})\n", i,
m_module_pixel_0[i].y, m_module_pixel_0[i].x);
}
fmt::print("Image size: {}x{}\n\n", m_rows, m_cols);
#endif
}
void RawFile::update_geometry_with_roi() {
// TODO! implement this
if (m_master.roi()) {
auto roi = m_master.roi().value();
// TODO! can we do this cleaner?
int pos_y = 0;
int pos_y_increment = 0;
for (size_t row = 0; row < m_master.geometry().row; row++) {
int pos_x = 0;
for (size_t col = 0; col < m_master.geometry().col; col++) {
auto &m = m_module_pixel_0[row * m_master.geometry().col + col];
auto original_height = m.height;
auto original_width = m.width;
// module is to the left of the roi
if (m.x + m.width < roi.xmin) {
m.width = 0;
// roi is in module
} else {
// here we only arrive when the roi is in or to the left of
// the module
if (roi.xmin > m.x) {
m.width -= roi.xmin - m.x;
}
if (roi.xmax < m.x + m.width) {
m.width -= m.x + original_width - roi.xmax;
}
m.x = pos_x;
pos_x += m.width;
}
if (m.y + m.height < roi.ymin) {
m.height = 0;
} else {
if ((roi.ymin > m.y) && (roi.ymin < m.y + m.height)) {
m.height -= roi.ymin - m.y;
}
if (roi.ymax < m.y + m.height) {
m.height -= m.y + original_height - roi.ymax;
}
m.y = pos_y;
pos_y_increment = m.height;
}
}
// increment pos_y
pos_y += pos_y_increment;
}
m_rows = roi.height();
m_cols = roi.width();
}
#ifdef AARE_VERBOSE
fmt::print("RawFile::update_geometry_with_roi()\n");
for (const auto &m : m_module_pixel_0) {
fmt::print("Module at position: (r:{}, c:{}, h:{}, w:{})\n", m.y, m.x,
m.height, m.width);
}
fmt::print("Updated image size: {}x{}\n\n", m_rows, m_cols);
fmt::print("\n");
#endif
m_geometry.pixels_y = (r * m_master.pixels_y());
m_geometry.pixels_x = (c * m_master.pixels_x());
m_geometry.modules_x = c;
m_geometry.modules_y = r;
m_geometry.pixels_y += static_cast<size_t>((r - 1) * cfg.module_gap_row);
}
Frame RawFile::get_frame(size_t frame_index) {
auto f = Frame(m_rows, m_cols, Dtype::from_bitdepth(m_master.bitdepth()));
auto f = Frame(m_geometry.pixels_y, m_geometry.pixels_x, Dtype::from_bitdepth(m_master.bitdepth()));
std::byte *frame_buffer = f.data();
get_frame_into(frame_index, frame_buffer);
return f;
@ -266,8 +210,7 @@ size_t RawFile::bytes_per_pixel() const {
}
void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, DetectorHeader *header) {
if (frame_index > total_frames()) {
if (frame_index >= total_frames()) {
throw std::runtime_error(LOCATION + "Frame number out of range");
}
std::vector<size_t> frame_numbers(n_subfile_parts);
@ -279,6 +222,10 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
if (n_subfile_parts != 1) {
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto subfile_id = frame_index / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(LOCATION +
" Subfile out of range. Possible missing data.");
}
frame_numbers[part_idx] =
subfiles[subfile_id][part_idx]->frame_number(
frame_index % m_master.max_frames_per_file());
@ -312,14 +259,19 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto corrected_idx = frame_indices[part_idx];
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(LOCATION +
" Subfile out of range. Possible missing data.");
}
// This is where we start writing
auto offset = (m_module_pixel_0[part_idx].y * m_cols +
m_module_pixel_0[part_idx].x)*m_master.bitdepth()/8;
auto offset = (m_geometry.module_pixel_0[part_idx].origin_y * m_geometry.pixels_x +
m_geometry.module_pixel_0[part_idx].origin_x)*m_master.bitdepth()/8;
if (m_module_pixel_0[part_idx].x!=0)
if (m_geometry.module_pixel_0[part_idx].origin_x!=0)
throw std::runtime_error(LOCATION + "Implementation error. x pos not 0.");
//TODO! Risk for out of range access
subfiles[subfile_id][part_idx]->seek(corrected_idx % m_master.max_frames_per_file());
subfiles[subfile_id][part_idx]->read_into(frame_buffer + offset, header);
if (header)
@ -340,21 +292,25 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
// level
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto pos = m_module_pixel_0[part_idx];
auto pos = m_geometry.module_pixel_0[part_idx];
auto corrected_idx = frame_indices[part_idx];
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(LOCATION +
" Subfile out of range. Possible missing data.");
}
subfiles[subfile_id][part_idx]->seek(corrected_idx % m_master.max_frames_per_file());
subfiles[subfile_id][part_idx]->read_into(part_buffer, header);
if(header)
++header;
for (size_t cur_row = 0; cur_row < (pos.height);
for (size_t cur_row = 0; cur_row < static_cast<size_t>(pos.height);
cur_row++) {
auto irow = (pos.y + cur_row);
auto icol = pos.x;
auto dest = (irow * this->m_cols + icol);
auto irow = (pos.origin_y + cur_row);
auto icol = pos.origin_x;
auto dest = (irow * this->m_geometry.pixels_x + icol);
dest = dest * m_master.bitdepth() / 8;
memcpy(frame_buffer + dest,
part_buffer + cur_row * pos.width *
@ -400,4 +356,8 @@ RawFile::~RawFile() {
}
}
} // namespace aare

View File

@ -1,10 +1,13 @@
#include "aare/File.hpp"
#include "aare/RawMasterFile.hpp" //needed for ROI
#include "aare/RawFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include "test_config.hpp"
using aare::File;
TEST_CASE("Read number of frames from a jungfrau raw file", "[.integration]") {
@ -148,3 +151,5 @@ TEST_CASE("Read file with unordered frames", "[.integration]") {
File f(fpath);
REQUIRE_THROWS((f.read_frame()));
}

View File

@ -37,11 +37,24 @@ std::filesystem::path RawFileNameComponents::master_fname() const {
}
std::filesystem::path RawFileNameComponents::data_fname(size_t mod_id,
size_t file_id) const {
return m_base_path / fmt::format("{}_d{}_f{}_{}.raw", m_base_name, mod_id,
size_t file_id
) const {
std::string fmt = "{}_d{}_f{}_{}.raw";
//Before version X we used to name the data files f000000000000
if (m_old_scheme) {
fmt = "{}_d{}_f{:012}_{}.raw";
}
return m_base_path / fmt::format(fmt, m_base_name, mod_id,
file_id, m_file_index);
}
void RawFileNameComponents::set_old_scheme(bool old_scheme) {
m_old_scheme = old_scheme;
}
const std::filesystem::path &RawFileNameComponents::base_path() const {
return m_base_path;
}
@ -314,10 +327,22 @@ void RawMasterFile::parse_raw(const std::filesystem::path &fpath) {
// do the actual parsing
if (key == "Version") {
m_version = value;
//TODO!: How old versions can we handle?
auto v = std::stod(value);
//TODO! figure out exactly when we did the change
//This enables padding of f to 12 digits
if (v<4.0)
m_fnc.set_old_scheme(true);
} else if (key == "TimeStamp") {
} else if (key == "Detector Type") {
m_type = StringTo<DetectorType>(value);
if(m_type==DetectorType::Moench){
m_type = DetectorType::Moench03_old;
}
} else if (key == "Timing Mode") {
m_timing_mode = StringTo<TimingMode>(value);
} else if (key == "Image Size") {
@ -352,6 +377,12 @@ void RawMasterFile::parse_raw(const std::filesystem::path &fpath) {
pos = value.find(',');
m_pixels_x = std::stoi(value.substr(1, pos));
m_pixels_y = std::stoi(value.substr(pos + 1));
}else if(key == "row"){
pos = value.find('p');
m_pixels_y = std::stoi(value.substr(0, pos));
}else if(key == "col"){
pos = value.find('p');
m_pixels_x = std::stoi(value.substr(0, pos));
} else if (key == "Total Frames") {
m_total_frames_expected = std::stoi(value);
} else if (key == "Dynamic Range") {
@ -360,6 +391,9 @@ void RawMasterFile::parse_raw(const std::filesystem::path &fpath) {
m_quad = std::stoi(value);
} else if (key == "Max Frames Per File") {
m_max_frames_per_file = std::stoi(value);
}else if(key == "Max. Frames Per File"){
//Version 3.0 way of writing it
m_max_frames_per_file = std::stoi(value);
} else if (key == "Geometry") {
pos = value.find(',');
m_geometry = {
@ -368,5 +402,19 @@ void RawMasterFile::parse_raw(const std::filesystem::path &fpath) {
}
}
}
if (m_pixels_x == 400 && m_pixels_y == 400) {
m_type = DetectorType::Moench03_old;
}
//TODO! Look for d0, d1...dn and update geometry
if(m_geometry.col == 0 && m_geometry.row == 0){
m_geometry = {1,1};
fmt::print("Warning: No geometry found in master file. Assuming 1x1\n");
}
//TODO! Read files and find actual frames
if(m_frames_in_file==0)
m_frames_in_file = m_total_frames_expected;
}
} // namespace aare

View File

@ -31,6 +31,16 @@ TEST_CASE("Construction of master file name and data files"){
REQUIRE(m.data_fname(1, 1) == "test_d1_f1_1.raw");
}
TEST_CASE("Construction of master file name and data files using old scheme"){
RawFileNameComponents m("test_master_1.raw");
m.set_old_scheme(true);
REQUIRE(m.master_fname() == "test_master_1.raw");
REQUIRE(m.data_fname(0, 0) == "test_d0_f000000000000_1.raw");
REQUIRE(m.data_fname(1, 0) == "test_d1_f000000000000_1.raw");
REQUIRE(m.data_fname(0, 1) == "test_d0_f000000000001_1.raw");
REQUIRE(m.data_fname(1, 1) == "test_d1_f000000000001_1.raw");
}
TEST_CASE("Master file name does not fit pattern"){
REQUIRE_THROWS(RawFileNameComponents("somefile.json"));
REQUIRE_THROWS(RawFileNameComponents("another_test_d0_f0_1.raw"));

View File

@ -9,14 +9,14 @@ namespace aare {
RawSubFile::RawSubFile(const std::filesystem::path &fname,
DetectorType detector, size_t rows, size_t cols,
size_t bitdepth, uint32_t pos_row, uint32_t pos_col)
: m_bitdepth(bitdepth), m_fname(fname), m_rows(rows), m_cols(cols),
m_detector_type(detector),
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row), m_pos_col(pos_col) {
: m_detector_type(detector), m_bitdepth(bitdepth), m_fname(fname),
m_rows(rows), m_cols(cols),
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row),
m_pos_col(pos_col) {
if (m_detector_type == DetectorType::Moench03_old) {
m_pixel_map = GenerateMoench03PixelMap();
}else if(m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0){
} else if (m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0) {
m_pixel_map = GenerateEigerFlipRowsPixelMap();
fmt::print("Flipping rows\n");
}
if (std::filesystem::exists(fname)) {
@ -44,7 +44,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
void RawSubFile::seek(size_t frame_index) {
if (frame_index >= n_frames) {
throw std::runtime_error("Frame number out of range");
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, n_frames));
}
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
}
@ -53,37 +53,48 @@ size_t RawSubFile::tell() {
return m_file.tellg() / (sizeof(DetectorHeader) + bytes_per_frame());
}
void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
if(header){
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
if (header) {
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
} else {
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
}
//TODO! expand support for different bitdepths
if(m_pixel_map){
// TODO! expand support for different bitdepths
if (m_pixel_map) {
// read into a temporary buffer and then copy the data to the buffer
// in the correct order
// currently this only supports 16 bit data!
auto part_buffer = new std::byte[bytes_per_frame()];
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
auto *data = reinterpret_cast<uint16_t *>(image_buf);
auto *part_data = reinterpret_cast<uint16_t *>(part_buffer);
for (size_t i = 0; i < pixels_per_frame(); i++) {
data[i] = part_data[(*m_pixel_map)(i)];
// TODO! add 4 bit support
if(m_bitdepth == 8){
read_with_map<uint8_t>(image_buf);
}else if (m_bitdepth == 16) {
read_with_map<uint16_t>(image_buf);
} else if (m_bitdepth == 32) {
read_with_map<uint32_t>(image_buf);
}else{
throw std::runtime_error("Unsupported bitdepth for read with pixel map");
}
delete[] part_buffer;
} else {
// read directly into the buffer
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
}
}
template <typename T>
void RawSubFile::read_with_map(std::byte *image_buf) {
auto part_buffer = new std::byte[bytes_per_frame()];
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
auto *data = reinterpret_cast<T *>(image_buf);
auto *part_data = reinterpret_cast<T *>(part_buffer);
for (size_t i = 0; i < pixels_per_frame(); i++) {
data[i] = part_data[(*m_pixel_map)(i)];
}
delete[] part_buffer;
}
size_t RawSubFile::rows() const { return m_rows; }
size_t RawSubFile::cols() const { return m_cols; }
void RawSubFile::get_part(std::byte *buffer, size_t frame_index) {
seek(frame_index);
read_into(buffer, nullptr);
@ -96,5 +107,4 @@ size_t RawSubFile::frame_number(size_t frame_index) {
return h.frameNumber;
}
} // namespace aare

69
src/algorithm.test.cpp Normal file
View File

@ -0,0 +1,69 @@
#include <aare/algorithm.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (size_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2.3) == 2);
REQUIRE(aare::nearest_index(arr, 2.6) == 3);
REQUIRE(aare::nearest_index(arr, 45.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
}
TEST_CASE("Passing integers to nearest_index works", "[algorithm]") {
aare::NDArray<int, 1> arr({5});
for (size_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2) == 2);
REQUIRE(aare::nearest_index(arr, 3) == 3);
REQUIRE(aare::nearest_index(arr, 45) == 4);
REQUIRE(aare::nearest_index(arr, 0) == 0);
REQUIRE(aare::nearest_index(arr, -1) == 0);
}
TEST_CASE("nearest_index works with std::vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
REQUIRE(aare::nearest_index(vec, 4555555.0) == 4);
REQUIRE(aare::nearest_index(vec, 0.0) == 0);
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
}
TEST_CASE("nearest index works with std::array", "[algorithm]") {
std::array<double, 5> arr = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
REQUIRE(aare::nearest_index(arr, 4555555.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
}
TEST_CASE("last smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (size_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -10.0) == 0);
REQUIRE(aare::last_smaller(arr, 0.0) == 0);
REQUIRE(aare::last_smaller(arr, 2.3) == 2);
REQUIRE(aare::last_smaller(arr, 253.) == 4);
}
TEST_CASE("returns last bin strictly smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (size_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 2.0) == 2);
}

61
src/decode.cpp Normal file
View File

@ -0,0 +1,61 @@
#include "aare/decode.hpp"
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input){
//we want bits 29,19,28,18,31,21,27,20,24,23,25,22 and then pad to 16
uint16_t output = 0;
output |= ((input >> 22) & 1) << 11;
output |= ((input >> 25) & 1) << 10;
output |= ((input >> 23) & 1) << 9;
output |= ((input >> 24) & 1) << 8;
output |= ((input >> 20) & 1) << 7;
output |= ((input >> 27) & 1) << 6;
output |= ((input >> 21) & 1) << 5;
output |= ((input >> 31) & 1) << 4;
output |= ((input >> 18) & 1) << 3;
output |= ((input >> 28) & 1) << 2;
output |= ((input >> 19) & 1) << 1;
output |= ((input >> 29) & 1) << 0;
return output;
}
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_05_decode64to16(input(i,j));
}
}
}
uint16_t adc_sar_04_decode64to16(uint64_t input){
// bit_map = array([15,17,19,21,23,4,6,8,10,12,14,16] LSB->MSB
uint16_t output = 0;
output |= ((input >> 16) & 1) << 11;
output |= ((input >> 14) & 1) << 10;
output |= ((input >> 12) & 1) << 9;
output |= ((input >> 10) & 1) << 8;
output |= ((input >> 8) & 1) << 7;
output |= ((input >> 6) & 1) << 6;
output |= ((input >> 4) & 1) << 5;
output |= ((input >> 23) & 1) << 4;
output |= ((input >> 21) & 1) << 3;
output |= ((input >> 19) & 1) << 2;
output |= ((input >> 17) & 1) << 1;
output |= ((input >> 15) & 1) << 0;
return output;
}
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_04_decode64to16(input(i,j));
}
}
}
} // namespace aare

View File

@ -21,23 +21,37 @@ void assert_failed(const std::string &msg)
*/
template <> std::string ToString(DetectorType arg) {
switch (arg) {
case DetectorType::Jungfrau:
return "Jungfrau";
case DetectorType::Generic:
return "Generic";
case DetectorType::Eiger:
return "Eiger";
case DetectorType::Mythen3:
return "Mythen3";
case DetectorType::Gotthard:
return "Gotthard";
case DetectorType::Jungfrau:
return "Jungfrau";
case DetectorType::ChipTestBoard:
return "ChipTestBoard";
case DetectorType::Moench:
return "Moench";
case DetectorType::Mythen3:
return "Mythen3";
case DetectorType::Gotthard2:
return "Gotthard2";
case DetectorType::Xilinx_ChipTestBoard:
return "Xilinx_ChipTestBoard";
//Custom ones
case DetectorType::Moench03:
return "Moench03";
case DetectorType::Moench03_old:
return "Moench03_old";
case DetectorType::ChipTestBoard:
return "ChipTestBoard";
default:
case DetectorType::Unknown:
return "Unknown";
//no default case to trigger compiler warning if not all
//enum values are handled
}
throw std::runtime_error("Could not decode detector to string");
}
/**
@ -47,21 +61,34 @@ template <> std::string ToString(DetectorType arg) {
* @throw runtime_error if the string does not match any DetectorType
*/
template <> DetectorType StringTo(const std::string &arg) {
if (arg == "Jungfrau")
return DetectorType::Jungfrau;
if (arg == "Generic")
return DetectorType::Generic;
if (arg == "Eiger")
return DetectorType::Eiger;
if (arg == "Mythen3")
return DetectorType::Mythen3;
if (arg == "Gotthard")
return DetectorType::Gotthard;
if (arg == "Jungfrau")
return DetectorType::Jungfrau;
if (arg == "ChipTestBoard")
return DetectorType::ChipTestBoard;
if (arg == "Moench")
return DetectorType::Moench;
if (arg == "Mythen3")
return DetectorType::Mythen3;
if (arg == "Gotthard2")
return DetectorType::Gotthard2;
if (arg == "Xilinx_ChipTestBoard")
return DetectorType::Xilinx_ChipTestBoard;
//Custom ones
if (arg == "Moench03")
return DetectorType::Moench03;
if (arg == "Moench03_old")
return DetectorType::Moench03_old;
if (arg == "ChipTestBoard")
return DetectorType::ChipTestBoard;
throw std::runtime_error("Could not decode dector from: \"" + arg + "\"");
if (arg == "Unknown")
return DetectorType::Unknown;
throw std::runtime_error("Could not decode detector from: \"" + arg + "\"");
}
/**

View File

@ -1,12 +1,59 @@
#include "aare/defs.hpp"
// #include "aare/utils/floats.hpp"
#include <catch2/catch_test_macros.hpp>
#include <string>
using aare::ToString;
using aare::StringTo;
TEST_CASE("Enum to string conversion") {
// By the way I don't think the enum string conversions should be in the defs.hpp file
// TODO! By the way I don't think the enum string conversions should be in the defs.hpp file
// but let's use this to show a test
REQUIRE(ToString(aare::DetectorType::Generic) == "Generic");
REQUIRE(ToString(aare::DetectorType::Eiger) == "Eiger");
REQUIRE(ToString(aare::DetectorType::Gotthard) == "Gotthard");
REQUIRE(ToString(aare::DetectorType::Jungfrau) == "Jungfrau");
REQUIRE(ToString(aare::DetectorType::ChipTestBoard) == "ChipTestBoard");
REQUIRE(ToString(aare::DetectorType::Moench) == "Moench");
REQUIRE(ToString(aare::DetectorType::Mythen3) == "Mythen3");
REQUIRE(ToString(aare::DetectorType::Gotthard2) == "Gotthard2");
REQUIRE(ToString(aare::DetectorType::Xilinx_ChipTestBoard) == "Xilinx_ChipTestBoard");
REQUIRE(ToString(aare::DetectorType::Moench03) == "Moench03");
REQUIRE(ToString(aare::DetectorType::Moench03_old) == "Moench03_old");
REQUIRE(ToString(aare::DetectorType::Unknown) == "Unknown");
}
TEST_CASE("String to enum"){
REQUIRE(StringTo<aare::DetectorType>("Generic") == aare::DetectorType::Generic);
REQUIRE(StringTo<aare::DetectorType>("Eiger") == aare::DetectorType::Eiger);
REQUIRE(StringTo<aare::DetectorType>("Gotthard") == aare::DetectorType::Gotthard);
REQUIRE(StringTo<aare::DetectorType>("Jungfrau") == aare::DetectorType::Jungfrau);
REQUIRE(StringTo<aare::DetectorType>("ChipTestBoard") == aare::DetectorType::ChipTestBoard);
REQUIRE(StringTo<aare::DetectorType>("Moench") == aare::DetectorType::Moench);
REQUIRE(StringTo<aare::DetectorType>("Mythen3") == aare::DetectorType::Mythen3);
REQUIRE(StringTo<aare::DetectorType>("Gotthard2") == aare::DetectorType::Gotthard2);
REQUIRE(StringTo<aare::DetectorType>("Xilinx_ChipTestBoard") == aare::DetectorType::Xilinx_ChipTestBoard);
REQUIRE(StringTo<aare::DetectorType>("Moench03") == aare::DetectorType::Moench03);
REQUIRE(StringTo<aare::DetectorType>("Moench03_old") == aare::DetectorType::Moench03_old);
REQUIRE(StringTo<aare::DetectorType>("Unknown") == aare::DetectorType::Unknown);
}
TEST_CASE("Enum values"){
//Since some of the enums are written to file we need to make sure
//they match the value in the slsDetectorPackage
REQUIRE(static_cast<int>(aare::DetectorType::Generic) == 0);
REQUIRE(static_cast<int>(aare::DetectorType::Eiger) == 1);
REQUIRE(static_cast<int>(aare::DetectorType::Gotthard) == 2);
REQUIRE(static_cast<int>(aare::DetectorType::Jungfrau) == 3);
REQUIRE(static_cast<int>(aare::DetectorType::ChipTestBoard) == 4);
REQUIRE(static_cast<int>(aare::DetectorType::Moench) == 5);
REQUIRE(static_cast<int>(aare::DetectorType::Mythen3) == 6);
REQUIRE(static_cast<int>(aare::DetectorType::Gotthard2) == 7);
REQUIRE(static_cast<int>(aare::DetectorType::Xilinx_ChipTestBoard) == 8);
//Not included
REQUIRE(static_cast<int>(aare::DetectorType::Moench03) == 100);
}
TEST_CASE("DynamicCluster creation") {

71
src/geo_helpers.cpp Normal file
View File

@ -0,0 +1,71 @@
#include "aare/geo_helpers.hpp"
#include "fmt/core.h"
namespace aare{
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi) {
#ifdef AARE_VERBOSE
fmt::println("update_geometry_with_roi() called with ROI: {} {} {} {}",
roi.xmin, roi.xmax, roi.ymin, roi.ymax);
fmt::println("Geometry: {} {} {} {} {} {}",
geo.modules_x, geo.modules_y, geo.pixels_x, geo.pixels_y, geo.module_gap_row, geo.module_gap_col);
#endif
int pos_y = 0;
int pos_y_increment = 0;
for (int row = 0; row < geo.modules_y; row++) {
int pos_x = 0;
for (int col = 0; col < geo.modules_x; col++) {
auto &m = geo.module_pixel_0[row * geo.modules_x + col];
auto original_height = m.height;
auto original_width = m.width;
// module is to the left of the roi
if (m.origin_x + m.width < roi.xmin) {
m.width = 0;
// roi is in module
} else {
// here we only arrive when the roi is in or to the left of
// the module
if (roi.xmin > m.origin_x) {
m.width -= roi.xmin - m.origin_x;
}
if (roi.xmax < m.origin_x + original_width) {
m.width -= m.origin_x + original_width - roi.xmax;
}
m.origin_x = pos_x;
pos_x += m.width;
}
if (m.origin_y + m.height < roi.ymin) {
m.height = 0;
} else {
if ((roi.ymin > m.origin_y) && (roi.ymin < m.origin_y + m.height)) {
m.height -= roi.ymin - m.origin_y;
}
if (roi.ymax < m.origin_y + original_height) {
m.height -= m.origin_y + original_height - roi.ymax;
}
m.origin_y = pos_y;
pos_y_increment = m.height;
}
#ifdef AARE_VERBOSE
fmt::println("Module {} {} {} {}", m.origin_x, m.origin_y, m.width, m.height);
#endif
}
// increment pos_y
pos_y += pos_y_increment;
}
// m_rows = roi.height();
// m_cols = roi.width();
geo.pixels_x = roi.width();
geo.pixels_y = roi.height();
return geo;
}
} // namespace aare

230
src/geo_helpers.test.cpp Normal file
View File

@ -0,0 +1,230 @@
#include "aare/File.hpp"
#include "aare/RawMasterFile.hpp" //needed for ROI
#include "aare/RawFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include "aare/geo_helpers.hpp"
#include "test_config.hpp"
TEST_CASE("Simple ROIs on one module"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 1024;
geo.pixels_y = 512;
geo.modules_x = 1;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
SECTION("ROI is the whole module"){
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 1024;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1024);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
REQUIRE(updated_geo.module_pixel_0[0].width == 1024);
}
SECTION("ROI is the top left corner of the module"){
aare::ROI roi;
roi.xmin = 100;
roi.xmax = 200;
roi.ymin = 150;
roi.ymax = 200;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 100);
REQUIRE(updated_geo.pixels_y == 50);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 50);
REQUIRE(updated_geo.module_pixel_0[0].width == 100);
}
SECTION("ROI is a small square"){
aare::ROI roi;
roi.xmin = 1000;
roi.xmax = 1010;
roi.ymin = 500;
roi.ymax = 510;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 10);
REQUIRE(updated_geo.pixels_y == 10);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 10);
REQUIRE(updated_geo.module_pixel_0[0].width == 10);
}
SECTION("ROI is a few columns"){
aare::ROI roi;
roi.xmin = 750;
roi.xmax = 800;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 50);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
REQUIRE(updated_geo.module_pixel_0[0].width == 50);
}
}
TEST_CASE("Two modules side by side"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 2048;
geo.pixels_y = 512;
geo.modules_x = 2;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
SECTION("ROI is the whole image"){
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 2048;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 2048);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 1);
}
SECTION("rectangle on both modules"){
aare::ROI roi;
roi.xmin = 800;
roi.xmax = 1300;
roi.ymin = 200;
roi.ymax = 499;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 500);
REQUIRE(updated_geo.pixels_y == 299);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 299);
REQUIRE(updated_geo.module_pixel_0[0].width == 224);
REQUIRE(updated_geo.module_pixel_0[1].height == 299);
REQUIRE(updated_geo.module_pixel_0[1].width == 276);
}
}
TEST_CASE("Three modules side by side"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ROI roi;
roi.xmin = 700;
roi.xmax = 2500;
roi.ymin = 0;
roi.ymax = 123;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 3072;
geo.pixels_y = 512;
geo.modules_x = 3;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 2048;
geo.module_pixel_0.push_back(mod);
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1800);
REQUIRE(updated_geo.pixels_y == 123);
REQUIRE(updated_geo.modules_x == 3);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 123);
REQUIRE(updated_geo.module_pixel_0[0].width == 324);
REQUIRE(updated_geo.module_pixel_0[1].height == 123);
REQUIRE(updated_geo.module_pixel_0[1].width == 1024);
REQUIRE(updated_geo.module_pixel_0[2].height == 123);
REQUIRE(updated_geo.module_pixel_0[2].width == 452);
}
TEST_CASE("Four modules as a square"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ROI roi;
roi.xmin = 500;
roi.xmax = 2000;
roi.ymin = 500;
roi.ymax = 600;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 2048;
geo.pixels_y = 1024;
geo.modules_x = 2;
geo.modules_y = 2;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 0;
mod.origin_y = 512;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1500);
REQUIRE(updated_geo.pixels_y == 100);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 2);
REQUIRE(updated_geo.module_pixel_0[0].height == 12);
REQUIRE(updated_geo.module_pixel_0[0].width == 524);
REQUIRE(updated_geo.module_pixel_0[1].height == 12);
REQUIRE(updated_geo.module_pixel_0[1].width == 976);
REQUIRE(updated_geo.module_pixel_0[2].height == 88);
REQUIRE(updated_geo.module_pixel_0[2].width == 524);
REQUIRE(updated_geo.module_pixel_0[3].height == 88);
REQUIRE(updated_geo.module_pixel_0[3].width == 976);
}

30
src/utils/task.cpp Normal file
View File

@ -0,0 +1,30 @@
#include "aare/utils/task.hpp"
namespace aare {
std::vector<std::pair<int, int>> split_task(int first, int last,
int n_threads) {
std::vector<std::pair<int, int>> vec;
vec.reserve(n_threads);
int n_frames = last - first;
if (n_threads >= n_frames) {
for (int i = 0; i != n_frames; ++i) {
vec.push_back({i, i + 1});
}
return vec;
}
int step = (n_frames) / n_threads;
for (int i = 0; i != n_threads; ++i) {
int start = step * i;
int stop = step * (i + 1);
if (i == n_threads - 1)
stop = last;
vec.push_back({start, stop});
}
return vec;
}
} // namespace aare

32
src/utils/task.test.cpp Normal file
View File

@ -0,0 +1,32 @@
#include "aare/utils/task.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Split a range into multiple tasks"){
auto tasks = aare::split_task(0, 10, 3);
REQUIRE(tasks.size() == 3);
REQUIRE(tasks[0].first == 0);
REQUIRE(tasks[0].second == 3);
REQUIRE(tasks[1].first == 3);
REQUIRE(tasks[1].second == 6);
REQUIRE(tasks[2].first == 6);
REQUIRE(tasks[2].second == 10);
tasks = aare::split_task(0, 10, 1);
REQUIRE(tasks.size() == 1);
REQUIRE(tasks[0].first == 0);
REQUIRE(tasks[0].second == 10);
tasks = aare::split_task(0, 10, 10);
REQUIRE(tasks.size() == 10);
for (int i = 0; i < 10; i++){
REQUIRE(tasks[i].first == i);
REQUIRE(tasks[i].second == i+1);
}
}

View File

@ -17,8 +17,8 @@ endif()
list(APPEND CMAKE_MODULE_PATH ${Catch2_SOURCE_DIR}/extras)
add_executable(tests test.cpp)
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain)
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain aare_core aare_compiler_flags)
# target_compile_options(tests PRIVATE -fno-omit-frame-pointer -fsanitize=address)
set_target_properties(tests PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
OUTPUT_NAME run_tests
@ -34,7 +34,7 @@ set(TestSources
target_sources(tests PRIVATE ${TestSources} )
#Work around to remove, this is not the way to do it =)
target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
#configure a header to pass test file paths

View File

@ -3,6 +3,7 @@
#include <climits>
#include <filesystem>
#include <fstream>
#include <fmt/core.h>
TEST_CASE("Test suite can find data assets", "[.integration]") {
auto fpath = test_data_path() / "numpy" / "test_numpy_file.npy";
@ -18,4 +19,20 @@ TEST_CASE("Test suite can open data assets", "[.integration]") {
TEST_CASE("Test float32 and char8") {
REQUIRE(sizeof(float) == 4);
REQUIRE(CHAR_BIT == 8);
}
}
/**
* Uncomment the following tests to verify that asan is working
*/
// TEST_CASE("trigger asan stack"){
// int arr[5] = {1,2,3,4,5};
// int val = arr[7];
// fmt::print("val: {}\n", val);
// }
// TEST_CASE("trigger asan heap"){
// auto *ptr = new int[5];
// ptr[70] = 5;
// fmt::print("ptr: {}\n", ptr[70]);
// }

View File

@ -7,6 +7,6 @@ inline auto test_data_path(){
if(const char* env_p = std::getenv("AARE_TEST_DATA")){
return std::filesystem::path(env_p);
}else{
throw std::runtime_error("AARE_TEST_DATA_PATH not set");
throw std::runtime_error("Path to test data: $AARE_TEST_DATA not set");
}
}