mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-15 17:41:25 +01:00
a42c0d645bc91f9ced8cee98e03010505a742d81
- Moved definitions of Cluster_2x2 and Cluster_3x3 to it's own file
- Added optional members for ROI, noise_map and gain_map in ClusterFile
**API:**
After creating the ClusterFile the user can set one or all of: roi,
noise_map, gain_map
```python
f = ClusterFile(fname)
f.set_roi(roi) #aare.ROI
f.set_noise_map(noise_map) #numpy array
f.set_gain_map(gain_map) #numpy array
```
**When reading clusters they are evaluated in the order:**
1. If ROI is enabled check that the cluster is within the ROI
1. If noise_map is enabled check that the cluster meets one of the
conditions
- Center pixel above noise
- Highest 2x2 sum above 2x noise
- 3x3 sum above 3x noise
1. If gain_map is set apply the gain map before returning the clusters
(not used for noise cut)
**Open questions:**
1. Check for out of bounds access in noise and gain map?
closes #139
closes #135
closes #90
aare
Data analysis library for PSI hybrid detectors
Build and install
Prerequisites
- cmake >= 3.14
- C++17 compiler (gcc >= 8)
- python >= 3.10
Development install (for Python)
git clone git@github.com:slsdetectorgroup/aare.git --branch=v1 #or using http...
mkdir build
cd build
#configure using cmake
cmake ../aare
#build (replace 4 with the number of threads you want to use)
make -j4
Now you can use the Python module from your build directory
import aare
f = aare.File('Some/File/I/Want_to_open_master_0.json')
To run form other folders either add the path to your conda environment using conda-build or add it to your PYTHONPATH
Install using conda/mamba
#enable your env first!
conda install aare=2024.10.29.dev0 -c slsdetectorgroup
Install to a custom location and use in your project
Working example in: https://github.com/slsdetectorgroup/aare-examples
#build and install aare
git clone git@github.com:slsdetectorgroup/aare.git --branch=v1 #or using http...
mkdir build
cd build
#configure using cmake
cmake ../aare -DCMAKE_INSTALL_PREFIX=/where/to/put/aare
#build (replace 4 with the number of threads you want to use)
make -j4
#install
make install
#Now configure your project
cmake .. -DCMAKE_PREFIX_PATH=SOME_PATH
Local build of conda pkgs
conda build . --variants="{python: [3.11, 3.12, 3.13]}"
Languages
Jupyter Notebook
72.7%
C++
23.9%
Python
2.4%
CMake
1%