JulianHeymes 06670a7e24
read_n returns remaining frames (#105)
Modified read_n to return the number of frames available if less than
the number of frames requested.

```python
#f is a CtbRawFile containing 10 frames

f.read_n(7) # you get 7 frames
f.read_n(7) # you get 3 frames
f.read_n(7) # RuntimeError
```

Also added support for chunk_size when iterating over a file:

```python
# The file contains 10 frames


with CtbRawFile(fname, chunk_size = 7) as f:
    for headers, frames in f:
        #do something with the data
        # 1 iteration 7 frames
        # 2 iteration 3 frames
        # 3 iteration stops
```
2024-11-26 14:07:21 +01:00
fix
2024-11-18 15:33:38 +01:00
2024-11-15 16:15:04 +01:00
2024-11-18 16:18:29 +01:00
2024-11-26 12:07:17 +01:00
2024-11-26 12:07:17 +01:00
2024-11-15 15:17:52 +01:00
WIP
2024-11-11 17:13:48 +01:00
2024-11-11 18:22:18 +01:00
2024-11-18 18:18:55 +01:00
2024-11-15 16:15:04 +01:00
2024-10-30 15:07:34 +01:00

aare

Data analysis library for PSI hybrid detectors

Build and install

Prerequisites

  • cmake >= 3.14
  • C++17 compiler (gcc >= 8)
  • python >= 3.10

Development install (for Python)

git clone git@github.com:slsdetectorgroup/aare.git --branch=v1 #or using http...
mkdir build
cd build

#configure using cmake
cmake ../aare

#build (replace 4 with the number of threads you want to use)
make -j4 

Now you can use the Python module from your build directory

import aare
f = aare.File('Some/File/I/Want_to_open_master_0.json')

To run form other folders either add the path to your conda environment using conda-build or add it to your PYTHONPATH

Install using conda/mamba

#enable your env first!
conda install aare=2024.10.29.dev0 -c slsdetectorgroup

Install to a custom location and use in your project

Working example in: https://github.com/slsdetectorgroup/aare-examples

#build and install aare 
git clone git@github.com:slsdetectorgroup/aare.git --branch=v1 #or using http...
mkdir build
cd build

#configure using cmake
cmake ../aare -DCMAKE_INSTALL_PREFIX=/where/to/put/aare

#build (replace 4 with the number of threads you want to use)
make -j4 

#install
make install


#Now configure your project
 cmake .. -DCMAKE_PREFIX_PATH=SOME_PATH

Local build of conda pkgs

conda build . --variants="{python: [3.11, 3.12, 3.13]}"
Description
Mirrored from github
Readme 106 MiB
Languages
C++ 90.5%
CMake 5.7%
Python 3.8%