cpp Cluster and ClusterVector and ClusterFile are templated now, they support generic cluster types

This commit is contained in:
mazzol_a 2025-03-25 21:42:50 +01:00
parent 6e7e81b36b
commit 0876b6891a
6 changed files with 619 additions and 89 deletions

38
include/aare/Cluster.hpp Normal file
View File

@ -0,0 +1,38 @@
/************************************************
* @file Cluster.hpp
* @short definition of cluster, where CoordType (x,y) give
* the cluster center coordinates and data the actual cluster data
* cluster size is given as template parameters
***********************************************/
#pragma once
#include <cstdint>
#include <type_traits>
namespace aare {
// requires clause c++20 maybe update
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t,
typename Enable = std::enable_if_t<std::is_arithmetic_v<T> &&
std::is_integral_v<CoordType>>>
struct Cluster {
CoordType x;
CoordType y;
T data[ClusterSizeX * ClusterSizeY];
};
// Type Traits for is_cluster_type
template <typename T>
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
// TODO: Do i need the require clause here as well?
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
// helper
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
} // namespace aare

View File

@ -1,5 +1,6 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
@ -8,14 +9,6 @@
namespace aare {
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
struct Cluster {
CoordType x;
CoordType y;
T data[ClusterSizeX * ClusterSizeY];
};
typedef enum {
cBottomLeft = 0,
cBottomRight = 1,
@ -59,6 +52,8 @@ uint32_t number_of_clusters
....
*/
// TODO: change to support any type of clusters, e.g. header line with
// clsuter_size_x, cluster_size_y,
/**
* @brief Class to read and write cluster files
* Expects data to be laid out as:
@ -71,6 +66,8 @@ uint32_t number_of_clusters
* uint32_t number_of_clusters
* etc.
*/
template <typename ClusterType,
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>, bool>>
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{};
@ -97,9 +94,9 @@ class ClusterFile {
* If EOF is reached the returned vector will have less than n_clusters
* clusters
*/
ClusterVector<int32_t> read_clusters(size_t n_clusters);
ClusterVector<ClusterType> read_clusters(size_t n_clusters);
ClusterVector<int32_t> read_clusters(size_t n_clusters, ROI roi);
ClusterVector<ClusterType> read_clusters(size_t n_clusters, ROI roi);
/**
* @brief Read a single frame from the file and return the clusters. The
@ -107,9 +104,9 @@ class ClusterFile {
* @throws std::runtime_error if the file is not opened for reading or the
* file pointer not at the beginning of a frame
*/
ClusterVector<int32_t> read_frame();
ClusterVector<ClusterType> read_frame();
void write_frame(const ClusterVector<int32_t> &clusters);
void write_frame(const ClusterVector<ClusterType> &clusters);
// Need to be migrated to support NDArray and return a ClusterVector
// std::vector<Cluster3x3>
@ -130,20 +127,484 @@ class ClusterFile {
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster<int32_t, 3, 3> &cl, int32_t *t2, int32_t *t3,
char *quad, double *eta2x, double *eta2y, double *eta3x,
double *eta3y);
template <typename ClusterType>
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
NDArray<double, 2> calculate_eta2(ClusterVector<ClusterType> &clusters);
template <typename T> Eta2 calculate_eta2(Cluster<T, 3, 3> &cl);
// TODO: do we need rquire clauses?
template <typename T> Eta2 calculate_eta2(const Cluster<T, 3, 3> &cl);
Eta2 calculate_eta2(Cluster2x2 &cl);
template <typename T> Eta2 calculate_eta2(const Cluster<T, 2, 2> &cl);
template <typename ClusterType> Eta2 calculate_eta2(ClusterType &cl);
template <typename ClusterType, std::enable_if_t<is_cluster_v<ClusterType>>>
Eta2 calculate_eta2(const ClusterType &cl);
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
Eta2 calculate_eta2(Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl);
Eta2 calculate_eta2(
const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl);
template <typename ClusterType, typename Enable>
ClusterFile<ClusterType, Enable>::ClusterFile(
const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
template <typename ClusterType, typename Enable>
ClusterFile<ClusterType, Enable>::~ClusterFile() {
close();
}
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
// TODO generally supported for all clsuter types
template <typename ClusterType, typename Enable>
void ClusterFile<ClusterType, Enable>::write_frame(
const ClusterVector<ClusterType> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
int32_t frame_number = clusters.frame_number();
fwrite(&frame_number, sizeof(frame_number), 1, fp);
uint32_t n_clusters = clusters.size();
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<ClusterType> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((buf + nph_read * clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read += fread((buf + nph_read * clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters, ROI roi) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<ClusterType> clusters;
clusters.reserve(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
// auto buf = clusters.data();
ClusterType tmp; // this would break if the cluster size changes
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
// Read one cluster, in the ROI push back
// nph_read += fread((buf + nph_read*clusters.item_size()),
// clusters.item_size(), nn, fp);
for (size_t i = 0; i < nn; i++) {
fread(&tmp, sizeof(tmp), 1, fp);
if (tmp.x >= roi.xmin && tmp.x <= roi.xmax && tmp.y >= roi.ymin &&
tmp.y <= roi.ymax) {
clusters.push_back(tmp.x, tmp.y,
reinterpret_cast<std::byte *>(tmp.data));
nph_read++;
}
}
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
// nph_read += fread((buf + nph_read*clusters.item_size()),
// clusters.item_size(), nn, fp);
for (size_t i = 0; i < nn; i++) {
fread(&tmp, sizeof(tmp), 1, fp);
if (tmp.x >= roi.xmin && tmp.x <= roi.xmax &&
tmp.y >= roi.ymin && tmp.y <= roi.ymax) {
clusters.push_back(
tmp.x, tmp.y,
reinterpret_cast<std::byte *>(tmp.data));
nph_read++;
}
}
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType> ClusterFile<ClusterType, Enable>::read_frame() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
// std::vector<Cluster3x3> clusters(n_clusters);
ClusterVector<ClusterType> clusters(n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
}
clusters.resize(n_clusters);
return clusters;
}
template <typename ClusterType, std::enable_if_t<is_cluster_v<ClusterType>>>
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
// TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2<ClusterType>(clusters.at(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
return eta2;
}
/**
* @brief Calculate the eta2 values for a generic sized cluster and return them
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
* subcluster.
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
Eta2 calculate_eta2(
const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
Eta2 eta{};
// TODO loads of overhead for a 2x2 clsuter maybe keep 2x2 calculation
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
cl.data[i * ClusterSizeX + j] +
cl.data[i * ClusterSizeX + j + 1] +
cl.data[(i + 1) * ClusterSizeX + j] +
cl.data[(i + 1) * ClusterSizeX + j + 1];
}
auto c =
std::max_element(sum_2x2_subcluster.begin(), sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
eta.sum = sum_2x2_subcluster[c];
eta.x = static_cast<double>(cl.data[(c + 1) * ClusterSizeX + 1]) /
(cl.data[0] + cl.data[1]);
size_t index_top_left_2x2_subcluster =
(int(c / (ClusterSizeX - 1)) + 1) * ClusterSizeX +
c % (ClusterSizeX - 1) * 2 + 1;
if ((cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - 1]) != 0)
eta.x =
static_cast<double>(cl.data[index_top_left_2x2_subcluster] /
(cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - 1]));
if ((cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - ClusterSizeX]) != 0)
eta.y = static_cast<double>(
cl.data[index_top_left_2x2_subcluster] /
(cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - ClusterSizeX]));
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
// underyling enum class
return eta;
}
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2
* struct containing etay, etax and the corner of the cluster.
*/
template <typename T> Eta2 calculate_eta2(const Cluster<T, 3, 3> &cl) {
Eta2 eta{};
std::array<T, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x = static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
}
return eta;
}
template <typename T> Eta2 calculate_eta2(const Cluster<T, 2, 2> &cl) {
Eta2 eta{};
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2] + cl.data[3];
eta.c = cBottomLeft; // TODO! This is not correct, but need to put something
return eta;
}
// TODO complicated API simplify?
int analyze_cluster(Cluster<int32_t, 3, 3> &cl, int32_t *t2, int32_t *t3,
char *quad, double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
}
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
// printf("*** %d %d %d %d --
// %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = static_cast<double>(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = static_cast<double>(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = static_cast<double>(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = static_cast<double>(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return ok;
}
} // namespace aare

View File

@ -1,4 +1,5 @@
#pragma once
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
#include <algorithm>
#include <array>
#include <cstddef>
@ -10,7 +11,9 @@
namespace aare {
template <typename ClusterType> class ClusterVector; // Forward declaration
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterVector; // Forward declaration
/**
* @brief ClusterVector is a container for clusters of various sizes. It uses a
@ -44,12 +47,10 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
public:
using ClusterType = Cluster<T, SizeX, SizeY>;
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
/**
* @brief Construct a new ClusterVector object
* @param cluster_size_x size of the cluster in x direction
* @param cluster_size_y size of the cluster in y direction
* @param capacity initial capacity of the buffer in number of clusters
* @param frame_number frame number of the clusters. Default is 0, which is
* also used to indicate that the clusters come from many frames
@ -184,6 +185,10 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
*/
size_t size() const { return m_size; }
uint8_t cluster_size_x() const { return ClusterSizeX; }
uint8_t cluster_size_y() const { return ClusterSizeY; }
/**
* @brief Return the capacity of the buffer in number of clusters. This is
* the number of clusters that can be stored in the current buffer without

View File

@ -1,29 +1,35 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp" //Cluster_3x3
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFile.hpp" //Cluster_3x3
namespace aare{
namespace aare {
struct Photon{
struct Photon {
double x;
double y;
double energy;
};
class Interpolator{
class Interpolator {
NDArray<double, 3> m_ietax;
NDArray<double, 3> m_ietay;
NDArray<double, 1> m_etabinsx;
NDArray<double, 1> m_etabinsy;
NDArray<double, 1> m_energy_bins;
public:
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins, NDView<double, 1> ybins, NDView<double, 1> ebins);
NDArray<double, 3> get_ietax(){return m_ietax;}
NDArray<double, 3> get_ietay(){return m_ietay;}
std::vector<Photon> interpolate(const ClusterVector<int32_t>& clusters);
public:
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins);
NDArray<double, 3> get_ietax() { return m_ietax; }
NDArray<double, 3> get_ietay() { return m_ietay; }
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
};
} // namespace aare

View File

@ -4,8 +4,11 @@
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
ClusterFile<ClusterType>::ClusterFile(const std::filesystem::path &fname,
size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
@ -31,16 +34,21 @@ ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
}
}
ClusterFile::~ClusterFile() { close(); }
template <typename ClusterType> ClusterFile<ClusterType>::~ClusterFile() {
close();
}
void ClusterFile::close() {
template <typename ClusterType> void ClusterFile<ClusterType>::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
// TODO generally supported for all clsuter types
template <typename ClusterType>
void ClusterFile<ClusterType>::write_frame(
const ClusterVector<ClusterType> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
@ -55,12 +63,14 @@ void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
template <typename ClusterType>
ClusterVector<ClusterType>
ClusterFile<ClusterType>::read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<int32_t> clusters(3, 3, n_clusters);
ClusterVector<ClusterType> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
@ -108,12 +118,14 @@ ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters, ROI roi) {
template <typename ClusterType>
ClusterVector<ClusterType>
ClusterFile<ClusterType>::read_clusters(size_t n_clusters, ROI roi) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<int32_t> clusters(3, 3);
ClusterVector<ClusterType> clusters;
clusters.reserve(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
@ -124,7 +136,7 @@ ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters, ROI roi) {
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
// auto buf = clusters.data();
Cluster3x3 tmp; // this would break if the cluster size changes
ClusterType tmp; // this would break if the cluster size changes
// if there are photons left from previous frame read them first
if (nph) {
@ -186,7 +198,8 @@ ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters, ROI roi) {
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame() {
template <typename ClusterType>
ClusterVector<ClusterType> ClusterFile<ClusterType>::read_frame() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
@ -204,7 +217,7 @@ ClusterVector<int32_t> ClusterFile::read_frame() {
throw std::runtime_error("Could not read number of clusters");
}
// std::vector<Cluster3x3> clusters(n_clusters);
ClusterVector<int32_t> clusters(3, 3, n_clusters);
ClusterVector<ClusterType> clusters(n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
@ -372,8 +385,9 @@ Eta2 calculate_eta2(Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
Eta2 eta{};
// TODO loads of overhead for a 2x2 clsuter maybe keep 2x2 calculation
size_t num_2x2_subclusters = (ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<int32_t, num_2x2_subclusters> sum_2x2_subcluster;
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
@ -383,9 +397,9 @@ Eta2 calculate_eta2(Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
cl.data[(i + 1) * ClusterSizeX + j + 1];
}
auto c = std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
auto c =
std::max_element(sum_2x2_subcluster.begin(), sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
eta.sum = sum_2x2_subcluster[c];
@ -458,7 +472,6 @@ template <typename T> Eta2 calculate_eta2(Cluster<T, 3, 3> &cl) {
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
// no default to allow compiler to warn about missing cases
}
return eta;
}
@ -473,8 +486,9 @@ template <typename T> Eta2 calculate_eta2(Cluster<T, 2, 2> &cl) {
return eta;
}
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
// TODO complicated API simplify?
int analyze_cluster(Cluster<int32_t, 3, 3> &cl, int32_t *t2, int32_t *t3,
char *quad, double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);

View File

@ -5,7 +5,8 @@ namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins) {
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
@ -51,35 +52,37 @@ Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
}
}
}
}
std::vector<Photon> Interpolator::interpolate(const ClusterVector<int32_t>& clusters) {
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
std::vector<Photon>
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i<clusters.size(); i++){
for (size_t i = 0; i < clusters.size(); i++) {
auto cluster = clusters.at(i);
Eta2 eta = calculate_eta2(cluster);
auto cluster = clusters.at<Cluster3x3>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
auto iy = last_smaller(m_etabinsy, eta.y);
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
double dX, dY;
int ex, ey;
// cBottomLeft = 0,
@ -100,44 +103,47 @@ std::vector<Photon> Interpolator::interpolate(const ClusterVector<int32_t>& clus
dY = -1.;
break;
case cBottomRight:
dX = 0.;
dX = 0.;
dY = -1.;
break;
}
photon.x += m_ietax(ix, iy, 0)*2 + dX;
photon.y += m_ietay(ix, iy, 0)*2 + dY;
photon.x += m_ietax(ix, iy, 0) * 2 + dX;
photon.y += m_ietay(ix, iy, 0) * 2 + dY;
photons.push_back(photon);
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster2x2>(i);
Eta2 eta= calculate_eta2(cluster);
} else if (clusters.cluster_size_x() == 2 ||
clusters.cluster_size_y() == 2) {
for (size_t i = 0; i < clusters.size(); i++) {
auto cluster = clusters.at(i);
Eta2 eta = calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Now do some actual interpolation.
//Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
// Now do some actual interpolation.
// Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
auto iy = last_smaller(m_etabinsy, eta.y);
photon.x += m_ietax(ix, iy, 0)*2; //eta goes between 0 and 1 but we could move the hit anywhere in the 2x2
photon.y += m_ietay(ix, iy, 0)*2;
photon.x +=
m_ietax(ix, iy, 0) * 2; // eta goes between 0 and 1 but we could
// move the hit anywhere in the 2x2
photon.y += m_ietay(ix, iy, 0) * 2;
photons.push_back(photon);
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported for interpolation");
} else {
throw std::runtime_error(
"Only 3x3 and 2x2 clusters are supported for interpolation");
}
return photons;
}