mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-07 13:10:42 +02:00
bumped version
This commit is contained in:
parent
acdce8454b
commit
21ce7a3efa
@ -1,6 +1,6 @@
|
||||
package:
|
||||
name: aare
|
||||
version: 2024.12.16.dev0 #TODO! how to not duplicate this?
|
||||
version: 2025.1.7.dev0 #TODO! how to not duplicate this?
|
||||
|
||||
|
||||
source:
|
||||
|
@ -121,8 +121,8 @@ class ClusterFinder {
|
||||
} else if (total > c3 * m_nSigma * rms) {
|
||||
// pass
|
||||
} else {
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix));
|
||||
m_pedestal.push_fast(iy, ix, frame(iy, ix));
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
|
||||
m_pedestal.push_fast(iy, ix, frame(iy, ix)); // Assume we have reached n_samples in the pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
}
|
||||
|
||||
@ -157,114 +157,6 @@ class ClusterFinder {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// // template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
|
||||
// std::vector<DynamicCluster>
|
||||
// find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
|
||||
// Pedestal<PEDESTAL_TYPE> &pedestal) {
|
||||
// assert(m_threshold > 0);
|
||||
// std::vector<DynamicCluster> clusters;
|
||||
// std::vector<std::vector<eventType>> eventMask;
|
||||
// for (int i = 0; i < frame.shape(0); i++) {
|
||||
// eventMask.push_back(std::vector<eventType>(frame.shape(1)));
|
||||
// }
|
||||
// double tthr, tthr1, tthr2;
|
||||
|
||||
// NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
|
||||
// NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
|
||||
// // convert to n photons
|
||||
// // nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can
|
||||
// be
|
||||
// // optimized with expression templates?
|
||||
// for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
// for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
// auto val = frame(iy, ix) - pedestal.mean(iy, ix);
|
||||
// nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
|
||||
// nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
|
||||
// rest(iy, ix) = val - nph(iy, ix) * m_threshold;
|
||||
// }
|
||||
// }
|
||||
// // iterate over frame pixels
|
||||
// for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
// for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
// eventMask[iy][ix] = eventType::PEDESTAL;
|
||||
// // initialize max and total
|
||||
// FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
|
||||
// long double total = 0;
|
||||
// if (rest(iy, ix) <= 0.25 * m_threshold) {
|
||||
// pedestal.push(iy, ix, frame(iy, ix));
|
||||
// continue;
|
||||
// }
|
||||
// eventMask[iy][ix] = eventType::NEIGHBOUR;
|
||||
// // iterate over cluster pixels around the current pixel
|
||||
// (ix,iy) for (short ir = -(m_cluster_sizeY / 2);
|
||||
// ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
// for (short ic = -(m_cluster_sizeX / 2);
|
||||
// ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
// if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
// iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
// auto val = frame(iy + ir, ix + ic) -
|
||||
// pedestal.mean(iy + ir, ix + ic);
|
||||
// total += val;
|
||||
// if (val > max) {
|
||||
// max = val;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// auto rms = pedestal.std(iy, ix);
|
||||
// if (m_nSigma == 0) {
|
||||
// tthr = m_threshold;
|
||||
// tthr1 = m_threshold;
|
||||
// tthr2 = m_threshold;
|
||||
// } else {
|
||||
// tthr = m_nSigma * rms;
|
||||
// tthr1 = m_nSigma * rms * c3;
|
||||
// tthr2 = m_nSigma * rms * c2;
|
||||
|
||||
// if (m_threshold > 2 * tthr)
|
||||
// tthr = m_threshold - tthr;
|
||||
// if (m_threshold > 2 * tthr1)
|
||||
// tthr1 = tthr - tthr1;
|
||||
// if (m_threshold > 2 * tthr2)
|
||||
// tthr2 = tthr - tthr2;
|
||||
// }
|
||||
// if (total > tthr1 || max > tthr) {
|
||||
// eventMask[iy][ix] = eventType::PHOTON;
|
||||
// nph(iy, ix) += 1;
|
||||
// rest(iy, ix) -= m_threshold;
|
||||
// } else {
|
||||
// pedestal.push(iy, ix, frame(iy, ix));
|
||||
// continue;
|
||||
// }
|
||||
// if (eventMask[iy][ix] == eventType::PHOTON &&
|
||||
// frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
|
||||
// eventMask[iy][ix] = eventType::PHOTON_MAX;
|
||||
// DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
|
||||
// Dtype(typeid(FRAME_TYPE)));
|
||||
// cluster.x = ix;
|
||||
// cluster.y = iy;
|
||||
// short i = 0;
|
||||
// for (short ir = -(m_cluster_sizeY / 2);
|
||||
// ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
// for (short ic = -(m_cluster_sizeX / 2);
|
||||
// ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
// if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
// iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
// auto tmp = frame(iy + ir, ix + ic) -
|
||||
// pedestal.mean(iy + ir, ix + ic);
|
||||
// cluster.set<FRAME_TYPE>(i, tmp);
|
||||
// i++;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// clusters.push_back(cluster);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// return clusters;
|
||||
// }
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -165,8 +165,8 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_sum2(row, col) += val * val;
|
||||
m_cur_samples(row, col)++;
|
||||
} else {
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_samples;
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
|
||||
}
|
||||
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
|
||||
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
|
||||
|
@ -4,7 +4,7 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "aare"
|
||||
version = "2024.12.16.dev0"
|
||||
version = "2025.1.7.dev0"
|
||||
|
||||
[tool.scikit-build]
|
||||
cmake.verbose = true
|
||||
|
Loading…
x
Reference in New Issue
Block a user