implemented sum_2x2() for general clusters, only one calculate_eta2 function for all clusters
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 37s

This commit is contained in:
Mazzoleni Alice Francesca 2025-04-01 18:29:08 +02:00
parent 3083d51699
commit 04728929cb
6 changed files with 22 additions and 832 deletions

View File

@ -60,23 +60,9 @@ Eta2 calculate_eta2(
const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
Eta2 eta{};
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
cl.data[i * ClusterSizeX + j] +
cl.data[i * ClusterSizeX + j + 1] +
cl.data[(i + 1) * ClusterSizeX + j] +
cl.data[(i + 1) * ClusterSizeX + j + 1];
}
auto c =
std::max_element(sum_2x2_subcluster.begin(), sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
eta.sum = sum_2x2_subcluster[c];
auto max_sum = cl.max_sum_2x2();
eta.sum = max_sum.first;
auto c = max_sum.second;
size_t index_bottom_left_max_2x2_subcluster =
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
@ -101,66 +87,6 @@ Eta2 calculate_eta2(
return eta;
}
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2
* struct containing etay, etax and the corner of the cluster.
*/
template <typename T> Eta2 calculate_eta2(const Cluster<T, 3, 3> &cl) {
Eta2 eta{};
std::array<T, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x = static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
}
return eta;
}
template <typename T> Eta2 calculate_eta2(const Cluster<T, 2, 2> &cl) {
Eta2 eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2] + cl.data[3];
eta.c = cBottomLeft; // TODO! This is not correct, but need to put something
return eta;
}
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
// TODO only supported for 3x3 Clusters
template <typename T> Eta2 calculate_eta3(const Cluster<T, 3, 3> &cl) {

View File

@ -35,7 +35,7 @@ struct Cluster {
return std::accumulate(data, data + ClusterSizeX * ClusterSizeY, 0);
}
T max_sum_2x2() const {
std::pair<T, int> max_sum_2x2() const {
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
@ -49,8 +49,10 @@ struct Cluster {
data[(i + 1) * ClusterSizeX + j + 1];
}
return *std::max_element(sum_2x2_subcluster.begin(),
sum_2x2_subcluster.end());
int index = std::max_element(sum_2x2_subcluster.begin(),
sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
return std::make_pair(sum_2x2_subcluster[index], index);
}
};
@ -62,9 +64,9 @@ template <typename T> struct Cluster<T, 2, 2, int16_t> {
T sum() const { return std::accumulate(data, data + 4, 0); }
T max_sum_2x2() const {
return data[0] + data[1] + data[2] +
data[3]; // Only one possible 2x2 sum
std::pair<T, int> max_sum_2x2() const {
return std::make_pair(data[0] + data[1] + data[2] + data[3],
0); // Only one possible 2x2 sum
}
};
@ -76,14 +78,16 @@ template <typename T> struct Cluster<T, 3, 3, int16_t> {
T sum() const { return std::accumulate(data, data + 9, 0); }
T max_sum_2x2() const {
std::pair<T, int> max_sum_2x2() const {
std::array<T, 4> sum_2x2_subclusters;
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
return *std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subclusters.end());
int index = std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subclusters.end()) -
sum_2x2_subclusters.begin();
return std::make_pair(sum_2x2_subclusters[index], index);
}
};

View File

@ -415,10 +415,12 @@ bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
return false;
}
}
// TODO types are wrong generalize
if (m_noise_map) {
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.max_sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 =
cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
auto noise =
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct

View File

@ -148,38 +148,6 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
return sums;
}
/**
* @brief Return the maximum sum of the 2x2 subclusters in each cluster
* @return std::vector<T> vector of sums for each cluster
* @throws std::runtime_error if the cluster size is not 3x3
* @warning Only 3x3 clusters are supported for the 2x2 sum.
*/
/* only needed to calculate eta TODO: in previous PR already added calculate
sum in PR std::vector<T> sum_2x2() { std::vector<T> sums(m_size); const
size_t stride = item_size();
if (ClusterSizeX != 3 || ClusterSizeY != 3) {
throw std::runtime_error(
"Only 3x3 clusters are supported for the 2x2 sum.");
}
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
for (size_t i = 0; i < m_size; i++) {
std::array<T, 4> total;
auto T_ptr = reinterpret_cast<T *>(ptr);
total[0] = T_ptr[0] + T_ptr[1] + T_ptr[3] + T_ptr[4];
total[1] = T_ptr[1] + T_ptr[2] + T_ptr[4] + T_ptr[5];
total[2] = T_ptr[3] + T_ptr[4] + T_ptr[6] + T_ptr[7];
total[3] = T_ptr[4] + T_ptr[5] + T_ptr[7] + T_ptr[8];
sums[i] = *std::max_element(total.begin(), total.end());
ptr += stride;
}
return sums;
}
*/
/**
* @brief Return the number of clusters in the vector
*/
@ -220,9 +188,6 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
return m_data + element_offset(i);
}
// size_t cluster_size_x() const { return m_cluster_size_x; }
// size_t cluster_size_y() const { return m_cluster_size_y; }
std::byte *data() { return m_data; }
std::byte const *data() const { return m_data; }
@ -272,7 +237,7 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
m_size = new_size;
}
// TODO: Generalize !!!!
// TODO: Generalize !!!! Maybe move somewhere else
void apply_gain_map(const NDView<double> gain_map) {
// in principle we need to know the size of the image for this lookup
// TODO! check orientations

View File

@ -33,9 +33,6 @@ using ClusterTypes =
TEST_CASE("calculate_eta2", "[.cluster][.eta_calculation]") {
// weird expect cluster_start to be in bottom_left corner -> row major ->
// check how its used should be an image!!
auto [cluster, expected_eta] = GENERATE(
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
Eta2{2. / 3, 3. / 4, corner::cBottomLeft, 7}),

View File

@ -1,704 +0,0 @@
#include "aare/ClusterFile.hpp"
#include <algorithm>
namespace aare {
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
ClusterFile<ClusterType>::ClusterFile(const std::filesystem::path &fname,
size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
<<<<<<< HEAD
template <typename ClusterType> ClusterFile<ClusterType>::~ClusterFile() {
close();
}
=======
void ClusterFile::set_roi(ROI roi){
m_roi = roi;
}
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
m_gain_map = NDArray<double, 2>(gain_map);
}
ClusterFile::~ClusterFile() { close(); }
>>>>>>> developer
template <typename ClusterType> void ClusterFile<ClusterType>::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
// TODO generally supported for all clsuter types
template <typename ClusterType>
void ClusterFile<ClusterType>::write_frame(
const ClusterVector<ClusterType> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
//First write the frame number - 4 bytes
int32_t frame_number = clusters.frame_number();
if(fwrite(&frame_number, sizeof(frame_number), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write frame number");
}
//Then write the number of clusters - 4 bytes
uint32_t n_clusters = clusters.size();
if(fwrite(&n_clusters, sizeof(n_clusters), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write number of clusters");
}
//Now write the clusters in the frame
if(fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp)!=clusters.size()){
throw std::runtime_error(LOCATION + "Could not write clusters");
}
}
<<<<<<< HEAD
template <typename ClusterType>
ClusterVector<ClusterType>
ClusterFile<ClusterType>::read_clusters(size_t n_clusters) {
=======
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi){
return read_clusters_with_cut(n_clusters);
}else{
return read_clusters_without_cut(n_clusters);
}
}
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
>>>>>>> developer
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<ClusterType> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((buf + nph_read * clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read += fread((buf + nph_read * clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
<<<<<<< HEAD
template <typename ClusterType>
ClusterVector<ClusterType>
ClusterFile<ClusterType>::read_clusters(size_t n_clusters, ROI roi) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<ClusterType> clusters;
clusters.reserve(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
// auto buf = clusters.data();
ClusterType tmp; // this would break if the cluster size changes
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
// Read one cluster, in the ROI push back
// nph_read += fread((buf + nph_read*clusters.item_size()),
// clusters.item_size(), nn, fp);
for (size_t i = 0; i < nn; i++) {
fread(&tmp, sizeof(tmp), 1, fp);
if (tmp.x >= roi.xmin && tmp.x <= roi.xmax && tmp.y >= roi.ymin &&
tmp.y <= roi.ymax) {
clusters.push_back(tmp.x, tmp.y,
reinterpret_cast<std::byte *>(tmp.data));
nph_read++;
}
}
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
// nph_read += fread((buf + nph_read*clusters.item_size()),
// clusters.item_size(), nn, fp);
for (size_t i = 0; i < nn; i++) {
fread(&tmp, sizeof(tmp), 1, fp);
if (tmp.x >= roi.xmin && tmp.x <= roi.xmax &&
tmp.y >= roi.ymin && tmp.y <= roi.ymax) {
clusters.push_back(
tmp.x, tmp.y,
reinterpret_cast<std::byte *>(tmp.data));
nph_read++;
}
}
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
return clusters;
}
template <typename ClusterType>
ClusterVector<ClusterType> ClusterFile<ClusterType>::read_frame() {
=======
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<int32_t> clusters(3,3);
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
if (m_num_left) {
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
Cluster3x3 ClusterFile::read_one_cluster(){
Cluster3x3 c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
ClusterVector<int32_t> ClusterFile::read_frame(){
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi){
return read_frame_with_cut();
}else{
return read_frame_without_cut();
}
}
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3, n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
>>>>>>> developer
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
<<<<<<< HEAD
// std::vector<Cluster3x3> clusters(n_clusters);
ClusterVector<ClusterType> clusters(n_clusters);
=======
ClusterVector<int32_t> clusters(3, 3);
clusters.reserve(m_num_left);
>>>>>>> developer
clusters.set_frame_number(frame_number);
while(m_num_left){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
<<<<<<< HEAD
// std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
// double *noise_map,
// int nx, int ny) {
// if (m_mode != "r") {
// throw std::runtime_error("File not opened for reading");
// }
// std::vector<Cluster3x3> clusters(n_clusters);
// // size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster
// *buf,
// // uint32_t *n_left, double *noise_map, int
// // nx, int ny) {
// int iframe = 0;
// // uint32_t nph = *n_left;
// uint32_t nph = m_num_left;
// // uint32_t nn = *n_left;
// uint32_t nn = m_num_left;
// size_t nph_read = 0;
=======
>>>>>>> developer
bool ClusterFile::is_selected(Cluster3x3 &cl) {
//Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
if (m_noise_map){
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
<<<<<<< HEAD
// if (nph) {
// if (nph > n_clusters) {
// // if we have more photons left in the frame then photons to
// // read we read directly the requested number
// nn = n_clusters;
// } else {
// nn = nph;
// }
// for (size_t iph = 0; iph < nn; iph++) {
// // read photons 1 by 1
// size_t n_read =
// fread(reinterpret_cast<void *>(ptr), sizeof(Cluster3x3), 1,
// fp);
// if (n_read != 1) {
// clusters.resize(nph_read);
// return clusters;
// }
// // TODO! error handling on read
// good = 1;
// if (noise_map) {
// if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny)
// {
// tot1 = ptr->data[4];
// analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL,
// NULL,
// NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
// if (tot1 > noise || t2max > 2 * noise || tot3 > 3 *
// noise) {
// ;
// } else {
// good = 0;
// printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
// tot1, t2max, tot3);
// }
// } else {
// printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
// good = 0;
// }
// }
// if (good) {
// ptr++;
// nph_read++;
// }
// (m_num_left)--;
// if (nph_read >= n_clusters)
// break;
// }
// }
// if (nph_read < n_clusters) {
// // // keep on reading frames and photons until reaching
// // n_clusters
// while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // // printf("%d\n",nph_read);
// if (fread(&nph, sizeof(nph), 1, fp)) {
// // // printf("** %d\n",nph);
// m_num_left = nph;
// for (size_t iph = 0; iph < nph; iph++) {
// // // read photons 1 by 1
// size_t n_read = fread(reinterpret_cast<void *>(ptr),
// sizeof(Cluster3x3), 1, fp);
// if (n_read != 1) {
// clusters.resize(nph_read);
// return clusters;
// // return nph_read;
// }
// good = 1;
// if (noise_map) {
// if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
// ptr->y < ny) {
// tot1 = ptr->data[4];
// analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
// NULL, NULL, NULL);
// // noise = noise_map[ptr->y * nx + ptr->x];
// noise = noise_map[ptr->y + ny * ptr->x];
// if (tot1 > noise || t2max > 2 * noise ||
// tot3 > 3 * noise) {
// ;
// } else
// good = 0;
// } else {
// printf("Bad pixel number %d %d\n", ptr->x,
// ptr->y); good = 0;
// }
// }
// if (good) {
// ptr++;
// nph_read++;
// }
// (m_num_left)--;
// if (nph_read >= n_clusters)
// break;
// }
// }
// if (nph_read >= n_clusters)
// break;
// }
// }
// // printf("%d\n",nph_read);
// clusters.resize(nph_read);
// return clusters;
// }
=======
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
return false;
}
}
//we passed all checks
return true;
}
>>>>>>> developer
template <typename ClusterType>
NDArray<double, 2> calculate_eta2(ClusterVector<ClusterType> &clusters) {
// TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
<<<<<<< HEAD
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2<ClusterType>(clusters.at(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
=======
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
}
>>>>>>> developer
return eta2;
}
/**
* @brief Calculate the eta2 values for a generic sized cluster and return them
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
* subcluster.
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
Eta2 calculate_eta2(Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
Eta2 eta{};
// TODO loads of overhead for a 2x2 clsuter maybe keep 2x2 calculation
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
cl.data[i * ClusterSizeX + j] +
cl.data[i * ClusterSizeX + j + 1] +
cl.data[(i + 1) * ClusterSizeX + j] +
cl.data[(i + 1) * ClusterSizeX + j + 1];
}
auto c =
std::max_element(sum_2x2_subcluster.begin(), sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
eta.sum = sum_2x2_subcluster[c];
eta.x = static_cast<double>(cl.data[(c + 1) * ClusterSizeX + 1]) /
(cl.data[0] + cl.data[1]);
size_t index_top_left_2x2_subcluster =
(int(c / (ClusterSizeX - 1)) + 1) * ClusterSizeX +
c % (ClusterSizeX - 1) * 2 + 1;
if ((cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - 1]) != 0)
eta.x =
static_cast<double>(cl.data[index_top_left_2x2_subcluster] /
(cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - 1]));
if ((cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - ClusterSizeX]) != 0)
eta.y = static_cast<double>(
cl.data[index_top_left_2x2_subcluster] /
(cl.data[index_top_left_2x2_subcluster] +
cl.data[index_top_left_2x2_subcluster - ClusterSizeX]));
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
// underyling enum class
return eta;
}
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2
* struct containing etay, etax and the corner of the cluster.
*/
template <typename T> Eta2 calculate_eta2(Cluster<T, 3, 3> &cl) {
Eta2 eta{};
std::array<T, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x = static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x = static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
}
return eta;
}
<<<<<<< HEAD
template <typename T> Eta2 calculate_eta2(Cluster<T, 2, 2> &cl) {
Eta2 eta{};
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2] + cl.data[3];
eta.c = cBottomLeft; // TODO! This is not correct, but need to put something
return eta;
}
// TODO complicated API simplify?
int analyze_cluster(Cluster<int32_t, 3, 3> &cl, int32_t *t2, int32_t *t3,
char *quad, double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
=======
>>>>>>> developer
Eta2 calculate_eta2(Cluster2x2 &cl) {
Eta2 eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2]+ cl.data[3];
eta.c = cBottomLeft; //TODO! This is not correct, but need to put something
return eta;
}
} // namespace aare