mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-14 16:27:14 +02:00
Compare commits
70 Commits
Author | SHA1 | Date | |
---|---|---|---|
10e4e10431 | |||
017960d963 | |||
a12e43b176 | |||
9de84a7f87 | |||
885309d97c | |||
e24ed68416 | |||
248d25486f | |||
a24bbd9cf9 | |||
d7ef9bb1d8 | |||
de9fc16e89 | |||
85a6b5b95e | |||
50eeba4005 | |||
98d2d6098e | |||
61af1105a1 | |||
240960d3e7 | |||
04728929cb | |||
3083d51699 | |||
4240942cec | |||
745d09fbe9 | |||
a42c0d645b | |||
508adf5016 | |||
e038bd1646 | |||
7e5f91c6ec | |||
ed9ef7c600 | |||
57bb6c71ae | |||
f8f98b6ec3 | |||
0876b6891a | |||
6ad76f63c1 | |||
6e7e81b36b | |||
b529b6d33b | |||
602b04e49f | |||
11cd2ec654 | |||
e59a361b51 | |||
1ad362ccfc | |||
332bdeb02b | |||
3a987319d4 | |||
5614cb4673 | |||
8ae6bb76f8 | |||
1d2c38c1d4 | |||
fc1c9f35d6 | |||
5d2f25a6e9 | |||
6a83988485 | |||
8abfc68138 | |||
8ff6f9f506 | |||
dcb9a98faa | |||
7309cff47c | |||
c0c5e07ad8 | |||
2faa317bdf | |||
f7031d7f87 | |||
d86cb533c8 | |||
4c750cc3be | |||
e96fe31f11 | |||
cd5a738696 | |||
1ba43b69d3 | |||
fff536782b | |||
5a3ca2ae2d | |||
078e5d81ec | |||
6cde968c60 | |||
f6d736facd | |||
e1cc774d6c | |||
d0f435a7ab | |||
7ce02006f2 | |||
7550a2cb97 | |||
caf7b4ecdb | |||
72d10b7735 | |||
cc95561eda | |||
dc9e10016d | |||
21ce7a3efa | |||
acdce8454b | |||
d07da42745 |
@ -2,9 +2,10 @@ name: Build the package using cmake then documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
push:
|
||||
|
||||
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pages: write
|
||||
@ -15,12 +16,12 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ]
|
||||
python-version: ["3.12", ]
|
||||
platform: [ubuntu-latest, ] # macos-12, windows-2019]
|
||||
python-version: ["3.12",]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
|
||||
# The setup-miniconda action needs this to activate miniconda
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
@ -34,13 +35,13 @@ jobs:
|
||||
sudo apt-get -y install cmake gcc g++
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
uses: conda-incubator/setup-miniconda@v3.0.4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
environment-file: etc/dev-env.yml
|
||||
miniforge-version: latest
|
||||
channels: conda-forge
|
||||
conda-remove-defaults: "true"
|
||||
|
||||
- name: Prepare
|
||||
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
@ -55,4 +56,3 @@ jobs:
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,36 +0,0 @@
|
||||
name: Build on RHEL8
|
||||
|
||||
on:
|
||||
push:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: "ubuntu-latest"
|
||||
container:
|
||||
image: gitea.psi.ch/images/rhel8-developer-gitea-actions
|
||||
steps:
|
||||
# workaround until actions/checkout@v4 is available for RH8
|
||||
# - uses: actions/checkout@v4
|
||||
- name: Clone repository
|
||||
run: |
|
||||
echo Cloning ${{ github.ref_name }}
|
||||
git clone https://${{secrets.GITHUB_TOKEN}}@gitea.psi.ch/${{ github.repository }}.git --branch=${{ github.ref_name }} .
|
||||
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
mkdir build && cd build
|
||||
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON -DPython_FIND_VIRTUALENV=FIRST
|
||||
make -j 2
|
||||
|
||||
- name: C++ unit tests
|
||||
working-directory: ${{gitea.workspace}}/build
|
||||
run: ctest
|
@ -1,31 +0,0 @@
|
||||
name: Build on RHEL9
|
||||
|
||||
on:
|
||||
push:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: "ubuntu-latest"
|
||||
container:
|
||||
image: gitea.psi.ch/images/rhel9-developer-gitea-actions
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
mkdir build && cd build
|
||||
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON
|
||||
make -j 2
|
||||
|
||||
- name: C++ unit tests
|
||||
working-directory: ${{gitea.workspace}}/build
|
||||
run: ctest
|
12
.github/workflows/build_docs.yml
vendored
12
.github/workflows/build_docs.yml
vendored
@ -5,6 +5,7 @@ on:
|
||||
push:
|
||||
|
||||
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pages: write
|
||||
@ -15,11 +16,12 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ]
|
||||
platform: [ubuntu-latest, ] # macos-12, windows-2019]
|
||||
python-version: ["3.12",]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
# The setup-miniconda action needs this to activate miniconda
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
@ -28,13 +30,13 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
uses: conda-incubator/setup-miniconda@v3.0.4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
environment-file: etc/dev-env.yml
|
||||
miniforge-version: latest
|
||||
channels: conda-forge
|
||||
conda-remove-defaults: "true"
|
||||
|
||||
- name: Prepare
|
||||
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
|
64
.github/workflows/build_wheel.yml
vendored
64
.github/workflows/build_wheel.yml
vendored
@ -1,64 +0,0 @@
|
||||
name: Build wheel
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
|
||||
|
||||
jobs:
|
||||
build_wheels:
|
||||
name: Build wheels on ${{ matrix.os }}
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest,]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Build wheels
|
||||
run: pipx run cibuildwheel==2.23.0
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }}
|
||||
path: ./wheelhouse/*.whl
|
||||
|
||||
build_sdist:
|
||||
name: Build source distribution
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Build sdist
|
||||
run: pipx run build --sdist
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: cibw-sdist
|
||||
path: dist/*.tar.gz
|
||||
|
||||
upload_pypi:
|
||||
needs: [build_wheels, build_sdist]
|
||||
runs-on: ubuntu-latest
|
||||
environment: pypi
|
||||
permissions:
|
||||
id-token: write
|
||||
if: github.event_name == 'release' && github.event.action == 'published'
|
||||
# or, alternatively, upload to PyPI on every tag starting with 'v' (remove on: release above to use this)
|
||||
# if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
# unpacks all CIBW artifacts into dist/
|
||||
pattern: cibw-*
|
||||
path: dist
|
||||
merge-multiple: true
|
||||
|
||||
- uses: pypa/gh-action-pypi-publish@release/v1
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -17,8 +17,7 @@ Testing/
|
||||
ctbDict.cpp
|
||||
ctbDict.h
|
||||
|
||||
wheelhouse/
|
||||
dist/
|
||||
|
||||
|
||||
*.pyc
|
||||
*/__pycache__/*
|
||||
|
@ -1,4 +1,4 @@
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
cmake_minimum_required(VERSION 3.14)
|
||||
|
||||
project(aare
|
||||
VERSION 1.0.0
|
||||
@ -11,14 +11,6 @@ set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
|
||||
execute_process(
|
||||
COMMAND git log -1 --format=%h
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
|
||||
OUTPUT_VARIABLE GIT_HASH
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
message(STATUS "Building from git hash: ${GIT_HASH}")
|
||||
|
||||
if (${CMAKE_VERSION} VERSION_GREATER "3.24")
|
||||
cmake_policy(SET CMP0135 NEW) #Fetch content download timestamp
|
||||
endif()
|
||||
@ -39,7 +31,7 @@ set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
|
||||
|
||||
|
||||
# General options
|
||||
option(AARE_PYTHON_BINDINGS "Build python bindings" ON)
|
||||
option(AARE_PYTHON_BINDINGS "Build python bindings" OFF)
|
||||
option(AARE_TESTS "Build tests" OFF)
|
||||
option(AARE_BENCHMARKS "Build benchmarks" OFF)
|
||||
option(AARE_EXAMPLES "Build examples" OFF)
|
||||
@ -112,7 +104,6 @@ if(AARE_FETCH_LMFIT)
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
#Disable what we don't need from lmfit
|
||||
set(BUILD_TESTING OFF CACHE BOOL "")
|
||||
set(LMFIT_CPPTEST OFF CACHE BOOL "")
|
||||
@ -340,6 +331,8 @@ endif()
|
||||
|
||||
set(PUBLICHEADERS
|
||||
include/aare/ArrayExpr.hpp
|
||||
include/aare/CalculateEta.hpp
|
||||
include/aare/Cluster.hpp
|
||||
include/aare/ClusterFinder.hpp
|
||||
include/aare/ClusterFile.hpp
|
||||
include/aare/CtbRawFile.hpp
|
||||
@ -350,10 +343,9 @@ set(PUBLICHEADERS
|
||||
include/aare/File.hpp
|
||||
include/aare/Fit.hpp
|
||||
include/aare/FileInterface.hpp
|
||||
include/aare/FilePtr.hpp
|
||||
include/aare/Frame.hpp
|
||||
include/aare/GainMap.hpp
|
||||
include/aare/geo_helpers.hpp
|
||||
include/aare/JungfrauDataFile.hpp
|
||||
include/aare/NDArray.hpp
|
||||
include/aare/NDView.hpp
|
||||
include/aare/NumpyFile.hpp
|
||||
@ -365,22 +357,18 @@ set(PUBLICHEADERS
|
||||
include/aare/RawSubFile.hpp
|
||||
include/aare/VarClusterFinder.hpp
|
||||
include/aare/utils/task.hpp
|
||||
|
||||
)
|
||||
|
||||
|
||||
set(SourceFiles
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/FilePtr.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
|
||||
@ -388,20 +376,16 @@ set(SourceFiles
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
|
||||
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/ifstream_helpers.cpp
|
||||
)
|
||||
|
||||
|
||||
add_library(aare_core STATIC ${SourceFiles})
|
||||
target_include_directories(aare_core PUBLIC
|
||||
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
)
|
||||
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
aare_core
|
||||
PUBLIC
|
||||
@ -410,7 +394,7 @@ target_link_libraries(
|
||||
${STD_FS_LIB} # from helpers.cmake
|
||||
PRIVATE
|
||||
aare_compiler_flags
|
||||
"$<BUILD_INTERFACE:lmfit>"
|
||||
$<BUILD_INTERFACE:lmfit>
|
||||
|
||||
)
|
||||
|
||||
@ -427,7 +411,6 @@ if(AARE_TESTS)
|
||||
set(TestSources
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
|
||||
@ -436,9 +419,10 @@ if(AARE_TESTS)
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Cluster.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CalculateEta.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp
|
||||
|
@ -1,11 +1,27 @@
|
||||
find_package(benchmark REQUIRED)
|
||||
|
||||
add_executable(ndarray_benchmark ndarray_benchmark.cpp)
|
||||
include(FetchContent)
|
||||
|
||||
target_link_libraries(ndarray_benchmark benchmark::benchmark aare_core aare_compiler_flags)
|
||||
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
|
||||
|
||||
set_target_properties(ndarray_benchmark PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
# OUTPUT_NAME run_tests
|
||||
FetchContent_Declare(
|
||||
benchmark
|
||||
GIT_REPOSITORY https://github.com/google/benchmark.git
|
||||
GIT_TAG v1.8.3 # Change to the latest version if needed
|
||||
)
|
||||
|
||||
# Ensure Google Benchmark is built correctly
|
||||
set(BENCHMARK_ENABLE_TESTING OFF CACHE BOOL "" FORCE)
|
||||
|
||||
FetchContent_MakeAvailable(benchmark)
|
||||
|
||||
add_executable(benchmarks)
|
||||
|
||||
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp)
|
||||
|
||||
# Link Google Benchmark and other necessary libraries
|
||||
target_link_libraries(benchmarks PRIVATE benchmark::benchmark aare_core aare_compiler_flags)
|
||||
|
||||
# Set output properties
|
||||
set_target_properties(benchmarks PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
OUTPUT_NAME run_benchmarks
|
||||
)
|
70
benchmarks/calculateeta_benchmark.cpp
Normal file
70
benchmarks/calculateeta_benchmark.cpp
Normal file
@ -0,0 +1,70 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include <benchmark/benchmark.h>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
class ClusterFixture : public benchmark::Fixture {
|
||||
public:
|
||||
Cluster<int, 2, 2> cluster_2x2{};
|
||||
Cluster<int, 3, 3> cluster_3x3{};
|
||||
|
||||
private:
|
||||
using benchmark::Fixture::SetUp;
|
||||
|
||||
void SetUp([[maybe_unused]] const benchmark::State &state) override {
|
||||
int temp_data[4] = {1, 2, 3, 1};
|
||||
std::copy(std::begin(temp_data), std::end(temp_data),
|
||||
std::begin(cluster_2x2.data));
|
||||
|
||||
cluster_2x2.x = 0;
|
||||
cluster_2x2.y = 0;
|
||||
|
||||
int temp_data2[9] = {1, 2, 3, 1, 3, 4, 5, 1, 20};
|
||||
std::copy(std::begin(temp_data2), std::end(temp_data2),
|
||||
std::begin(cluster_3x3.data));
|
||||
|
||||
cluster_3x3.x = 0;
|
||||
cluster_3x3.y = 0;
|
||||
}
|
||||
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
};
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate2x2Eta)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_2x2);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture,
|
||||
CalculateGeneralEtaFor2x2Cluster)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 2, 2>(cluster_2x2);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate3x3Eta)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture,
|
||||
CalculateGeneralEtaFor3x3Cluster)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 3, 3>(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
// BENCHMARK_MAIN();
|
@ -1,8 +1,6 @@
|
||||
package:
|
||||
name: aare
|
||||
version: 2025.4.22 #TODO! how to not duplicate this?
|
||||
|
||||
|
||||
version: 2025.4.1 #TODO! how to not duplicate this?
|
||||
|
||||
|
||||
|
||||
@ -39,7 +37,6 @@ requirements:
|
||||
run:
|
||||
- python {{python}}
|
||||
- numpy {{ numpy }}
|
||||
- matplotlib
|
||||
|
||||
|
||||
test:
|
||||
|
@ -1,25 +0,0 @@
|
||||
JungfrauDataFile
|
||||
==================
|
||||
|
||||
JungfrauDataFile is a class to read the .dat files that are produced by Aldo's receiver.
|
||||
It is mostly used for calibration.
|
||||
|
||||
The structure of the file is:
|
||||
|
||||
* JungfrauDataHeader
|
||||
* Binary data (256x256, 256x1024 or 512x1024)
|
||||
* JungfrauDataHeader
|
||||
* ...
|
||||
|
||||
There is no metadata indicating number of frames or the size of the image, but this
|
||||
will be infered by this reader.
|
||||
|
||||
.. doxygenstruct:: aare::JungfrauDataHeader
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
.. doxygenclass:: aare::JungfrauDataFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
@ -1,47 +0,0 @@
|
||||
****************
|
||||
Tests
|
||||
****************
|
||||
|
||||
We test the code both from the C++ and Python API. By default only tests that does not require image data is run.
|
||||
|
||||
C++
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DAARE_TESTS=ON
|
||||
make -j 4
|
||||
|
||||
export AARE_TEST_DATA=/path/to/test/data
|
||||
./run_test [.files] #or using ctest, [.files] is the option to include tests needing data
|
||||
|
||||
|
||||
|
||||
Python
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
#From the root dir of the library
|
||||
python -m pytest python/tests --files # passing --files will run the tests needing data
|
||||
|
||||
|
||||
|
||||
Getting the test data
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. attention ::
|
||||
|
||||
The tests needing the test data are not run by default. To make the data available, you need to set the environment variable
|
||||
AARE_TEST_DATA to the path of the test data directory. Then pass either [.files] for the C++ tests or --files for Python
|
||||
|
||||
The image files needed for the test are large and are not included in the repository. They are stored
|
||||
using GIT LFS in a separate repository. To get the test data, you need to clone the repository.
|
||||
To do this, you need to have GIT LFS installed. You can find instructions on how to install it here: https://git-lfs.github.com/
|
||||
Once you have GIT LFS installed, you can clone the repository like any normal repo using:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
git clone https://gitea.psi.ch/detectors/aare-test-data.git
|
@ -1,5 +0,0 @@
|
||||
algorithm
|
||||
=============
|
||||
|
||||
.. doxygenfile:: algorithm.hpp
|
||||
|
@ -20,6 +20,9 @@ AARE
|
||||
Requirements
|
||||
Consume
|
||||
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: Python API
|
||||
:maxdepth: 1
|
||||
@ -28,7 +31,6 @@ AARE
|
||||
pyCtbRawFile
|
||||
pyClusterFile
|
||||
pyClusterVector
|
||||
pyJungfrauDataFile
|
||||
pyRawFile
|
||||
pyRawMasterFile
|
||||
pyVarClusterFinder
|
||||
@ -40,7 +42,6 @@ AARE
|
||||
:caption: C++ API
|
||||
:maxdepth: 1
|
||||
|
||||
algorithm
|
||||
NDArray
|
||||
NDView
|
||||
Frame
|
||||
@ -50,7 +51,6 @@ AARE
|
||||
ClusterFinderMT
|
||||
ClusterFile
|
||||
ClusterVector
|
||||
JungfrauDataFile
|
||||
Pedestal
|
||||
RawFile
|
||||
RawSubFile
|
||||
@ -59,8 +59,4 @@ AARE
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: Developer
|
||||
:maxdepth: 3
|
||||
|
||||
Tests
|
||||
|
||||
|
@ -1,10 +0,0 @@
|
||||
JungfrauDataFile
|
||||
===================
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: JungfrauDataFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
:inherited-members:
|
@ -1,15 +0,0 @@
|
||||
name: dev-environment
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- anaconda-client
|
||||
- doxygen
|
||||
- sphinx=7.1.2
|
||||
- breathe
|
||||
- pybind11
|
||||
- sphinx_rtd_theme
|
||||
- furo
|
||||
- nlohmann_json
|
||||
- zeromq
|
||||
- fmt
|
||||
- numpy
|
122
include/aare/CalculateEta.hpp
Normal file
122
include/aare/CalculateEta.hpp
Normal file
@ -0,0 +1,122 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
typedef enum {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
} corner;
|
||||
|
||||
typedef enum {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
} pixel;
|
||||
|
||||
template <typename T> struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
int c;
|
||||
T sum;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for all clusters in a Clsutervector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters.at(i));
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a generic sized cluster and return them
|
||||
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
|
||||
* subcluster.
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
Eta2<T>
|
||||
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
auto max_sum = cl.max_sum_2x2();
|
||||
eta.sum = max_sum.first;
|
||||
auto c = max_sum.second;
|
||||
|
||||
size_t index_bottom_left_max_2x2_subcluster =
|
||||
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
|
||||
|
||||
if ((cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + 1]) != 0)
|
||||
eta.x = static_cast<double>(
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + 1]) /
|
||||
static_cast<double>(
|
||||
(cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + 1]));
|
||||
|
||||
if ((cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]) != 0)
|
||||
eta.y =
|
||||
static_cast<double>(
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]) /
|
||||
static_cast<double>(
|
||||
(cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]));
|
||||
|
||||
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
|
||||
// underyling enum class
|
||||
return eta;
|
||||
}
|
||||
|
||||
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
|
||||
// TODO only supported for 3x3 Clusters
|
||||
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
T sum = 0;
|
||||
|
||||
std::for_each(std::begin(cl.data), std::end(cl.data),
|
||||
[&sum](T x) { sum += x; });
|
||||
|
||||
eta.sum = sum;
|
||||
|
||||
eta.c = corner::cBottomLeft;
|
||||
|
||||
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
|
||||
|
||||
(cl.data[3] + cl.data[4] + cl.data[5]);
|
||||
|
||||
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
|
||||
|
||||
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
|
||||
|
||||
(cl.data[1] + cl.data[4] + cl.data[7]);
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,36 +1,121 @@
|
||||
|
||||
/************************************************
|
||||
* @file Cluster.hpp
|
||||
* @short definition of cluster, where CoordType (x,y) give
|
||||
* the cluster center coordinates and data the actual cluster data
|
||||
* cluster size is given as template parameters
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
#include <type_traits>
|
||||
|
||||
namespace aare {
|
||||
|
||||
//TODO! Template this?
|
||||
struct Cluster3x3 {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[9];
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
constexpr bool is_valid_cluster =
|
||||
std::is_arithmetic_v<T> && std::is_integral_v<CoordType> &&
|
||||
(ClusterSizeX > 0) && (ClusterSizeY > 0);
|
||||
|
||||
int32_t sum_2x2() const{
|
||||
std::array<int32_t, 4> total;
|
||||
total[0] = data[0] + data[1] + data[3] + data[4];
|
||||
total[1] = data[1] + data[2] + data[4] + data[5];
|
||||
total[2] = data[3] + data[4] + data[6] + data[7];
|
||||
total[3] = data[4] + data[5] + data[7] + data[8];
|
||||
return *std::max_element(total.begin(), total.end());
|
||||
// requires clause c++20 maybe update
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t,
|
||||
typename Enable = std::enable_if_t<
|
||||
is_valid_cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>>
|
||||
struct Cluster {
|
||||
CoordType x;
|
||||
CoordType y;
|
||||
T data[ClusterSizeX * ClusterSizeY];
|
||||
|
||||
T sum() const {
|
||||
return std::accumulate(data, data + ClusterSizeX * ClusterSizeY, 0);
|
||||
}
|
||||
|
||||
int32_t sum() const{
|
||||
return std::accumulate(data, data + 9, 0);
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
|
||||
constexpr size_t num_2x2_subclusters =
|
||||
(ClusterSizeX - 1) * (ClusterSizeY - 1);
|
||||
|
||||
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
|
||||
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
|
||||
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
|
||||
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
|
||||
data[i * ClusterSizeX + j] +
|
||||
data[i * ClusterSizeX + j + 1] +
|
||||
data[(i + 1) * ClusterSizeX + j] +
|
||||
data[(i + 1) * ClusterSizeX + j + 1];
|
||||
}
|
||||
|
||||
int index = std::max_element(sum_2x2_subcluster.begin(),
|
||||
sum_2x2_subcluster.end()) -
|
||||
sum_2x2_subcluster.begin();
|
||||
return std::make_pair(sum_2x2_subcluster[index], index);
|
||||
}
|
||||
};
|
||||
struct Cluster2x2 {
|
||||
|
||||
// Specialization for 2x2 clusters (only one sum exists)
|
||||
template <typename T> struct Cluster<T, 2, 2, int16_t> {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[4];
|
||||
T data[4];
|
||||
|
||||
T sum() const { return std::accumulate(data, data + 4, 0); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3],
|
||||
0); // Only one possible 2x2 sum
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
||||
// Specialization for 3x3 clusters
|
||||
template <typename T> struct Cluster<T, 3, 3, int16_t> {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
T data[9];
|
||||
|
||||
T sum() const { return std::accumulate(data, data + 9, 0); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
|
||||
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
|
||||
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
|
||||
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
}
|
||||
};
|
||||
|
||||
// Type Traits for is_cluster_type
|
||||
template <typename T>
|
||||
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
|
||||
|
||||
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
|
||||
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
|
||||
|
||||
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
struct extract_template_arguments; // Forward declaration
|
||||
|
||||
// helper struct to extract template argument
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
struct extract_template_arguments<
|
||||
Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
using value_type = T;
|
||||
static constexpr int cluster_size_x = ClusterSizeX;
|
||||
static constexpr int cluster_size_y = ClusterSizeY;
|
||||
using coordtype = CoordType;
|
||||
};
|
||||
|
||||
} // namespace aare
|
||||
|
@ -2,29 +2,31 @@
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
class ClusterCollector{
|
||||
ProducerConsumerQueue<ClusterVector<int>>* m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::vector<ClusterVector<int>> m_clusters;
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterCollector {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::vector<ClusterVector<ClusterType>> m_clusters;
|
||||
|
||||
void process(){
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterCollector started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<int> *clusters = m_source->frontPtr();
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
m_clusters.push_back(std::move(*clusters));
|
||||
m_source->popFront();
|
||||
}else{
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
@ -32,21 +34,21 @@ class ClusterCollector{
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterCollector(ClusterFinderMT<uint16_t, double, int32_t>* source){
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterCollector::process, this);
|
||||
}
|
||||
void stop(){
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
}
|
||||
std::vector<ClusterVector<int>> steal_clusters(){
|
||||
if(!m_stopped){
|
||||
throw std::runtime_error("ClusterCollector is still running");
|
||||
}
|
||||
return std::move(m_clusters);
|
||||
public:
|
||||
ClusterCollector(ClusterFinderMT<ClusterType, uint16_t, double> *source) {
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterCollector::process, this);
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
}
|
||||
std::vector<ClusterVector<ClusterType>> steal_clusters() {
|
||||
if (!m_stopped) {
|
||||
throw std::runtime_error("ClusterCollector is still running");
|
||||
}
|
||||
return std::move(m_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/GainMap.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include <filesystem>
|
||||
@ -10,43 +11,18 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
/*
|
||||
Binary cluster file. Expects data to be layed out as:
|
||||
int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
int16_t x, int16_t y, int32_t data[9] x number_of_clusters
|
||||
int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
....
|
||||
*/
|
||||
|
||||
//TODO! Legacy enums, migrate to enum class
|
||||
typedef enum {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
} corner;
|
||||
|
||||
typedef enum {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
} pixel;
|
||||
|
||||
struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
corner c;
|
||||
int32_t sum;
|
||||
};
|
||||
|
||||
struct ClusterAnalysis {
|
||||
uint32_t c;
|
||||
int32_t tot;
|
||||
double etax;
|
||||
double etay;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// TODO: change to support any type of clusters, e.g. header line with
|
||||
// clsuter_size_x, cluster_size_y,
|
||||
/**
|
||||
* @brief Class to read and write cluster files
|
||||
* Expects data to be laid out as:
|
||||
@ -59,14 +35,18 @@ struct ClusterAnalysis {
|
||||
* uint32_t number_of_clusters
|
||||
* etc.
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFile {
|
||||
FILE *fp{};
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
|
||||
const std::string m_mode; /*Mode to open the file in*/
|
||||
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
|
||||
std::optional<NDArray<int32_t, 2>> m_noise_map; /*Noise map to cut photons, will be applied if set*/
|
||||
std::optional<NDArray<double, 2>> m_gain_map; /*Gain map to apply to the clusters, will be applied if set*/
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
|
||||
const std::string m_mode; /*Mode to open the file in*/
|
||||
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
|
||||
std::optional<NDArray<int32_t, 2>>
|
||||
m_noise_map; /*Noise map to cut photons, will be applied if set*/
|
||||
std::optional<GainMap> m_gain_map; /*Gain map to apply to the clusters, will
|
||||
be applied if set*/
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -80,8 +60,7 @@ class ClusterFile {
|
||||
*/
|
||||
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
|
||||
const std::string &mode = "r");
|
||||
|
||||
|
||||
|
||||
~ClusterFile();
|
||||
|
||||
/**
|
||||
@ -89,64 +68,388 @@ class ClusterFile {
|
||||
* If EOF is reached the returned vector will have less than n_clusters
|
||||
* clusters
|
||||
*/
|
||||
ClusterVector<int32_t> read_clusters(size_t n_clusters);
|
||||
|
||||
ClusterVector<int32_t> read_clusters(size_t n_clusters, ROI roi);
|
||||
ClusterVector<ClusterType> read_clusters(size_t n_clusters);
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file and return the clusters. The
|
||||
* cluster vector will have the frame number set.
|
||||
* @throws std::runtime_error if the file is not opened for reading or the file pointer not
|
||||
* at the beginning of a frame
|
||||
* @throws std::runtime_error if the file is not opened for reading or the
|
||||
* file pointer not at the beginning of a frame
|
||||
*/
|
||||
ClusterVector<int32_t> read_frame();
|
||||
ClusterVector<ClusterType> read_frame();
|
||||
|
||||
void write_frame(const ClusterVector<ClusterType> &clusters);
|
||||
|
||||
void write_frame(const ClusterVector<int32_t> &clusters);
|
||||
|
||||
/**
|
||||
* @brief Return the chunk size
|
||||
*/
|
||||
size_t chunk_size() const { return m_chunk_size; }
|
||||
|
||||
/**
|
||||
* @brief Set the region of interest to use when reading clusters. If set only clusters within
|
||||
* the ROI will be read.
|
||||
* @brief Set the region of interest to use when reading clusters. If set
|
||||
* only clusters within the ROI will be read.
|
||||
*/
|
||||
void set_roi(ROI roi);
|
||||
|
||||
/**
|
||||
* @brief Set the noise map to use when reading clusters. If set clusters below the noise
|
||||
* level will be discarded. Selection criteria one of: Central pixel above noise, highest
|
||||
* 2x2 sum above 2 * noise, total sum above 3 * noise.
|
||||
* @brief Set the noise map to use when reading clusters. If set clusters
|
||||
* below the noise level will be discarded. Selection criteria one of:
|
||||
* Central pixel above noise, highest 2x2 sum above 2 * noise, total sum
|
||||
* above 3 * noise.
|
||||
*/
|
||||
void set_noise_map(const NDView<int32_t, 2> noise_map);
|
||||
|
||||
/**
|
||||
* @brief Set the gain map to use when reading clusters. If set the gain map will be applied
|
||||
* to the clusters that pass ROI and noise_map selection. The gain map is expected to be in ADU/energy.
|
||||
* @brief Set the gain map to use when reading clusters. If set the gain map
|
||||
* will be applied to the clusters that pass ROI and noise_map selection.
|
||||
*/
|
||||
void set_gain_map(const NDView<double, 2> gain_map);
|
||||
|
||||
|
||||
|
||||
void set_gain_map(const GainMap &gain_map);
|
||||
|
||||
void set_gain_map(const GainMap &&gain_map);
|
||||
|
||||
/**
|
||||
* @brief Close the file. If not closed the file will be closed in the destructor
|
||||
* @brief Close the file. If not closed the file will be closed in the
|
||||
* destructor
|
||||
*/
|
||||
void close();
|
||||
|
||||
private:
|
||||
ClusterVector<int32_t> read_clusters_with_cut(size_t n_clusters);
|
||||
ClusterVector<int32_t> read_clusters_without_cut(size_t n_clusters);
|
||||
ClusterVector<int32_t> read_frame_with_cut();
|
||||
ClusterVector<int32_t> read_frame_without_cut();
|
||||
bool is_selected(Cluster3x3 &cl);
|
||||
Cluster3x3 read_one_cluster();
|
||||
private:
|
||||
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_frame_with_cut();
|
||||
ClusterVector<ClusterType> read_frame_without_cut();
|
||||
bool is_selected(ClusterType &cl);
|
||||
ClusterType read_one_cluster();
|
||||
};
|
||||
|
||||
//TODO! helper functions that doesn't really belong here
|
||||
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters);
|
||||
Eta2 calculate_eta2(Cluster3x3 &cl);
|
||||
Eta2 calculate_eta2(Cluster2x2 &cl);
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterFile<ClusterType, Enable>::ClusterFile(
|
||||
const std::filesystem::path &fname, size_t chunk_size,
|
||||
const std::string &mode)
|
||||
: m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(fname.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(fname.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(fname.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
fname.string());
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterFile<ClusterType, Enable>::~ClusterFile() {
|
||||
close();
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_roi(ROI roi) {
|
||||
m_roi = roi;
|
||||
}
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_noise_map(
|
||||
const NDView<int32_t, 2> noise_map) {
|
||||
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||
}
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_gain_map(
|
||||
const NDView<double, 2> gain_map) {
|
||||
m_gain_map = GainMap(gain_map);
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_gain_map(const GainMap &gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_gain_map(const GainMap &&gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
// TODO generally supported for all clsuter types
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::write_frame(
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
if (m_mode != "w" && m_mode != "a") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
if (!(clusters.cluster_size_x() == 3) &&
|
||||
!(clusters.cluster_size_y() == 3)) {
|
||||
throw std::runtime_error("Only 3x3 clusters are supported");
|
||||
}
|
||||
int32_t frame_number = clusters.frame_number();
|
||||
fwrite(&frame_number, sizeof(frame_number), 1, fp);
|
||||
uint32_t n_clusters = clusters.size();
|
||||
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
|
||||
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_clusters_with_cut(n_clusters);
|
||||
} else {
|
||||
return read_clusters_without_cut(n_clusters);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
|
||||
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
|
||||
auto buf = clusters.data();
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to read we
|
||||
// read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread((buf + nph_read * clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
clusters.set_frame_number(iframe);
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read += fread((buf + nph_read * clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the vector to the number of clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(n_clusters);
|
||||
|
||||
// if there are photons left from previous frame read them first
|
||||
if (m_num_left) {
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we did not have enough clusters left in the previous frame
|
||||
// keep on reading frames until reaching n_clusters
|
||||
if (clusters.size() < n_clusters) {
|
||||
// sanity check
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
LOCATION + "Entered second loop with clusters left\n");
|
||||
}
|
||||
|
||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||
clusters.set_frame_number(
|
||||
frame_number); // cluster vector will hold the last frame
|
||||
// number
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we have enough clusters, break out of the outer while loop
|
||||
if (clusters.size() >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
|
||||
ClusterType c;
|
||||
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||
}
|
||||
--m_num_left;
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType> ClusterFile<ClusterType, Enable>::read_frame() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error(LOCATION + "File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_frame_with_cut();
|
||||
} else {
|
||||
return read_frame_without_cut();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read clusters");
|
||||
}
|
||||
clusters.resize(n_clusters);
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(m_num_left);
|
||||
clusters.set_frame_number(frame_number);
|
||||
while (m_num_left) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
|
||||
// Should fail fast
|
||||
if (m_roi) {
|
||||
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
auto cluster_size_x = extract_template_arguments<
|
||||
std::remove_reference_t<decltype(cl)>>::cluster_size_x;
|
||||
auto cluster_size_y = extract_template_arguments<
|
||||
std::remove_reference_t<decltype(cl)>>::cluster_size_y;
|
||||
|
||||
size_t cluster_center_index =
|
||||
(cluster_size_x / 2) + (cluster_size_y / 2) * cluster_size_x;
|
||||
|
||||
if (m_noise_map) {
|
||||
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
|
||||
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
|
||||
auto total_sum = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise =
|
||||
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
|
||||
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise ||
|
||||
total_sum <= 3 * noise) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// we passed all checks
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
|
@ -3,35 +3,41 @@
|
||||
#include <filesystem>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare{
|
||||
namespace aare {
|
||||
|
||||
class ClusterFileSink{
|
||||
ProducerConsumerQueue<ClusterVector<int>>* m_source;
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFileSink {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::ofstream m_file;
|
||||
|
||||
|
||||
void process(){
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterFileSink started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<int> *clusters = m_source->frontPtr();
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
// Write clusters to file
|
||||
int32_t frame_number = clusters->frame_number(); //TODO! Should we store frame number already as int?
|
||||
int32_t frame_number =
|
||||
clusters->frame_number(); // TODO! Should we store frame
|
||||
// number already as int?
|
||||
uint32_t num_clusters = clusters->size();
|
||||
m_file.write(reinterpret_cast<const char*>(&frame_number), sizeof(frame_number));
|
||||
m_file.write(reinterpret_cast<const char*>(&num_clusters), sizeof(num_clusters));
|
||||
m_file.write(reinterpret_cast<const char*>(clusters->data()), clusters->size() * clusters->item_size());
|
||||
m_file.write(reinterpret_cast<const char *>(&frame_number),
|
||||
sizeof(frame_number));
|
||||
m_file.write(reinterpret_cast<const char *>(&num_clusters),
|
||||
sizeof(num_clusters));
|
||||
m_file.write(reinterpret_cast<const char *>(clusters->data()),
|
||||
clusters->size() * clusters->item_size());
|
||||
m_source->popFront();
|
||||
}else{
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
@ -39,18 +45,18 @@ class ClusterFileSink{
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<uint16_t, double, int32_t>* source, const std::filesystem::path& fname){
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
}
|
||||
void stop(){
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
m_file.close();
|
||||
}
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
|
||||
const std::filesystem::path &fname) {
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
m_file.close();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,15 +1,16 @@
|
||||
#pragma once
|
||||
#include "aare/core/defs.hpp"
|
||||
#include <filesystem>
|
||||
#include <string>
|
||||
#include <fmt/format.h>
|
||||
#include <string>
|
||||
|
||||
namespace aare {
|
||||
struct ClusterHeader {
|
||||
int32_t frame_number;
|
||||
int32_t n_clusters;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", n_clusters: " + std::to_string(n_clusters);
|
||||
return "frame_number: " + std::to_string(frame_number) +
|
||||
", n_clusters: " + std::to_string(n_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
@ -24,7 +25,8 @@ struct ClusterV2_ {
|
||||
data_str += std::to_string(d) + ", ";
|
||||
}
|
||||
data_str += "]";
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) + ", data: " + data_str;
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) +
|
||||
", data: " + data_str;
|
||||
}
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y);
|
||||
}
|
||||
@ -34,27 +36,31 @@ struct ClusterV2 {
|
||||
ClusterV2_ cluster;
|
||||
int32_t frame_number;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", " + cluster.to_string();
|
||||
return "frame_number: " + std::to_string(frame_number) + ", " +
|
||||
cluster.to_string();
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief
|
||||
* important not: fp always points to the clusters header and does not point to individual clusters
|
||||
* important not: fp always points to the clusters header and does not point to
|
||||
* individual clusters
|
||||
*
|
||||
*/
|
||||
class ClusterFileV2 {
|
||||
std::filesystem::path m_fpath;
|
||||
std::filesystem::path m_fpath;
|
||||
std::string m_mode;
|
||||
FILE *fp{nullptr};
|
||||
|
||||
void check_open(){
|
||||
void check_open() {
|
||||
if (!fp)
|
||||
throw std::runtime_error(fmt::format("File: {} not open", m_fpath.string()));
|
||||
throw std::runtime_error(
|
||||
fmt::format("File: {} not open", m_fpath.string()));
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode): m_fpath(fpath), m_mode(mode) {
|
||||
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode)
|
||||
: m_fpath(fpath), m_mode(mode) {
|
||||
if (m_mode != "r" && m_mode != "w")
|
||||
throw std::invalid_argument("mode must be 'r' or 'w'");
|
||||
if (m_mode == "r" && !std::filesystem::exists(m_fpath))
|
||||
@ -77,7 +83,7 @@ class ClusterFileV2 {
|
||||
check_open();
|
||||
|
||||
ClusterHeader header;
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
std::vector<ClusterV2_> clusters_(header.n_clusters);
|
||||
fread(clusters_.data(), sizeof(ClusterV2_), header.n_clusters, fp);
|
||||
std::vector<ClusterV2> clusters;
|
||||
@ -117,7 +123,7 @@ class ClusterFileV2 {
|
||||
|
||||
size_t write(std::vector<std::vector<ClusterV2>> const &clusters) {
|
||||
check_open();
|
||||
if (m_mode != "w")
|
||||
if (m_mode != "w")
|
||||
throw std::runtime_error("File not opened in write mode");
|
||||
|
||||
size_t n_clusters = 0;
|
||||
|
@ -10,17 +10,21 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename CT = int32_t>
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinder {
|
||||
Shape<2> m_image_size;
|
||||
const int m_cluster_sizeX;
|
||||
const int m_cluster_sizeY;
|
||||
const PEDESTAL_TYPE m_nSigma;
|
||||
const PEDESTAL_TYPE c2;
|
||||
const PEDESTAL_TYPE c3;
|
||||
Pedestal<PEDESTAL_TYPE> m_pedestal;
|
||||
ClusterVector<CT> m_clusters;
|
||||
ClusterVector<ClusterType> m_clusters;
|
||||
|
||||
static const uint8_t ClusterSizeX =
|
||||
extract_template_arguments<ClusterType>::cluster_size_x;
|
||||
static const uint8_t ClusterSizeY =
|
||||
extract_template_arguments<ClusterType>::cluster_size_x;
|
||||
using CT = typename extract_template_arguments<ClusterType>::value_type;
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -31,15 +35,12 @@ class ClusterFinder {
|
||||
* @param capacity initial capacity of the cluster vector
|
||||
*
|
||||
*/
|
||||
ClusterFinder(Shape<2> image_size, Shape<2> cluster_size,
|
||||
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]),
|
||||
m_cluster_sizeY(cluster_size[1]),
|
||||
m_nSigma(nSigma),
|
||||
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
|
||||
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]),
|
||||
m_clusters(m_cluster_sizeX, m_cluster_sizeY, capacity) {};
|
||||
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_nSigma(nSigma),
|
||||
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
|
||||
c3(sqrt(ClusterSizeX * ClusterSizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {};
|
||||
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
m_pedestal.push(frame);
|
||||
@ -56,23 +57,29 @@ class ClusterFinder {
|
||||
* same capacity as the old one
|
||||
*
|
||||
*/
|
||||
ClusterVector<CT> steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<CT> tmp = std::move(m_clusters);
|
||||
ClusterVector<ClusterType>
|
||||
steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<ClusterType> tmp = std::move(m_clusters);
|
||||
if (realloc_same_capacity)
|
||||
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY,
|
||||
tmp.capacity());
|
||||
m_clusters = ClusterVector<ClusterType>(tmp.capacity());
|
||||
else
|
||||
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY);
|
||||
m_clusters = ClusterVector<ClusterType>{};
|
||||
return tmp;
|
||||
}
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
// // TODO! deal with even size clusters
|
||||
// // currently 3,3 -> +/- 1
|
||||
// // 4,4 -> +/- 2
|
||||
int dy = m_cluster_sizeY / 2;
|
||||
int dx = m_cluster_sizeX / 2;
|
||||
int dy = ClusterSizeY / 2;
|
||||
int dx = ClusterSizeX / 2;
|
||||
int has_center_pixel_x =
|
||||
ClusterSizeX %
|
||||
2; // for even sized clusters there is no proper cluster center and
|
||||
// even amount of pixels around the center
|
||||
int has_center_pixel_y = ClusterSizeY % 2;
|
||||
|
||||
m_clusters.set_frame_number(frame_number);
|
||||
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
|
||||
std::vector<CT> cluster_data(ClusterSizeX * ClusterSizeY);
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
|
||||
@ -87,8 +94,8 @@ class ClusterFinder {
|
||||
continue; // NEGATIVE_PEDESTAL go to next pixel
|
||||
// TODO! No pedestal update???
|
||||
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
PEDESTAL_TYPE val =
|
||||
@ -109,8 +116,12 @@ class ClusterFinder {
|
||||
// pass
|
||||
} else {
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
|
||||
m_pedestal.push_fast(iy, ix, frame(iy, ix)); // Assume we have reached n_samples in the pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
m_pedestal.push_fast(
|
||||
iy, ix,
|
||||
frame(iy,
|
||||
ix)); // Assume we have reached n_samples in the
|
||||
// pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
}
|
||||
|
||||
// Store cluster
|
||||
@ -122,13 +133,14 @@ class ClusterFinder {
|
||||
// It's worth redoing the look since most of the time we
|
||||
// don't have a photon
|
||||
int i = 0;
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
CT tmp =
|
||||
static_cast<CT>(frame(iy + ir, ix + ic)) -
|
||||
m_pedestal.mean(iy + ir, ix + ic);
|
||||
static_cast<CT>(
|
||||
m_pedestal.mean(iy + ir, ix + ic));
|
||||
cluster_data[i] =
|
||||
tmp; // Watch for out of bounds access
|
||||
i++;
|
||||
@ -136,10 +148,13 @@ class ClusterFinder {
|
||||
}
|
||||
}
|
||||
|
||||
ClusterType new_cluster{};
|
||||
new_cluster.x = ix;
|
||||
new_cluster.y = iy;
|
||||
std::copy(cluster_data.begin(), cluster_data.end(),
|
||||
new_cluster.data);
|
||||
// Add the cluster to the output ClusterVector
|
||||
m_clusters.push_back(
|
||||
ix, iy,
|
||||
reinterpret_cast<std::byte *>(cluster_data.data()));
|
||||
m_clusters.push_back(new_cluster);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -30,14 +30,16 @@ struct FrameWrapper {
|
||||
* @tparam PEDESTAL_TYPE type of the pedestal data
|
||||
* @tparam CT type of the cluster data
|
||||
*/
|
||||
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename CT = int32_t>
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinderMT {
|
||||
|
||||
using CT = typename extract_template_arguments<ClusterType>::value_type;
|
||||
size_t m_current_thread{0};
|
||||
size_t m_n_threads{0};
|
||||
using Finder = ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>;
|
||||
using Finder = ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>;
|
||||
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
|
||||
using OutputQueue = ProducerConsumerQueue<ClusterVector<int>>;
|
||||
using OutputQueue = ProducerConsumerQueue<ClusterVector<ClusterType>>;
|
||||
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
|
||||
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
|
||||
|
||||
@ -66,7 +68,8 @@ class ClusterFinderMT {
|
||||
switch (frame->type) {
|
||||
case FrameType::DATA:
|
||||
cf->find_clusters(frame->data.view(), frame->frame_number);
|
||||
m_output_queues[thread_id]->write(cf->steal_clusters(realloc_same_capacity));
|
||||
m_output_queues[thread_id]->write(
|
||||
cf->steal_clusters(realloc_same_capacity));
|
||||
break;
|
||||
|
||||
case FrameType::PEDESTAL:
|
||||
@ -114,28 +117,31 @@ class ClusterFinderMT {
|
||||
* expected number of clusters in a frame per frame.
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
ClusterFinderMT(Shape<2> image_size, Shape<2> cluster_size,
|
||||
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 2000,
|
||||
size_t n_threads = 3)
|
||||
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 2000, size_t n_threads = 3)
|
||||
: m_n_threads(n_threads) {
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_cluster_finders.push_back(
|
||||
std::make_unique<ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>>(
|
||||
image_size, cluster_size, nSigma, capacity));
|
||||
std::make_unique<
|
||||
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
|
||||
image_size, nSigma, capacity));
|
||||
}
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
|
||||
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
|
||||
}
|
||||
//TODO! Should we start automatically?
|
||||
// TODO! Should we start automatically?
|
||||
start();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the sink queue where all the clusters are collected
|
||||
* @warning You need to empty this queue otherwise the cluster finder will wait forever
|
||||
* @warning You need to empty this queue otherwise the cluster finder will
|
||||
* wait forever
|
||||
*/
|
||||
ProducerConsumerQueue<ClusterVector<int>> *sink() { return &m_sink; }
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *sink() {
|
||||
return &m_sink;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start all processing threads
|
||||
|
@ -1,4 +1,5 @@
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
@ -13,6 +14,10 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterVector; // Forward declaration
|
||||
|
||||
/**
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It uses a
|
||||
* contiguous memory buffer to store the clusters. It is templated on the data
|
||||
@ -24,15 +29,16 @@ namespace aare {
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
*/
|
||||
template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
using value_type = T;
|
||||
size_t m_cluster_size_x;
|
||||
size_t m_cluster_size_y;
|
||||
#if 0
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
std::byte *m_data{};
|
||||
size_t m_size{0};
|
||||
size_t m_capacity;
|
||||
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
/*
|
||||
/**
|
||||
Format string used in the python bindings to create a numpy
|
||||
array from the buffer
|
||||
= - native byte order
|
||||
@ -43,29 +49,26 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
|
||||
|
||||
public:
|
||||
using value_type = T;
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new ClusterVector object
|
||||
* @param cluster_size_x size of the cluster in x direction
|
||||
* @param cluster_size_y size of the cluster in y direction
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
* @param frame_number frame number of the clusters. Default is 0, which is
|
||||
* also used to indicate that the clusters come from many frames
|
||||
*/
|
||||
ClusterVector(size_t cluster_size_x = 3, size_t cluster_size_y = 3,
|
||||
size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
|
||||
m_capacity(capacity), m_frame_number(frame_number) {
|
||||
allocate_buffer(capacity);
|
||||
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_capacity(capacity), m_frame_number(frame_number) {
|
||||
allocate_buffer(m_capacity);
|
||||
}
|
||||
|
||||
~ClusterVector() { delete[] m_data; }
|
||||
|
||||
// Move constructor
|
||||
ClusterVector(ClusterVector &&other) noexcept
|
||||
: m_cluster_size_x(other.m_cluster_size_x),
|
||||
m_cluster_size_y(other.m_cluster_size_y), m_data(other.m_data),
|
||||
m_size(other.m_size), m_capacity(other.m_capacity),
|
||||
m_frame_number(other.m_frame_number) {
|
||||
: m_data(other.m_data), m_size(other.m_size),
|
||||
m_capacity(other.m_capacity), m_frame_number(other.m_frame_number) {
|
||||
other.m_data = nullptr;
|
||||
other.m_size = 0;
|
||||
other.m_capacity = 0;
|
||||
@ -75,8 +78,6 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
ClusterVector &operator=(ClusterVector &&other) noexcept {
|
||||
if (this != &other) {
|
||||
delete[] m_data;
|
||||
m_cluster_size_x = other.m_cluster_size_x;
|
||||
m_cluster_size_y = other.m_cluster_size_y;
|
||||
m_data = other.m_data;
|
||||
m_size = other.m_size;
|
||||
m_capacity = other.m_capacity;
|
||||
@ -103,26 +104,22 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
|
||||
/**
|
||||
* @brief Add a cluster to the vector
|
||||
* @param x x-coordinate of the cluster
|
||||
* @param y y-coordinate of the cluster
|
||||
* @param data pointer to the data of the cluster
|
||||
* @warning The data pointer must point to a buffer of size cluster_size_x *
|
||||
* cluster_size_y * sizeof(T)
|
||||
*/
|
||||
void push_back(CoordType x, CoordType y, const std::byte *data) {
|
||||
void push_back(const ClusterType &cluster) {
|
||||
if (m_size == m_capacity) {
|
||||
allocate_buffer(m_capacity * 2);
|
||||
}
|
||||
std::byte *ptr = element_ptr(m_size);
|
||||
*reinterpret_cast<CoordType *>(ptr) = x;
|
||||
*reinterpret_cast<CoordType *>(ptr) = cluster.x;
|
||||
ptr += sizeof(CoordType);
|
||||
*reinterpret_cast<CoordType *>(ptr) = y;
|
||||
*reinterpret_cast<CoordType *>(ptr) = cluster.y;
|
||||
ptr += sizeof(CoordType);
|
||||
|
||||
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
|
||||
ptr);
|
||||
std::memcpy(ptr, cluster.data, ClusterSizeX * ClusterSizeY * sizeof(T));
|
||||
|
||||
m_size++;
|
||||
}
|
||||
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
if (m_size + other.m_size > m_capacity) {
|
||||
allocate_buffer(m_capacity + other.m_size);
|
||||
@ -137,10 +134,11 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
* @brief Sum the pixels in each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/
|
||||
/*
|
||||
std::vector<T> sum() {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = item_size();
|
||||
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
|
||||
const size_t n_pixels = ClusterSizeX * ClusterSizeY;
|
||||
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
@ -151,43 +149,33 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
}
|
||||
return sums;
|
||||
}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Return the maximum sum of the 2x2 subclusters in each cluster
|
||||
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
|
||||
* each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
* @throws std::runtime_error if the cluster size is not 3x3
|
||||
* @warning Only 3x3 clusters are supported for the 2x2 sum.
|
||||
*/
|
||||
*/ //TODO if underlying container is a vector use std::for_each
|
||||
/*
|
||||
std::vector<T> sum_2x2() {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = item_size();
|
||||
|
||||
if (m_cluster_size_x != 3 || m_cluster_size_y != 3) {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 clusters are supported for the 2x2 sum.");
|
||||
}
|
||||
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
|
||||
std::vector<T> sums_2x2(m_size);
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
std::array<T, 4> total;
|
||||
auto T_ptr = reinterpret_cast<T *>(ptr);
|
||||
total[0] = T_ptr[0] + T_ptr[1] + T_ptr[3] + T_ptr[4];
|
||||
total[1] = T_ptr[1] + T_ptr[2] + T_ptr[4] + T_ptr[5];
|
||||
total[2] = T_ptr[3] + T_ptr[4] + T_ptr[6] + T_ptr[7];
|
||||
total[3] = T_ptr[4] + T_ptr[5] + T_ptr[7] + T_ptr[8];
|
||||
|
||||
sums[i] = *std::max_element(total.begin(), total.end());
|
||||
ptr += stride;
|
||||
sums_2x2[i] = at(i).max_sum_2x2;
|
||||
}
|
||||
|
||||
return sums;
|
||||
return sums_2x2;
|
||||
}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
*/
|
||||
size_t size() const { return m_size; }
|
||||
|
||||
uint8_t cluster_size_x() const { return ClusterSizeX; }
|
||||
|
||||
uint8_t cluster_size_y() const { return ClusterSizeY; }
|
||||
|
||||
/**
|
||||
* @brief Return the capacity of the buffer in number of clusters. This is
|
||||
* the number of clusters that can be stored in the current buffer without
|
||||
@ -199,8 +187,7 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
*/
|
||||
size_t item_size() const {
|
||||
return 2 * sizeof(CoordType) +
|
||||
m_cluster_size_x * m_cluster_size_y * sizeof(T);
|
||||
return 2 * sizeof(CoordType) + ClusterSizeX * ClusterSizeY * sizeof(T);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -220,9 +207,6 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
return m_data + element_offset(i);
|
||||
}
|
||||
|
||||
size_t cluster_size_x() const { return m_cluster_size_x; }
|
||||
size_t cluster_size_y() const { return m_cluster_size_y; }
|
||||
|
||||
std::byte *data() { return m_data; }
|
||||
std::byte const *data() const { return m_data; }
|
||||
|
||||
@ -230,8 +214,12 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
* @brief Return a reference to the i-th cluster casted to type V
|
||||
* @tparam V type of the cluster
|
||||
*/
|
||||
template <typename V> V &at(size_t i) {
|
||||
return *reinterpret_cast<V *>(element_ptr(i));
|
||||
ClusterType &at(size_t i) {
|
||||
return *reinterpret_cast<ClusterType *>(element_ptr(i));
|
||||
}
|
||||
|
||||
const ClusterType &at(size_t i) const {
|
||||
return *reinterpret_cast<const ClusterType *>(element_ptr(i));
|
||||
}
|
||||
|
||||
template <typename V> const V &at(size_t i) const {
|
||||
@ -243,7 +231,7 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
return m_fmt_base;
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* @brief Return the frame number of the clusters. 0 is used to indicate
|
||||
* that the clusters come from many frames
|
||||
*/
|
||||
@ -253,7 +241,7 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
m_frame_number = frame_number;
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* @brief Resize the vector to contain new_size clusters. If new_size is
|
||||
* greater than the current capacity, a new buffer is allocated. If the size
|
||||
* is smaller no memory is freed, size is just updated.
|
||||
@ -268,28 +256,6 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
m_size = new_size;
|
||||
}
|
||||
|
||||
void apply_gain_map(const NDView<double> gain_map){
|
||||
//in principle we need to know the size of the image for this lookup
|
||||
//TODO! check orientations
|
||||
std::array<int64_t, 9> xcorr = {-1, 0, 1, -1, 0, 1, -1, 0, 1};
|
||||
std::array<int64_t, 9> ycorr = {-1, -1, -1, 0, 0, 0, 1, 1, 1};
|
||||
for (size_t i=0; i<m_size; i++){
|
||||
auto& cl = at<Cluster3x3>(i);
|
||||
|
||||
if (cl.x > 0 && cl.y > 0 && cl.x < gain_map.shape(1)-1 && cl.y < gain_map.shape(0)-1){
|
||||
for (size_t j=0; j<9; j++){
|
||||
size_t x = cl.x + xcorr[j];
|
||||
size_t y = cl.y + ycorr[j];
|
||||
cl.data[j] = static_cast<T>(cl.data[j] * gain_map(y, x));
|
||||
}
|
||||
}else{
|
||||
memset(cl.data, 0, 9*sizeof(T)); //clear edge clusters
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void allocate_buffer(size_t new_capacity) {
|
||||
size_t num_bytes = item_size() * new_capacity;
|
||||
@ -300,5 +266,124 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
|
||||
m_capacity = new_capacity;
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It
|
||||
* uses a contiguous memory buffer to store the clusters. It is templated on
|
||||
* the data type and the coordinate type of the clusters.
|
||||
* @note push_back can invalidate pointers to elements in the container
|
||||
* @warning ClusterVector is currently move only to catch unintended copies,
|
||||
* but this might change since there are probably use cases where copying is
|
||||
* needed.
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
|
||||
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
|
||||
public:
|
||||
using value_type = T;
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new ClusterVector object
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
* @param frame_number frame number of the clusters. Default is 0, which is
|
||||
* also used to indicate that the clusters come from many frames
|
||||
*/
|
||||
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_frame_number(frame_number) {
|
||||
m_data.reserve(capacity);
|
||||
}
|
||||
|
||||
// Move constructor
|
||||
ClusterVector(ClusterVector &&other) noexcept
|
||||
: m_data(other.m_data), m_frame_number(other.m_frame_number) {
|
||||
other.m_data.clear();
|
||||
}
|
||||
|
||||
// Move assignment operator
|
||||
ClusterVector &operator=(ClusterVector &&other) noexcept {
|
||||
if (this != &other) {
|
||||
m_data = other.m_data;
|
||||
m_frame_number = other.m_frame_number;
|
||||
other.m_data.clear();
|
||||
other.m_frame_number = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reserve space for at least capacity clusters
|
||||
* @param capacity number of clusters to reserve space for
|
||||
* @note If capacity is less than the current capacity, the function does
|
||||
* nothing.
|
||||
*/
|
||||
void reserve(size_t capacity) { m_data.reserve(capacity); }
|
||||
|
||||
void resize(size_t size) { m_data.resize(size); }
|
||||
|
||||
void push_back(const ClusterType &cluster) { m_data.push_back(cluster); }
|
||||
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
m_data.insert(m_data.end(), other.begin(), other.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
*/
|
||||
size_t size() const { return m_data.size(); }
|
||||
|
||||
uint8_t cluster_size_x() const { return ClusterSizeX; }
|
||||
|
||||
uint8_t cluster_size_y() const { return ClusterSizeY; }
|
||||
|
||||
/**
|
||||
* @brief Return the capacity of the buffer in number of clusters. This is
|
||||
* the number of clusters that can be stored in the current buffer without
|
||||
* reallocation.
|
||||
*/
|
||||
size_t capacity() const { return m_data.capacity(); }
|
||||
|
||||
const auto begin() const { return m_data.begin(); }
|
||||
|
||||
const auto end() const { return m_data.end(); }
|
||||
|
||||
/**
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
*/
|
||||
size_t item_size() const {
|
||||
return 2 * sizeof(CoordType) + ClusterSizeX * ClusterSizeY * sizeof(T);
|
||||
}
|
||||
|
||||
ClusterType *data() { return m_data.data(); }
|
||||
ClusterType const *data() const { return m_data.data(); }
|
||||
|
||||
/**
|
||||
* @brief Return a reference to the i-th cluster casted to type V
|
||||
* @tparam V type of the cluster
|
||||
*/
|
||||
ClusterType &at(size_t i) { return m_data[i]; }
|
||||
|
||||
const ClusterType &at(size_t i) const { return m_data[i]; }
|
||||
|
||||
/**
|
||||
* @brief Return the frame number of the clusters. 0 is used to indicate
|
||||
* that the clusters come from many frames
|
||||
*/
|
||||
uint64_t frame_number() const { return m_frame_number; }
|
||||
|
||||
void set_frame_number(uint64_t frame_number) {
|
||||
m_frame_number = frame_number;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,30 +0,0 @@
|
||||
#pragma once
|
||||
#include <cstdio>
|
||||
#include <filesystem>
|
||||
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* \brief RAII wrapper for FILE pointer
|
||||
*/
|
||||
class FilePtr {
|
||||
FILE *fp_{nullptr};
|
||||
|
||||
public:
|
||||
FilePtr() = default;
|
||||
FilePtr(const std::filesystem::path& fname, const std::string& mode);
|
||||
FilePtr(const FilePtr &) = delete; // we don't want a copy
|
||||
FilePtr &operator=(const FilePtr &) = delete; // since we handle a resource
|
||||
FilePtr(FilePtr &&other);
|
||||
FilePtr &operator=(FilePtr &&other);
|
||||
FILE *get();
|
||||
int64_t tell();
|
||||
void seek(int64_t offset, int whence = SEEK_SET) {
|
||||
if (fseek(fp_, offset, whence) != 0)
|
||||
throw std::runtime_error("Error seeking in file");
|
||||
}
|
||||
std::string error_msg();
|
||||
~FilePtr();
|
||||
};
|
||||
|
||||
} // namespace aare
|
58
include/aare/GainMap.hpp
Normal file
58
include/aare/GainMap.hpp
Normal file
@ -0,0 +1,58 @@
|
||||
/************************************************
|
||||
* @file ApplyGainMap.hpp
|
||||
* @short function to apply gain map of image size to a vector of clusters
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace aare {
|
||||
|
||||
class GainMap {
|
||||
|
||||
public:
|
||||
explicit GainMap(const NDArray<double, 2> &gain_map)
|
||||
: m_gain_map(gain_map) {};
|
||||
|
||||
explicit GainMap(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = NDArray<double, 2>(gain_map);
|
||||
}
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
void apply_gain_map(ClusterVector<ClusterType> &clustervec) {
|
||||
// in principle we need to know the size of the image for this lookup
|
||||
size_t ClusterSizeX = clustervec.cluster_size_x();
|
||||
size_t ClusterSizeY = clustervec.cluster_size_y();
|
||||
|
||||
using T = typename ClusterVector<ClusterType>::value_type;
|
||||
|
||||
int64_t index_cluster_center_x = ClusterSizeX / 2;
|
||||
int64_t index_cluster_center_y = ClusterSizeY / 2;
|
||||
for (size_t i = 0; i < clustervec.size(); i++) {
|
||||
auto &cl = clustervec.at(i);
|
||||
|
||||
if (cl.x > 0 && cl.y > 0 && cl.x < m_gain_map.shape(1) - 1 &&
|
||||
cl.y < m_gain_map.shape(0) - 1) {
|
||||
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
|
||||
size_t x = cl.x + j % ClusterSizeX - index_cluster_center_x;
|
||||
size_t y = cl.y + j / ClusterSizeX - index_cluster_center_y;
|
||||
cl.data[j] = cl.data[j] * static_cast<T>(m_gain_map(y, x));
|
||||
}
|
||||
} else {
|
||||
memset(cl.data, 0,
|
||||
ClusterSizeX * ClusterSizeY *
|
||||
sizeof(T)); // clear edge clusters
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
NDArray<double, 2> m_gain_map{};
|
||||
};
|
||||
|
||||
} // end of namespace aare
|
@ -1,29 +1,132 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
namespace aare{
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
struct Photon{
|
||||
namespace aare {
|
||||
|
||||
struct Photon {
|
||||
double x;
|
||||
double y;
|
||||
double energy;
|
||||
};
|
||||
|
||||
class Interpolator{
|
||||
class Interpolator {
|
||||
NDArray<double, 3> m_ietax;
|
||||
NDArray<double, 3> m_ietay;
|
||||
|
||||
NDArray<double, 1> m_etabinsx;
|
||||
NDArray<double, 1> m_etabinsy;
|
||||
NDArray<double, 1> m_energy_bins;
|
||||
public:
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins, NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
NDArray<double, 3> get_ietax(){return m_ietax;}
|
||||
NDArray<double, 3> get_ietay(){return m_ietay;}
|
||||
|
||||
std::vector<Photon> interpolate(const ClusterVector<int32_t>& clusters);
|
||||
public:
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
NDArray<double, 3> get_ietax() { return m_ietax; }
|
||||
NDArray<double, 3> get_ietay() { return m_ietay; }
|
||||
|
||||
template <typename ClusterType,
|
||||
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
|
||||
};
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType, typename Enable>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
|
||||
double dX, dY;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (eta.c) {
|
||||
case cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0;
|
||||
break;
|
||||
case cTopRight:;
|
||||
dX = 0;
|
||||
dY = 0;
|
||||
break;
|
||||
case cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie) *
|
||||
2; // eta goes between 0 and 1 but we could move the hit
|
||||
// anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie) * 2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,106 +0,0 @@
|
||||
#pragma once
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/FilePtr.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/FileInterface.hpp"
|
||||
namespace aare {
|
||||
|
||||
|
||||
struct JungfrauDataHeader{
|
||||
uint64_t framenum;
|
||||
uint64_t bunchid;
|
||||
};
|
||||
|
||||
class JungfrauDataFile : public FileInterface {
|
||||
|
||||
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
|
||||
size_t m_cols{}; //!< number of columns in the image, from find_frame_size();
|
||||
size_t m_bytes_per_frame{}; //!< number of bytes per frame excluding header
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non zero file
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with reference to all files)
|
||||
|
||||
std::vector<size_t> m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
std::filesystem::path m_path; //!< path to the files
|
||||
std::string m_base_name; //!< base name used for formatting file names
|
||||
|
||||
FilePtr m_fp; //!< RAII wrapper for a FILE*
|
||||
|
||||
|
||||
using pixel_type = uint16_t;
|
||||
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
|
||||
static constexpr size_t n_digits_in_file_index = 6; //!< to format file names
|
||||
|
||||
public:
|
||||
JungfrauDataFile(const std::filesystem::path &fname);
|
||||
|
||||
std::string base_name() const; //!< get the base name of the file (without path and extension)
|
||||
size_t bytes_per_frame() override;
|
||||
size_t pixels_per_frame() override;
|
||||
size_t bytes_per_pixel() const;
|
||||
size_t bitdepth() const override;
|
||||
void seek(size_t frame_index) override; //!< seek to the given frame index (note not byte offset)
|
||||
size_t tell() override; //!< get the frame index of the file pointer
|
||||
size_t total_frames() const override;
|
||||
size_t rows() const override;
|
||||
size_t cols() const override;
|
||||
std::array<ssize_t,2> shape() const;
|
||||
size_t n_files() const; //!< get the number of files in the series.
|
||||
|
||||
// Extra functions needed for FileInterface
|
||||
Frame read_frame() override;
|
||||
Frame read_frame(size_t frame_number) override;
|
||||
std::vector<Frame> read_n(size_t n_frames=0) override;
|
||||
void read_into(std::byte *image_buf) override;
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
size_t frame_number(size_t frame_index) override;
|
||||
DetectorType detector_type() const override;
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
|
||||
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
|
||||
*/
|
||||
void read_into(std::byte *image_buf, JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Read a multiple frames from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
|
||||
* @param n_frames number of frames to read
|
||||
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
|
||||
*/
|
||||
void read_into(std::byte *image_buf, size_t n_frames, JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file into the given NDArray
|
||||
* @param image NDArray to read the frame into.
|
||||
*/
|
||||
void read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header = nullptr);
|
||||
|
||||
JungfrauDataHeader read_header();
|
||||
std::filesystem::path current_file() const { return fpath(m_current_file_index+m_offset); }
|
||||
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Find the size of the frame in the file. (256x256, 256x1024, 512x1024)
|
||||
* @param fname path to the file
|
||||
* @throws std::runtime_error if the file is empty or the size cannot be determined
|
||||
*/
|
||||
void find_frame_size(const std::filesystem::path &fname);
|
||||
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t frame_index) const;
|
||||
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -194,7 +194,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
|
||||
T *data() { return data_; }
|
||||
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t size() const { return size_; }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
|
||||
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
|
||||
|
@ -71,7 +71,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
|
||||
return buffer_[element_offset(strides_, index...)];
|
||||
}
|
||||
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t size() const { return size_; }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
|
||||
|
||||
@ -102,7 +102,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
|
||||
|
||||
template<size_t Size>
|
||||
NDView& operator=(const std::array<T, Size> &arr) {
|
||||
if(size() != static_cast<ssize_t>(arr.size()))
|
||||
if(size() != arr.size())
|
||||
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
|
||||
std::copy(arr.begin(), arr.end(), begin());
|
||||
return *this;
|
||||
@ -184,9 +184,4 @@ std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
NDView<T,1> make_view(std::vector<T>& vec){
|
||||
return NDView<T,1>(vec.data(), {static_cast<int64_t>(vec.size())});
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -22,7 +22,7 @@ class RawSubFile {
|
||||
size_t m_rows{};
|
||||
size_t m_cols{};
|
||||
size_t m_bytes_per_frame{};
|
||||
size_t m_num_frames{};
|
||||
size_t n_frames{};
|
||||
uint32_t m_pos_row{};
|
||||
uint32_t m_pos_col{};
|
||||
|
||||
@ -53,7 +53,6 @@ class RawSubFile {
|
||||
size_t tell();
|
||||
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
|
||||
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header= nullptr);
|
||||
void get_part(std::byte *buffer, size_t frame_index);
|
||||
|
||||
void read_header(DetectorHeader *header);
|
||||
@ -67,8 +66,6 @@ class RawSubFile {
|
||||
size_t pixels_per_frame() const { return m_rows * m_cols; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
|
||||
|
||||
size_t frames_in_file() const { return m_num_frames; }
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void read_with_map(std::byte *image_buf);
|
||||
|
@ -226,7 +226,7 @@ template <typename T> void VarClusterFinder<T>::single_pass(NDView<T, 2> img) {
|
||||
|
||||
template <typename T> void VarClusterFinder<T>::first_pass() {
|
||||
|
||||
for (ssize_t i = 0; i < original_.size(); ++i) {
|
||||
for (size_t i = 0; i < original_.size(); ++i) {
|
||||
if (use_noise_map)
|
||||
threshold_ = 5 * noiseMap(i);
|
||||
binary_(i) = (original_(i) > threshold_);
|
||||
@ -250,7 +250,7 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
|
||||
|
||||
template <typename T> void VarClusterFinder<T>::second_pass() {
|
||||
|
||||
for (ssize_t i = 0; i != labeled_.size(); ++i) {
|
||||
for (size_t i = 0; i != labeled_.size(); ++i) {
|
||||
auto cl = labeled_(i);
|
||||
if (cl != 0) {
|
||||
auto it = child.find(cl);
|
||||
|
@ -7,20 +7,13 @@
|
||||
|
||||
namespace aare {
|
||||
/**
|
||||
* @brief Index of the last element that is smaller than val.
|
||||
* Requires a sorted array. Uses >= for ordering. If all elements
|
||||
* are smaller it returns the last element and if all elements are
|
||||
* larger it returns the first element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the last element that is smaller than val
|
||||
*
|
||||
* @brief Find the index of the last element smaller than val
|
||||
* assume a sorted array
|
||||
*/
|
||||
template <typename T>
|
||||
size_t last_smaller(const T* first, const T* last, T val) {
|
||||
for (auto iter = first+1; iter != last; ++iter) {
|
||||
if (*iter >= val) {
|
||||
if (*iter > val) {
|
||||
return std::distance(first, iter-1);
|
||||
}
|
||||
}
|
||||
@ -32,49 +25,7 @@ size_t last_smaller(const NDArray<T, 1>& arr, T val) {
|
||||
return last_smaller(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t last_smaller(const std::vector<T>& vec, T val) {
|
||||
return last_smaller(vec.data(), vec.data()+vec.size(), val);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Index of the first element that is larger than val.
|
||||
* Requires a sorted array. Uses > for ordering. If all elements
|
||||
* are larger it returns the first element and if all elements are
|
||||
* smaller it returns the last element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the first element that is larger than val
|
||||
*/
|
||||
template <typename T>
|
||||
size_t first_larger(const T* first, const T* last, T val) {
|
||||
for (auto iter = first; iter != last; ++iter) {
|
||||
if (*iter > val) {
|
||||
return std::distance(first, iter);
|
||||
}
|
||||
}
|
||||
return std::distance(first, last-1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t first_larger(const NDArray<T, 1>& arr, T val) {
|
||||
return first_larger(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t first_larger(const std::vector<T>& vec, T val) {
|
||||
return first_larger(vec.data(), vec.data()+vec.size(), val);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Index of the nearest element to val.
|
||||
* Requires a sorted array. If there is no difference it takes the first element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the nearest element
|
||||
*/
|
||||
template <typename T>
|
||||
size_t nearest_index(const T* first, const T* last, T val) {
|
||||
auto iter = std::min_element(first, last,
|
||||
@ -99,13 +50,6 @@ size_t nearest_index(const std::array<T,N>& arr, T val) {
|
||||
return nearest_index(arr.data(), arr.data()+arr.size(), val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::vector<T> cumsum(const std::vector<T>& vec) {
|
||||
std::vector<T> result(vec.size());
|
||||
std::partial_sum(vec.begin(), vec.end(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,7 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <aare/NDView.hpp>
|
||||
namespace aare {
|
||||
|
||||
@ -11,16 +10,4 @@ uint16_t adc_sar_04_decode64to16(uint64_t input);
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Apply custom weights to a 16-bit input value. Will sum up weights[i]**i
|
||||
* for each bit i that is set in the input value.
|
||||
* @throws std::out_of_range if weights.size() < 16
|
||||
* @param input 16-bit input value
|
||||
* @param weights vector of weights, size must be less than or equal to 16
|
||||
*/
|
||||
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights);
|
||||
|
||||
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double, 1> weights);
|
||||
|
||||
} // namespace aare
|
||||
} // namespace aare
|
@ -1,12 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief Get the error message from an ifstream object
|
||||
*/
|
||||
std::string ifstream_error_msg(std::ifstream &ifs);
|
||||
|
||||
} // namespace aare
|
@ -4,32 +4,14 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "aare"
|
||||
version = "2025.4.22"
|
||||
requires-python = ">=3.11"
|
||||
dependencies = [
|
||||
"numpy",
|
||||
"matplotlib",
|
||||
]
|
||||
|
||||
|
||||
[tool.cibuildwheel]
|
||||
|
||||
build = "cp{311,312,313}-manylinux_x86_64"
|
||||
|
||||
version = "2025.4.1"
|
||||
|
||||
|
||||
|
||||
[tool.scikit-build]
|
||||
build.verbose = true
|
||||
cmake.build-type = "Release"
|
||||
install.components = ["python"]
|
||||
cmake.verbose = true
|
||||
|
||||
[tool.scikit-build.cmake.define]
|
||||
AARE_PYTHON_BINDINGS = "ON"
|
||||
AARE_INSTALL_PYTHONEXT = "ON"
|
||||
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
markers = [
|
||||
"files: marks tests that need additional data (deselect with '-m \"not files\"')",
|
||||
]
|
||||
AARE_SYSTEM_LIBRARIES = "ON"
|
||||
AARE_INSTALL_PYTHONEXT = "ON"
|
@ -1,13 +1,12 @@
|
||||
|
||||
find_package (Python 3.10 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
set(PYBIND11_FINDPYTHON ON) # Needed for RH8
|
||||
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
|
||||
|
||||
# Download or find pybind11 depending on configuration
|
||||
if(AARE_FETCH_PYBIND11)
|
||||
FetchContent_Declare(
|
||||
pybind11
|
||||
GIT_REPOSITORY https://github.com/pybind/pybind11
|
||||
GIT_TAG v2.13.6
|
||||
GIT_TAG v2.13.0
|
||||
)
|
||||
FetchContent_MakeAvailable(pybind11)
|
||||
else()
|
||||
@ -59,16 +58,10 @@ endforeach(FILE ${PYTHON_EXAMPLES})
|
||||
|
||||
|
||||
if(AARE_INSTALL_PYTHONEXT)
|
||||
install(
|
||||
TARGETS _aare
|
||||
install(TARGETS _aare
|
||||
EXPORT "${TARGETS_EXPORT_NAME}"
|
||||
LIBRARY DESTINATION aare
|
||||
COMPONENT python
|
||||
)
|
||||
|
||||
install(
|
||||
FILES ${PYTHON_FILES}
|
||||
DESTINATION aare
|
||||
COMPONENT python
|
||||
)
|
||||
install(FILES ${PYTHON_FILES} DESTINATION aare)
|
||||
endif()
|
@ -2,26 +2,22 @@
|
||||
from . import _aare
|
||||
|
||||
|
||||
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
|
||||
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
|
||||
# from ._aare import File, RawMasterFile, RawSubFile
|
||||
# from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import ClusterFile
|
||||
from ._aare import ClusterFile_Cluster3x3i as ClusterFile
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
|
||||
from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
from ._aare import fit_gaus, fit_pol1
|
||||
from ._aare import Interpolator
|
||||
|
||||
|
||||
from ._aare import apply_custom_weights
|
||||
|
||||
from .CtbRawFile import CtbRawFile
|
||||
from .RawFile import RawFile
|
||||
from .ScanParameters import ScanParameters
|
||||
|
||||
from .utils import random_pixels, random_pixel, flat_list, add_colorbar
|
||||
from .utils import random_pixels, random_pixel, flat_list
|
||||
|
||||
|
||||
#make functions available in the top level API
|
||||
|
@ -1,6 +1,4 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
|
||||
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
"""Return a list of random pixels.
|
||||
@ -26,11 +24,4 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
|
||||
def flat_list(xss):
|
||||
"""Flatten a list of lists."""
|
||||
return [x for xs in xss for x in xs]
|
||||
|
||||
def add_colorbar(ax, im, size="5%", pad=0.05):
|
||||
"""Add a colorbar with the same height as the image."""
|
||||
divider = make_axes_locatable(ax)
|
||||
cax = divider.append_axes("right", size=size, pad=pad)
|
||||
plt.colorbar(im, cax=cax)
|
||||
return ax, im, cax
|
||||
return [x for xs in xss for x in xs]
|
@ -16,149 +16,246 @@
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
template <typename T>
|
||||
using namespace aare;
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
using ClusterType =
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>;
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>>(
|
||||
m, class_name.c_str())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
cluster.data); // Copy array contents
|
||||
return cluster;
|
||||
}))
|
||||
|
||||
//.def(py::init<>())
|
||||
.def_readwrite("x", &ClusterType::x)
|
||||
.def_readwrite("y", &ClusterType::y)
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
c.data); // TODO dont iterate over centers!!!
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
using ClusterType =
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, uint16_t, void>;
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
|
||||
.def(py::init<int, int>(),
|
||||
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
|
||||
|
||||
py::class_<ClusterVector<ClusterType>>(m, class_name.c_str(),
|
||||
py::buffer_protocol())
|
||||
|
||||
.def(py::init()) // TODO change!!!
|
||||
/*
|
||||
.def("push_back",
|
||||
[](ClusterVector<T> &self, int x, int y, py::array_t<T> data) {
|
||||
// auto view = make_view_2d(data);
|
||||
self.push_back(x, y, reinterpret_cast<const std::byte*>(data.data()));
|
||||
[](ClusterVector<ClusterType> &self, ClusterType &cl) {
|
||||
// auto view = make_view_2d(data);
|
||||
self.push_back(cl);
|
||||
})
|
||||
.def_property_readonly("size", &ClusterVector<T>::size)
|
||||
.def("item_size", &ClusterVector<T>::item_size)
|
||||
*/
|
||||
/*
|
||||
.def(
|
||||
"push_back",
|
||||
[](ClusterVector<ClusterType> &self, py::object obj) {
|
||||
ClusterType &cl = py::cast<ClusterType &>(obj);
|
||||
self.push_back(cl);
|
||||
},
|
||||
py::arg("cluster"))
|
||||
*/
|
||||
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
|
||||
self.push_back(cluster);
|
||||
})
|
||||
|
||||
//.def("push_back", &ClusterVector<ClusterType>::push_back) //TODO
|
||||
// implement push_back
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
[typestr](ClusterVector<T> &self) {
|
||||
return fmt::format(
|
||||
self.fmt_base(), self.cluster_size_x(),
|
||||
self.cluster_size_y(), typestr);
|
||||
})
|
||||
[typestr]() { return fmt_format<ClusterType>; })
|
||||
/*
|
||||
.def("sum",
|
||||
[](ClusterVector<T> &self) {
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<T>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2", [](ClusterVector<T> &self) {
|
||||
auto *vec = new std::vector<T>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def_property_readonly("cluster_size_x", &ClusterVector<T>::cluster_size_x)
|
||||
.def_property_readonly("cluster_size_y", &ClusterVector<T>::cluster_size_y)
|
||||
.def_property_readonly("capacity", &ClusterVector<T>::capacity)
|
||||
.def_property("frame_number", &ClusterVector<T>::frame_number,
|
||||
&ClusterVector<T>::set_frame_number)
|
||||
.def_buffer([typestr](ClusterVector<T> &self) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
self.data(), /* Pointer to buffer */
|
||||
self.item_size(), /* Size of one scalar */
|
||||
fmt::format(self.fmt_base(), self.cluster_size_x(),
|
||||
self.cluster_size_y(),
|
||||
typestr), /* Format descriptor */
|
||||
1, /* Number of dimensions */
|
||||
{self.size()}, /* Buffer dimensions */
|
||||
{self.item_size()} /* Strides (in bytes) for each index */
|
||||
);
|
||||
});
|
||||
.def("sum_2x2",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<T>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
*/
|
||||
.def_property_readonly("cluster_size_x",
|
||||
&ClusterVector<ClusterType>::cluster_size_x)
|
||||
.def_property_readonly("cluster_size_y",
|
||||
&ClusterVector<ClusterType>::cluster_size_y)
|
||||
.def_property_readonly("capacity",
|
||||
&ClusterVector<ClusterType>::capacity)
|
||||
.def_property("frame_number", &ClusterVector<ClusterType>::frame_number,
|
||||
&ClusterVector<ClusterType>::set_frame_number)
|
||||
.def_buffer(
|
||||
[typestr](ClusterVector<ClusterType> &self) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
self.data(), /* Pointer to buffer */
|
||||
self.item_size(), /* Size of one scalar */
|
||||
fmt_format<ClusterType>, /* Format descriptor */
|
||||
1, /* Number of dimensions */
|
||||
{self.size()}, /* Buffer dimensions */
|
||||
{self.item_size()} /* Strides (in bytes) for each index */
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
void define_cluster_finder_mt_bindings(py::module &m) {
|
||||
py::class_<ClusterFinderMT<uint16_t, pd_type>>(m, "ClusterFinderMT")
|
||||
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("cluster_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 2048,
|
||||
py::arg("n_threads") = 3)
|
||||
template <typename ClusterType>
|
||||
void define_cluster_finder_mt_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinderMT<uint16_t, pd_type> &self,
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<uint16_t, pd_type> &self,
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0)
|
||||
.def("clear_pedestal", &ClusterFinderMT<uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<uint16_t, pd_type>::start)
|
||||
.def("pedestal",
|
||||
[](ClusterFinderMT<uint16_t, pd_type> &self, size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},py::arg("thread_index") = 0)
|
||||
.def("noise",
|
||||
[](ClusterFinderMT<uint16_t, pd_type> &self, size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},py::arg("thread_index") = 0);
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
|
||||
.def(
|
||||
"pedestal",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},
|
||||
py::arg("thread_index") = 0)
|
||||
.def(
|
||||
"noise",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},
|
||||
py::arg("thread_index") = 0);
|
||||
}
|
||||
|
||||
void define_cluster_collector_bindings(py::module &m) {
|
||||
py::class_<ClusterCollector>(m, "ClusterCollector")
|
||||
.def(py::init<ClusterFinderMT<uint16_t, double, int32_t> *>())
|
||||
.def("stop", &ClusterCollector::stop)
|
||||
template <typename ClusterType>
|
||||
void define_cluster_collector_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
|
||||
.def("stop", &ClusterCollector<ClusterType>::stop)
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterCollector &self) {
|
||||
auto v =
|
||||
new std::vector<ClusterVector<int>>(self.steal_clusters());
|
||||
[](ClusterCollector<ClusterType> &self) {
|
||||
auto v = new std::vector<ClusterVector<ClusterType>>(
|
||||
self.steal_clusters());
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership);
|
||||
}
|
||||
|
||||
void define_cluster_file_sink_bindings(py::module &m) {
|
||||
py::class_<ClusterFileSink>(m, "ClusterFileSink")
|
||||
.def(py::init<ClusterFinderMT<uint16_t, double, int32_t> *,
|
||||
template <typename ClusterType>
|
||||
void define_cluster_file_sink_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
|
||||
const std::filesystem::path &>())
|
||||
.def("stop", &ClusterFileSink::stop);
|
||||
.def("stop", &ClusterFileSink<ClusterType>::stop);
|
||||
}
|
||||
|
||||
void define_cluster_finder_bindings(py::module &m) {
|
||||
py::class_<ClusterFinder<uint16_t, pd_type>>(m, "ClusterFinder")
|
||||
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t>(),
|
||||
py::arg("image_size"), py::arg("cluster_size"),
|
||||
template <typename ClusterType>
|
||||
void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self,
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("clear_pedestal", &ClusterFinder<uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly("pedestal",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly("noise",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly(
|
||||
"pedestal",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly(
|
||||
"noise",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self,
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
bool realloc_same_capacity) {
|
||||
auto v = new ClusterVector<int>(
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.steal_clusters(realloc_same_capacity));
|
||||
return v;
|
||||
},
|
||||
py::arg("realloc_same_capacity") = false)
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self,
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
@ -167,7 +264,7 @@ void define_cluster_finder_bindings(py::module &m) {
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
|
||||
m.def("hitmap",
|
||||
[](std::array<size_t, 2> image_size, ClusterVector<int32_t> &cv) {
|
||||
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
|
||||
py::array_t<int32_t> hitmap(image_size);
|
||||
auto r = hitmap.mutable_unchecked<2>();
|
||||
|
||||
@ -186,24 +283,4 @@ void define_cluster_finder_bindings(py::module &m) {
|
||||
}
|
||||
return hitmap;
|
||||
});
|
||||
define_cluster_vector<int>(m, "i");
|
||||
define_cluster_vector<double>(m, "d");
|
||||
define_cluster_vector<float>(m, "f");
|
||||
|
||||
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
|
||||
.def(py::init<int, int, Dtype>())
|
||||
.def("size", &DynamicCluster::size)
|
||||
.def("begin", &DynamicCluster::begin)
|
||||
.def("end", &DynamicCluster::end)
|
||||
.def_readwrite("x", &DynamicCluster::x)
|
||||
.def_readwrite("y", &DynamicCluster::y)
|
||||
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
|
||||
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
|
||||
1, {c.size()}, {c.dt.bytes()});
|
||||
})
|
||||
|
||||
.def("__repr__", [](const DynamicCluster &a) {
|
||||
return "<DynamicCluster: x: " + std::to_string(a.x) +
|
||||
", y: " + std::to_string(a.y) + ">";
|
||||
});
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
@ -10,64 +11,81 @@
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
void define_cluster_file_io_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(Cluster3x3, x, y, data);
|
||||
template <typename ClusterType>
|
||||
void define_cluster_file_io_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
// PYBIND11_NUMPY_DTYPE(Cluster<int, 3, 3>, x, y,
|
||||
// data); // is this used - maybe use as cluster type
|
||||
|
||||
py::class_<ClusterFile>(m, "ClusterFile")
|
||||
auto class_name = fmt::format("ClusterFile_{}", typestr);
|
||||
|
||||
py::class_<ClusterFile<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<const std::filesystem::path &, size_t,
|
||||
const std::string &>(),
|
||||
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
|
||||
.def("read_clusters",
|
||||
[](ClusterFile &self, size_t n_clusters) {
|
||||
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters));
|
||||
.def(
|
||||
"read_clusters",
|
||||
[](ClusterFile<ClusterType> &self, size_t n_clusters) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(n_clusters));
|
||||
return v;
|
||||
},py::return_value_policy::take_ownership)
|
||||
},
|
||||
py::return_value_policy::take_ownership)
|
||||
.def("read_frame",
|
||||
[](ClusterFile &self) {
|
||||
auto v = new ClusterVector<int32_t>(self.read_frame());
|
||||
return v;
|
||||
[](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(self.read_frame());
|
||||
return v;
|
||||
})
|
||||
.def("set_roi", &ClusterFile::set_roi)
|
||||
.def("set_noise_map", [](ClusterFile &self, py::array_t<int32_t> noise_map) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
self.set_noise_map(view);
|
||||
})
|
||||
.def("set_gain_map", [](ClusterFile &self, py::array_t<double> gain_map) {
|
||||
auto view = make_view_2d(gain_map);
|
||||
self.set_gain_map(view);
|
||||
})
|
||||
.def("close", &ClusterFile::close)
|
||||
.def("write_frame", &ClusterFile::write_frame)
|
||||
.def("__enter__", [](ClusterFile &self) { return &self; })
|
||||
.def("set_roi", &ClusterFile<ClusterType>::set_roi)
|
||||
.def(
|
||||
"set_noise_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
self.set_noise_map(view);
|
||||
})
|
||||
|
||||
.def("set_gain_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
|
||||
auto view = make_view_2d(gain_map);
|
||||
self.set_gain_map(view);
|
||||
})
|
||||
|
||||
// void set_gain_map(const GainMap &gain_map); //TODO do i need a
|
||||
// gainmap constructor?
|
||||
|
||||
.def("close", &ClusterFile<ClusterType>::close)
|
||||
.def("write_frame", &ClusterFile<ClusterType>::write_frame)
|
||||
.def("__enter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](ClusterFile &self,
|
||||
[](ClusterFile<ClusterType> &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
self.close();
|
||||
})
|
||||
.def("__iter__", [](ClusterFile &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile &self) {
|
||||
auto v = new ClusterVector<int32_t>(self.read_clusters(self.chunk_size()));
|
||||
.def("__iter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(self.chunk_size()));
|
||||
if (v->size() == 0) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
return v;
|
||||
});
|
||||
|
||||
m.def("calculate_eta2", []( aare::ClusterVector<int32_t> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
m.def("calculate_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -10,8 +10,6 @@
|
||||
#include "aare/decode.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
@ -67,54 +65,35 @@ m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
return output;
|
||||
});
|
||||
|
||||
m.def(
|
||||
"apply_custom_weights",
|
||||
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
&weights) {
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
size_t image_size = self.image_size_in_bytes();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(1);
|
||||
shape.push_back(image_size);
|
||||
|
||||
// Create new array with same shape as the input array (uninitialized values)
|
||||
py::buffer_info buf = input.request();
|
||||
py::array_t<double> output(buf.shape);
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
|
||||
// Use NDViews to call into the C++ library
|
||||
auto weights_view = make_view_1d(weights);
|
||||
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
|
||||
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
|
||||
// always read bytes
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
|
||||
apply_custom_weights(input_view, output_view, weights_view);
|
||||
return output;
|
||||
});
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
size_t image_size = self.image_size_in_bytes();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(1);
|
||||
shape.push_back(image_size);
|
||||
return py::make_tuple(header, image);
|
||||
})
|
||||
.def("seek", &CtbRawFile::seek)
|
||||
.def("tell", &CtbRawFile::tell)
|
||||
.def("master", &CtbRawFile::master)
|
||||
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
.def_property_readonly("image_size_in_bytes",
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
|
||||
// always read bytes
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
})
|
||||
.def("seek", &CtbRawFile::seek)
|
||||
.def("tell", &CtbRawFile::tell)
|
||||
.def("master", &CtbRawFile::master)
|
||||
|
||||
.def_property_readonly("image_size_in_bytes",
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
|
||||
}
|
||||
}
|
@ -20,9 +20,6 @@
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
|
||||
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
@ -217,9 +214,36 @@ void define_file_io_bindings(py::module &m) {
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
py::class_<RawSubFile>(m, "RawSubFile")
|
||||
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
|
||||
size_t, size_t>())
|
||||
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&RawSubFile::pixels_per_frame)
|
||||
.def("seek", &RawSubFile::seek)
|
||||
.def("tell", &RawSubFile::tell)
|
||||
.def_property_readonly("rows", &RawSubFile::rows)
|
||||
.def_property_readonly("cols", &RawSubFile::cols)
|
||||
.def("read_frame",
|
||||
[](RawSubFile &self) {
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
fmt::print("item_size: {} rows: {} cols: {}\n", item_size, self.rows(), self.cols());
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
});
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
// py::class_<ClusterHeader>(m, "ClusterHeader")
|
||||
|
@ -8,31 +8,54 @@
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
template <typename ClusterType>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
|
||||
const std::string &typestr) {
|
||||
auto name = fmt::format("interpolate_{}", typestr);
|
||||
|
||||
interpolator.def(name.c_str(),
|
||||
[](aare::Interpolator &self,
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
auto photons = self.interpolate<ClusterType>(clusters);
|
||||
auto *ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
}
|
||||
|
||||
void define_interpolation_bindings(py::module &m) {
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(aare::Photon, x,y,energy);
|
||||
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
|
||||
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style | py::array::forcecast> etacube, py::array_t<double> xbins,
|
||||
py::array_t<double> ybins, py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
.def("get_ietax", [](Interpolator& self){
|
||||
auto*ptr = new NDArray<double,3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("get_ietay", [](Interpolator& self){
|
||||
auto*ptr = new NDArray<double,3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("interpolate", [](Interpolator& self, const ClusterVector<int32_t>& clusters){
|
||||
auto photons = self.interpolate(clusters);
|
||||
auto* ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
auto interpolator =
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style |
|
||||
py::array::forcecast>
|
||||
etacube,
|
||||
py::array_t<double> xbins,
|
||||
py::array_t<double> ybins,
|
||||
py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
.def("get_ietax",
|
||||
[](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("get_ietay", [](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
|
||||
register_interpolate<Cluster<int, 3, 3>>(interpolator, "Cluster3x3i");
|
||||
register_interpolate<Cluster<float, 3, 3>>(interpolator, "Cluster3x3f");
|
||||
register_interpolate<Cluster<double, 3, 3>>(interpolator, "Cluster3x3d");
|
||||
register_interpolate<Cluster<int, 2, 2>>(interpolator, "Cluster2x2i");
|
||||
register_interpolate<Cluster<float, 2, 2>>(interpolator, "Cluster2x2f");
|
||||
register_interpolate<Cluster<double, 2, 2>>(interpolator, "Cluster2x2d");
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
|
@ -1,116 +0,0 @@
|
||||
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
auto read_dat_frame(JungfrauDataFile &self) {
|
||||
py::array_t<JungfrauDataHeader> header(1);
|
||||
py::array_t<uint16_t> image({
|
||||
self.rows(),
|
||||
self.cols()
|
||||
});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
|
||||
// adjust for actual frames left in the file
|
||||
n_frames = std::min(n_frames, self.total_frames() - self.tell());
|
||||
if (n_frames == 0) {
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
|
||||
py::array_t<JungfrauDataHeader> header(n_frames);
|
||||
py::array_t<uint16_t> image({
|
||||
n_frames, self.rows(),
|
||||
self.cols()});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames, header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
void define_jungfrau_data_file_io_bindings(py::module &m) {
|
||||
// Make the JungfrauDataHeader usable from numpy
|
||||
PYBIND11_NUMPY_DTYPE(JungfrauDataHeader, framenum, bunchid);
|
||||
|
||||
py::class_<JungfrauDataFile>(m, "JungfrauDataFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("seek", &JungfrauDataFile::seek,
|
||||
R"(
|
||||
Seek to the given frame index.
|
||||
)")
|
||||
.def("tell", &JungfrauDataFile::tell,
|
||||
R"(
|
||||
Get the current frame index.
|
||||
)")
|
||||
.def_property_readonly("rows", &JungfrauDataFile::rows)
|
||||
.def_property_readonly("cols", &JungfrauDataFile::cols)
|
||||
.def_property_readonly("base_name", &JungfrauDataFile::base_name)
|
||||
.def_property_readonly("bytes_per_frame",
|
||||
&JungfrauDataFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&JungfrauDataFile::pixels_per_frame)
|
||||
.def_property_readonly("bytes_per_pixel",
|
||||
&JungfrauDataFile::bytes_per_pixel)
|
||||
.def_property_readonly("bitdepth", &JungfrauDataFile::bitdepth)
|
||||
.def_property_readonly("current_file", &JungfrauDataFile::current_file)
|
||||
.def_property_readonly("total_frames", &JungfrauDataFile::total_frames)
|
||||
.def_property_readonly("n_files", &JungfrauDataFile::n_files)
|
||||
.def("read_frame", &read_dat_frame,
|
||||
R"(
|
||||
Read a single frame from the file.
|
||||
)")
|
||||
.def("read_n", &read_n_dat_frames,
|
||||
R"(
|
||||
Read maximum n_frames frames from the file.
|
||||
)")
|
||||
.def(
|
||||
"read",
|
||||
[](JungfrauDataFile &self) {
|
||||
self.seek(0);
|
||||
auto n_frames = self.total_frames();
|
||||
return read_n_dat_frames(self, n_frames);
|
||||
},
|
||||
R"(
|
||||
Read all frames from the file. Seeks to the beginning before reading.
|
||||
)")
|
||||
.def("__enter__", [](JungfrauDataFile &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](JungfrauDataFile &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](JungfrauDataFile &self) { return &self; })
|
||||
.def("__next__", [](JungfrauDataFile &self) {
|
||||
try {
|
||||
return read_dat_frame(self);
|
||||
} catch (std::runtime_error &e) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,20 +1,17 @@
|
||||
//Files with bindings to the different classes
|
||||
#include "file.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#include "ctb_raw_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "var_cluster.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "pedestal.hpp"
|
||||
// Files with bindings to the different classes
|
||||
#include "cluster.hpp"
|
||||
#include "cluster_file.hpp"
|
||||
#include "ctb_raw_file.hpp"
|
||||
#include "file.hpp"
|
||||
#include "fit.hpp"
|
||||
#include "interpolation.hpp"
|
||||
#include "raw_sub_file.hpp"
|
||||
#include "pedestal.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "var_cluster.hpp"
|
||||
|
||||
#include "jungfrau_data_file.hpp"
|
||||
|
||||
//Pybind stuff
|
||||
// Pybind stuff
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
@ -23,20 +20,61 @@ namespace py = pybind11;
|
||||
PYBIND11_MODULE(_aare, m) {
|
||||
define_file_io_bindings(m);
|
||||
define_raw_file_io_bindings(m);
|
||||
define_raw_sub_file_io_bindings(m);
|
||||
define_ctb_raw_file_io_bindings(m);
|
||||
define_raw_master_file_bindings(m);
|
||||
define_var_cluster_finder_bindings(m);
|
||||
define_pixel_map_bindings(m);
|
||||
define_pedestal_bindings<double>(m, "Pedestal_d");
|
||||
define_pedestal_bindings<float>(m, "Pedestal_f");
|
||||
define_cluster_finder_bindings(m);
|
||||
define_cluster_finder_mt_bindings(m);
|
||||
define_cluster_file_io_bindings(m);
|
||||
define_cluster_collector_bindings(m);
|
||||
define_cluster_file_sink_bindings(m);
|
||||
define_fit_bindings(m);
|
||||
define_interpolation_bindings(m);
|
||||
define_jungfrau_data_file_io_bindings(m);
|
||||
|
||||
}
|
||||
define_cluster_file_io_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_file_io_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_file_io_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_file_io_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_file_io_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
define_cluster_file_io_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
|
||||
define_cluster_vector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_vector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_vector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_vector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_vector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_cluster_vector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_finder_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_finder_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_finder_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_finder_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_finder_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
define_cluster_finder_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_finder_mt_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_finder_mt_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_finder_mt_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_finder_mt_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_finder_mt_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
define_cluster_finder_mt_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_file_sink_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_file_sink_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_file_sink_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_file_sink_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_file_sink_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
define_cluster_file_sink_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_collector_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_collector_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_collector_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_collector_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_collector_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2f");
|
||||
define_cluster_collector_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2d");
|
||||
|
||||
define_cluster<int, 3, 3, uint16_t>(m, "3x3i");
|
||||
define_cluster<float, 3, 3, uint16_t>(m, "3x3f");
|
||||
define_cluster<double, 3, 3, uint16_t>(m, "3x3d");
|
||||
define_cluster<int, 2, 2, uint16_t>(m, "2x2i");
|
||||
define_cluster<float, 2, 2, uint16_t>(m, "2x2f");
|
||||
define_cluster<double, 2, 2, uint16_t>(m, "2x2d");
|
||||
}
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "aare/NDView.hpp"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace aare;
|
||||
|
||||
// Pass image data back to python as a numpy array
|
||||
template <typename T, int64_t Ndim>
|
||||
@ -40,25 +41,46 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
|
||||
}
|
||||
|
||||
// todo rewrite generic
|
||||
template <class T, int Flags> auto get_shape_3d(const py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_3d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto get_shape_2d(const py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_2d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto get_shape_1d(const py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_1d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<1>{arr.shape(0)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
|
||||
}
|
||||
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags>& arr) {
|
||||
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType> struct fmt_format_trait; // forward declaration
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
struct fmt_format_trait<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
static std::string value() {
|
||||
return fmt::format("T{{{}:x;{}:y;{}:data;}}",
|
||||
py::format_descriptor<CoordType>::format(),
|
||||
py::format_descriptor<CoordType>::format(),
|
||||
fmt::format("{}{}", ClusterSizeX * ClusterSizeY,
|
||||
py::format_descriptor<T>::format()));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename ClusterType>
|
||||
auto fmt_format = fmt_format_trait<ClusterType>::value();
|
@ -1,110 +0,0 @@
|
||||
#include "aare/CtbRawFile.hpp"
|
||||
#include "aare/File.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
#include "aare/RawFile.hpp"
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
auto read_frame_from_RawSubFile(RawSubFile &self) {
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape{static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())};
|
||||
|
||||
py::array image;
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
|
||||
py::array_t<DetectorHeader> header(n_frames);
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape{
|
||||
static_cast<ssize_t>(n_frames),
|
||||
static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())
|
||||
};
|
||||
|
||||
py::array image;
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames,
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
void define_raw_sub_file_io_bindings(py::module &m) {
|
||||
py::class_<RawSubFile>(m, "RawSubFile")
|
||||
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
|
||||
size_t, size_t>())
|
||||
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&RawSubFile::pixels_per_frame)
|
||||
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
|
||||
.def("seek", &RawSubFile::seek)
|
||||
.def("tell", &RawSubFile::tell)
|
||||
.def_property_readonly("rows", &RawSubFile::rows)
|
||||
.def_property_readonly("cols", &RawSubFile::cols)
|
||||
.def_property_readonly("frames_in_file", &RawSubFile::frames_in_file)
|
||||
.def("read_frame", &read_frame_from_RawSubFile)
|
||||
.def("read_n", &read_n_frames_from_RawSubFile)
|
||||
.def("read", [](RawSubFile &self){
|
||||
self.seek(0);
|
||||
auto n_frames = self.frames_in_file();
|
||||
return read_n_frames_from_RawSubFile(self, n_frames);
|
||||
})
|
||||
.def("__enter__", [](RawSubFile &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](RawSubFile &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
})
|
||||
.def("__iter__", [](RawSubFile &self) { return &self; })
|
||||
.def("__next__", [](RawSubFile &self) {
|
||||
try {
|
||||
return read_frame_from_RawSubFile(self);
|
||||
} catch (std::runtime_error &e) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,29 +0,0 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import pytest
|
||||
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--files", action="store_true", default=False, help="run slow tests"
|
||||
)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "files: mark test as needing image files to run")
|
||||
|
||||
|
||||
def pytest_collection_modifyitems(config, items):
|
||||
if config.getoption("--files"):
|
||||
return
|
||||
skip = pytest.mark.skip(reason="need --files option to run")
|
||||
for item in items:
|
||||
if "files" in item.keywords:
|
||||
item.add_marker(skip)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_data_path():
|
||||
return Path(os.environ["AARE_TEST_DATA"])
|
||||
|
64
python/tests/test_Cluster.py
Normal file
64
python/tests/test_Cluster.py
Normal file
@ -0,0 +1,64 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from _aare import ClusterVector_Cluster3x3i, Interpolator, Cluster3x3i, ClusterFinder_Cluster3x3i
|
||||
|
||||
def test_ClusterVector():
|
||||
"""Test ClusterVector"""
|
||||
|
||||
clustervector = ClusterVector_Cluster3x3i()
|
||||
assert clustervector.cluster_size_x == 3
|
||||
assert clustervector.cluster_size_y == 3
|
||||
assert clustervector.item_size() == 4+9*4
|
||||
assert clustervector.frame_number == 0
|
||||
assert clustervector.capacity == 1024
|
||||
assert clustervector.size == 0
|
||||
|
||||
cluster = Cluster3x3i(0,0,np.ones(9, dtype=np.int32))
|
||||
|
||||
clustervector.push_back(cluster)
|
||||
assert clustervector.size == 1
|
||||
|
||||
#push_back - check size
|
||||
|
||||
|
||||
|
||||
def test_Interpolator():
|
||||
"""Test Interpolator"""
|
||||
|
||||
ebins = np.linspace(0,10, 20, dtype=np.float64)
|
||||
xbins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
ybins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
|
||||
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
|
||||
interpolator = Interpolator(etacube, xbins, ybins, ebins)
|
||||
|
||||
assert interpolator.get_ietax().shape == (30,30,20)
|
||||
assert interpolator.get_ietay().shape == (30,30,20)
|
||||
clustervector = ClusterVector_Cluster3x3i()
|
||||
|
||||
cluster = Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
|
||||
#clustervector.push_back(cluster)
|
||||
#num_clusters = 1;
|
||||
|
||||
#assert interpolator.interpolate_Cluster3x3i(clustervector).shape == (num_clusters, 3)
|
||||
|
||||
|
||||
#def test_cluster_file():
|
||||
|
||||
#def test_cluster_finder():
|
||||
#"""Test ClusterFinder"""
|
||||
|
||||
#clusterfinder = ClusterFinder_Cluster3x3i([100,100])
|
||||
|
||||
#clusterfinder.find_clusters()
|
||||
|
||||
#clusters = clusterfinder.steal_clusters()
|
||||
|
||||
#print("cluster size: ", clusters.size())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,36 +0,0 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from aare import RawSubFile, DetectorType
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_a_jungfrau_RawSubFile(test_data_path):
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
assert f.frames_in_file == 3
|
||||
|
||||
headers, frames = f.read()
|
||||
|
||||
assert headers.size == 3
|
||||
assert frames.shape == (3, 512, 1024)
|
||||
|
||||
# Frame numbers in this file should be 4, 5, 6
|
||||
for i,h in zip(range(4,7,1), headers):
|
||||
assert h["frameNumber"] == i
|
||||
|
||||
# Compare to canned data using numpy
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
assert np.all(data[3:6] == frames)
|
||||
|
||||
@pytest.mark.files
|
||||
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
i = 0
|
||||
for header, frame in f:
|
||||
assert header["frameNumber"] == i+1
|
||||
assert np.all(frame == data[i])
|
||||
i += 1
|
||||
assert i == 3
|
||||
assert header["frameNumber"] == 3
|
@ -1,92 +0,0 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from aare import JungfrauDataFile
|
||||
|
||||
@pytest.mark.files
|
||||
def test_jfungfrau_dat_read_number_of_frames(test_data_path):
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
|
||||
assert dat_file.total_frames == 24
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
|
||||
assert dat_file.total_frames == 53
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
|
||||
assert dat_file.total_frames == 113
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_jfungfrau_dat_read_number_of_file(test_data_path):
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
|
||||
assert dat_file.n_files == 4
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
|
||||
assert dat_file.n_files == 7
|
||||
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
|
||||
assert dat_file.n_files == 7
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_module(test_data_path):
|
||||
"""
|
||||
Read all frames from the series of .dat files. Compare to canned data in npz format.
|
||||
"""
|
||||
|
||||
# Read all frames from the .dat file
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as f:
|
||||
header, data = f.read()
|
||||
|
||||
#Sanity check
|
||||
n_frames = 24
|
||||
assert header.size == n_frames
|
||||
assert data.shape == (n_frames, 512, 1024)
|
||||
|
||||
# Read reference data using numpy
|
||||
with np.load(test_data_path / "dat/AldoJF500k.npz") as f:
|
||||
ref_header = f["headers"]
|
||||
ref_data = f["frames"]
|
||||
|
||||
# Check that the data is the same
|
||||
assert np.all(ref_header == header)
|
||||
assert np.all(ref_data == data)
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_half_module(test_data_path):
|
||||
|
||||
# Read all frames from the .dat file
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as f:
|
||||
header, data = f.read()
|
||||
|
||||
n_frames = 53
|
||||
assert header.size == n_frames
|
||||
assert data.shape == (n_frames, 256, 1024)
|
||||
|
||||
# Read reference data using numpy
|
||||
with np.load(test_data_path / "dat/AldoJF250k.npz") as f:
|
||||
ref_header = f["headers"]
|
||||
ref_data = f["frames"]
|
||||
|
||||
# Check that the data is the same
|
||||
assert np.all(ref_header == header)
|
||||
assert np.all(ref_data == data)
|
||||
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_single_chip(test_data_path):
|
||||
|
||||
# Read all frames from the .dat file
|
||||
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as f:
|
||||
header, data = f.read()
|
||||
|
||||
n_frames = 113
|
||||
assert header.size == n_frames
|
||||
assert data.shape == (n_frames, 256, 256)
|
||||
|
||||
# Read reference data using numpy
|
||||
with np.load(test_data_path / "dat/AldoJF65k.npz") as f:
|
||||
ref_header = f["headers"]
|
||||
ref_data = f["frames"]
|
||||
|
||||
# Check that the data is the same
|
||||
assert np.all(ref_header == header)
|
||||
assert np.all(ref_data == data)
|
62
src/CalculateEta.test.cpp
Normal file
62
src/CalculateEta.test.cpp
Normal file
@ -0,0 +1,62 @@
|
||||
/************************************************
|
||||
* @file CalculateEta.test.cpp
|
||||
* @short test case to calculate_eta2
|
||||
***********************************************/
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
// #include "catch.hpp"
|
||||
#include <array>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
using ClusterTypes =
|
||||
std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>, Cluster<int, 5, 5>,
|
||||
Cluster<int, 4, 2>, Cluster<int, 2, 3>>;
|
||||
|
||||
auto get_test_parameters() {
|
||||
return GENERATE(
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
|
||||
Eta2<int>{2. / 3, 3. / 4, corner::cBottomLeft, 7}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
|
||||
Eta2<int>{6. / 11, 2. / 7, corner::cTopRight, 20}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 8, 8, 9, 2,
|
||||
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
|
||||
Eta2<int>{9. / 17, 5. / 13, 8, 28}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
|
||||
Eta2<int>{7. / 11, 6. / 10, 1, 21}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
|
||||
Eta2<int>{3. / 5, 4. / 6, 1, 11}));
|
||||
}
|
||||
|
||||
TEST_CASE("compute_largest_2x2_subcluster", "[.eta_calculation]") {
|
||||
auto [cluster, expected_eta] = get_test_parameters();
|
||||
|
||||
auto [sum, index] = std::visit(
|
||||
[](const auto &clustertype) { return clustertype.max_sum_2x2(); },
|
||||
cluster);
|
||||
CHECK(expected_eta.c == index);
|
||||
CHECK(expected_eta.sum == sum);
|
||||
}
|
||||
|
||||
TEST_CASE("calculate_eta2", "[.eta_calculation]") {
|
||||
|
||||
auto [cluster, expected_eta] = get_test_parameters();
|
||||
|
||||
auto eta = std::visit(
|
||||
[](const auto &clustertype) { return calculate_eta2(clustertype); },
|
||||
cluster);
|
||||
|
||||
CHECK(eta.x == expected_eta.x);
|
||||
CHECK(eta.y == expected_eta.y);
|
||||
CHECK(eta.c == expected_eta.c);
|
||||
CHECK(eta.sum == expected_eta.sum);
|
||||
}
|
28
src/Cluster.test.cpp
Normal file
28
src/Cluster.test.cpp
Normal file
@ -0,0 +1,28 @@
|
||||
/************************************************
|
||||
* @file test-Cluster.cpp
|
||||
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
|
||||
***********************************************/
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
// #include "catch.hpp"
|
||||
#include <array>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("Correct Instantiation of Cluster and ClusterVector",
|
||||
"[.cluster][.instantiation]") {
|
||||
|
||||
CHECK(is_valid_cluster<double, 3, 3>);
|
||||
CHECK(is_valid_cluster<double, 3, 2>);
|
||||
CHECK(not is_valid_cluster<int, 0, 0>);
|
||||
CHECK(not is_valid_cluster<std::string, 2, 2>);
|
||||
CHECK(not is_valid_cluster<int, 2, 2, double>);
|
||||
|
||||
CHECK(not is_cluster_v<int>);
|
||||
CHECK(is_cluster_v<Cluster<int, 3, 3>>);
|
||||
}
|
@ -1,402 +0,0 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace aare {
|
||||
|
||||
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
|
||||
const std::string &mode)
|
||||
: m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(fname.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(fname.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(fname.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
fname.string());
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
void ClusterFile::set_roi(ROI roi){
|
||||
m_roi = roi;
|
||||
}
|
||||
|
||||
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
|
||||
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||
}
|
||||
|
||||
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
|
||||
m_gain_map = NDArray<double, 2>(gain_map);
|
||||
|
||||
// Gain map is passed as ADU/keV to avoid dividing in when applying the gain
|
||||
// map we invert it here
|
||||
for (auto &item : m_gain_map->view()) {
|
||||
item = 1.0 / item;
|
||||
}
|
||||
}
|
||||
|
||||
ClusterFile::~ClusterFile() { close(); }
|
||||
|
||||
void ClusterFile::close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
|
||||
if (m_mode != "w" && m_mode != "a") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
if (!(clusters.cluster_size_x() == 3) &&
|
||||
!(clusters.cluster_size_y() == 3)) {
|
||||
throw std::runtime_error("Only 3x3 clusters are supported");
|
||||
}
|
||||
//First write the frame number - 4 bytes
|
||||
int32_t frame_number = clusters.frame_number();
|
||||
if(fwrite(&frame_number, sizeof(frame_number), 1, fp)!=1){
|
||||
throw std::runtime_error(LOCATION + "Could not write frame number");
|
||||
}
|
||||
|
||||
//Then write the number of clusters - 4 bytes
|
||||
uint32_t n_clusters = clusters.size();
|
||||
if(fwrite(&n_clusters, sizeof(n_clusters), 1, fp)!=1){
|
||||
throw std::runtime_error(LOCATION + "Could not write number of clusters");
|
||||
}
|
||||
|
||||
//Now write the clusters in the frame
|
||||
if(fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp)!=clusters.size()){
|
||||
throw std::runtime_error(LOCATION + "Could not write clusters");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi){
|
||||
return read_clusters_with_cut(n_clusters);
|
||||
}else{
|
||||
return read_clusters_without_cut(n_clusters);
|
||||
}
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> clusters(3,3, n_clusters);
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
|
||||
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
|
||||
auto buf = clusters.data();
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to read we
|
||||
// read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread((buf + nph_read*clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
clusters.set_frame_number(iframe);
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read += fread((buf + nph_read*clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the vector to the number of clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
if(m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
return clusters;
|
||||
}
|
||||
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
|
||||
ClusterVector<int32_t> clusters(3,3);
|
||||
clusters.reserve(n_clusters);
|
||||
|
||||
// if there are photons left from previous frame read them first
|
||||
if (m_num_left) {
|
||||
while(m_num_left && clusters.size() < n_clusters){
|
||||
Cluster3x3 c = read_one_cluster();
|
||||
if(is_selected(c)){
|
||||
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we did not have enough clusters left in the previous frame
|
||||
// keep on reading frames until reaching n_clusters
|
||||
if (clusters.size() < n_clusters) {
|
||||
// sanity check
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
|
||||
}
|
||||
|
||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
|
||||
while(m_num_left && clusters.size() < n_clusters){
|
||||
Cluster3x3 c = read_one_cluster();
|
||||
if(is_selected(c)){
|
||||
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we have enough clusters, break out of the outer while loop
|
||||
if (clusters.size() >= n_clusters)
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
if(m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
Cluster3x3 ClusterFile::read_one_cluster(){
|
||||
Cluster3x3 c;
|
||||
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||
}
|
||||
--m_num_left;
|
||||
return c;
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_frame(){
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error(LOCATION + "File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi){
|
||||
return read_frame_with_cut();
|
||||
}else{
|
||||
return read_frame_without_cut();
|
||||
}
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> clusters(3, 3, n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read clusters");
|
||||
}
|
||||
clusters.resize(n_clusters);
|
||||
if (m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
return clusters;
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> clusters(3, 3);
|
||||
clusters.reserve(m_num_left);
|
||||
clusters.set_frame_number(frame_number);
|
||||
while(m_num_left){
|
||||
Cluster3x3 c = read_one_cluster();
|
||||
if(is_selected(c)){
|
||||
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
return clusters;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool ClusterFile::is_selected(Cluster3x3 &cl) {
|
||||
//Should fail fast
|
||||
if (m_roi) {
|
||||
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (m_noise_map){
|
||||
int32_t sum_1x1 = cl.data[4]; // central pixel
|
||||
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
|
||||
int32_t sum_3x3 = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
|
||||
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
//we passed all checks
|
||||
return true;
|
||||
}
|
||||
|
||||
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
|
||||
//TOTO! make work with 2x2 clusters
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
}else{
|
||||
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2 struct
|
||||
* containing etay, etax and the corner of the cluster.
|
||||
*/
|
||||
Eta2 calculate_eta2(Cluster3x3 &cl) {
|
||||
Eta2 eta{};
|
||||
|
||||
std::array<int32_t, 4> tot2;
|
||||
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
|
||||
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
|
||||
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
|
||||
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
|
||||
|
||||
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
|
||||
eta.sum = tot2[c];
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if ((cl.data[3] + cl.data[4]) != 0)
|
||||
eta.x =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
|
||||
if ((cl.data[1] + cl.data[4]) != 0)
|
||||
eta.y =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
|
||||
eta.c = cBottomLeft;
|
||||
break;
|
||||
case cBottomRight:
|
||||
if ((cl.data[2] + cl.data[5]) != 0)
|
||||
eta.x =
|
||||
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
|
||||
if ((cl.data[1] + cl.data[4]) != 0)
|
||||
eta.y =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
|
||||
eta.c = cBottomRight;
|
||||
break;
|
||||
case cTopLeft:
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta.x =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta.y =
|
||||
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
|
||||
eta.c = cTopLeft;
|
||||
break;
|
||||
case cTopRight:
|
||||
if ((cl.data[5] + cl.data[4]) != 0)
|
||||
eta.x =
|
||||
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta.y =
|
||||
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
|
||||
eta.c = cTopRight;
|
||||
break;
|
||||
// no default to allow compiler to warn about missing cases
|
||||
}
|
||||
return eta;
|
||||
}
|
||||
|
||||
|
||||
Eta2 calculate_eta2(Cluster2x2 &cl) {
|
||||
Eta2 eta{};
|
||||
if ((cl.data[0] + cl.data[1]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
|
||||
if ((cl.data[0] + cl.data[2]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
|
||||
eta.sum = cl.data[0] + cl.data[1] + cl.data[2]+ cl.data[3];
|
||||
eta.c = cBottomLeft; //TODO! This is not correct, but need to put something
|
||||
return eta;
|
||||
}
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,35 +1,32 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "test_config.hpp"
|
||||
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <filesystem>
|
||||
|
||||
|
||||
|
||||
|
||||
using aare::Cluster;
|
||||
using aare::ClusterFile;
|
||||
|
||||
|
||||
TEST_CASE("Read one frame from a a cluster file", "[.files]") {
|
||||
//We know that the frame has 97 clusters
|
||||
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
|
||||
TEST_CASE("Read one frame from a a cluster file", "[.integration]") {
|
||||
// We know that the frame has 97 clusters
|
||||
auto fpath =
|
||||
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
ClusterFile f(fpath);
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
auto clusters = f.read_frame();
|
||||
REQUIRE(clusters.size() == 97);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Read one frame using ROI", "[.files]") {
|
||||
//We know that the frame has 97 clusters
|
||||
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
|
||||
TEST_CASE("Read one frame using ROI", "[.integration]") {
|
||||
// We know that the frame has 97 clusters
|
||||
auto fpath =
|
||||
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
ClusterFile f(fpath);
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
aare::ROI roi;
|
||||
roi.xmin = 0;
|
||||
roi.xmax = 50;
|
||||
@ -40,45 +37,39 @@ TEST_CASE("Read one frame using ROI", "[.files]") {
|
||||
REQUIRE(clusters.size() == 49);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
|
||||
//Check that all clusters are within the ROI
|
||||
// Check that all clusters are within the ROI
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto c = clusters.at<aare::Cluster3x3>(i);
|
||||
auto c = clusters.at(i);
|
||||
REQUIRE(c.x >= roi.xmin);
|
||||
REQUIRE(c.x <= roi.xmax);
|
||||
REQUIRE(c.y >= roi.ymin);
|
||||
REQUIRE(c.y <= roi.ymax);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST_CASE("Read clusters from single frame file", "[.integration]") {
|
||||
|
||||
|
||||
TEST_CASE("Read clusters from single frame file", "[.files]") {
|
||||
|
||||
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
|
||||
|
||||
auto fpath =
|
||||
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
SECTION("Read fewer clusters than available") {
|
||||
ClusterFile f(fpath);
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
auto clusters = f.read_clusters(50);
|
||||
REQUIRE(clusters.size() == 50);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
SECTION("Read more clusters than available") {
|
||||
ClusterFile f(fpath);
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
// 100 is the maximum number of clusters read
|
||||
auto clusters = f.read_clusters(100);
|
||||
REQUIRE(clusters.size() == 97);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
SECTION("Read all clusters") {
|
||||
ClusterFile f(fpath);
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
auto clusters = f.read_clusters(97);
|
||||
REQUIRE(clusters.size() == 97);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
@ -1,19 +1,18 @@
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <chrono>
|
||||
#include <random>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
//TODO! Find a way to test the cluster finder
|
||||
|
||||
|
||||
// TODO! Find a way to test the cluster finder
|
||||
|
||||
// class ClusterFinderUnitTest : public ClusterFinder {
|
||||
// public:
|
||||
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
|
||||
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
|
||||
// = 5.0, double threshold = 0.0)
|
||||
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
|
||||
// double get_c2() { return c2; }
|
||||
// double get_c3() { return c3; }
|
||||
@ -37,8 +36,8 @@ using namespace aare;
|
||||
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
|
||||
// }
|
||||
|
||||
TEST_CASE("Construct a cluster finder"){
|
||||
ClusterFinder clusterFinder({400,400}, {3,3});
|
||||
TEST_CASE("Construct a cluster finder") {
|
||||
ClusterFinder clusterFinder({400, 400});
|
||||
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
|
||||
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
|
||||
// REQUIRE(clusterFinder.get_threshold() == 1);
|
||||
@ -49,16 +48,17 @@ TEST_CASE("Construct a cluster finder"){
|
||||
// aare::Pedestal pedestal(10, 10, 5);
|
||||
// NDArray<double, 2> frame({10, 10});
|
||||
// frame = 0;
|
||||
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
|
||||
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
|
||||
// threshold
|
||||
|
||||
// auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
||||
// auto clusters =
|
||||
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
||||
|
||||
// REQUIRE(clusters.size() == 0);
|
||||
|
||||
// frame(5, 5) = 10;
|
||||
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
||||
// REQUIRE(clusters.size() == 1);
|
||||
// REQUIRE(clusters[0].x == 5);
|
||||
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
|
||||
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
|
||||
// REQUIRE(clusters[0].y == 5);
|
||||
// for (int i = 0; i < 3; i++) {
|
||||
// for (int j = 0; j < 3; j++) {
|
||||
|
@ -1,21 +1,17 @@
|
||||
#include <cstdint>
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include <cstdint>
|
||||
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
using aare::Cluster;
|
||||
using aare::ClusterVector;
|
||||
|
||||
struct Cluster_i2x2 {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[4];
|
||||
};
|
||||
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read",
|
||||
"[.ClusterVector]") {
|
||||
|
||||
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
|
||||
|
||||
|
||||
ClusterVector<int32_t> cv(2, 2, 4);
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv(4);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 2);
|
||||
@ -23,112 +19,102 @@ TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
|
||||
// int16_t, int16_t, 2x2 int32_t = 20 bytes
|
||||
REQUIRE(cv.item_size() == 20);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
// Create a cluster and push back into the vector
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.size() == 1);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
|
||||
//Read the cluster back out using copy. TODO! Can we improve the API?
|
||||
Cluster_i2x2 c2;
|
||||
std::byte *ptr = cv.element_ptr(0);
|
||||
std::copy(ptr, ptr + cv.item_size(), reinterpret_cast<std::byte*>(&c2));
|
||||
auto c2 = cv.at(0);
|
||||
|
||||
//Check that the data is the same
|
||||
// Check that the data is the same
|
||||
REQUIRE(c1.x == c2.x);
|
||||
REQUIRE(c1.y == c2.y);
|
||||
for(size_t i = 0; i < 4; i++) {
|
||||
for (size_t i = 0; i < 4; i++) {
|
||||
REQUIRE(c1.data[i] == c2.data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Summing 3x1 clusters of int64"){
|
||||
struct Cluster_l3x1{
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[3];
|
||||
};
|
||||
|
||||
ClusterVector<int32_t> cv(3, 1, 2);
|
||||
TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
|
||||
ClusterVector<Cluster<int32_t, 3, 1>> cv(2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 3);
|
||||
REQUIRE(cv.cluster_size_y() == 1);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_l3x1 c1 = {1, 2, {3, 4, 5}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
// Create a cluster and push back into the vector
|
||||
Cluster<int32_t, 3, 1> c1 = {1, 2, {3, 4, 5}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 1);
|
||||
|
||||
Cluster_l3x1 c2 = {6, 7, {8, 9, 10}};
|
||||
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
Cluster<int32_t, 3, 1> c2 = {6, 7, {8, 9, 10}};
|
||||
cv.push_back(c2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 2);
|
||||
|
||||
Cluster_l3x1 c3 = {11, 12, {13, 14, 15}};
|
||||
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
|
||||
Cluster<int32_t, 3, 1> c3 = {11, 12, {13, 14, 15}};
|
||||
cv.push_back(c3);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
REQUIRE(cv.size() == 3);
|
||||
|
||||
/*
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 3);
|
||||
REQUIRE(sums[0] == 12);
|
||||
REQUIRE(sums[1] == 27);
|
||||
REQUIRE(sums[2] == 42);
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("Storing floats"){
|
||||
struct Cluster_f4x2{
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
float data[8];
|
||||
};
|
||||
|
||||
ClusterVector<float> cv(2, 4, 10);
|
||||
TEST_CASE("Storing floats", "[.ClusterVector]") {
|
||||
ClusterVector<Cluster<float, 2, 4>> cv(10);
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 2);
|
||||
REQUIRE(cv.cluster_size_y() == 4);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
// Create a cluster and push back into the vector
|
||||
Cluster<float, 2, 4> c1 = {1, 2, {3.0, 4.0, 5.0, 6.0, 3.0, 4.0, 5.0, 6.0}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 1);
|
||||
|
||||
|
||||
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
|
||||
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
Cluster<float, 2, 4> c2 = {
|
||||
6, 7, {8.0, 9.0, 10.0, 11.0, 8.0, 9.0, 10.0, 11.0}};
|
||||
cv.push_back(c2);
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 2);
|
||||
|
||||
/*
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 2);
|
||||
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
|
||||
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("Push back more than initial capacity"){
|
||||
|
||||
ClusterVector<int32_t> cv(2, 2, 2);
|
||||
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
|
||||
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv(2);
|
||||
auto initial_data = cv.data();
|
||||
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.size() == 1);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
|
||||
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv.push_back(c2);
|
||||
REQUIRE(cv.size() == 2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
|
||||
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
|
||||
REQUIRE(cv.size() == 3);
|
||||
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv.push_back(c3);
|
||||
REQUIRE(cv.size() == 3);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
|
||||
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv.data());
|
||||
Cluster<int32_t, 2, 2> *ptr =
|
||||
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv.data());
|
||||
REQUIRE(ptr[0].x == 1);
|
||||
REQUIRE(ptr[0].y == 2);
|
||||
REQUIRE(ptr[1].x == 6);
|
||||
@ -136,29 +122,31 @@ TEST_CASE("Push back more than initial capacity"){
|
||||
REQUIRE(ptr[2].x == 11);
|
||||
REQUIRE(ptr[2].y == 12);
|
||||
|
||||
//We should have allocated a new buffer, since we outgrew the initial capacity
|
||||
// We should have allocated a new buffer, since we outgrew the initial
|
||||
// capacity
|
||||
REQUIRE(initial_data != cv.data());
|
||||
|
||||
}
|
||||
|
||||
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity"){
|
||||
ClusterVector<int32_t> cv1(2, 2, 12);
|
||||
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity",
|
||||
"[.ClusterVector]") {
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv1(12);
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv1.push_back(c1);
|
||||
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv1.push_back(c2);
|
||||
|
||||
ClusterVector<int32_t> cv2(2, 2, 2);
|
||||
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
|
||||
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
|
||||
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
|
||||
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv2.push_back(c3);
|
||||
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
|
||||
cv2.push_back(c4);
|
||||
|
||||
cv1 += cv2;
|
||||
REQUIRE(cv1.size() == 4);
|
||||
REQUIRE(cv1.capacity() == 12);
|
||||
|
||||
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
|
||||
Cluster<int32_t, 2, 2> *ptr =
|
||||
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
|
||||
REQUIRE(ptr[0].x == 1);
|
||||
REQUIRE(ptr[0].y == 2);
|
||||
REQUIRE(ptr[1].x == 6);
|
||||
@ -169,24 +157,26 @@ TEST_CASE("Concatenate two cluster vectors where the first has enough capacity")
|
||||
REQUIRE(ptr[3].y == 17);
|
||||
}
|
||||
|
||||
TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
|
||||
ClusterVector<int32_t> cv1(2, 2, 2);
|
||||
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
TEST_CASE("Concatenate two cluster vectors where we need to allocate",
|
||||
"[.ClusterVector]") {
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv1(2);
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv1.push_back(c1);
|
||||
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv1.push_back(c2);
|
||||
|
||||
ClusterVector<int32_t> cv2(2, 2, 2);
|
||||
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
|
||||
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
|
||||
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
|
||||
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv2.push_back(c3);
|
||||
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
|
||||
cv2.push_back(c4);
|
||||
|
||||
cv1 += cv2;
|
||||
REQUIRE(cv1.size() == 4);
|
||||
REQUIRE(cv1.capacity() == 4);
|
||||
|
||||
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
|
||||
Cluster<int32_t, 2, 2> *ptr =
|
||||
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
|
||||
REQUIRE(ptr[0].x == 1);
|
||||
REQUIRE(ptr[0].y == 2);
|
||||
REQUIRE(ptr[1].x == 6);
|
||||
@ -195,4 +185,49 @@ TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
|
||||
REQUIRE(ptr[2].y == 12);
|
||||
REQUIRE(ptr[3].x == 16);
|
||||
REQUIRE(ptr[3].y == 17);
|
||||
}
|
||||
|
||||
struct ClusterTestData {
|
||||
uint8_t ClusterSizeX;
|
||||
uint8_t ClusterSizeY;
|
||||
std::vector<int64_t> index_map_x;
|
||||
std::vector<int64_t> index_map_y;
|
||||
};
|
||||
|
||||
TEST_CASE("Gain Map Calculation Index Map", "[.ClusterVector][.gain_map]") {
|
||||
|
||||
auto clustertestdata = GENERATE(
|
||||
ClusterTestData{3,
|
||||
3,
|
||||
{-1, 0, 1, -1, 0, 1, -1, 0, 1},
|
||||
{-1, -1, -1, 0, 0, 0, 1, 1, 1}},
|
||||
ClusterTestData{
|
||||
4,
|
||||
4,
|
||||
{-2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1},
|
||||
{-2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1}},
|
||||
ClusterTestData{2, 2, {-1, 0, -1, 0}, {-1, -1, 0, 0}},
|
||||
ClusterTestData{5,
|
||||
5,
|
||||
{-2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0,
|
||||
1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2},
|
||||
{-2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0,
|
||||
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}});
|
||||
|
||||
uint8_t ClusterSizeX = clustertestdata.ClusterSizeX;
|
||||
uint8_t ClusterSizeY = clustertestdata.ClusterSizeY;
|
||||
|
||||
std::vector<int64_t> index_map_x(ClusterSizeX * ClusterSizeY);
|
||||
std::vector<int64_t> index_map_y(ClusterSizeX * ClusterSizeY);
|
||||
|
||||
int64_t index_cluster_center_x = ClusterSizeX / 2;
|
||||
int64_t index_cluster_center_y = ClusterSizeY / 2;
|
||||
|
||||
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
|
||||
index_map_x[j] = j % ClusterSizeX - index_cluster_center_x;
|
||||
index_map_y[j] = j / ClusterSizeX - index_cluster_center_y;
|
||||
}
|
||||
|
||||
CHECK(index_map_x == clustertestdata.index_map_x);
|
||||
CHECK(index_map_y == clustertestdata.index_map_y);
|
||||
}
|
@ -1,5 +1,4 @@
|
||||
#include "aare/File.hpp"
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
#include "aare/NumpyFile.hpp"
|
||||
#include "aare/RawFile.hpp"
|
||||
|
||||
@ -28,8 +27,6 @@ File::File(const std::filesystem::path &fname, const std::string &mode,
|
||||
else if (fname.extension() == ".npy") {
|
||||
// file_impl = new NumpyFile(fname, mode, cfg);
|
||||
file_impl = std::make_unique<NumpyFile>(fname, mode, cfg);
|
||||
}else if(fname.extension() == ".dat"){
|
||||
file_impl = std::make_unique<JungfrauDataFile>(fname);
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported file type");
|
||||
}
|
||||
|
@ -1,44 +0,0 @@
|
||||
|
||||
#include "aare/FilePtr.hpp"
|
||||
#include <fmt/format.h>
|
||||
#include <stdexcept>
|
||||
#include <utility>
|
||||
|
||||
namespace aare {
|
||||
|
||||
FilePtr::FilePtr(const std::filesystem::path& fname, const std::string& mode = "rb") {
|
||||
fp_ = fopen(fname.c_str(), mode.c_str());
|
||||
if (!fp_)
|
||||
throw std::runtime_error(fmt::format("Could not open: {}", fname.c_str()));
|
||||
}
|
||||
|
||||
FilePtr::FilePtr(FilePtr &&other) { std::swap(fp_, other.fp_); }
|
||||
|
||||
FilePtr &FilePtr::operator=(FilePtr &&other) {
|
||||
std::swap(fp_, other.fp_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
FILE *FilePtr::get() { return fp_; }
|
||||
|
||||
int64_t FilePtr::tell() {
|
||||
auto pos = ftell(fp_);
|
||||
if (pos == -1)
|
||||
throw std::runtime_error(fmt::format("Error getting file position: {}", error_msg()));
|
||||
return pos;
|
||||
}
|
||||
FilePtr::~FilePtr() {
|
||||
if (fp_)
|
||||
fclose(fp_); // check?
|
||||
}
|
||||
|
||||
std::string FilePtr::error_msg(){
|
||||
if (feof(fp_)) {
|
||||
return "End of file reached";
|
||||
}
|
||||
if (ferror(fp_)) {
|
||||
return fmt::format("Error reading file: {}", std::strerror(errno));
|
||||
}
|
||||
return "";
|
||||
}
|
||||
} // namespace aare
|
@ -18,7 +18,7 @@ double gaus(const double x, const double *par) {
|
||||
|
||||
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
NDArray<double, 1> y({x.shape(0)}, 0);
|
||||
for (ssize_t i = 0; i < x.size(); i++) {
|
||||
for (size_t i = 0; i < x.size(); i++) {
|
||||
y(i) = gaus(x(i), par.data());
|
||||
}
|
||||
return y;
|
||||
@ -28,7 +28,7 @@ double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
|
||||
|
||||
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
NDArray<double, 1> y({x.shape()}, 0);
|
||||
for (ssize_t i = 0; i < x.size(); i++) {
|
||||
for (size_t i = 0; i < x.size(); i++) {
|
||||
y(i) = pol1(x(i), par.data());
|
||||
}
|
||||
return y;
|
||||
@ -153,7 +153,7 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
for (size_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
@ -205,7 +205,7 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
for (size_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
@ -1,11 +1,11 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins)
|
||||
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins) {
|
||||
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
|
||||
m_energy_bins(ebins) {
|
||||
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
|
||||
etacube.shape(2) != ebins.size()) {
|
||||
throw std::invalid_argument(
|
||||
@ -53,87 +53,4 @@ Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Photon> Interpolator::interpolate(const ClusterVector<int32_t>& clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i<clusters.size(); i++){
|
||||
|
||||
auto cluster = clusters.at<Cluster3x3>(i);
|
||||
Eta2 eta= calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
|
||||
//Finding the index of the last element that is smaller
|
||||
//should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
double dX{}, dY{};
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (eta.c) {
|
||||
case cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0.;
|
||||
break;
|
||||
case cTopRight:;
|
||||
dX = 0.;
|
||||
dY = 0.;
|
||||
break;
|
||||
case cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie)*2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie)*2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
|
||||
for (size_t i = 0; i<clusters.size(); i++){
|
||||
auto cluster = clusters.at<Cluster2x2>(i);
|
||||
Eta2 eta= calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
//Now do some actual interpolation.
|
||||
//Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
//Finding the index of the last element that is smaller
|
||||
//should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie)*2; //eta goes between 0 and 1 but we could move the hit anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie)*2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
}else{
|
||||
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,238 +0,0 @@
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
#include "aare/algorithm.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <cerrno>
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace aare {
|
||||
|
||||
JungfrauDataFile::JungfrauDataFile(const std::filesystem::path &fname) {
|
||||
|
||||
if (!std::filesystem::exists(fname)) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"File does not exist: " + fname.string());
|
||||
}
|
||||
find_frame_size(fname);
|
||||
parse_fname(fname);
|
||||
scan_files();
|
||||
open_file(m_current_file_index);
|
||||
}
|
||||
|
||||
|
||||
// FileInterface
|
||||
|
||||
Frame JungfrauDataFile::read_frame(){
|
||||
Frame f(rows(), cols(), Dtype::UINT16);
|
||||
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
|
||||
return f;
|
||||
}
|
||||
|
||||
Frame JungfrauDataFile::read_frame(size_t frame_number){
|
||||
seek(frame_number);
|
||||
Frame f(rows(), cols(), Dtype::UINT16);
|
||||
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
|
||||
return f;
|
||||
}
|
||||
|
||||
std::vector<Frame> JungfrauDataFile::read_n(size_t n_frames) {
|
||||
std::vector<Frame> frames;
|
||||
for(size_t i = 0; i < n_frames; ++i){
|
||||
frames.push_back(read_frame());
|
||||
}
|
||||
return frames;
|
||||
}
|
||||
|
||||
void JungfrauDataFile::read_into(std::byte *image_buf) {
|
||||
read_into(image_buf, nullptr);
|
||||
}
|
||||
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames) {
|
||||
read_into(image_buf, n_frames, nullptr);
|
||||
}
|
||||
|
||||
size_t JungfrauDataFile::frame_number(size_t frame_index) {
|
||||
seek(frame_index);
|
||||
return read_header().framenum;
|
||||
}
|
||||
|
||||
std::array<ssize_t, 2> JungfrauDataFile::shape() const {
|
||||
return {static_cast<ssize_t>(rows()), static_cast<ssize_t>(cols())};
|
||||
}
|
||||
|
||||
DetectorType JungfrauDataFile::detector_type() const { return DetectorType::Jungfrau; }
|
||||
|
||||
std::string JungfrauDataFile::base_name() const { return m_base_name; }
|
||||
|
||||
size_t JungfrauDataFile::bytes_per_frame() { return m_bytes_per_frame; }
|
||||
|
||||
size_t JungfrauDataFile::pixels_per_frame() { return m_rows * m_cols; }
|
||||
|
||||
size_t JungfrauDataFile::bytes_per_pixel() const { return sizeof(pixel_type); }
|
||||
|
||||
size_t JungfrauDataFile::bitdepth() const {
|
||||
return bytes_per_pixel() * bits_per_byte;
|
||||
}
|
||||
|
||||
void JungfrauDataFile::seek(size_t frame_index) {
|
||||
if (frame_index >= m_total_frames) {
|
||||
throw std::runtime_error(LOCATION + "Frame index out of range: " +
|
||||
std::to_string(frame_index));
|
||||
}
|
||||
m_current_frame_index = frame_index;
|
||||
auto file_index = first_larger(m_last_frame_in_file, frame_index);
|
||||
|
||||
if (file_index != m_current_file_index)
|
||||
open_file(file_index);
|
||||
|
||||
auto frame_offset = (file_index)
|
||||
? frame_index - m_last_frame_in_file[file_index - 1]
|
||||
: frame_index;
|
||||
auto byte_offset = frame_offset * (m_bytes_per_frame + header_size);
|
||||
m_fp.seek(byte_offset);
|
||||
};
|
||||
|
||||
size_t JungfrauDataFile::tell() { return m_current_frame_index; }
|
||||
size_t JungfrauDataFile::total_frames() const { return m_total_frames; }
|
||||
size_t JungfrauDataFile::rows() const { return m_rows; }
|
||||
size_t JungfrauDataFile::cols() const { return m_cols; }
|
||||
|
||||
size_t JungfrauDataFile::n_files() const { return m_last_frame_in_file.size(); }
|
||||
|
||||
void JungfrauDataFile::find_frame_size(const std::filesystem::path &fname) {
|
||||
|
||||
static constexpr size_t module_data_size =
|
||||
header_size + sizeof(pixel_type) * 512 * 1024;
|
||||
static constexpr size_t half_data_size =
|
||||
header_size + sizeof(pixel_type) * 256 * 1024;
|
||||
static constexpr size_t chip_data_size =
|
||||
header_size + sizeof(pixel_type) * 256 * 256;
|
||||
|
||||
auto file_size = std::filesystem::file_size(fname);
|
||||
if (file_size == 0) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Cannot guess frame size: file is empty");
|
||||
}
|
||||
|
||||
if (file_size % module_data_size == 0) {
|
||||
m_rows = 512;
|
||||
m_cols = 1024;
|
||||
m_bytes_per_frame = module_data_size - header_size;
|
||||
} else if (file_size % half_data_size == 0) {
|
||||
m_rows = 256;
|
||||
m_cols = 1024;
|
||||
m_bytes_per_frame = half_data_size - header_size;
|
||||
} else if (file_size % chip_data_size == 0) {
|
||||
m_rows = 256;
|
||||
m_cols = 256;
|
||||
m_bytes_per_frame = chip_data_size - header_size;
|
||||
} else {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Cannot find frame size: file size is not a "
|
||||
"multiple of any known frame size");
|
||||
}
|
||||
}
|
||||
|
||||
void JungfrauDataFile::parse_fname(const std::filesystem::path &fname) {
|
||||
m_path = fname.parent_path();
|
||||
m_base_name = fname.stem();
|
||||
|
||||
// find file index, then remove if from the base name
|
||||
if (auto pos = m_base_name.find_last_of('_'); pos != std::string::npos) {
|
||||
m_offset = std::stoul(m_base_name.substr(pos + 1));
|
||||
m_base_name.erase(pos);
|
||||
}
|
||||
}
|
||||
|
||||
void JungfrauDataFile::scan_files() {
|
||||
// find how many files we have and the number of frames in each file
|
||||
m_last_frame_in_file.clear();
|
||||
size_t file_index = m_offset;
|
||||
while (std::filesystem::exists(fpath(file_index))) {
|
||||
auto n_frames = std::filesystem::file_size(fpath(file_index)) /
|
||||
(m_bytes_per_frame + header_size);
|
||||
m_last_frame_in_file.push_back(n_frames);
|
||||
++file_index;
|
||||
}
|
||||
|
||||
// find where we need to open the next file and total number of frames
|
||||
m_last_frame_in_file = cumsum(m_last_frame_in_file);
|
||||
m_total_frames = m_last_frame_in_file.back();
|
||||
}
|
||||
|
||||
void JungfrauDataFile::read_into(std::byte *image_buf,
|
||||
JungfrauDataHeader *header) {
|
||||
|
||||
// read header if not passed nullptr
|
||||
if (header) {
|
||||
if (auto rc = fread(header, sizeof(JungfrauDataHeader), 1, m_fp.get());
|
||||
rc != 1) {
|
||||
throw std::runtime_error(
|
||||
LOCATION +
|
||||
"Could not read header from file:" + m_fp.error_msg());
|
||||
}
|
||||
} else {
|
||||
m_fp.seek(header_size, SEEK_CUR);
|
||||
}
|
||||
|
||||
// read data
|
||||
if (auto rc = fread(image_buf, 1, m_bytes_per_frame, m_fp.get());
|
||||
rc != m_bytes_per_frame) {
|
||||
throw std::runtime_error(LOCATION + "Could not read image from file" +
|
||||
m_fp.error_msg());
|
||||
}
|
||||
|
||||
// prepare for next read
|
||||
// if we are at the end of the file, open the next file
|
||||
++m_current_frame_index;
|
||||
if (m_current_frame_index >= m_last_frame_in_file[m_current_file_index] &&
|
||||
(m_current_frame_index < m_total_frames)) {
|
||||
++m_current_file_index;
|
||||
open_file(m_current_file_index);
|
||||
}
|
||||
}
|
||||
|
||||
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames,
|
||||
JungfrauDataHeader *header) {
|
||||
if (header) {
|
||||
for (size_t i = 0; i < n_frames; ++i)
|
||||
read_into(image_buf + i * m_bytes_per_frame, header + i);
|
||||
}else{
|
||||
for (size_t i = 0; i < n_frames; ++i)
|
||||
read_into(image_buf + i * m_bytes_per_frame, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
void JungfrauDataFile::read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header) {
|
||||
if(image->shape()!=shape()){
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Image shape does not match file size: " + std::to_string(rows()) + "x" + std::to_string(cols()));
|
||||
}
|
||||
read_into(reinterpret_cast<std::byte *>(image->data()), header);
|
||||
}
|
||||
|
||||
|
||||
JungfrauDataHeader JungfrauDataFile::read_header() {
|
||||
JungfrauDataHeader header;
|
||||
if (auto rc = fread(&header, 1, sizeof(header), m_fp.get());
|
||||
rc != sizeof(header)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read header from file" +
|
||||
m_fp.error_msg());
|
||||
}
|
||||
m_fp.seek(-header_size, SEEK_CUR);
|
||||
return header;
|
||||
}
|
||||
|
||||
void JungfrauDataFile::open_file(size_t file_index) {
|
||||
// fmt::print(stderr, "Opening file: {}\n",
|
||||
// fpath(file_index+m_offset).string());
|
||||
m_fp = FilePtr(fpath(file_index + m_offset), "rb");
|
||||
m_current_file_index = file_index;
|
||||
}
|
||||
|
||||
std::filesystem::path JungfrauDataFile::fpath(size_t file_index) const {
|
||||
auto fname = fmt::format("{}_{:0{}}.dat", m_base_name, file_index,
|
||||
n_digits_in_file_index);
|
||||
return m_path / fname;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,114 +0,0 @@
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include "test_config.hpp"
|
||||
|
||||
using aare::JungfrauDataFile;
|
||||
using aare::JungfrauDataHeader;
|
||||
TEST_CASE("Open a Jungfrau data file", "[.files]") {
|
||||
//we know we have 4 files with 7, 7, 7, and 3 frames
|
||||
//firs frame number if 1 and the bunch id is frame_number**2
|
||||
//so we can check the header
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF500k_000000.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
REQUIRE(f.rows() == 512);
|
||||
REQUIRE(f.cols() == 1024);
|
||||
REQUIRE(f.bytes_per_frame() == 1048576);
|
||||
REQUIRE(f.pixels_per_frame() == 524288);
|
||||
REQUIRE(f.bytes_per_pixel() == 2);
|
||||
REQUIRE(f.bitdepth() == 16);
|
||||
REQUIRE(f.base_name() == "AldoJF500k");
|
||||
REQUIRE(f.n_files() == 4);
|
||||
REQUIRE(f.tell() == 0);
|
||||
REQUIRE(f.total_frames() == 24);
|
||||
REQUIRE(f.current_file() == fpath);
|
||||
|
||||
//Check that the frame number and buch id is read correctly
|
||||
for (size_t i = 0; i < 24; ++i) {
|
||||
JungfrauDataHeader header;
|
||||
aare::NDArray<uint16_t> image(f.shape());
|
||||
f.read_into(&image, &header);
|
||||
REQUIRE(header.framenum == i + 1);
|
||||
REQUIRE(header.bunchid == (i + 1) * (i + 1));
|
||||
REQUIRE(image.shape(0) == 512);
|
||||
REQUIRE(image.shape(1) == 1024);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Seek in a JungfrauDataFile", "[.files]"){
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
|
||||
//The file should have 113 frames
|
||||
f.seek(19);
|
||||
REQUIRE(f.tell() == 19);
|
||||
auto h = f.read_header();
|
||||
REQUIRE(h.framenum == 19+1);
|
||||
|
||||
//Reading again does not change the file pointer
|
||||
auto h2 = f.read_header();
|
||||
REQUIRE(h2.framenum == 19+1);
|
||||
|
||||
f.seek(59);
|
||||
REQUIRE(f.tell() == 59);
|
||||
auto h3 = f.read_header();
|
||||
REQUIRE(h3.framenum == 59+1);
|
||||
|
||||
JungfrauDataHeader h4;
|
||||
aare::NDArray<uint16_t> image(f.shape());
|
||||
f.read_into(&image, &h4);
|
||||
REQUIRE(h4.framenum == 59+1);
|
||||
|
||||
//now we should be on the next frame
|
||||
REQUIRE(f.tell() == 60);
|
||||
REQUIRE(f.read_header().framenum == 60+1);
|
||||
|
||||
REQUIRE_THROWS(f.seek(86356)); //out of range
|
||||
}
|
||||
|
||||
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]"){
|
||||
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF65k_000003.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
|
||||
//18 files per data file, opening the 3rd file we ignore the first 3
|
||||
REQUIRE(f.total_frames() == 113-18*3);
|
||||
REQUIRE(f.tell() == 0);
|
||||
|
||||
//Frame numbers start at 1 in the first file
|
||||
REQUIRE(f.read_header().framenum == 18*3+1);
|
||||
|
||||
// moving relative to the third file
|
||||
f.seek(5);
|
||||
REQUIRE(f.read_header().framenum == 18*3+1+5);
|
||||
|
||||
// ignoring the first 3 files
|
||||
REQUIRE(f.n_files() == 4);
|
||||
|
||||
REQUIRE(f.current_file().stem() == "AldoJF65k_000003");
|
||||
|
||||
}
|
||||
|
||||
TEST_CASE("Read into throws if size doesn't match", "[.files]"){
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
|
||||
aare::NDArray<uint16_t> image({39, 85});
|
||||
JungfrauDataHeader header;
|
||||
|
||||
REQUIRE_THROWS(f.read_into(&image, &header));
|
||||
REQUIRE_THROWS(f.read_into(&image, nullptr));
|
||||
REQUIRE_THROWS(f.read_into(&image));
|
||||
|
||||
REQUIRE(f.tell() == 0);
|
||||
|
||||
|
||||
}
|
@ -183,14 +183,14 @@ TEST_CASE("Size and shape matches") {
|
||||
int64_t h = 75;
|
||||
std::array<int64_t, 2> shape{w, h};
|
||||
NDArray<double> a{shape};
|
||||
REQUIRE(a.size() == w * h);
|
||||
REQUIRE(a.size() == static_cast<uint64_t>(w * h));
|
||||
REQUIRE(a.shape() == shape);
|
||||
}
|
||||
|
||||
TEST_CASE("Initial value matches for all elements") {
|
||||
double v = 4.35;
|
||||
NDArray<double> a{{5, 5}, v};
|
||||
for (int i = 0; i < a.size(); ++i) {
|
||||
for (uint32_t i = 0; i < a.size(); ++i) {
|
||||
REQUIRE(a(i) == v);
|
||||
}
|
||||
}
|
||||
|
@ -3,7 +3,6 @@
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
using aare::NDView;
|
||||
using aare::Shape;
|
||||
@ -22,8 +21,10 @@ TEST_CASE("Element reference 1D") {
|
||||
}
|
||||
|
||||
TEST_CASE("Element reference 2D") {
|
||||
std::vector<int> vec(12);
|
||||
std::iota(vec.begin(), vec.end(), 0);
|
||||
std::vector<int> vec;
|
||||
for (int i = 0; i != 12; ++i) {
|
||||
vec.push_back(i);
|
||||
}
|
||||
|
||||
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
|
||||
REQUIRE(vec.size() == static_cast<size_t>(data.size()));
|
||||
@ -57,8 +58,10 @@ TEST_CASE("Element reference 3D") {
|
||||
}
|
||||
|
||||
TEST_CASE("Plus and miuns with single value") {
|
||||
std::vector<int> vec(12);
|
||||
std::iota(vec.begin(), vec.end(), 0);
|
||||
std::vector<int> vec;
|
||||
for (int i = 0; i != 12; ++i) {
|
||||
vec.push_back(i);
|
||||
}
|
||||
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
|
||||
data += 5;
|
||||
int i = 0;
|
||||
@ -113,8 +116,10 @@ TEST_CASE("elementwise assign") {
|
||||
}
|
||||
|
||||
TEST_CASE("iterators") {
|
||||
std::vector<int> vec(12);
|
||||
std::iota(vec.begin(), vec.end(), 0);
|
||||
std::vector<int> vec;
|
||||
for (int i = 0; i != 12; ++i) {
|
||||
vec.push_back(i);
|
||||
}
|
||||
NDView<int, 1> data(vec.data(), Shape<1>{12});
|
||||
int i = 0;
|
||||
for (const auto item : data) {
|
||||
@ -162,31 +167,27 @@ TEST_CASE("divide with another span") {
|
||||
}
|
||||
|
||||
TEST_CASE("Retrieve shape") {
|
||||
std::vector<int> vec(12);
|
||||
std::iota(vec.begin(), vec.end(), 0);
|
||||
std::vector<int> vec;
|
||||
for (int i = 0; i != 12; ++i) {
|
||||
vec.push_back(i);
|
||||
}
|
||||
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
|
||||
REQUIRE(data.shape()[0] == 3);
|
||||
REQUIRE(data.shape()[1] == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("compare two views") {
|
||||
std::vector<int> vec1(12);
|
||||
std::iota(vec1.begin(), vec1.end(), 0);
|
||||
std::vector<int> vec1;
|
||||
for (int i = 0; i != 12; ++i) {
|
||||
vec1.push_back(i);
|
||||
}
|
||||
NDView<int, 2> view1(vec1.data(), Shape<2>{3, 4});
|
||||
|
||||
std::vector<int> vec2(12);
|
||||
std::iota(vec2.begin(), vec2.end(), 0);
|
||||
std::vector<int> vec2;
|
||||
for (int i = 0; i != 12; ++i) {
|
||||
vec2.push_back(i);
|
||||
}
|
||||
NDView<int, 2> view2(vec2.data(), Shape<2>{3, 4});
|
||||
|
||||
REQUIRE((view1 == view2));
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Create a view over a vector"){
|
||||
std::vector<int> vec(12);
|
||||
std::iota(vec.begin(), vec.end(), 0);
|
||||
auto v = aare::make_view(vec);
|
||||
REQUIRE(v.shape()[0] == 12);
|
||||
REQUIRE(v[0] == 0);
|
||||
REQUIRE(v[11] == 11);
|
||||
}
|
@ -1,12 +1,9 @@
|
||||
#include "aare/RawSubFile.hpp"
|
||||
#include "aare/PixelMap.hpp"
|
||||
#include "aare/utils/ifstream_helpers.hpp"
|
||||
#include <cstring> // memcpy
|
||||
#include <fmt/core.h>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
RawSubFile::RawSubFile(const std::filesystem::path &fname,
|
||||
@ -23,7 +20,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
|
||||
}
|
||||
|
||||
if (std::filesystem::exists(fname)) {
|
||||
m_num_frames = std::filesystem::file_size(fname) /
|
||||
n_frames = std::filesystem::file_size(fname) /
|
||||
(sizeof(DetectorHeader) + rows * cols * bitdepth / 8);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
@ -38,7 +35,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
|
||||
}
|
||||
|
||||
#ifdef AARE_VERBOSE
|
||||
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), m_num_frames);
|
||||
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), n_frames);
|
||||
fmt::print("m_rows: {}, m_cols: {}, m_bitdepth: {}\n", m_rows, m_cols,
|
||||
m_bitdepth);
|
||||
fmt::print("file size: {}\n", std::filesystem::file_size(fname));
|
||||
@ -46,8 +43,8 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
|
||||
}
|
||||
|
||||
void RawSubFile::seek(size_t frame_index) {
|
||||
if (frame_index >= m_num_frames) {
|
||||
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, m_num_frames));
|
||||
if (frame_index >= n_frames) {
|
||||
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, n_frames));
|
||||
}
|
||||
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
|
||||
}
|
||||
@ -63,10 +60,6 @@ void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
|
||||
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
|
||||
}
|
||||
|
||||
if (m_file.fail()){
|
||||
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
|
||||
}
|
||||
|
||||
// TODO! expand support for different bitdepths
|
||||
if (m_pixel_map) {
|
||||
// read into a temporary buffer and then copy the data to the buffer
|
||||
@ -86,24 +79,8 @@ void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
|
||||
// read directly into the buffer
|
||||
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
|
||||
}
|
||||
|
||||
if (m_file.fail()){
|
||||
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
|
||||
}
|
||||
}
|
||||
|
||||
void RawSubFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header) {
|
||||
for (size_t i = 0; i < n_frames; i++) {
|
||||
read_into(image_buf, header);
|
||||
image_buf += bytes_per_frame();
|
||||
if (header) {
|
||||
++header;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
void RawSubFile::read_with_map(std::byte *image_buf) {
|
||||
auto part_buffer = new std::byte[bytes_per_frame()];
|
||||
|
@ -1,12 +1,11 @@
|
||||
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <aare/algorithm.hpp>
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (ssize_t i = 0; i < arr.size(); i++) {
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
@ -17,9 +16,9 @@ TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
|
||||
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("Passing integers to nearest_index works", "[algorithm]"){
|
||||
TEST_CASE("Passing integers to nearest_index works", "[algorithm]") {
|
||||
aare::NDArray<int, 1> arr({5});
|
||||
for (ssize_t i = 0; i < arr.size(); i++) {
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
@ -30,8 +29,7 @@ TEST_CASE("Passing integers to nearest_index works", "[algorithm]"){
|
||||
REQUIRE(aare::nearest_index(arr, -1) == 0);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("nearest_index works with std::vector", "[algorithm]"){
|
||||
TEST_CASE("nearest_index works with std::vector", "[algorithm]") {
|
||||
std::vector<double> vec = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
|
||||
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
|
||||
@ -40,7 +38,7 @@ TEST_CASE("nearest_index works with std::vector", "[algorithm]"){
|
||||
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("nearest index works with std::array", "[algorithm]"){
|
||||
TEST_CASE("nearest index works with std::array", "[algorithm]") {
|
||||
std::array<double, 5> arr = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
|
||||
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
|
||||
@ -49,20 +47,9 @@ TEST_CASE("nearest index works with std::array", "[algorithm]"){
|
||||
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("nearest index when there is no different uses the first element", "[algorithm]"){
|
||||
std::vector<int> vec = {5, 5, 5, 5, 5};
|
||||
REQUIRE(aare::nearest_index(vec, 5) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("nearest index when there is no different uses the first element also when all smaller", "[algorithm]"){
|
||||
std::vector<int> vec = {5, 5, 5, 5, 5};
|
||||
REQUIRE(aare::nearest_index(vec, 10) == 0);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("last smaller", "[algorithm]"){
|
||||
TEST_CASE("last smaller", "[algorithm]") {
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (ssize_t i = 0; i < arr.size(); i++) {
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
@ -72,88 +59,11 @@ TEST_CASE("last smaller", "[algorithm]"){
|
||||
REQUIRE(aare::last_smaller(arr, 253.) == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("returns last bin strictly smaller", "[algorithm]"){
|
||||
TEST_CASE("returns last bin strictly smaller", "[algorithm]") {
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (ssize_t i = 0; i < arr.size(); i++) {
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::last_smaller(arr, 2.0) == 1);
|
||||
|
||||
}
|
||||
|
||||
TEST_CASE("last_smaller with all elements smaller returns last element", "[algorithm]"){
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (ssize_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::last_smaller(arr, 50.) == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("last_smaller with all elements bigger returns first element", "[algorithm]"){
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (ssize_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::last_smaller(arr, -50.) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("last smaller with all elements equal returns the first element", "[algorithm]"){
|
||||
std::vector<int> vec = {5,5,5,5,5,5,5};
|
||||
REQUIRE(aare::last_smaller(vec, 5) == 0);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("first_lager with vector", "[algorithm]"){
|
||||
std::vector<double> vec = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::first_larger(vec, 2.5) == 3);
|
||||
}
|
||||
|
||||
TEST_CASE("first_lager with all elements smaller returns last element", "[algorithm]"){
|
||||
std::vector<double> vec = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::first_larger(vec, 50.) == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("first_lager with all elements bigger returns first element", "[algorithm]"){
|
||||
std::vector<double> vec = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::first_larger(vec, -50.) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("first_lager with all elements the same as the check returns last", "[algorithm]"){
|
||||
std::vector<int> vec = {14, 14, 14, 14, 14};
|
||||
REQUIRE(aare::first_larger(vec, 14) == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("first larger with the same element", "[algorithm]"){
|
||||
std::vector<int> vec = {7,8,9,10,11};
|
||||
REQUIRE(aare::first_larger(vec, 9) == 3);
|
||||
}
|
||||
|
||||
TEST_CASE("cumsum works", "[algorithm]"){
|
||||
std::vector<double> vec = {0, 1, 2, 3, 4};
|
||||
auto result = aare::cumsum(vec);
|
||||
REQUIRE(result.size() == vec.size());
|
||||
REQUIRE(result[0] == 0);
|
||||
REQUIRE(result[1] == 1);
|
||||
REQUIRE(result[2] == 3);
|
||||
REQUIRE(result[3] == 6);
|
||||
REQUIRE(result[4] == 10);
|
||||
}
|
||||
TEST_CASE("cumsum works with empty vector", "[algorithm]"){
|
||||
std::vector<double> vec = {};
|
||||
auto result = aare::cumsum(vec);
|
||||
REQUIRE(result.size() == 0);
|
||||
}
|
||||
TEST_CASE("cumsum works with negative numbers", "[algorithm]"){
|
||||
std::vector<double> vec = {0, -1, -2, -3, -4};
|
||||
auto result = aare::cumsum(vec);
|
||||
REQUIRE(result.size() == vec.size());
|
||||
REQUIRE(result[0] == 0);
|
||||
REQUIRE(result[1] == -1);
|
||||
REQUIRE(result[2] == -3);
|
||||
REQUIRE(result[3] == -6);
|
||||
REQUIRE(result[4] == -10);
|
||||
}
|
||||
|
||||
REQUIRE(aare::last_smaller(arr, 2.0) == 2);
|
||||
}
|
@ -1,5 +1,5 @@
|
||||
#include "aare/decode.hpp"
|
||||
#include <cmath>
|
||||
|
||||
namespace aare {
|
||||
|
||||
uint16_t adc_sar_05_decode64to16(uint64_t input){
|
||||
@ -22,10 +22,6 @@ uint16_t adc_sar_05_decode64to16(uint64_t input){
|
||||
}
|
||||
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
|
||||
if(input.shape() != output.shape()){
|
||||
throw std::invalid_argument(LOCATION + " input and output shapes must match");
|
||||
}
|
||||
|
||||
for(int64_t i = 0; i < input.shape(0); i++){
|
||||
for(int64_t j = 0; j < input.shape(1); j++){
|
||||
output(i,j) = adc_sar_05_decode64to16(input(i,j));
|
||||
@ -53,9 +49,6 @@ uint16_t adc_sar_04_decode64to16(uint64_t input){
|
||||
}
|
||||
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
|
||||
if(input.shape() != output.shape()){
|
||||
throw std::invalid_argument(LOCATION + " input and output shapes must match");
|
||||
}
|
||||
for(int64_t i = 0; i < input.shape(0); i++){
|
||||
for(int64_t j = 0; j < input.shape(1); j++){
|
||||
output(i,j) = adc_sar_04_decode64to16(input(i,j));
|
||||
@ -63,40 +56,6 @@ void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> outpu
|
||||
}
|
||||
}
|
||||
|
||||
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights) {
|
||||
if(weights.size() > 16){
|
||||
throw std::invalid_argument("weights size must be less than or equal to 16");
|
||||
}
|
||||
|
||||
double result = 0.0;
|
||||
for (ssize_t i = 0; i < weights.size(); ++i) {
|
||||
result += ((input >> i) & 1) * std::pow(weights[i], i);
|
||||
}
|
||||
return result;
|
||||
|
||||
}
|
||||
|
||||
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double,1> weights) {
|
||||
if(input.shape() != output.shape()){
|
||||
throw std::invalid_argument(LOCATION + " input and output shapes must match");
|
||||
}
|
||||
|
||||
//Calculate weights to avoid repeatedly calling std::pow
|
||||
std::vector<double> weights_powers(weights.size());
|
||||
for (ssize_t i = 0; i < weights.size(); ++i) {
|
||||
weights_powers[i] = std::pow(weights[i], i);
|
||||
}
|
||||
|
||||
// Apply custom weights to each element in the input array
|
||||
for (ssize_t i = 0; i < input.shape(0); i++) {
|
||||
double result = 0.0;
|
||||
for (size_t bit_index = 0; bit_index < weights_powers.size(); ++bit_index) {
|
||||
result += ((input(i) >> bit_index) & 1) * weights_powers[bit_index];
|
||||
}
|
||||
output(i) = result;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
||||
|
@ -1,80 +0,0 @@
|
||||
#include "aare/decode.hpp"
|
||||
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include "aare/NDArray.hpp"
|
||||
using Catch::Matchers::WithinAbs;
|
||||
#include <vector>
|
||||
|
||||
TEST_CASE("test_adc_sar_05_decode64to16"){
|
||||
uint64_t input = 0;
|
||||
uint16_t output = aare::adc_sar_05_decode64to16(input);
|
||||
CHECK(output == 0);
|
||||
|
||||
|
||||
// bit 29 on th input is bit 0 on the output
|
||||
input = 1UL << 29;
|
||||
output = aare::adc_sar_05_decode64to16(input);
|
||||
CHECK(output == 1);
|
||||
|
||||
// test all bits by iteratting through the bitlist
|
||||
std::vector<int> bitlist = {29, 19, 28, 18, 31, 21, 27, 20, 24, 23, 25, 22};
|
||||
for (size_t i = 0; i < bitlist.size(); i++) {
|
||||
input = 1UL << bitlist[i];
|
||||
output = aare::adc_sar_05_decode64to16(input);
|
||||
CHECK(output == (1 << i));
|
||||
}
|
||||
|
||||
|
||||
// test a few "random" values
|
||||
input = 0;
|
||||
input |= (1UL << 29);
|
||||
input |= (1UL << 19);
|
||||
input |= (1UL << 28);
|
||||
output = aare::adc_sar_05_decode64to16(input);
|
||||
CHECK(output == 7UL);
|
||||
|
||||
|
||||
input = 0;
|
||||
input |= (1UL << 18);
|
||||
input |= (1UL << 27);
|
||||
input |= (1UL << 25);
|
||||
output = aare::adc_sar_05_decode64to16(input);
|
||||
CHECK(output == 1096UL);
|
||||
|
||||
input = 0;
|
||||
input |= (1UL << 25);
|
||||
input |= (1UL << 22);
|
||||
output = aare::adc_sar_05_decode64to16(input);
|
||||
CHECK(output == 3072UL);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("test_apply_custom_weights") {
|
||||
|
||||
uint16_t input = 1;
|
||||
aare::NDArray<double, 1> weights_data({3}, 0.0);
|
||||
weights_data(0) = 1.7;
|
||||
weights_data(1) = 2.1;
|
||||
weights_data(2) = 1.8;
|
||||
|
||||
auto weights = weights_data.view();
|
||||
|
||||
|
||||
double output = aare::apply_custom_weights(input, weights);
|
||||
CHECK_THAT(output, WithinAbs(1.0, 0.001));
|
||||
|
||||
input = 1 << 1;
|
||||
output = aare::apply_custom_weights(input, weights);
|
||||
CHECK_THAT(output, WithinAbs(2.1, 0.001));
|
||||
|
||||
|
||||
input = 1 << 2;
|
||||
output = aare::apply_custom_weights(input, weights);
|
||||
CHECK_THAT(output, WithinAbs(3.24, 0.001));
|
||||
|
||||
input = 0b111;
|
||||
output = aare::apply_custom_weights(input, weights);
|
||||
CHECK_THAT(output, WithinAbs(6.34, 0.001));
|
||||
|
||||
}
|
@ -1,18 +0,0 @@
|
||||
#include "aare/utils/ifstream_helpers.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
std::string ifstream_error_msg(std::ifstream &ifs) {
|
||||
std::ios_base::iostate state = ifs.rdstate();
|
||||
if (state & std::ios_base::eofbit) {
|
||||
return " End of file reached";
|
||||
} else if (state & std::ios_base::badbit) {
|
||||
return " Bad file stream";
|
||||
} else if (state & std::ios_base::failbit) {
|
||||
return " File read failed";
|
||||
}else{
|
||||
return " Unknown/no error";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace aare
|
Reference in New Issue
Block a user