3 Commits

Author SHA1 Message Date
f665b493b1 enable tests 2024-11-29 17:15:16 +01:00
fd4175ecb2 added missing section 2024-11-29 17:12:17 +01:00
3970320635 run tests 2024-11-29 17:08:58 +01:00
103 changed files with 950 additions and 6209 deletions

View File

@ -1,42 +0,0 @@
---
Checks: '*,
-altera-*,
-android-cloexec-fopen,
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
-cppcoreguidelines-pro-bounds-pointer-arithmetic,
-fuchsia*,
-readability-else-after-return,
-readability-avoid-const-params-in-decls,
-readability-identifier-length,
-cppcoreguidelines-pro-bounds-constant-array-index,
-cppcoreguidelines-pro-type-reinterpret-cast,
-llvm-header-guard,
-modernize-use-nodiscard,
-misc-non-private-member-variables-in-classes,
-readability-static-accessed-through-instance,
-readability-braces-around-statements,
-readability-isolate-declaration,
-readability-implicit-bool-conversion,
-readability-identifier-length,
-readability-identifier-naming,
-hicpp-signed-bitwise,
-hicpp-no-array-decay,
-hicpp-braces-around-statements,
-google-runtime-references,
-google-readability-todo,
-google-readability-braces-around-statements,
-modernize-use-trailing-return-type,
-llvmlibc-*'
HeaderFilterRegex: \.hpp
FormatStyle: none
CheckOptions:
- { key: readability-identifier-naming.NamespaceCase, value: lower_case }
# - { key: readability-identifier-naming.FunctionCase, value: lower_case }
- { key: readability-identifier-naming.ClassCase, value: CamelCase }
# - { key: readability-identifier-naming.MethodCase, value: CamelCase }
# - { key: readability-identifier-naming.StructCase, value: CamelCase }
# - { key: readability-identifier-naming.VariableCase, value: lower_case }
- { key: readability-identifier-naming.GlobalConstantCase, value: UPPER_CASE }
...

View File

@ -1,58 +0,0 @@
name: Build the package using cmake then documentation
on:
workflow_dispatch:
permissions:
contents: read
pages: write
id-token: write
jobs:
build:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ]
python-version: ["3.12", ]
runs-on: ${{ matrix.platform }}
defaults:
run:
shell: "bash -l {0}"
steps:
- uses: actions/checkout@v4
- name: Setup dev env
run: |
sudo apt-get update
sudo apt-get -y install cmake gcc g++
- name: Get conda
uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
environment-file: etc/dev-env.yml
miniforge-version: latest
channels: conda-forge
conda-remove-defaults: "true"
- name: Build library
run: |
mkdir build
cd build
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
make -j 2
make docs

View File

@ -1,36 +0,0 @@
name: Build on RHEL8
on:
push:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: "ubuntu-latest"
container:
image: gitea.psi.ch/images/rhel8-developer-gitea-actions
steps:
# workaround until actions/checkout@v4 is available for RH8
# - uses: actions/checkout@v4
- name: Clone repository
run: |
echo Cloning ${{ github.ref_name }}
git clone https://${{secrets.GITHUB_TOKEN}}@gitea.psi.ch/${{ github.repository }}.git --branch=${{ github.ref_name }} .
- name: Install dependencies
run: |
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
- name: Build library
run: |
mkdir build && cd build
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON -DPython_FIND_VIRTUALENV=FIRST
make -j 2
- name: C++ unit tests
working-directory: ${{gitea.workspace}}/build
run: ctest

View File

@ -1,31 +0,0 @@
name: Build on RHEL9
on:
push:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: "ubuntu-latest"
container:
image: gitea.psi.ch/images/rhel9-developer-gitea-actions
steps:
- uses: actions/checkout@v4
- name: Install dependencies
run: |
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
- name: Build library
run: |
mkdir build && cd build
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON
make -j 2
- name: C++ unit tests
working-directory: ${{gitea.workspace}}/build
run: ctest

View File

@ -1,40 +0,0 @@
name: Build pkgs and deploy if on main
on:
push:
branches:
- developer
jobs:
build:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ] # macos-12, windows-2019]
python-version: ["3.12",]
runs-on: ${{ matrix.platform }}
# The setup-miniconda action needs this to activate miniconda
defaults:
run:
shell: "bash -l {0}"
steps:
- uses: actions/checkout@v4
- name: Get conda
uses: conda-incubator/setup-miniconda@v3.0.4
with:
python-version: ${{ matrix.python-version }}
channels: conda-forge
- name: Prepare
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
- name: Disable upload
run: conda config --set anaconda_upload no
- name: Build
run: conda build conda-recipe

View File

@ -1,10 +1,11 @@
name: Build the package using cmake then documentation
name: Build package and docs, test, deploy if on main
on:
workflow_dispatch:
push:
permissions:
contents: read
pages: write
@ -15,11 +16,12 @@ jobs:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ]
platform: [ubuntu-latest, ] # macos-12, windows-2019]
python-version: ["3.12",]
runs-on: ${{ matrix.platform }}
# The setup-miniconda action needs this to activate miniconda
defaults:
run:
shell: "bash -l {0}"
@ -28,22 +30,28 @@ jobs:
- uses: actions/checkout@v4
- name: Get conda
uses: conda-incubator/setup-miniconda@v3
uses: conda-incubator/setup-miniconda@v3.0.4
with:
python-version: ${{ matrix.python-version }}
environment-file: etc/dev-env.yml
miniforge-version: latest
channels: conda-forge
conda-remove-defaults: "true"
- name: Build library
- name: Prepare
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy catch2
- name: Build
run: |
mkdir build
cd build
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_TESTS=ON -DAARE_DOCS=ON
make -j 2
make docs
- name: Test
working-directory: ${{github.workspace}}/build
# Execute tests defined by the CMake configuration.
# See https://cmake.org/cmake/help/latest/manual/ctest.1.html for more detail
run: ctest -C ${{env.BUILD_TYPE}} -j1
- name: Upload static files as artifact
id: deployment
uses: actions/upload-pages-artifact@v3

View File

@ -1,64 +0,0 @@
name: Build wheel
on:
workflow_dispatch:
pull_request:
push:
branches:
- main
release:
types:
- published
jobs:
build_wheels:
name: Build wheels on ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest,]
steps:
- uses: actions/checkout@v4
- name: Build wheels
run: pipx run cibuildwheel==2.23.0
- uses: actions/upload-artifact@v4
with:
name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }}
path: ./wheelhouse/*.whl
build_sdist:
name: Build source distribution
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build sdist
run: pipx run build --sdist
- uses: actions/upload-artifact@v4
with:
name: cibw-sdist
path: dist/*.tar.gz
upload_pypi:
needs: [build_wheels, build_sdist]
runs-on: ubuntu-latest
environment: pypi
permissions:
id-token: write
if: github.event_name == 'release' && github.event.action == 'published'
# or, alternatively, upload to PyPI on every tag starting with 'v' (remove on: release above to use this)
# if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
# unpacks all CIBW artifacts into dist/
pattern: cibw-*
path: dist
merge-multiple: true
- uses: pypa/gh-action-pypi-publish@release/v1

View File

@ -4,6 +4,7 @@ on:
push:
branches:
- main
- developer
jobs:
build:
@ -33,6 +34,7 @@ jobs:
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
- name: Enable upload
if: github.ref == 'refs/heads/main'
run: conda config --set anaconda_upload yes
- name: Build

3
.gitignore vendored
View File

@ -17,8 +17,7 @@ Testing/
ctbDict.cpp
ctbDict.h
wheelhouse/
dist/
*.pyc
*/__pycache__/*

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.15)
cmake_minimum_required(VERSION 3.14)
project(aare
VERSION 1.0.0
@ -11,14 +11,6 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
execute_process(
COMMAND git log -1 --format=%h
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
OUTPUT_VARIABLE GIT_HASH
OUTPUT_STRIP_TRAILING_WHITESPACE
)
message(STATUS "Building from git hash: ${GIT_HASH}")
if (${CMAKE_VERSION} VERSION_GREATER "3.24")
cmake_policy(SET CMP0135 NEW) #Fetch content download timestamp
endif()
@ -48,7 +40,7 @@ option(AARE_DOCS "Build documentation" OFF)
option(AARE_VERBOSE "Verbose output" OFF)
option(AARE_CUSTOM_ASSERT "Use custom assert" OFF)
option(AARE_INSTALL_PYTHONEXT "Install the python extension in the install tree under CMAKE_INSTALL_PREFIX/aare/" OFF)
option(AARE_ASAN "Enable AddressSanitizer" OFF)
# Configure which of the dependencies to use FetchContent for
option(AARE_FETCH_FMT "Use FetchContent to download fmt" ON)
@ -56,7 +48,6 @@ option(AARE_FETCH_PYBIND11 "Use FetchContent to download pybind11" ON)
option(AARE_FETCH_CATCH "Use FetchContent to download catch2" ON)
option(AARE_FETCH_JSON "Use FetchContent to download nlohmann::json" ON)
option(AARE_FETCH_ZMQ "Use FetchContent to download libzmq" ON)
option(AARE_FETCH_LMFIT "Use FetchContent to download lmfit" ON)
#Convenience option to use system libraries only (no FetchContent)
@ -68,8 +59,6 @@ if(AARE_SYSTEM_LIBRARIES)
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
# on conda-forge
endif()
if(AARE_VERBOSE)
@ -87,67 +76,16 @@ endif()
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if(AARE_FETCH_LMFIT)
#TODO! Should we fetch lmfit from the web or inlcude a tar.gz in the repo?
set(LMFIT_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
# For cmake < 3.28 we can't supply EXCLUDE_FROM_ALL to FetchContent_Declare
# so we need this workaround
if (${CMAKE_VERSION} VERSION_LESS "3.28")
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
else()
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL 1
)
endif()
#Disable what we don't need from lmfit
set(BUILD_TESTING OFF CACHE BOOL "")
set(LMFIT_CPPTEST OFF CACHE BOOL "")
set(LIB_MAN OFF CACHE BOOL "")
set(LMFIT_CPPTEST OFF CACHE BOOL "")
set(BUILD_SHARED_LIBS OFF CACHE BOOL "")
if (${CMAKE_VERSION} VERSION_LESS "3.28")
if(NOT lmfit_POPULATED)
FetchContent_Populate(lmfit)
add_subdirectory(${lmfit_SOURCE_DIR} ${lmfit_BINARY_DIR} EXCLUDE_FROM_ALL)
endif()
else()
FetchContent_MakeAvailable(lmfit)
endif()
set_property(TARGET lmfit PROPERTY POSITION_INDEPENDENT_CODE ON)
else()
find_package(lmfit REQUIRED)
endif()
if(AARE_FETCH_ZMQ)
# Fetchcontent_Declare is deprecated need to find a way to update this
# for now setting the policy to old is enough
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
cmake_policy(SET CMP0169 OLD)
endif()
set(ZMQ_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/libzmq_cmake_version.patch)
FetchContent_Declare(
libzmq
GIT_REPOSITORY https://github.com/zeromq/libzmq.git
GIT_TAG v4.3.4
PATCH_COMMAND ${ZMQ_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
# Disable unwanted options from libzmq
set(BUILD_TESTS OFF CACHE BOOL "Switch off libzmq test build")
@ -189,8 +127,8 @@ if (AARE_FETCH_FMT)
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
else()
find_package(fmt 6 REQUIRED)
endif()
@ -208,6 +146,7 @@ if (AARE_FETCH_JSON)
install(
TARGETS nlohmann_json
EXPORT "${TARGETS_EXPORT_NAME}"
)
message(STATUS "target: ${NLOHMANN_JSON_TARGET_NAME}")
else()
@ -286,6 +225,13 @@ if(CMAKE_BUILD_TYPE STREQUAL "Release")
target_compile_options(aare_compiler_flags INTERFACE -O3)
else()
message(STATUS "Debug build")
target_compile_options(
aare_compiler_flags
INTERFACE
-Og
-ggdb3
)
endif()
# Common flags for GCC and Clang
@ -310,21 +256,7 @@ target_compile_options(
endif() #GCC/Clang specific
if(AARE_ASAN)
message(STATUS "AddressSanitizer enabled")
target_compile_options(
aare_compiler_flags
INTERFACE
-fsanitize=address,undefined,pointer-compare
-fno-omit-frame-pointer
)
target_link_libraries(
aare_compiler_flags
INTERFACE
-fsanitize=address,undefined,pointer-compare
-fno-omit-frame-pointer
)
endif()
@ -343,17 +275,11 @@ set(PUBLICHEADERS
include/aare/ClusterFinder.hpp
include/aare/ClusterFile.hpp
include/aare/CtbRawFile.hpp
include/aare/ClusterVector.hpp
include/aare/decode.hpp
include/aare/defs.hpp
include/aare/Dtype.hpp
include/aare/File.hpp
include/aare/Fit.hpp
include/aare/FileInterface.hpp
include/aare/FilePtr.hpp
include/aare/Frame.hpp
include/aare/geo_helpers.hpp
include/aare/JungfrauDataFile.hpp
include/aare/NDArray.hpp
include/aare/NDView.hpp
include/aare/NumpyFile.hpp
@ -364,7 +290,6 @@ set(PUBLICHEADERS
include/aare/RawMasterFile.hpp
include/aare/RawSubFile.hpp
include/aare/VarClusterFinder.hpp
include/aare/utils/task.hpp
)
@ -374,23 +299,14 @@ set(SourceFiles
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/FilePtr.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/PixelMap.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/ifstream_helpers.cpp
)
@ -400,8 +316,6 @@ target_include_directories(aare_core PUBLIC
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)
target_link_libraries(
aare_core
PUBLIC
@ -410,8 +324,6 @@ target_link_libraries(
${STD_FS_LIB} # from helpers.cmake
PRIVATE
aare_compiler_flags
"$<BUILD_INTERFACE:lmfit>"
)
set_target_properties(aare_core PROPERTIES
@ -425,24 +337,17 @@ endif()
if(AARE_TESTS)
set(TestSources
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.test.cpp
)
target_sources(tests PRIVATE ${TestSources} )
@ -520,4 +425,4 @@ if(AARE_MASTER_PROJECT)
set(CMAKE_INSTALL_DIR "share/cmake/${PROJECT_NAME}")
set(PROJECT_LIBRARIES aare-core aare-compiler-flags )
include(cmake/package_config.cmake)
endif()
endif()

View File

@ -1,10 +1,6 @@
package:
name: aare
version: 2025.4.22 #TODO! how to not duplicate this?
version: 2024.11.28.dev0 #TODO! how to not duplicate this?
source:
@ -39,7 +35,6 @@ requirements:
run:
- python {{python}}
- numpy {{ numpy }}
- matplotlib
test:

View File

@ -12,7 +12,28 @@ set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR})
file(GLOB SPHINX_SOURCE_FILES CONFIGURE_DEPENDS "src/*.rst")
# set(SPHINX_SOURCE_FILES
# src/index.rst
# src/Installation.rst
# src/Requirements.rst
# src/NDArray.rst
# src/NDView.rst
# src/File.rst
# src/Frame.rst
# src/Dtype.rst
# src/ClusterFinder.rst
# src/ClusterFile.rst
# src/Pedestal.rst
# src/RawFile.rst
# src/RawSubFile.rst
# src/RawMasterFile.rst
# src/VarClusterFinder.rst
# src/pyVarClusterFinder.rst
# src/pyFile.rst
# src/pyCtbRawFile.rst
# src/pyRawFile.rst
# src/pyRawMasterFile.rst
# )
foreach(filename ${SPHINX_SOURCE_FILES})

View File

@ -29,6 +29,7 @@ version = '@PROJECT_VERSION@'
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['breathe',
'sphinx_rtd_theme',
'sphinx.ext.autodoc',
'sphinx.ext.napoleon',
]

View File

@ -1,7 +0,0 @@
ClusterFinderMT
==================
.. doxygenclass:: aare::ClusterFinderMT
:members:
:undoc-members:

View File

@ -1,6 +0,0 @@
ClusterVector
=============
.. doxygenclass:: aare::ClusterVector
:members:
:undoc-members:

View File

@ -1,25 +0,0 @@
JungfrauDataFile
==================
JungfrauDataFile is a class to read the .dat files that are produced by Aldo's receiver.
It is mostly used for calibration.
The structure of the file is:
* JungfrauDataHeader
* Binary data (256x256, 256x1024 or 512x1024)
* JungfrauDataHeader
* ...
There is no metadata indicating number of frames or the size of the image, but this
will be infered by this reader.
.. doxygenstruct:: aare::JungfrauDataHeader
:members:
:undoc-members:
:private-members:
.. doxygenclass:: aare::JungfrauDataFile
:members:
:undoc-members:
:private-members:

View File

@ -1,47 +0,0 @@
****************
Tests
****************
We test the code both from the C++ and Python API. By default only tests that does not require image data is run.
C++
~~~~~~~~~~~~~~~~~~
.. code-block:: bash
mkdir build
cd build
cmake .. -DAARE_TESTS=ON
make -j 4
export AARE_TEST_DATA=/path/to/test/data
./run_test [.files] #or using ctest, [.files] is the option to include tests needing data
Python
~~~~~~~~~~~~~~~~~~
.. code-block:: bash
#From the root dir of the library
python -m pytest python/tests --files # passing --files will run the tests needing data
Getting the test data
~~~~~~~~~~~~~~~~~~~~~~~~
.. attention ::
The tests needing the test data are not run by default. To make the data available, you need to set the environment variable
AARE_TEST_DATA to the path of the test data directory. Then pass either [.files] for the C++ tests or --files for Python
The image files needed for the test are large and are not included in the repository. They are stored
using GIT LFS in a separate repository. To get the test data, you need to clone the repository.
To do this, you need to have GIT LFS installed. You can find instructions on how to install it here: https://git-lfs.github.com/
Once you have GIT LFS installed, you can clone the repository like any normal repo using:
.. code-block:: bash
git clone https://gitea.psi.ch/detectors/aare-test-data.git

View File

@ -1,5 +0,0 @@
algorithm
=============
.. doxygenfile:: algorithm.hpp

View File

@ -20,6 +20,9 @@ AARE
Requirements
Consume
.. toctree::
:caption: Python API
:maxdepth: 1
@ -27,30 +30,22 @@ AARE
pyFile
pyCtbRawFile
pyClusterFile
pyClusterVector
pyJungfrauDataFile
pyRawFile
pyRawMasterFile
pyVarClusterFinder
pyFit
.. toctree::
:caption: C++ API
:maxdepth: 1
algorithm
NDArray
NDView
Frame
File
Dtype
ClusterFinder
ClusterFinderMT
ClusterFile
ClusterVector
JungfrauDataFile
Pedestal
RawFile
RawSubFile
@ -59,8 +54,4 @@ AARE
.. toctree::
:caption: Developer
:maxdepth: 3
Tests

View File

@ -1,33 +0,0 @@
ClusterVector
================
The ClusterVector, holds clusters from the ClusterFinder. Since it is templated
in C++ we use a suffix indicating the data type in python. The suffix is
``_i`` for integer, ``_f`` for float, and ``_d`` for double.
At the moment the functionality from python is limited and it is not supported
to push_back clusters to the vector. The intended use case is to pass it to
C++ functions that support the ClusterVector or to view it as a numpy array.
**View ClusterVector as numpy array**
.. code:: python
from aare import ClusterFile
with ClusterFile("path/to/file") as f:
cluster_vector = f.read_frame()
# Create a copy of the cluster data in a numpy array
clusters = np.array(cluster_vector)
# Avoid copying the data by passing copy=False
clusters = np.array(cluster_vector, copy = False)
.. py:currentmodule:: aare
.. autoclass:: ClusterVector_i
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

View File

@ -1,19 +0,0 @@
Fit
========
.. py:currentmodule:: aare
**Functions**
.. autofunction:: gaus
.. autofunction:: pol1
**Fitting**
.. autofunction:: fit_gaus
.. autofunction:: fit_pol1

View File

@ -1,10 +0,0 @@
JungfrauDataFile
===================
.. py:currentmodule:: aare
.. autoclass:: JungfrauDataFile
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

View File

@ -1,15 +0,0 @@
name: dev-environment
channels:
- conda-forge
dependencies:
- anaconda-client
- doxygen
- sphinx=7.1.2
- breathe
- pybind11
- sphinx_rtd_theme
- furo
- nlohmann_json
- zeromq
- fmt
- numpy

View File

@ -1,97 +0,0 @@
#pragma once
#include <chrono>
#include <fmt/color.h>
#include <fmt/format.h>
#include <memory>
#include <thread>
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
template <class ItemType> class CircularFifo {
uint32_t fifo_size;
aare::ProducerConsumerQueue<ItemType> free_slots;
aare::ProducerConsumerQueue<ItemType> filled_slots;
public:
CircularFifo() : CircularFifo(100){};
CircularFifo(uint32_t size) : fifo_size(size), free_slots(size + 1), filled_slots(size + 1) {
// TODO! how do we deal with alignment for writing? alignas???
// Do we give the user a chance to provide memory locations?
// Templated allocator?
for (size_t i = 0; i < fifo_size; ++i) {
free_slots.write(ItemType{});
}
}
bool next() {
// TODO! avoid default constructing ItemType
ItemType it;
if (!filled_slots.read(it))
return false;
if (!free_slots.write(std::move(it)))
return false;
return true;
}
~CircularFifo() {}
using value_type = ItemType;
auto numFilledSlots() const noexcept { return filled_slots.sizeGuess(); }
auto numFreeSlots() const noexcept { return free_slots.sizeGuess(); }
auto isFull() const noexcept { return filled_slots.isFull(); }
ItemType pop_free() {
ItemType v;
while (!free_slots.read(v))
;
return std::move(v);
// return v;
}
bool try_pop_free(ItemType &v) { return free_slots.read(v); }
ItemType pop_value(std::chrono::nanoseconds wait, std::atomic<bool> &stopped) {
ItemType v;
while (!filled_slots.read(v) && !stopped) {
std::this_thread::sleep_for(wait);
}
return std::move(v);
}
ItemType pop_value() {
ItemType v;
while (!filled_slots.read(v))
;
return std::move(v);
}
ItemType *frontPtr() { return filled_slots.frontPtr(); }
// TODO! Add function to move item from filled to free to be used
// with the frontPtr function
template <class... Args> void push_value(Args &&...recordArgs) {
while (!filled_slots.write(std::forward<Args>(recordArgs)...))
;
}
template <class... Args> bool try_push_value(Args &&...recordArgs) {
return filled_slots.write(std::forward<Args>(recordArgs)...);
}
template <class... Args> void push_free(Args &&...recordArgs) {
while (!free_slots.write(std::forward<Args>(recordArgs)...))
;
}
template <class... Args> bool try_push_free(Args &&...recordArgs) {
return free_slots.write(std::forward<Args>(recordArgs)...);
}
};
} // namespace aare

View File

@ -1,36 +0,0 @@
#pragma once
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <numeric>
namespace aare {
//TODO! Template this?
struct Cluster3x3 {
int16_t x;
int16_t y;
int32_t data[9];
int32_t sum_2x2() const{
std::array<int32_t, 4> total;
total[0] = data[0] + data[1] + data[3] + data[4];
total[1] = data[1] + data[2] + data[4] + data[5];
total[2] = data[3] + data[4] + data[6] + data[7];
total[3] = data[4] + data[5] + data[7] + data[8];
return *std::max_element(total.begin(), total.end());
}
int32_t sum() const{
return std::accumulate(data, data + 9, 0);
}
};
struct Cluster2x2 {
int16_t x;
int16_t y;
int32_t data[4];
};
} // namespace aare

View File

@ -1,52 +0,0 @@
#pragma once
#include <atomic>
#include <thread>
#include "aare/ProducerConsumerQueue.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFinderMT.hpp"
namespace aare {
class ClusterCollector{
ProducerConsumerQueue<ClusterVector<int>>* m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::vector<ClusterVector<int>> m_clusters;
void process(){
m_stopped = false;
fmt::print("ClusterCollector started\n");
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<int> *clusters = m_source->frontPtr();
clusters != nullptr) {
m_clusters.push_back(std::move(*clusters));
m_source->popFront();
}else{
std::this_thread::sleep_for(m_default_wait);
}
}
fmt::print("ClusterCollector stopped\n");
m_stopped = true;
}
public:
ClusterCollector(ClusterFinderMT<uint16_t, double, int32_t>* source){
m_source = source->sink();
m_thread = std::thread(&ClusterCollector::process, this);
}
void stop(){
m_stop_requested = true;
m_thread.join();
}
std::vector<ClusterVector<int>> steal_clusters(){
if(!m_stopped){
throw std::runtime_error("ClusterCollector is still running");
}
return std::move(m_clusters);
}
};
} // namespace aare

View File

@ -1,17 +1,17 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
#include <filesystem>
#include <fstream>
#include <optional>
namespace aare {
struct Cluster {
int16_t x;
int16_t y;
int32_t data[9];
};
//TODO! Legacy enums, migrate to enum class
typedef enum {
cBottomLeft = 0,
cBottomRight = 1,
@ -31,13 +31,6 @@ typedef enum {
pTopRight = 8
} pixel;
struct Eta2 {
double x;
double y;
corner c;
int32_t sum;
};
struct ClusterAnalysis {
uint32_t c;
int32_t tot;
@ -47,106 +40,28 @@ struct ClusterAnalysis {
/**
* @brief Class to read and write cluster files
* Expects data to be laid out as:
*
*
* int32_t frame_number
* uint32_t number_of_clusters
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
* int32_t frame_number
* uint32_t number_of_clusters
* etc.
*/
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{}; /*Number of photons left in frame*/
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
const std::string m_mode; /*Mode to open the file in*/
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
std::optional<NDArray<int32_t, 2>> m_noise_map; /*Noise map to cut photons, will be applied if set*/
std::optional<NDArray<double, 2>> m_gain_map; /*Gain map to apply to the clusters, will be applied if set*/
uint32_t m_num_left{};
size_t m_chunk_size{};
public:
/**
* @brief Construct a new Cluster File object
* @param fname path to the file
* @param chunk_size number of clusters to read at a time when iterating
* over the file
* @param mode mode to open the file in. "r" for reading, "w" for writing,
* "a" for appending
* @throws std::runtime_error if the file could not be opened
*/
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
const std::string &mode = "r");
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000);
~ClusterFile();
std::vector<Cluster> read_clusters(size_t n_clusters);
std::vector<Cluster> read_frame(int32_t &out_fnum);
std::vector<Cluster>
read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
/**
* @brief Read n_clusters clusters from the file discarding frame numbers.
* If EOF is reached the returned vector will have less than n_clusters
* clusters
*/
ClusterVector<int32_t> read_clusters(size_t n_clusters);
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y);
ClusterVector<int32_t> read_clusters(size_t n_clusters, ROI roi);
/**
* @brief Read a single frame from the file and return the clusters. The
* cluster vector will have the frame number set.
* @throws std::runtime_error if the file is not opened for reading or the file pointer not
* at the beginning of a frame
*/
ClusterVector<int32_t> read_frame();
void write_frame(const ClusterVector<int32_t> &clusters);
/**
* @brief Return the chunk size
*/
size_t chunk_size() const { return m_chunk_size; }
/**
* @brief Set the region of interest to use when reading clusters. If set only clusters within
* the ROI will be read.
*/
void set_roi(ROI roi);
/**
* @brief Set the noise map to use when reading clusters. If set clusters below the noise
* level will be discarded. Selection criteria one of: Central pixel above noise, highest
* 2x2 sum above 2 * noise, total sum above 3 * noise.
*/
void set_noise_map(const NDView<int32_t, 2> noise_map);
/**
* @brief Set the gain map to use when reading clusters. If set the gain map will be applied
* to the clusters that pass ROI and noise_map selection. The gain map is expected to be in ADU/energy.
*/
void set_gain_map(const NDView<double, 2> gain_map);
/**
* @brief Close the file. If not closed the file will be closed in the destructor
*/
void close();
private:
ClusterVector<int32_t> read_clusters_with_cut(size_t n_clusters);
ClusterVector<int32_t> read_clusters_without_cut(size_t n_clusters);
ClusterVector<int32_t> read_frame_with_cut();
ClusterVector<int32_t> read_frame_without_cut();
bool is_selected(Cluster3x3 &cl);
Cluster3x3 read_one_cluster();
};
//TODO! helper functions that doesn't really belong here
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters);
Eta2 calculate_eta2(Cluster3x3 &cl);
Eta2 calculate_eta2(Cluster2x2 &cl);
} // namespace aare

View File

@ -1,56 +0,0 @@
#pragma once
#include <atomic>
#include <filesystem>
#include <thread>
#include "aare/ProducerConsumerQueue.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFinderMT.hpp"
namespace aare{
class ClusterFileSink{
ProducerConsumerQueue<ClusterVector<int>>* m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::ofstream m_file;
void process(){
m_stopped = false;
fmt::print("ClusterFileSink started\n");
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<int> *clusters = m_source->frontPtr();
clusters != nullptr) {
// Write clusters to file
int32_t frame_number = clusters->frame_number(); //TODO! Should we store frame number already as int?
uint32_t num_clusters = clusters->size();
m_file.write(reinterpret_cast<const char*>(&frame_number), sizeof(frame_number));
m_file.write(reinterpret_cast<const char*>(&num_clusters), sizeof(num_clusters));
m_file.write(reinterpret_cast<const char*>(clusters->data()), clusters->size() * clusters->item_size());
m_source->popFront();
}else{
std::this_thread::sleep_for(m_default_wait);
}
}
fmt::print("ClusterFileSink stopped\n");
m_stopped = true;
}
public:
ClusterFileSink(ClusterFinderMT<uint16_t, double, int32_t>* source, const std::filesystem::path& fname){
m_source = source->sink();
m_thread = std::thread(&ClusterFileSink::process, this);
m_file.open(fname, std::ios::binary);
}
void stop(){
m_stop_requested = true;
m_thread.join();
m_file.close();
}
};
} // namespace aare

View File

@ -1,6 +1,4 @@
#pragma once
#include "aare/ClusterFile.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/Dtype.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
@ -10,139 +8,251 @@
namespace aare {
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
typename CT = int32_t>
/** enum to define the event types */
enum eventType {
PEDESTAL, /** pedestal */
NEIGHBOUR, /** neighbour i.e. below threshold, but in the cluster of a
photon */
PHOTON, /** photon i.e. above threshold */
PHOTON_MAX, /** maximum of a cluster satisfying the photon conditions */
NEGATIVE_PEDESTAL, /** negative value, will not be accounted for as pedestal
in order to avoid drift of the pedestal towards
negative values */
UNDEFINED_EVENT = -1 /** undefined */
};
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
class ClusterFinder {
Shape<2> m_image_size;
const int m_cluster_sizeX;
const int m_cluster_sizeY;
const PEDESTAL_TYPE m_nSigma;
const PEDESTAL_TYPE c2;
const PEDESTAL_TYPE c3;
const double m_threshold;
const double m_nSigma;
const double c2;
const double c3;
Pedestal<PEDESTAL_TYPE> m_pedestal;
ClusterVector<CT> m_clusters;
public:
/**
* @brief Construct a new ClusterFinder object
* @param image_size size of the image
* @param cluster_size size of the cluster (x, y)
* @param nSigma number of sigma above the pedestal to consider a photon
* @param capacity initial capacity of the cluster vector
*
*/
ClusterFinder(Shape<2> image_size, Shape<2> cluster_size,
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 1000000)
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]),
m_cluster_sizeY(cluster_size[1]),
m_nSigma(nSigma),
ClusterFinder(Shape<2> image_size, Shape<2>cluster_size, double nSigma = 5.0,
double threshold = 0.0)
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]), m_cluster_sizeY(cluster_size[1]),
m_threshold(threshold), m_nSigma(nSigma),
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
m_pedestal(image_size[0], image_size[1]),
m_clusters(m_cluster_sizeX, m_cluster_sizeY, capacity) {};
m_pedestal(image_size[0], image_size[1]) {
// c2 = sqrt((cluster_sizeY + 1) / 2 * (cluster_sizeX + 1) / 2);
// c3 = sqrt(cluster_sizeX * cluster_sizeY);
};
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
m_pedestal.push(frame);
}
NDArray<PEDESTAL_TYPE, 2> pedestal() { return m_pedestal.mean(); }
NDArray<PEDESTAL_TYPE, 2> noise() { return m_pedestal.std(); }
void clear_pedestal() { m_pedestal.clear(); }
/**
* @brief Move the clusters from the ClusterVector in the ClusterFinder to a
* new ClusterVector and return it.
* @param realloc_same_capacity if true the new ClusterVector will have the
* same capacity as the old one
*
*/
ClusterVector<CT> steal_clusters(bool realloc_same_capacity = false) {
ClusterVector<CT> tmp = std::move(m_clusters);
if (realloc_same_capacity)
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY,
tmp.capacity());
else
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY);
return tmp;
NDArray<PEDESTAL_TYPE, 2> pedestal() {
return m_pedestal.mean();
}
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
// // TODO! deal with even size clusters
// // currently 3,3 -> +/- 1
// // 4,4 -> +/- 2
int dy = m_cluster_sizeY / 2;
int dx = m_cluster_sizeX / 2;
m_clusters.set_frame_number(frame_number);
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
std::vector<DynamicCluster>
find_clusters_without_threshold(NDView<FRAME_TYPE, 2> frame,
// Pedestal<PEDESTAL_TYPE> &pedestal,
bool late_update = false) {
struct pedestal_update {
int x;
int y;
FRAME_TYPE value;
};
std::vector<pedestal_update> pedestal_updates;
std::vector<DynamicCluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
long double val;
long double max;
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
// initialize max and total
max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
eventMask[iy][ix] = PEDESTAL;
PEDESTAL_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
PEDESTAL_TYPE total = 0;
// What can we short circuit here?
PEDESTAL_TYPE rms = m_pedestal.std(iy, ix);
PEDESTAL_TYPE value = (frame(iy, ix) - m_pedestal.mean(iy, ix));
if (value < -m_nSigma * rms)
continue; // NEGATIVE_PEDESTAL go to next pixel
// TODO! No pedestal update???
for (int ir = -dy; ir < dy + 1; ir++) {
for (int ic = -dx; ic < dx + 1; ic++) {
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
PEDESTAL_TYPE val =
frame(iy + ir, ix + ic) -
m_pedestal.mean(iy + ir, ix + ic);
val = frame(iy + ir, ix + ic) -
m_pedestal.mean(iy + ir, ix + ic);
total += val;
max = std::max(max, val);
if (val > max) {
max = val;
}
}
}
}
auto rms = m_pedestal.std(iy, ix);
if (frame(iy, ix) - m_pedestal.mean(iy, ix) < -m_nSigma * rms) {
eventMask[iy][ix] = NEGATIVE_PEDESTAL;
continue;
} else if (max > m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
if ((max > m_nSigma * rms)) {
if (value < max)
continue; // Not max go to the next pixel
// but also no pedestal update
} else if (total > c3 * m_nSigma * rms) {
// pass
eventMask[iy][ix] = PHOTON;
} else {
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
m_pedestal.push_fast(iy, ix, frame(iy, ix)); // Assume we have reached n_samples in the pedestal, slight performance improvement
continue; // It was a pedestal value nothing to store
if (late_update) {
pedestal_updates.push_back({ix, iy, frame(iy, ix)});
} else {
m_pedestal.push(iy, ix, frame(iy, ix));
}
continue;
}
if (eventMask[iy][ix] == PHOTON &&
(frame(iy, ix) - m_pedestal.mean(iy, ix)) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
Dtype(typeid(PEDESTAL_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
// Store cluster
if (value == max) {
// Zero out the cluster data
std::fill(cluster_data.begin(), cluster_data.end(), 0);
// Fill the cluster data since we have a photon to store
// It's worth redoing the look since most of the time we
// don't have a photon
int i = 0;
for (int ir = -dy; ir < dy + 1; ir++) {
for (int ic = -dx; ic < dx + 1; ic++) {
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
CT tmp =
static_cast<CT>(frame(iy + ir, ix + ic)) -
PEDESTAL_TYPE tmp =
static_cast<PEDESTAL_TYPE>(
frame(iy + ir, ix + ic)) -
m_pedestal.mean(iy + ir, ix + ic);
cluster_data[i] =
tmp; // Watch for out of bounds access
cluster.set<PEDESTAL_TYPE>(i, tmp);
i++;
}
}
}
// Add the cluster to the output ClusterVector
m_clusters.push_back(
ix, iy,
reinterpret_cast<std::byte *>(cluster_data.data()));
clusters.push_back(cluster);
}
}
}
if (late_update) {
for (auto &update : pedestal_updates) {
m_pedestal.push(update.y, update.x, update.value);
}
}
return clusters;
}
// template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
std::vector<DynamicCluster>
find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
Pedestal<PEDESTAL_TYPE> &pedestal) {
assert(m_threshold > 0);
std::vector<DynamicCluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
double tthr, tthr1, tthr2;
NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
// convert to n photons
// nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can be
// optimized with expression templates?
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
auto val = frame(iy, ix) - pedestal.mean(iy, ix);
nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
rest(iy, ix) = val - nph(iy, ix) * m_threshold;
}
}
// iterate over frame pixels
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
eventMask[iy][ix] = PEDESTAL;
// initialize max and total
FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
if (rest(iy, ix) <= 0.25 * m_threshold) {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
eventMask[iy][ix] = NEIGHBOUR;
// iterate over cluster pixels around the current pixel (ix,iy)
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto val = frame(iy + ir, ix + ic) -
pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
}
}
}
auto rms = pedestal.std(iy, ix);
if (m_nSigma == 0) {
tthr = m_threshold;
tthr1 = m_threshold;
tthr2 = m_threshold;
} else {
tthr = m_nSigma * rms;
tthr1 = m_nSigma * rms * c3;
tthr2 = m_nSigma * rms * c2;
if (m_threshold > 2 * tthr)
tthr = m_threshold - tthr;
if (m_threshold > 2 * tthr1)
tthr1 = tthr - tthr1;
if (m_threshold > 2 * tthr2)
tthr2 = tthr - tthr2;
}
if (total > tthr1 || max > tthr) {
eventMask[iy][ix] = PHOTON;
nph(iy, ix) += 1;
rest(iy, ix) -= m_threshold;
} else {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
if (eventMask[iy][ix] == PHOTON &&
frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
Dtype(typeid(FRAME_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto tmp = frame(iy + ir, ix + ic) -
pedestal.mean(iy + ir, ix + ic);
cluster.set<FRAME_TYPE>(i, tmp);
i++;
}
}
}
clusters.push_back(cluster);
}
}
}
return clusters;
}
};

View File

@ -1,268 +0,0 @@
#pragma once
#include <atomic>
#include <cstdint>
#include <memory>
#include <thread>
#include <vector>
#include "aare/ClusterFinder.hpp"
#include "aare/NDArray.hpp"
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
enum class FrameType {
DATA,
PEDESTAL,
};
struct FrameWrapper {
FrameType type;
uint64_t frame_number;
NDArray<uint16_t, 2> data;
};
/**
* @brief ClusterFinderMT is a multi-threaded version of ClusterFinder. It uses
* a producer-consumer queue to distribute the frames to the threads. The
* clusters are collected in a single output queue.
* @tparam FRAME_TYPE type of the frame data
* @tparam PEDESTAL_TYPE type of the pedestal data
* @tparam CT type of the cluster data
*/
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
typename CT = int32_t>
class ClusterFinderMT {
size_t m_current_thread{0};
size_t m_n_threads{0};
using Finder = ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>;
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
using OutputQueue = ProducerConsumerQueue<ClusterVector<int>>;
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
OutputQueue m_sink{1000}; // All clusters go into this queue
std::vector<std::unique_ptr<Finder>> m_cluster_finders;
std::vector<std::thread> m_threads;
std::thread m_collect_thread;
std::chrono::milliseconds m_default_wait{1};
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_processing_threads_stopped{true};
/**
* @brief Function called by the processing threads. It reads the frames
* from the input queue and processes them.
*/
void process(int thread_id) {
auto cf = m_cluster_finders[thread_id].get();
auto q = m_input_queues[thread_id].get();
bool realloc_same_capacity = true;
while (!m_stop_requested || !q->isEmpty()) {
if (FrameWrapper *frame = q->frontPtr(); frame != nullptr) {
switch (frame->type) {
case FrameType::DATA:
cf->find_clusters(frame->data.view(), frame->frame_number);
m_output_queues[thread_id]->write(cf->steal_clusters(realloc_same_capacity));
break;
case FrameType::PEDESTAL:
m_cluster_finders[thread_id]->push_pedestal_frame(
frame->data.view());
break;
}
// frame is processed now discard it
m_input_queues[thread_id]->popFront();
} else {
std::this_thread::sleep_for(m_default_wait);
}
}
}
/**
* @brief Collect all the clusters from the output queues and write them to
* the sink
*/
void collect() {
bool empty = true;
while (!m_stop_requested || !empty || !m_processing_threads_stopped) {
empty = true;
for (auto &queue : m_output_queues) {
if (!queue->isEmpty()) {
while (!m_sink.write(std::move(*queue->frontPtr()))) {
std::this_thread::sleep_for(m_default_wait);
}
queue->popFront();
empty = false;
}
}
}
}
public:
/**
* @brief Construct a new ClusterFinderMT object
* @param image_size size of the image
* @param cluster_size size of the cluster
* @param nSigma number of sigma above the pedestal to consider a photon
* @param capacity initial capacity of the cluster vector. Should match
* expected number of clusters in a frame per frame.
* @param n_threads number of threads to use
*/
ClusterFinderMT(Shape<2> image_size, Shape<2> cluster_size,
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 2000,
size_t n_threads = 3)
: m_n_threads(n_threads) {
for (size_t i = 0; i < n_threads; i++) {
m_cluster_finders.push_back(
std::make_unique<ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>>(
image_size, cluster_size, nSigma, capacity));
}
for (size_t i = 0; i < n_threads; i++) {
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
}
//TODO! Should we start automatically?
start();
}
/**
* @brief Return the sink queue where all the clusters are collected
* @warning You need to empty this queue otherwise the cluster finder will wait forever
*/
ProducerConsumerQueue<ClusterVector<int>> *sink() { return &m_sink; }
/**
* @brief Start all processing threads
*/
void start() {
m_processing_threads_stopped = false;
m_stop_requested = false;
for (size_t i = 0; i < m_n_threads; i++) {
m_threads.push_back(
std::thread(&ClusterFinderMT::process, this, i));
}
m_collect_thread = std::thread(&ClusterFinderMT::collect, this);
}
/**
* @brief Stop all processing threads
*/
void stop() {
m_stop_requested = true;
for (auto &thread : m_threads) {
thread.join();
}
m_threads.clear();
m_processing_threads_stopped = true;
m_collect_thread.join();
}
/**
* @brief Wait for all the queues to be empty. Mostly used for timing tests.
*/
void sync() {
for (auto &q : m_input_queues) {
while (!q->isEmpty()) {
std::this_thread::sleep_for(m_default_wait);
}
}
for (auto &q : m_output_queues) {
while (!q->isEmpty()) {
std::this_thread::sleep_for(m_default_wait);
}
}
while (!m_sink.isEmpty()) {
std::this_thread::sleep_for(m_default_wait);
}
}
/**
* @brief Push a pedestal frame to all the cluster finders. The frames is
* expected to be dark. No photon finding is done. Just pedestal update.
*/
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
FrameWrapper fw{FrameType::PEDESTAL, 0,
NDArray(frame)}; // TODO! copies the data!
for (auto &queue : m_input_queues) {
while (!queue->write(fw)) {
std::this_thread::sleep_for(m_default_wait);
}
}
}
/**
* @brief Push the frame to the queue of the next available thread. Function
* returns once the frame is in a queue.
* @note Spin locks with a default wait if the queue is full.
*/
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
FrameWrapper fw{FrameType::DATA, frame_number,
NDArray(frame)}; // TODO! copies the data!
while (!m_input_queues[m_current_thread % m_n_threads]->write(fw)) {
std::this_thread::sleep_for(m_default_wait);
}
m_current_thread++;
}
void clear_pedestal() {
if (!m_processing_threads_stopped) {
throw std::runtime_error("ClusterFinderMT is still running");
}
for (auto &cf : m_cluster_finders) {
cf->clear_pedestal();
}
}
/**
* @brief Return the pedestal currently used by the cluster finder
* @param thread_index index of the thread
*/
auto pedestal(size_t thread_index = 0) {
if (m_cluster_finders.empty()) {
throw std::runtime_error("No cluster finders available");
}
if (!m_processing_threads_stopped) {
throw std::runtime_error("ClusterFinderMT is still running");
}
if (thread_index >= m_cluster_finders.size()) {
throw std::runtime_error("Thread index out of range");
}
return m_cluster_finders[thread_index]->pedestal();
}
/**
* @brief Return the noise currently used by the cluster finder
* @param thread_index index of the thread
*/
auto noise(size_t thread_index = 0) {
if (m_cluster_finders.empty()) {
throw std::runtime_error("No cluster finders available");
}
if (!m_processing_threads_stopped) {
throw std::runtime_error("ClusterFinderMT is still running");
}
if (thread_index >= m_cluster_finders.size()) {
throw std::runtime_error("Thread index out of range");
}
return m_cluster_finders[thread_index]->noise();
}
// void push(FrameWrapper&& frame) {
// //TODO! need to loop until we are successful
// auto rc = m_input_queue.write(std::move(frame));
// fmt::print("pushed frame {}\n", rc);
// }
};
} // namespace aare

View File

@ -1,304 +0,0 @@
#pragma once
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <numeric>
#include <vector>
#include <fmt/core.h>
#include "aare/Cluster.hpp"
#include "aare/NDView.hpp"
namespace aare {
/**
* @brief ClusterVector is a container for clusters of various sizes. It uses a
* contiguous memory buffer to store the clusters. It is templated on the data
* type and the coordinate type of the clusters.
* @note push_back can invalidate pointers to elements in the container
* @warning ClusterVector is currently move only to catch unintended copies, but
* this might change since there are probably use cases where copying is needed.
* @tparam T data type of the pixels in the cluster
* @tparam CoordType data type of the x and y coordinates of the cluster
* (normally int16_t)
*/
template <typename T, typename CoordType = int16_t> class ClusterVector {
using value_type = T;
size_t m_cluster_size_x;
size_t m_cluster_size_y;
std::byte *m_data{};
size_t m_size{0};
size_t m_capacity;
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
/*
Format string used in the python bindings to create a numpy
array from the buffer
= - native byte order
h - short
d - double
i - int
*/
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
public:
/**
* @brief Construct a new ClusterVector object
* @param cluster_size_x size of the cluster in x direction
* @param cluster_size_y size of the cluster in y direction
* @param capacity initial capacity of the buffer in number of clusters
* @param frame_number frame number of the clusters. Default is 0, which is
* also used to indicate that the clusters come from many frames
*/
ClusterVector(size_t cluster_size_x = 3, size_t cluster_size_y = 3,
size_t capacity = 1024, uint64_t frame_number = 0)
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
m_capacity(capacity), m_frame_number(frame_number) {
allocate_buffer(capacity);
}
~ClusterVector() { delete[] m_data; }
// Move constructor
ClusterVector(ClusterVector &&other) noexcept
: m_cluster_size_x(other.m_cluster_size_x),
m_cluster_size_y(other.m_cluster_size_y), m_data(other.m_data),
m_size(other.m_size), m_capacity(other.m_capacity),
m_frame_number(other.m_frame_number) {
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
}
// Move assignment operator
ClusterVector &operator=(ClusterVector &&other) noexcept {
if (this != &other) {
delete[] m_data;
m_cluster_size_x = other.m_cluster_size_x;
m_cluster_size_y = other.m_cluster_size_y;
m_data = other.m_data;
m_size = other.m_size;
m_capacity = other.m_capacity;
m_frame_number = other.m_frame_number;
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
other.m_frame_number = 0;
}
return *this;
}
/**
* @brief Reserve space for at least capacity clusters
* @param capacity number of clusters to reserve space for
* @note If capacity is less than the current capacity, the function does
* nothing.
*/
void reserve(size_t capacity) {
if (capacity > m_capacity) {
allocate_buffer(capacity);
}
}
/**
* @brief Add a cluster to the vector
* @param x x-coordinate of the cluster
* @param y y-coordinate of the cluster
* @param data pointer to the data of the cluster
* @warning The data pointer must point to a buffer of size cluster_size_x *
* cluster_size_y * sizeof(T)
*/
void push_back(CoordType x, CoordType y, const std::byte *data) {
if (m_size == m_capacity) {
allocate_buffer(m_capacity * 2);
}
std::byte *ptr = element_ptr(m_size);
*reinterpret_cast<CoordType *>(ptr) = x;
ptr += sizeof(CoordType);
*reinterpret_cast<CoordType *>(ptr) = y;
ptr += sizeof(CoordType);
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
ptr);
m_size++;
}
ClusterVector &operator+=(const ClusterVector &other) {
if (m_size + other.m_size > m_capacity) {
allocate_buffer(m_capacity + other.m_size);
}
std::copy(other.m_data, other.m_data + other.m_size * item_size(),
m_data + m_size * item_size());
m_size += other.m_size;
return *this;
}
/**
* @brief Sum the pixels in each cluster
* @return std::vector<T> vector of sums for each cluster
*/
std::vector<T> sum() {
std::vector<T> sums(m_size);
const size_t stride = item_size();
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
for (size_t i = 0; i < m_size; i++) {
sums[i] =
std::accumulate(reinterpret_cast<T *>(ptr),
reinterpret_cast<T *>(ptr) + n_pixels, T{});
ptr += stride;
}
return sums;
}
/**
* @brief Return the maximum sum of the 2x2 subclusters in each cluster
* @return std::vector<T> vector of sums for each cluster
* @throws std::runtime_error if the cluster size is not 3x3
* @warning Only 3x3 clusters are supported for the 2x2 sum.
*/
std::vector<T> sum_2x2() {
std::vector<T> sums(m_size);
const size_t stride = item_size();
if (m_cluster_size_x != 3 || m_cluster_size_y != 3) {
throw std::runtime_error(
"Only 3x3 clusters are supported for the 2x2 sum.");
}
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
for (size_t i = 0; i < m_size; i++) {
std::array<T, 4> total;
auto T_ptr = reinterpret_cast<T *>(ptr);
total[0] = T_ptr[0] + T_ptr[1] + T_ptr[3] + T_ptr[4];
total[1] = T_ptr[1] + T_ptr[2] + T_ptr[4] + T_ptr[5];
total[2] = T_ptr[3] + T_ptr[4] + T_ptr[6] + T_ptr[7];
total[3] = T_ptr[4] + T_ptr[5] + T_ptr[7] + T_ptr[8];
sums[i] = *std::max_element(total.begin(), total.end());
ptr += stride;
}
return sums;
}
/**
* @brief Return the number of clusters in the vector
*/
size_t size() const { return m_size; }
/**
* @brief Return the capacity of the buffer in number of clusters. This is
* the number of clusters that can be stored in the current buffer without
* reallocation.
*/
size_t capacity() const { return m_capacity; }
/**
* @brief Return the size in bytes of a single cluster
*/
size_t item_size() const {
return 2 * sizeof(CoordType) +
m_cluster_size_x * m_cluster_size_y * sizeof(T);
}
/**
* @brief Return the offset in bytes for the i-th cluster
*/
size_t element_offset(size_t i) const { return item_size() * i; }
/**
* @brief Return a pointer to the i-th cluster
*/
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
/**
* @brief Return a pointer to the i-th cluster
*/
const std::byte *element_ptr(size_t i) const {
return m_data + element_offset(i);
}
size_t cluster_size_x() const { return m_cluster_size_x; }
size_t cluster_size_y() const { return m_cluster_size_y; }
std::byte *data() { return m_data; }
std::byte const *data() const { return m_data; }
/**
* @brief Return a reference to the i-th cluster casted to type V
* @tparam V type of the cluster
*/
template <typename V> V &at(size_t i) {
return *reinterpret_cast<V *>(element_ptr(i));
}
template <typename V> const V &at(size_t i) const {
return *reinterpret_cast<const V *>(element_ptr(i));
}
const std::string_view fmt_base() const {
// TODO! how do we match on coord_t?
return m_fmt_base;
}
/**
* @brief Return the frame number of the clusters. 0 is used to indicate
* that the clusters come from many frames
*/
uint64_t frame_number() const { return m_frame_number; }
void set_frame_number(uint64_t frame_number) {
m_frame_number = frame_number;
}
/**
* @brief Resize the vector to contain new_size clusters. If new_size is
* greater than the current capacity, a new buffer is allocated. If the size
* is smaller no memory is freed, size is just updated.
* @param new_size new size of the vector
* @warning The additional clusters are not initialized
*/
void resize(size_t new_size) {
// TODO! Should we initialize the new clusters?
if (new_size > m_capacity) {
allocate_buffer(new_size);
}
m_size = new_size;
}
void apply_gain_map(const NDView<double> gain_map){
//in principle we need to know the size of the image for this lookup
//TODO! check orientations
std::array<int64_t, 9> xcorr = {-1, 0, 1, -1, 0, 1, -1, 0, 1};
std::array<int64_t, 9> ycorr = {-1, -1, -1, 0, 0, 0, 1, 1, 1};
for (size_t i=0; i<m_size; i++){
auto& cl = at<Cluster3x3>(i);
if (cl.x > 0 && cl.y > 0 && cl.x < gain_map.shape(1)-1 && cl.y < gain_map.shape(0)-1){
for (size_t j=0; j<9; j++){
size_t x = cl.x + xcorr[j];
size_t y = cl.y + ycorr[j];
cl.data[j] = static_cast<T>(cl.data[j] * gain_map(y, x));
}
}else{
memset(cl.data, 0, 9*sizeof(T)); //clear edge clusters
}
}
}
private:
void allocate_buffer(size_t new_capacity) {
size_t num_bytes = item_size() * new_capacity;
std::byte *new_data = new std::byte[num_bytes]{};
std::copy(m_data, m_data + item_size() * m_size, new_data);
delete[] m_data;
m_data = new_data;
m_capacity = new_capacity;
}
};
} // namespace aare

View File

@ -36,8 +36,6 @@ class File {
File(File &&other) noexcept;
File& operator=(File &&other) noexcept;
~File() = default;
// void close(); //!< close the file
Frame read_frame(); //!< read one frame from the file at the current position
Frame read_frame(size_t frame_index); //!< read one frame at the position given by frame number
@ -46,7 +44,6 @@ class File {
void read_into(std::byte *image_buf);
void read_into(std::byte *image_buf, size_t n_frames);
size_t frame_number(); //!< get the frame number at the current position
size_t frame_number(size_t frame_index); //!< get the frame number at the given frame index
size_t bytes_per_frame() const;
size_t pixels_per_frame() const;

View File

@ -1,30 +0,0 @@
#pragma once
#include <cstdio>
#include <filesystem>
namespace aare {
/**
* \brief RAII wrapper for FILE pointer
*/
class FilePtr {
FILE *fp_{nullptr};
public:
FilePtr() = default;
FilePtr(const std::filesystem::path& fname, const std::string& mode);
FilePtr(const FilePtr &) = delete; // we don't want a copy
FilePtr &operator=(const FilePtr &) = delete; // since we handle a resource
FilePtr(FilePtr &&other);
FilePtr &operator=(FilePtr &&other);
FILE *get();
int64_t tell();
void seek(int64_t offset, int whence = SEEK_SET) {
if (fseek(fp_, offset, whence) != 0)
throw std::runtime_error("Error seeking in file");
}
std::string error_msg();
~FilePtr();
};
} // namespace aare

View File

@ -1,92 +0,0 @@
#pragma once
#include <cmath>
#include <fmt/core.h>
#include <vector>
#include "aare/NDArray.hpp"
namespace aare {
namespace func {
double gaus(const double x, const double *par);
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par);
double pol1(const double x, const double *par);
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
} // namespace func
/**
* @brief Estimate the initial parameters for a Gaussian fit
*/
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
static constexpr int DEFAULT_NUM_THREADS = 4;
/**
* @brief Fit a 1D Gaussian to data.
* @param data data to fit
* @param x x values
*/
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
/**
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param n_threads number of threads to use
*/
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
/**
* @brief Fit a 1D Gaussian with error estimates
* @param x x values
* @param y y vales, layout [row, col, values]
* @param y_err error in y, layout [row, col, values]
* @param par_out output parameters
* @param par_err_out output error parameters
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double& chi2);
/**
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
* [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param y_err error in y, layout [row, col, values]
* @param par_out output parameters, layout [row, col, values]
* @param par_err_out output parameter errors, layout [row, col, values]
* @param n_threads number of threads to use
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS
);
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
// TODO! not sure we need to offer the different version in C++
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS);
} // namespace aare

View File

@ -1,29 +0,0 @@
#pragma once
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFile.hpp" //Cluster_3x3
namespace aare{
struct Photon{
double x;
double y;
double energy;
};
class Interpolator{
NDArray<double, 3> m_ietax;
NDArray<double, 3> m_ietay;
NDArray<double, 1> m_etabinsx;
NDArray<double, 1> m_etabinsy;
NDArray<double, 1> m_energy_bins;
public:
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins, NDView<double, 1> ybins, NDView<double, 1> ebins);
NDArray<double, 3> get_ietax(){return m_ietax;}
NDArray<double, 3> get_ietay(){return m_ietay;}
std::vector<Photon> interpolate(const ClusterVector<int32_t>& clusters);
};
} // namespace aare

View File

@ -1,106 +0,0 @@
#pragma once
#include <cstdint>
#include <filesystem>
#include <vector>
#include "aare/FilePtr.hpp"
#include "aare/defs.hpp"
#include "aare/NDArray.hpp"
#include "aare/FileInterface.hpp"
namespace aare {
struct JungfrauDataHeader{
uint64_t framenum;
uint64_t bunchid;
};
class JungfrauDataFile : public FileInterface {
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
size_t m_cols{}; //!< number of columns in the image, from find_frame_size();
size_t m_bytes_per_frame{}; //!< number of bytes per frame excluding header
size_t m_total_frames{}; //!< total number of frames in the series of files
size_t m_offset{}; //!< file index of the first file, allow starting at non zero file
size_t m_current_file_index{}; //!< The index of the open file
size_t m_current_frame_index{}; //!< The index of the current frame (with reference to all files)
std::vector<size_t> m_last_frame_in_file{}; //!< Used for seeking to the correct file
std::filesystem::path m_path; //!< path to the files
std::string m_base_name; //!< base name used for formatting file names
FilePtr m_fp; //!< RAII wrapper for a FILE*
using pixel_type = uint16_t;
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
static constexpr size_t n_digits_in_file_index = 6; //!< to format file names
public:
JungfrauDataFile(const std::filesystem::path &fname);
std::string base_name() const; //!< get the base name of the file (without path and extension)
size_t bytes_per_frame() override;
size_t pixels_per_frame() override;
size_t bytes_per_pixel() const;
size_t bitdepth() const override;
void seek(size_t frame_index) override; //!< seek to the given frame index (note not byte offset)
size_t tell() override; //!< get the frame index of the file pointer
size_t total_frames() const override;
size_t rows() const override;
size_t cols() const override;
std::array<ssize_t,2> shape() const;
size_t n_files() const; //!< get the number of files in the series.
// Extra functions needed for FileInterface
Frame read_frame() override;
Frame read_frame(size_t frame_number) override;
std::vector<Frame> read_n(size_t n_frames=0) override;
void read_into(std::byte *image_buf) override;
void read_into(std::byte *image_buf, size_t n_frames) override;
size_t frame_number(size_t frame_index) override;
DetectorType detector_type() const override;
/**
* @brief Read a single frame from the file into the given buffer.
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
*/
void read_into(std::byte *image_buf, JungfrauDataHeader *header = nullptr);
/**
* @brief Read a multiple frames from the file into the given buffer.
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
* @param n_frames number of frames to read
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
*/
void read_into(std::byte *image_buf, size_t n_frames, JungfrauDataHeader *header = nullptr);
/**
* @brief Read a single frame from the file into the given NDArray
* @param image NDArray to read the frame into.
*/
void read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header = nullptr);
JungfrauDataHeader read_header();
std::filesystem::path current_file() const { return fpath(m_current_file_index+m_offset); }
private:
/**
* @brief Find the size of the frame in the file. (256x256, 256x1024, 512x1024)
* @param fname path to the file
* @throws std::runtime_error if the file is empty or the size cannot be determined
*/
void find_frame_size(const std::filesystem::path &fname);
void parse_fname(const std::filesystem::path &fname);
void scan_files();
void open_file(size_t file_index);
std::filesystem::path fpath(size_t frame_index) const;
};
} // namespace aare

View File

@ -69,11 +69,6 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::copy(v.begin(), v.end(), begin());
}
template<size_t Size>
NDArray(const std::array<T, Size>& arr) : NDArray<T,1>({Size}) {
std::copy(arr.begin(), arr.end(), begin());
}
// Move constructor
NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
@ -92,7 +87,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
// Conversion operator from array expression to array
template <typename E>
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
for (size_t i = 0; i < size_; ++i) {
for (int i = 0; i < size_; ++i) {
data_[i] = expr[i];
}
}
@ -102,9 +97,6 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
auto begin() { return data_; }
auto end() { return data_ + size_; }
auto begin() const { return data_; }
auto end() const { return data_ + size_; }
using value_type = T;
NDArray &operator=(NDArray &&other) noexcept; // Move assign
@ -113,20 +105,6 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator-=(const NDArray &other);
NDArray &operator*=(const NDArray &other);
//Write directly to the data array, or create a new one
template<size_t Size>
NDArray<T,1>& operator=(const std::array<T,Size> &other){
if(Size != size_){
delete[] data_;
size_ = Size;
data_ = new T[size_];
}
for (size_t i = 0; i < Size; ++i) {
data_[i] = other[i];
}
return *this;
}
// NDArray& operator/=(const NDArray& other);
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
@ -157,11 +135,6 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator&=(const T & /*mask*/);
void sqrt() {
for (int i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
@ -186,15 +159,15 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
}
// TODO! is int the right type for index?
T &operator()(int64_t i) { return data_[i]; }
const T &operator()(int64_t i) const { return data_[i]; }
T &operator()(int i) { return data_[i]; }
const T &operator()(int i) const { return data_[i]; }
T &operator[](int64_t i) { return data_[i]; }
const T &operator[](int64_t i) const { return data_[i]; }
T &operator[](int i) { return data_[i]; }
const T &operator[](int i) const { return data_[i]; }
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t size() const { return size_; }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
@ -345,9 +318,6 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
return *this;
}
template <typename T, int64_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
NDArray result = *this;
@ -391,12 +361,12 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
result *= value;
return result;
}
// template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
// if (shape_[0] < 20 && shape_[1] < 20)
// Print_all();
// else
// Print_some();
// }
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
if (shape_[0] < 20 && shape_[1] < 20)
Print_all();
else
Print_some();
}
template <typename T, int64_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
@ -448,6 +418,4 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
} // namespace aare

View File

@ -1,5 +1,5 @@
#pragma once
#include "aare/defs.hpp"
#include "aare/ArrayExpr.hpp"
#include <algorithm>
@ -71,7 +71,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
return buffer_[element_offset(strides_, index...)];
}
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t size() const { return size_; }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
@ -99,15 +99,6 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
template<size_t Size>
NDView& operator=(const std::array<T, Size> &arr) {
if(size() != static_cast<ssize_t>(arr.size()))
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
std::copy(arr.begin(), arr.end(), begin());
return *this;
}
NDView &operator=(const T val) {
for (auto it = begin(); it != end(); ++it)
*it = val;
@ -184,9 +175,4 @@ std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
}
template <typename T>
NDView<T,1> make_view(std::vector<T>& vec){
return NDView<T,1>(vec.data(), {static_cast<int64_t>(vec.size())});
}
} // namespace aare

View File

@ -18,48 +18,34 @@ template <typename SUM_TYPE = double> class Pedestal {
uint32_t m_samples;
NDArray<uint32_t, 2> m_cur_samples;
//TODO! in case of int needs to be changed to uint64_t
NDArray<SUM_TYPE, 2> m_sum;
NDArray<SUM_TYPE, 2> m_sum2;
//Cache mean since it is used over and over in the ClusterFinder
//This optimization is related to the access pattern of the ClusterFinder
//Relies on having more reads than pushes to the pedestal
NDArray<SUM_TYPE, 2> m_mean;
public:
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
: m_rows(rows), m_cols(cols), m_samples(n_samples),
m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),
m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})),
m_mean(NDArray<SUM_TYPE, 2>({rows, cols})) {
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
assert(rows > 0 && cols > 0 && n_samples > 0);
m_sum = 0;
m_sum2 = 0;
m_mean = 0;
}
~Pedestal() = default;
NDArray<SUM_TYPE, 2> mean() {
return m_mean;
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
}
return mean_array;
}
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
return m_mean(row, col);
}
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
return std::sqrt(variance(row, col));
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum2(row, col) / m_cur_samples(row, col) -
mean(row, col) * mean(row, col);
return m_sum(row, col) / m_cur_samples(row, col);
}
NDArray<SUM_TYPE, 2> variance() {
@ -71,7 +57,13 @@ template <typename SUM_TYPE = double> class Pedestal {
return variance_array;
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum2(row, col) / m_cur_samples(row, col) -
mean(row, col) * mean(row, col);
}
NDArray<SUM_TYPE, 2> std() {
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
@ -83,13 +75,14 @@ template <typename SUM_TYPE = double> class Pedestal {
return standard_deviation_array;
}
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
return std::sqrt(variance(row, col));
}
void clear() {
m_sum = 0;
m_sum2 = 0;
m_cur_samples = 0;
m_mean = 0;
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
clear(i / m_cols, i % m_cols);
}
}
@ -98,11 +91,8 @@ template <typename SUM_TYPE = double> class Pedestal {
m_sum(row, col) = 0;
m_sum2(row, col) = 0;
m_cur_samples(row, col) = 0;
m_mean(row, col) = 0;
}
// frame level operations
template <typename T> void push(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
@ -112,37 +102,17 @@ template <typename SUM_TYPE = double> class Pedestal {
"Frame shape does not match pedestal shape");
}
for (size_t row = 0; row < m_rows; row++) {
for (size_t col = 0; col < m_cols; col++) {
for (uint32_t row = 0; row < m_rows; row++) {
for (uint32_t col = 0; col < m_cols; col++) {
push<T>(row, col, frame(row, col));
}
}
// // TODO: test the effect of #pragma omp parallel for
// for (uint32_t index = 0; index < m_rows * m_cols; index++) {
// push<T>(index / m_cols, index % m_cols, frame(index));
// }
}
/**
* Push but don't update the cached mean. Speeds up the process
* when initializing the pedestal.
*
*/
template <typename T> void push_no_update(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
// TODO! move away from m_rows, m_cols
if (frame.shape() != std::array<int64_t, 2>{m_rows, m_cols}) {
throw std::runtime_error(
"Frame shape does not match pedestal shape");
}
for (size_t row = 0; row < m_rows; row++) {
for (size_t col = 0; col < m_cols; col++) {
push_no_update<T>(row, col, frame(row, col));
}
}
}
template <typename T> void push(Frame &frame) {
assert(frame.rows() == static_cast<size_t>(m_rows) &&
frame.cols() == static_cast<size_t>(m_cols));
@ -162,48 +132,18 @@ template <typename SUM_TYPE = double> class Pedestal {
template <typename T>
void push(const uint32_t row, const uint32_t col, const T val_) {
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
if (m_cur_samples(row, col) < m_samples) {
m_sum(row, col) += val;
m_sum2(row, col) += val * val;
m_cur_samples(row, col)++;
const uint32_t idx = index(row, col);
if (m_cur_samples(idx) < m_samples) {
m_sum(idx) += val;
m_sum2(idx) += val * val;
m_cur_samples(idx)++;
} else {
m_sum(row, col) += val - m_sum(row, col) / m_samples;
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
}
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
}
template <typename T>
void push_no_update(const uint32_t row, const uint32_t col, const T val_) {
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
if (m_cur_samples(row, col) < m_samples) {
m_sum(row, col) += val;
m_sum2(row, col) += val * val;
m_cur_samples(row, col)++;
} else {
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
}
}
/**
* @brief Update the mean of the pedestal. This is used after having done
* push_no_update. It is not necessary to call this function after push.
*/
void update_mean(){
m_mean = m_sum / m_cur_samples;
}
template<typename T>
void push_fast(const uint32_t row, const uint32_t col, const T val_){
//Assume we reached the steady state where all pixels have
//m_samples samples
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
m_sum(row, col) += val - m_sum(row, col) / m_samples;
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
m_mean(row, col) = m_sum(row, col) / m_samples;
}
uint32_t index(const uint32_t row, const uint32_t col) const {
return row * m_cols + col;
};
};
} // namespace aare

View File

@ -1,203 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// @author Bo Hu (bhu@fb.com)
// @author Jordan DeLong (delong.j@fb.com)
// Changes made by PSD Detector Group:
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size = 128; from folly/lang/Align.h
// Changed extension to .hpp
// Changed namespace to aare
#pragma once
#include <atomic>
#include <cassert>
#include <cstdlib>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <utility>
constexpr std::size_t hardware_destructive_interference_size = 128;
namespace aare {
/*
* ProducerConsumerQueue is a one producer and one consumer queue
* without locks.
*/
template <class T> struct ProducerConsumerQueue {
typedef T value_type;
ProducerConsumerQueue(const ProducerConsumerQueue &) = delete;
ProducerConsumerQueue &operator=(const ProducerConsumerQueue &) = delete;
ProducerConsumerQueue(ProducerConsumerQueue &&other){
size_ = other.size_;
records_ = other.records_;
other.records_ = nullptr;
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
}
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other){
size_ = other.size_;
records_ = other.records_;
other.records_ = nullptr;
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
return *this;
}
ProducerConsumerQueue():ProducerConsumerQueue(2){};
// size must be >= 2.
//
// Also, note that the number of usable slots in the queue at any
// given time is actually (size-1), so if you start with an empty queue,
// isFull() will return true after size-1 insertions.
explicit ProducerConsumerQueue(uint32_t size)
: size_(size), records_(static_cast<T *>(std::malloc(sizeof(T) * size))), readIndex_(0), writeIndex_(0) {
assert(size >= 2);
if (!records_) {
throw std::bad_alloc();
}
}
~ProducerConsumerQueue() {
// We need to destruct anything that may still exist in our queue.
// (No real synchronization needed at destructor time: only one
// thread can be doing this.)
if (!std::is_trivially_destructible<T>::value) {
size_t readIndex = readIndex_;
size_t endIndex = writeIndex_;
while (readIndex != endIndex) {
records_[readIndex].~T();
if (++readIndex == size_) {
readIndex = 0;
}
}
}
std::free(records_);
}
template <class... Args> bool write(Args &&...recordArgs) {
auto const currentWrite = writeIndex_.load(std::memory_order_relaxed);
auto nextRecord = currentWrite + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
new (&records_[currentWrite]) T(std::forward<Args>(recordArgs)...);
writeIndex_.store(nextRecord, std::memory_order_release);
return true;
}
// queue is full
return false;
}
// move (or copy) the value at the front of the queue to given variable
bool read(T &record) {
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
// queue is empty
return false;
}
auto nextRecord = currentRead + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
record = std::move(records_[currentRead]);
records_[currentRead].~T();
readIndex_.store(nextRecord, std::memory_order_release);
return true;
}
// pointer to the value at the front of the queue (for use in-place) or
// nullptr if empty.
T *frontPtr() {
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
// queue is empty
return nullptr;
}
return &records_[currentRead];
}
// queue must not be empty
void popFront() {
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
assert(currentRead != writeIndex_.load(std::memory_order_acquire));
auto nextRecord = currentRead + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
records_[currentRead].~T();
readIndex_.store(nextRecord, std::memory_order_release);
}
bool isEmpty() const {
return readIndex_.load(std::memory_order_acquire) == writeIndex_.load(std::memory_order_acquire);
}
bool isFull() const {
auto nextRecord = writeIndex_.load(std::memory_order_acquire) + 1;
if (nextRecord == size_) {
nextRecord = 0;
}
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
return false;
}
// queue is full
return true;
}
// * If called by consumer, then true size may be more (because producer may
// be adding items concurrently).
// * If called by producer, then true size may be less (because consumer may
// be removing items concurrently).
// * It is undefined to call this from any other thread.
size_t sizeGuess() const {
int ret = writeIndex_.load(std::memory_order_acquire) - readIndex_.load(std::memory_order_acquire);
if (ret < 0) {
ret += size_;
}
return ret;
}
// maximum number of items in the queue.
size_t capacity() const { return size_ - 1; }
private:
using AtomicIndex = std::atomic<unsigned int>;
char pad0_[hardware_destructive_interference_size];
// const uint32_t size_;
uint32_t size_;
// T *const records_;
T* records_;
alignas(hardware_destructive_interference_size) AtomicIndex readIndex_;
alignas(hardware_destructive_interference_size) AtomicIndex writeIndex_;
char pad1_[hardware_destructive_interference_size - sizeof(AtomicIndex)];
};
} // namespace aare

View File

@ -34,19 +34,15 @@ class RawFile : public FileInterface {
size_t n_subfile_parts{}; // d0,d1...dn
//TODO! move to vector of SubFile instead of pointers
std::vector<std::vector<RawSubFile *>> subfiles; //subfiles[f0,f1...fn][d0,d1...dn]
// std::vector<xy> positions;
std::vector<xy> positions;
std::vector<ModuleGeometry> m_module_pixel_0;
ModuleConfig cfg{0, 0};
RawMasterFile m_master;
size_t m_current_frame{};
// std::vector<ModuleGeometry> m_module_pixel_0;
// size_t m_rows{};
// size_t m_cols{};
DetectorGeometry m_geometry;
size_t m_rows{};
size_t m_cols{};
public:
/**
@ -115,12 +111,11 @@ class RawFile : public FileInterface {
*/
static DetectorHeader read_header(const std::filesystem::path &fname);
// void update_geometry_with_roi();
void update_geometry_with_roi();
int find_number_of_subfiles();
void open_subfiles();
void find_geometry();
};
} // namespace aare

View File

@ -62,6 +62,17 @@ class ScanParameters {
};
struct ROI{
int64_t xmin{};
int64_t xmax{};
int64_t ymin{};
int64_t ymax{};
int64_t height() const { return ymax - ymin; }
int64_t width() const { return xmax - xmin; }
};
/**
* @brief Class for parsing a master file either in our .json format or the old
* .raw format

View File

@ -22,7 +22,7 @@ class RawSubFile {
size_t m_rows{};
size_t m_cols{};
size_t m_bytes_per_frame{};
size_t m_num_frames{};
size_t n_frames{};
uint32_t m_pos_row{};
uint32_t m_pos_col{};
@ -53,7 +53,6 @@ class RawSubFile {
size_t tell();
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header= nullptr);
void get_part(std::byte *buffer, size_t frame_index);
void read_header(DetectorHeader *header);
@ -65,13 +64,8 @@ class RawSubFile {
size_t bytes_per_frame() const { return m_bytes_per_frame; }
size_t pixels_per_frame() const { return m_rows * m_cols; }
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
size_t bytes_per_pixel() const { return m_bitdepth / 8; }
size_t frames_in_file() const { return m_num_frames; }
private:
template <typename T>
void read_with_map(std::byte *image_buf);
};

View File

@ -7,7 +7,7 @@
#include "aare/NDArray.hpp"
const int MAX_CLUSTER_SIZE = 50;
const int MAX_CLUSTER_SIZE = 200;
namespace aare {
template <typename T> class VarClusterFinder {
@ -226,7 +226,7 @@ template <typename T> void VarClusterFinder<T>::single_pass(NDView<T, 2> img) {
template <typename T> void VarClusterFinder<T>::first_pass() {
for (ssize_t i = 0; i < original_.size(); ++i) {
for (size_t i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
@ -250,7 +250,7 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
template <typename T> void VarClusterFinder<T>::second_pass() {
for (ssize_t i = 0; i != labeled_.size(); ++i) {
for (size_t i = 0; i != labeled_.size(); ++i) {
auto cl = labeled_(i);
if (cl != 0) {
auto it = child.find(cl);

View File

@ -1,111 +0,0 @@
#pragma once
#include <algorithm>
#include <array>
#include <vector>
#include <aare/NDArray.hpp>
namespace aare {
/**
* @brief Index of the last element that is smaller than val.
* Requires a sorted array. Uses >= for ordering. If all elements
* are smaller it returns the last element and if all elements are
* larger it returns the first element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the last element that is smaller than val
*
*/
template <typename T>
size_t last_smaller(const T* first, const T* last, T val) {
for (auto iter = first+1; iter != last; ++iter) {
if (*iter >= val) {
return std::distance(first, iter-1);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t last_smaller(const NDArray<T, 1>& arr, T val) {
return last_smaller(arr.begin(), arr.end(), val);
}
template <typename T>
size_t last_smaller(const std::vector<T>& vec, T val) {
return last_smaller(vec.data(), vec.data()+vec.size(), val);
}
/**
* @brief Index of the first element that is larger than val.
* Requires a sorted array. Uses > for ordering. If all elements
* are larger it returns the first element and if all elements are
* smaller it returns the last element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the first element that is larger than val
*/
template <typename T>
size_t first_larger(const T* first, const T* last, T val) {
for (auto iter = first; iter != last; ++iter) {
if (*iter > val) {
return std::distance(first, iter);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t first_larger(const NDArray<T, 1>& arr, T val) {
return first_larger(arr.begin(), arr.end(), val);
}
template <typename T>
size_t first_larger(const std::vector<T>& vec, T val) {
return first_larger(vec.data(), vec.data()+vec.size(), val);
}
/**
* @brief Index of the nearest element to val.
* Requires a sorted array. If there is no difference it takes the first element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the nearest element
*/
template <typename T>
size_t nearest_index(const T* first, const T* last, T val) {
auto iter = std::min_element(first, last,
[val](T a, T b) {
return std::abs(a - val) < std::abs(b - val);
});
return std::distance(first, iter);
}
template <typename T>
size_t nearest_index(const NDArray<T, 1>& arr, T val) {
return nearest_index(arr.begin(), arr.end(), val);
}
template <typename T>
size_t nearest_index(const std::vector<T>& vec, T val) {
return nearest_index(vec.data(), vec.data()+vec.size(), val);
}
template <typename T, size_t N>
size_t nearest_index(const std::array<T,N>& arr, T val) {
return nearest_index(arr.data(), arr.data()+arr.size(), val);
}
template <typename T>
std::vector<T> cumsum(const std::vector<T>& vec) {
std::vector<T> result(vec.size());
std::partial_sum(vec.begin(), vec.end(), result.begin());
return result;
}
} // namespace aare

View File

@ -1,26 +0,0 @@
#pragma once
#include <cstdint>
#include <vector>
#include <aare/NDView.hpp>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input);
uint16_t adc_sar_04_decode64to16(uint64_t input);
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
/**
* @brief Apply custom weights to a 16-bit input value. Will sum up weights[i]**i
* for each bit i that is set in the input value.
* @throws std::out_of_range if weights.size() < 16
* @param input 16-bit input value
* @param weights vector of weights, size must be less than or equal to 16
*/
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights);
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double, 1> weights);
} // namespace aare

View File

@ -1,9 +1,11 @@
#pragma once
#include "aare/Dtype.hpp"
// #include "aare/utils/logger.hpp"
#include <array>
#include <stdexcept>
#include <cassert>
#include <cstdint>
#include <cstring>
@ -36,19 +38,16 @@
namespace aare {
inline constexpr size_t bits_per_byte = 8;
void assert_failed(const std::string &msg);
class DynamicCluster {
public:
int cluster_sizeX;
int cluster_sizeY;
int16_t x;
int16_t y;
Dtype dt; // 4 bytes
Dtype dt;
private:
std::byte *m_data;
@ -180,45 +179,13 @@ template <typename T> struct t_xy {
using xy = t_xy<uint32_t>;
/**
* @brief Class to hold the geometry of a module. Where pixel 0 is located and the size of the module
*/
struct ModuleGeometry{
int origin_x{};
int origin_y{};
int x{};
int y{};
int height{};
int width{};
int row_index{};
int col_index{};
};
/**
* @brief Class to hold the geometry of a detector. Number of modules, their size and where pixel 0
* for each module is located
*/
struct DetectorGeometry{
int modules_x{};
int modules_y{};
int pixels_x{};
int pixels_y{};
int module_gap_row{};
int module_gap_col{};
std::vector<ModuleGeometry> module_pixel_0;
};
struct ROI{
int64_t xmin{};
int64_t xmax{};
int64_t ymin{};
int64_t ymax{};
int64_t height() const { return ymax - ymin; }
int64_t width() const { return xmax - xmin; }
bool contains(int64_t x, int64_t y) const {
return x >= xmin && x < xmax && y >= ymin && y < ymax;
}
};
using dynamic_shape = std::vector<int64_t>;

View File

@ -1,16 +0,0 @@
#pragma once
#include "aare/defs.hpp"
#include "aare/RawMasterFile.hpp" //ROI refactor away
namespace aare{
/**
* @brief Update the detector geometry given a region of interest
*
* @param geo
* @param roi
* @return DetectorGeometry
*/
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, ROI roi);
} // namespace aare

View File

@ -1,12 +0,0 @@
#pragma once
#include <fstream>
#include <string>
namespace aare {
/**
* @brief Get the error message from an ifstream object
*/
std::string ifstream_error_msg(std::ifstream &ifs);
} // namespace aare

View File

@ -1,18 +0,0 @@
#include <thread>
#include <vector>
#include <utility>
namespace aare {
template<typename F>
void RunInParallel(F func, const std::vector<std::pair<int, int>>& tasks) {
// auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(func, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
}
} // namespace aare

View File

@ -1,8 +0,0 @@
#include <utility>
#include <vector>
namespace aare {
std::vector<std::pair<int, int>> split_task(int first, int last, int n_threads);
} // namespace aare

View File

@ -1,18 +0,0 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index dd3d8eb9..c0187747 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,11 +1,8 @@
# CMake build script for ZeroMQ
project(ZeroMQ)
-if(${CMAKE_SYSTEM_NAME} STREQUAL Darwin)
- cmake_minimum_required(VERSION 3.0.2)
-else()
- cmake_minimum_required(VERSION 2.8.12)
-endif()
+cmake_minimum_required(VERSION 3.15)
+message(STATUS "Patched cmake version")
include(CheckIncludeFiles)
include(CheckCCompilerFlag)

View File

@ -1,13 +0,0 @@
diff --git a/lib/CMakeLists.txt b/lib/CMakeLists.txt
index 4efb7ed..6533660 100644
--- a/lib/CMakeLists.txt
+++ b/lib/CMakeLists.txt
@@ -11,7 +11,7 @@ target_compile_definitions(${lib} PRIVATE "LMFIT_EXPORT") # for Windows DLL expo
target_include_directories(${lib}
PUBLIC
- $<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/>
+ $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/>
$<INSTALL_INTERFACE:include/>
)

View File

@ -4,32 +4,12 @@ build-backend = "scikit_build_core.build"
[project]
name = "aare"
version = "2025.4.22"
requires-python = ">=3.11"
dependencies = [
"numpy",
"matplotlib",
]
[tool.cibuildwheel]
build = "cp{311,312,313}-manylinux_x86_64"
version = "2024.11.28.dev0"
[tool.scikit-build]
build.verbose = true
cmake.build-type = "Release"
install.components = ["python"]
cmake.verbose = true
[tool.scikit-build.cmake.define]
AARE_PYTHON_BINDINGS = "ON"
AARE_INSTALL_PYTHONEXT = "ON"
[tool.pytest.ini_options]
markers = [
"files: marks tests that need additional data (deselect with '-m \"not files\"')",
]
AARE_SYSTEM_LIBRARIES = "ON"
AARE_INSTALL_PYTHONEXT = "ON"

View File

@ -1,13 +1,12 @@
find_package (Python 3.10 COMPONENTS Interpreter Development.Module REQUIRED)
set(PYBIND11_FINDPYTHON ON) # Needed for RH8
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
# Download or find pybind11 depending on configuration
if(AARE_FETCH_PYBIND11)
FetchContent_Declare(
pybind11
GIT_REPOSITORY https://github.com/pybind/pybind11
GIT_TAG v2.13.6
GIT_TAG v2.13.0
)
FetchContent_MakeAvailable(pybind11)
else()
@ -29,7 +28,6 @@ target_link_libraries(_aare PRIVATE aare_core aare_compiler_flags)
set( PYTHON_FILES
aare/__init__.py
aare/CtbRawFile.py
aare/func.py
aare/RawFile.py
aare/transform.py
aare/ScanParameters.py
@ -45,30 +43,17 @@ set_target_properties(_aare PROPERTIES
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/aare
)
set(PYTHON_EXAMPLES
examples/play.py
examples/fits.py
)
# Copy the python examples to the build directory
foreach(FILE ${PYTHON_EXAMPLES})
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
endforeach(FILE ${PYTHON_EXAMPLES})
# Copy the examples/scripts to the build directory
configure_file(examples/play.py ${CMAKE_BINARY_DIR}/play.py)
if(AARE_INSTALL_PYTHONEXT)
install(
TARGETS _aare
install(TARGETS _aare
EXPORT "${TARGETS_EXPORT_NAME}"
LIBRARY DESTINATION aare
COMPONENT python
)
install(
FILES ${PYTHON_FILES}
DESTINATION aare
COMPONENT python
)
install(FILES ${PYTHON_FILES} DESTINATION aare)
endif()

View File

@ -2,27 +2,13 @@
from . import _aare
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
from ._aare import File, RawMasterFile, RawSubFile
from ._aare import Pedestal, ClusterFinder, VarClusterFinder
from ._aare import DetectorType
from ._aare import ClusterFile
from ._aare import hitmap
from ._aare import ROI
from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
from ._aare import fit_gaus, fit_pol1
from ._aare import Interpolator
from ._aare import apply_custom_weights
from .CtbRawFile import CtbRawFile
from .RawFile import RawFile
from .ScanParameters import ScanParameters
from .utils import random_pixels, random_pixel, flat_list, add_colorbar
#make functions available in the top level API
from .func import *
from .utils import random_pixels, random_pixel

View File

@ -1 +0,0 @@
from ._aare import gaus, pol1

View File

@ -2,14 +2,6 @@ import numpy as np
from . import _aare
class AdcSar04Transform64to16:
def __call__(self, data):
return _aare.adc_sar_04_decode64to16(data)
class AdcSar05Transform64to16:
def __call__(self, data):
return _aare.adc_sar_05_decode64to16(data)
class Moench05Transform:
#Could be moved to C++ without changing the interface
def __init__(self):
@ -53,6 +45,4 @@ class Matterhorn02Transform:
moench05 = Moench05Transform()
moench05_1g = Moench05Transform1g()
moench05_old = Moench05TransformOld()
matterhorn02 = Matterhorn02Transform()
adc_sar_04_64to16 = AdcSar04Transform64to16()
adc_sar_05_64to16 = AdcSar05Transform64to16()
matterhorn02 = Matterhorn02Transform()

View File

@ -1,6 +1,4 @@
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
"""Return a list of random pixels.
@ -22,15 +20,4 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
Returns:
tuple: (row, col)
"""
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
def flat_list(xss):
"""Flatten a list of lists."""
return [x for xs in xss for x in xs]
def add_colorbar(ax, im, size="5%", pad=0.05):
"""Add a colorbar with the same height as the image."""
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size=size, pad=pad)
plt.colorbar(im, cax=cax)
return ax, im, cax
return random_pixels(1, xmin, xmax, ymin, ymax)[0]

View File

@ -1,79 +0,0 @@
import matplotlib.pyplot as plt
import numpy as np
from aare import fit_gaus, fit_pol1
from aare import gaus, pol1
textpm = f"±" #
textmu = f"μ" #
textsigma = f"σ" #
# ================================= Gauss fit =================================
# Parameters
mu = np.random.uniform(1, 100) # Mean of Gaussian
sigma = np.random.uniform(4, 20) # Standard deviation
num_points = 10000 # Number of points for smooth distribution
noise_sigma = 100
# Generate Gaussian distribution
data = np.random.normal(mu, sigma, num_points)
# Generate errors for each point
errors = np.abs(np.random.normal(0, sigma, num_points)) # Errors with mean 0, std 0.5
# Create subplot
fig0, ax0 = plt.subplots(1, 1, num=0, figsize=(12, 8))
x = np.histogram(data, bins=30)[1][:-1] + 0.05
y = np.histogram(data, bins=30)[0]
yerr = errors[:30]
# Add the errors as error bars in the step plot
ax0.errorbar(x, y, yerr=yerr, fmt=". ", capsize=5)
ax0.grid()
par, err = fit_gaus(x, y, yerr)
print(par, err)
x = np.linspace(x[0], x[-1], 1000)
ax0.plot(x, gaus(x, par), marker="")
ax0.set(xlabel="x", ylabel="Counts", title=f"A0 = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
f"{textmu} = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
f"{textsigma} = {par[2]:0.2f}{textpm}{err[2]:0.2f}\n"
f"(init: {textmu}: {mu:0.2f}, {textsigma}: {sigma:0.2f})")
fig0.tight_layout()
# ================================= pol1 fit =================================
# Parameters
n_points = 40
# Generate random slope and intercept (origin)
slope = np.random.uniform(-10, 10) # Random slope between 0.5 and 2.0
intercept = np.random.uniform(-10, 10) # Random intercept between -10 and 10
# Generate random x values
x_values = np.random.uniform(-10, 10, n_points)
# Calculate y values based on the linear function y = mx + b + error
errors = np.abs(np.random.normal(0, np.random.uniform(1, 5), n_points))
var_points = np.random.normal(0, np.random.uniform(0.1, 2), n_points)
y_values = slope * x_values + intercept + var_points
fig1, ax1 = plt.subplots(1, 1, num=1, figsize=(12, 8))
ax1.errorbar(x_values, y_values, yerr=errors, fmt=". ", capsize=5)
par, err = fit_pol1(x_values, y_values, errors)
x = np.linspace(np.min(x_values), np.max(x_values), 1000)
ax1.plot(x, pol1(x, par), marker="")
ax1.set(xlabel="x", ylabel="y", title=f"a = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
f"b = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
f"(init: {slope:0.2f}, {intercept:0.2f})")
fig1.tight_layout()
plt.show()

View File

@ -1,79 +1,15 @@
import sys
sys.path.append('/home/l_msdetect/erik/aare/build')
from aare._aare import ClusterVector_i, Interpolator
import pickle
import numpy as np
import matplotlib.pyplot as plt
import boost_histogram as bh
import torch
import math
import time
import numpy as np
plt.ion()
from pathlib import Path
from aare import ClusterFile
base = Path('~/data/aare_test_data/clusters').expanduser()
f = ClusterFile(base / 'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust')
# f = ClusterFile(base / 'single_frame_97_clustrers.clust')
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
"""
Generate a 2D gaussian as position mx, my, with sigma=sigma.
The gaussian is placed on a 2x2 pixel matrix with resolution
res in one dimesion.
"""
x = torch.linspace(0, pixel_size*grid_size, res)
x,y = torch.meshgrid(x,x, indexing="ij")
return 1 / (2*math.pi*sigma**2) * \
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
scale = 1000 #Scale factor when converting to integer
pixel_size = 25 #um
grid = 2
resolution = 100
sigma_um = 10
xa = np.linspace(0,grid*pixel_size,resolution)
ticks = [0, 25, 50]
hit = np.array((20,20))
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
local_resolution = 99
grid_size = 3
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
pixels = pixels.numpy()
pixels = (pixels*scale).astype(np.int32)
v = ClusterVector_i(3,3)
v.push_back(1,1, pixels)
with open(etahist_fname, "rb") as f:
hist = pickle.load(f)
eta = hist.view().copy()
etabinsx = np.array(hist.axes.edges.T[0].flat)
etabinsy = np.array(hist.axes.edges.T[1].flat)
ebins = np.array(hist.axes.edges.T[2].flat)
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
#Generate the hit
tmp = p.interpolate(v)
print(f'tmp:{tmp}')
pos = np.array((tmp['x'], tmp['y']))*25
print(pixels)
fig, ax = plt.subplots(figsize = (7,7))
ax.pcolormesh(xaxis, xaxis, t)
ax.plot(*pos, 'o')
ax.set_xticks([0,25,50,75])
ax.set_yticks([0,25,50,75])
ax.set_xlim(0,75)
ax.set_ylim(0,75)
ax.grid()
print(f'{hit=}')
print(f'{pos=}')
for i in range(10):
fn, cl = f.read_frame()
print(fn, cl.size)

View File

@ -1,8 +1,4 @@
#include "aare/ClusterCollector.hpp"
#include "aare/ClusterFileSink.hpp"
#include "aare/ClusterFinder.hpp"
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDView.hpp"
#include "aare/Pedestal.hpp"
#include "np_helper.hpp"
@ -11,184 +7,31 @@
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
namespace py = pybind11;
using pd_type = double;
template <typename T>
void define_cluster_vector(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("ClusterVector_{}", typestr);
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
.def(py::init<int, int>(),
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
.def("push_back",
[](ClusterVector<T> &self, int x, int y, py::array_t<T> data) {
// auto view = make_view_2d(data);
self.push_back(x, y, reinterpret_cast<const std::byte*>(data.data()));
})
.def_property_readonly("size", &ClusterVector<T>::size)
.def("item_size", &ClusterVector<T>::item_size)
.def_property_readonly("fmt",
[typestr](ClusterVector<T> &self) {
return fmt::format(
self.fmt_base(), self.cluster_size_x(),
self.cluster_size_y(), typestr);
})
.def("sum",
[](ClusterVector<T> &self) {
auto *vec = new std::vector<T>(self.sum());
return return_vector(vec);
})
.def("sum_2x2", [](ClusterVector<T> &self) {
auto *vec = new std::vector<T>(self.sum_2x2());
return return_vector(vec);
})
.def_property_readonly("cluster_size_x", &ClusterVector<T>::cluster_size_x)
.def_property_readonly("cluster_size_y", &ClusterVector<T>::cluster_size_y)
.def_property_readonly("capacity", &ClusterVector<T>::capacity)
.def_property("frame_number", &ClusterVector<T>::frame_number,
&ClusterVector<T>::set_frame_number)
.def_buffer([typestr](ClusterVector<T> &self) -> py::buffer_info {
return py::buffer_info(
self.data(), /* Pointer to buffer */
self.item_size(), /* Size of one scalar */
fmt::format(self.fmt_base(), self.cluster_size_x(),
self.cluster_size_y(),
typestr), /* Format descriptor */
1, /* Number of dimensions */
{self.size()}, /* Buffer dimensions */
{self.item_size()} /* Strides (in bytes) for each index */
);
});
}
void define_cluster_finder_mt_bindings(py::module &m) {
py::class_<ClusterFinderMT<uint16_t, pd_type>>(m, "ClusterFinderMT")
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t, size_t>(),
py::arg("image_size"), py::arg("cluster_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 2048,
py::arg("n_threads") = 3)
.def("push_pedestal_frame",
[](ClusterFinderMT<uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
self.push_pedestal_frame(view);
})
.def(
"find_clusters",
[](ClusterFinderMT<uint16_t, pd_type> &self,
py::array_t<uint16_t> frame, uint64_t frame_number) {
auto view = make_view_2d(frame);
self.find_clusters(view, frame_number);
return;
},
py::arg(), py::arg("frame_number") = 0)
.def("clear_pedestal", &ClusterFinderMT<uint16_t, pd_type>::clear_pedestal)
.def("sync", &ClusterFinderMT<uint16_t, pd_type>::sync)
.def("stop", &ClusterFinderMT<uint16_t, pd_type>::stop)
.def("start", &ClusterFinderMT<uint16_t, pd_type>::start)
.def("pedestal",
[](ClusterFinderMT<uint16_t, pd_type> &self, size_t thread_index) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal(thread_index);
return return_image_data(pd);
},py::arg("thread_index") = 0)
.def("noise",
[](ClusterFinderMT<uint16_t, pd_type> &self, size_t thread_index) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise(thread_index);
return return_image_data(arr);
},py::arg("thread_index") = 0);
}
void define_cluster_collector_bindings(py::module &m) {
py::class_<ClusterCollector>(m, "ClusterCollector")
.def(py::init<ClusterFinderMT<uint16_t, double, int32_t> *>())
.def("stop", &ClusterCollector::stop)
.def(
"steal_clusters",
[](ClusterCollector &self) {
auto v =
new std::vector<ClusterVector<int>>(self.steal_clusters());
return v;
},
py::return_value_policy::take_ownership);
}
void define_cluster_file_sink_bindings(py::module &m) {
py::class_<ClusterFileSink>(m, "ClusterFileSink")
.def(py::init<ClusterFinderMT<uint16_t, double, int32_t> *,
const std::filesystem::path &>())
.def("stop", &ClusterFileSink::stop);
}
void define_cluster_finder_bindings(py::module &m) {
py::class_<ClusterFinder<uint16_t, pd_type>>(m, "ClusterFinder")
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t>(),
py::arg("image_size"), py::arg("cluster_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
py::class_<ClusterFinder<uint16_t, double>>(m, "ClusterFinder")
.def(py::init<Shape<2>, Shape<2>>())
.def("push_pedestal_frame",
[](ClusterFinder<uint16_t, pd_type> &self,
[](ClusterFinder<uint16_t, double> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
self.push_pedestal_frame(view);
})
.def("clear_pedestal", &ClusterFinder<uint16_t, pd_type>::clear_pedestal)
.def_property_readonly("pedestal",
[](ClusterFinder<uint16_t, pd_type> &self) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal();
return return_image_data(pd);
})
.def_property_readonly("noise",
[](ClusterFinder<uint16_t, pd_type> &self) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise();
return return_image_data(arr);
})
.def(
"steal_clusters",
[](ClusterFinder<uint16_t, pd_type> &self,
bool realloc_same_capacity) {
auto v = new ClusterVector<int>(
self.steal_clusters(realloc_same_capacity));
return v;
},
py::arg("realloc_same_capacity") = false)
.def(
"find_clusters",
[](ClusterFinder<uint16_t, pd_type> &self,
py::array_t<uint16_t> frame, uint64_t frame_number) {
auto view = make_view_2d(frame);
self.find_clusters(view, frame_number);
return;
},
py::arg(), py::arg("frame_number") = 0);
m.def("hitmap",
[](std::array<size_t, 2> image_size, ClusterVector<int32_t> &cv) {
py::array_t<int32_t> hitmap(image_size);
auto r = hitmap.mutable_unchecked<2>();
// Initialize hitmap to 0
for (py::ssize_t i = 0; i < r.shape(0); i++)
for (py::ssize_t j = 0; j < r.shape(1); j++)
r(i, j) = 0;
size_t stride = cv.item_size();
auto ptr = cv.data();
for (size_t i = 0; i < cv.size(); i++) {
auto x = *reinterpret_cast<int16_t *>(ptr);
auto y = *reinterpret_cast<int16_t *>(ptr + sizeof(int16_t));
r(y, x) += 1;
ptr += stride;
}
return hitmap;
});
define_cluster_vector<int>(m, "i");
define_cluster_vector<double>(m, "d");
define_cluster_vector<float>(m, "f");
.def("pedestal",
[](ClusterFinder<uint16_t, double> &self) {
auto pd = new NDArray<double, 2>{};
*pd = self.pedestal();
return return_image_data(pd);
})
.def("find_clusters_without_threshold",
[](ClusterFinder<uint16_t, double> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
auto clusters = self.find_clusters_without_threshold(view);
return clusters;
});
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
.def(py::init<int, int, Dtype>())

View File

@ -1,6 +1,7 @@
#include "aare/ClusterFile.hpp"
#include "aare/defs.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
@ -10,64 +11,40 @@
#include <pybind11/stl/filesystem.h>
#include <string>
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
namespace py = pybind11;
using namespace ::aare;
void define_cluster_file_io_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(Cluster3x3, x, y, data);
PYBIND11_NUMPY_DTYPE(Cluster, x, y, data);
py::class_<ClusterFile>(m, "ClusterFile")
.def(py::init<const std::filesystem::path &, size_t,
const std::string &>(),
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
.def(py::init<const std::filesystem::path &, size_t>(), py::arg(), py::arg("chunk_size") = 1000)
.def("read_clusters",
[](ClusterFile &self, size_t n_clusters) {
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters));
return v;
},py::return_value_policy::take_ownership)
auto* vec = new std::vector<Cluster>(self.read_clusters(n_clusters));
return return_vector(vec);
})
.def("read_frame",
[](ClusterFile &self) {
auto v = new ClusterVector<int32_t>(self.read_frame());
return v;
int32_t frame_number;
auto* vec = new std::vector<Cluster>(self.read_frame(frame_number));
return py::make_tuple(frame_number, return_vector(vec));
})
.def("read_cluster_with_cut",
[](ClusterFile &self, size_t n_clusters, py::array_t<double> noise_map, int nx, int ny) {
auto view = make_view_2d(noise_map);
auto* vec = new std::vector<Cluster>(self.read_cluster_with_cut(n_clusters, view.data(), nx, ny));
return return_vector(vec);
})
.def("set_roi", &ClusterFile::set_roi)
.def("set_noise_map", [](ClusterFile &self, py::array_t<int32_t> noise_map) {
auto view = make_view_2d(noise_map);
self.set_noise_map(view);
})
.def("set_gain_map", [](ClusterFile &self, py::array_t<double> gain_map) {
auto view = make_view_2d(gain_map);
self.set_gain_map(view);
})
.def("close", &ClusterFile::close)
.def("write_frame", &ClusterFile::write_frame)
.def("__enter__", [](ClusterFile &self) { return &self; })
.def("__exit__",
[](ClusterFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
self.close();
})
.def("__exit__", [](ClusterFile &self) { self.close();})
.def("__iter__", [](ClusterFile &self) { return &self; })
.def("__next__", [](ClusterFile &self) {
auto v = new ClusterVector<int32_t>(self.read_clusters(self.chunk_size()));
if (v->size() == 0) {
auto vec = new std::vector<Cluster>(self.read_clusters(self.chunk_size()));
if(vec->size() == 0) {
throw py::stop_iteration();
}
return v;
return return_vector(vec);
});
m.def("calculate_eta2", []( aare::ClusterVector<int32_t> &clusters) {
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
return return_image_data(eta2);
});
}
#pragma GCC diagnostic pop
}

View File

@ -7,11 +7,8 @@
#include "aare/RawSubFile.hpp"
#include "aare/defs.hpp"
#include "aare/decode.hpp"
// #include "aare/fClusterFileV2.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
@ -26,95 +23,35 @@ using namespace ::aare;
void define_ctb_raw_file_io_bindings(py::module &m) {
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
if(input.ndim() != 2){
throw std::runtime_error("Only 2D arrays are supported at this moment");
}
py::array_t<DetectorHeader> header(1);
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
// always read bytes
image = py::array_t<uint8_t>(shape);
//Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
adc_sar_05_decode64to16(input_view, output_view);
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
return output;
});
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
if(input.ndim() != 2){
throw std::runtime_error("Only 2D arrays are supported at this moment");
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
adc_sar_04_decode64to16(input_view, output_view);
return output;
});
m.def(
"apply_custom_weights",
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
py::array_t<double, py::array::c_style | py::array::forcecast>
&weights) {
// Create new array with same shape as the input array (uninitialized values)
py::buffer_info buf = input.request();
py::array_t<double> output(buf.shape);
// Use NDViews to call into the C++ library
auto weights_view = make_view_1d(weights);
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
apply_custom_weights(input_view, output_view, weights_view);
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
py::array_t<DetectorHeader> header(1);
// always read bytes
image = py::array_t<uint8_t>(shape);
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
}
}

View File

@ -20,14 +20,6 @@
namespace py = pybind11;
using namespace ::aare;
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
void define_file_io_bindings(py::module &m) {
@ -59,8 +51,7 @@ void define_file_io_bindings(py::module &m) {
.def(py::init<const std::filesystem::path &, const std::string &,
const FileConfig &>())
.def("frame_number", py::overload_cast<>(&File::frame_number))
.def("frame_number", py::overload_cast<size_t>(&File::frame_number))
.def("frame_number", &File::frame_number)
.def_property_readonly("bytes_per_frame", &File::bytes_per_frame)
.def_property_readonly("pixels_per_frame", &File::pixels_per_frame)
.def("seek", &File::seek)
@ -132,41 +123,8 @@ void define_file_io_bindings(py::module &m) {
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames);
return image;
})
.def("__enter__", [](File &self) { return &self; })
.def("__exit__",
[](File &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
// self.close();
})
.def("__iter__", [](File &self) { return &self; })
.def("__next__", [](File &self) {
try{
const uint8_t item_size = self.bytes_per_pixel();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(self.rows());
shape.push_back(self.cols());
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()));
return image;
}catch(std::runtime_error &e){
throw py::stop_iteration();
}
});
py::class_<FileConfig>(m, "FileConfig")
.def(py::init<>())
.def_readwrite("rows", &FileConfig::rows)
@ -198,8 +156,6 @@ void define_file_io_bindings(py::module &m) {
py::class_<ROI>(m, "ROI")
.def(py::init<>())
.def(py::init<int64_t, int64_t, int64_t, int64_t>(), py::arg("xmin"),
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
.def_readwrite("xmin", &ROI::xmin)
.def_readwrite("xmax", &ROI::xmax)
.def_readwrite("ymin", &ROI::ymin)
@ -217,11 +173,38 @@ void define_file_io_bindings(py::module &m) {
py::class_<RawSubFile>(m, "RawSubFile")
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
size_t, size_t>())
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&RawSubFile::pixels_per_frame)
.def("seek", &RawSubFile::seek)
.def("tell", &RawSubFile::tell)
.def_property_readonly("rows", &RawSubFile::rows)
.def_property_readonly("cols", &RawSubFile::cols)
.def("read_frame",
[](RawSubFile &self) {
const uint8_t item_size = self.bytes_per_pixel();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(self.rows());
shape.push_back(self.cols());
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
fmt::print("item_size: {} rows: {} cols: {}\n", item_size, self.rows(), self.cols());
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()));
return image;
});
#pragma GCC diagnostic pop
// py::class_<ClusterHeader>(m, "ClusterHeader")
// .def(py::init<>())
// .def_readwrite("frame_number", &ClusterHeader::frame_number)

View File

@ -1,250 +0,0 @@
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include "aare/Fit.hpp"
namespace py = pybind11;
using namespace pybind11::literals;
void define_fit_bindings(py::module &m) {
// TODO! Evaluate without converting to double
m.def(
"gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
auto x_view = make_view_1d(x);
auto par_view = make_view_1d(par);
auto y = new NDArray<double, 1>{aare::func::gaus(x_view, par_view)};
return return_image_data(y);
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)",
py::arg("x"), py::arg("par"));
m.def(
"pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
auto x_view = make_view_1d(x);
auto par_view = make_view_1d(par);
auto y = new NDArray<double, 1>{aare::func::pol1(x_view, par_view)};
return return_image_data(y);
},
R"(
Evaluate a 1D polynomial function for all points in x using parameters par. (p0+p1*x)
Parameters
----------
x : array_like
The points at which to evaluate the polynomial function.
par : array_like
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
)",
py::arg("x"), py::arg("par"));
m.def(
"fit_gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
int n_threads) {
if (y.ndim() == 3) {
auto par = new NDArray<double, 3>{};
auto y_view = make_view_3d(y);
auto x_view = make_view_1d(x);
*par = aare::fit_gaus(x_view, y_view, n_threads);
return return_image_data(par);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>{};
auto y_view = make_view_1d(y);
auto x_view = make_view_1d(x);
*par = aare::fit_gaus(x_view, y_view);
return return_image_data(par);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
Fit a 1D Gaussian to data.
Parameters
----------
x : array_like
The x values.
y : array_like
The y values.
n_threads : int, optional
The number of threads to use. Default is 4.
)",
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
m.def(
"fit_gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
// the memory
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
// Make views of the numpy arrays
auto y_view = make_view_3d(y);
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 3);
} else if (y.ndim() == 1) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
// the memory
auto par = new NDArray<double, 1>({3});
auto par_err = new NDArray<double, 1>({3});
// Decode the numpy arrays
auto y_view = make_view_1d(y);
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
Fit a 1D Gaussian to data with error estimates.
Parameters
----------
x : array_like
The x values.
y : array_like
The y values.
y_err : array_like
The error in the y values.
n_threads : int, optional
The number of threads to use. Default is 4.
)",
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
m.def(
"fit_pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
int n_threads) {
if (y.ndim() == 3) {
auto par = new NDArray<double, 3>{};
auto x_view = make_view_1d(x);
auto y_view = make_view_3d(y);
*par = aare::fit_pol1(x_view, y_view, n_threads);
return return_image_data(par);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>{};
auto x_view = make_view_1d(x);
auto y_view = make_view_1d(y);
*par = aare::fit_pol1(x_view, y_view);
return return_image_data(par);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
m.def(
"fit_pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto y_view = make_view_3d(y);
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 2);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>({2});
auto par_err = new NDArray<double, 1>({2});
auto y_view = make_view_1d(y);
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
Fit a 1D polynomial to data with error estimates.
Parameters
----------
x : array_like
The x values.
y : array_like
The y values.
y_err : array_like
The error in the y values.
n_threads : int, optional
The number of threads to use. Default is 4.
)",
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
}

View File

@ -1,58 +0,0 @@
#include "aare/Interpolator.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
void define_interpolation_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(aare::Photon, x,y,energy);
py::class_<aare::Interpolator>(m, "Interpolator")
.def(py::init([](py::array_t<double, py::array::c_style | py::array::forcecast> etacube, py::array_t<double> xbins,
py::array_t<double> ybins, py::array_t<double> ebins) {
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
make_view_1d(ybins), make_view_1d(ebins));
}))
.def("get_ietax", [](Interpolator& self){
auto*ptr = new NDArray<double,3>{};
*ptr = self.get_ietax();
return return_image_data(ptr);
})
.def("get_ietay", [](Interpolator& self){
auto*ptr = new NDArray<double,3>{};
*ptr = self.get_ietay();
return return_image_data(ptr);
})
.def("interpolate", [](Interpolator& self, const ClusterVector<int32_t>& clusters){
auto photons = self.interpolate(clusters);
auto* ptr = new std::vector<Photon>{photons};
return return_vector(ptr);
});
// TODO! Evaluate without converting to double
m.def(
"hej",
[]() {
// auto boost_histogram = py::module_::import("boost_histogram");
// py::object axis =
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
// py::object histogram = boost_histogram.attr("Histogram")(axis);
// return histogram;
// return h;
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)");
}

View File

@ -1,116 +0,0 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/defs.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
// Disable warnings for unused parameters, as we ignore some
// in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
auto read_dat_frame(JungfrauDataFile &self) {
py::array_t<JungfrauDataHeader> header(1);
py::array_t<uint16_t> image({
self.rows(),
self.cols()
});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
}
auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
// adjust for actual frames left in the file
n_frames = std::min(n_frames, self.total_frames() - self.tell());
if (n_frames == 0) {
throw std::runtime_error("No frames left in file");
}
py::array_t<JungfrauDataHeader> header(n_frames);
py::array_t<uint16_t> image({
n_frames, self.rows(),
self.cols()});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames, header.mutable_data());
return py::make_tuple(header, image);
}
void define_jungfrau_data_file_io_bindings(py::module &m) {
// Make the JungfrauDataHeader usable from numpy
PYBIND11_NUMPY_DTYPE(JungfrauDataHeader, framenum, bunchid);
py::class_<JungfrauDataFile>(m, "JungfrauDataFile")
.def(py::init<const std::filesystem::path &>())
.def("seek", &JungfrauDataFile::seek,
R"(
Seek to the given frame index.
)")
.def("tell", &JungfrauDataFile::tell,
R"(
Get the current frame index.
)")
.def_property_readonly("rows", &JungfrauDataFile::rows)
.def_property_readonly("cols", &JungfrauDataFile::cols)
.def_property_readonly("base_name", &JungfrauDataFile::base_name)
.def_property_readonly("bytes_per_frame",
&JungfrauDataFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&JungfrauDataFile::pixels_per_frame)
.def_property_readonly("bytes_per_pixel",
&JungfrauDataFile::bytes_per_pixel)
.def_property_readonly("bitdepth", &JungfrauDataFile::bitdepth)
.def_property_readonly("current_file", &JungfrauDataFile::current_file)
.def_property_readonly("total_frames", &JungfrauDataFile::total_frames)
.def_property_readonly("n_files", &JungfrauDataFile::n_files)
.def("read_frame", &read_dat_frame,
R"(
Read a single frame from the file.
)")
.def("read_n", &read_n_dat_frames,
R"(
Read maximum n_frames frames from the file.
)")
.def(
"read",
[](JungfrauDataFile &self) {
self.seek(0);
auto n_frames = self.total_frames();
return read_n_dat_frames(self, n_frames);
},
R"(
Read all frames from the file. Seeks to the beginning before reading.
)")
.def("__enter__", [](JungfrauDataFile &self) { return &self; })
.def("__exit__",
[](JungfrauDataFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
// self.close();
})
.def("__iter__", [](JungfrauDataFile &self) { return &self; })
.def("__next__", [](JungfrauDataFile &self) {
try {
return read_dat_frame(self);
} catch (std::runtime_error &e) {
throw py::stop_iteration();
}
});
}
#pragma GCC diagnostic pop

View File

@ -8,11 +8,6 @@
#include "pedestal.hpp"
#include "cluster.hpp"
#include "cluster_file.hpp"
#include "fit.hpp"
#include "interpolation.hpp"
#include "raw_sub_file.hpp"
#include "jungfrau_data_file.hpp"
//Pybind stuff
#include <pybind11/pybind11.h>
@ -23,20 +18,12 @@ namespace py = pybind11;
PYBIND11_MODULE(_aare, m) {
define_file_io_bindings(m);
define_raw_file_io_bindings(m);
define_raw_sub_file_io_bindings(m);
define_ctb_raw_file_io_bindings(m);
define_raw_master_file_bindings(m);
define_var_cluster_finder_bindings(m);
define_pixel_map_bindings(m);
define_pedestal_bindings<double>(m, "Pedestal_d");
define_pedestal_bindings<float>(m, "Pedestal_f");
define_pedestal_bindings<double>(m, "Pedestal");
define_pedestal_bindings<float>(m, "Pedestal_float32");
define_cluster_finder_bindings(m);
define_cluster_finder_mt_bindings(m);
define_cluster_file_io_bindings(m);
define_cluster_collector_bindings(m);
define_cluster_file_sink_bindings(m);
define_fit_bindings(m);
define_interpolation_bindings(m);
define_jungfrau_data_file_io_bindings(m);
}

View File

@ -39,26 +39,78 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
free_when_done); // numpy array references this parent
}
// template <typename Reader> py::array do_read(Reader &r, size_t n_frames) {
// py::array image;
// if (n_frames == 0)
// n_frames = r.total_frames();
// std::array<ssize_t, 3> shape{static_cast<ssize_t>(n_frames), r.rows(),
// r.cols()};
// const uint8_t item_size = r.bytes_per_pixel();
// if (item_size == 1) {
// image = py::array_t<uint8_t, py::array::c_style | py::array::forcecast>(
// shape);
// } else if (item_size == 2) {
// image =
// py::array_t<uint16_t, py::array::c_style | py::array::forcecast>(
// shape);
// } else if (item_size == 4) {
// image =
// py::array_t<uint32_t, py::array::c_style | py::array::forcecast>(
// shape);
// }
// r.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames);
// return image;
// }
// py::array return_frame(pl::Frame *ptr) {
// py::capsule free_when_done(ptr, [](void *f) {
// pl::Frame *foo = reinterpret_cast<pl::Frame *>(f);
// delete foo;
// });
// const uint8_t item_size = ptr->bytes_per_pixel();
// std::vector<ssize_t> shape;
// for (auto val : ptr->shape())
// if (val > 1)
// shape.push_back(val);
// std::vector<ssize_t> strides;
// if (shape.size() == 1)
// strides.push_back(item_size);
// else if (shape.size() == 2) {
// strides.push_back(item_size * shape[1]);
// strides.push_back(item_size);
// }
// if (item_size == 1)
// return py::array_t<uint8_t>(
// shape, strides,
// reinterpret_cast<uint8_t *>(ptr->data()), free_when_done);
// else if (item_size == 2)
// return py::array_t<uint16_t>(shape, strides,
// reinterpret_cast<uint16_t *>(ptr->data()),
// free_when_done);
// else if (item_size == 4)
// return py::array_t<uint32_t>(shape, strides,
// reinterpret_cast<uint32_t *>(ptr->data()),
// free_when_done);
// return {};
// }
// todo rewrite generic
template <class T, int Flags> auto get_shape_3d(const py::array_t<T, Flags>& arr) {
template <class T, int Flags> auto get_shape_3d(py::array_t<T, Flags> arr) {
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
}
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags>& arr) {
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> arr) {
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
}
template <class T, int Flags> auto get_shape_2d(const py::array_t<T, Flags>& arr) {
template <class T, int Flags> auto get_shape_2d(py::array_t<T, Flags> arr) {
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
}
template <class T, int Flags> auto get_shape_1d(const py::array_t<T, Flags>& arr) {
return aare::Shape<1>{arr.shape(0)};
}
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags>& arr) {
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> arr) {
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
}
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags>& arr) {
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
}

View File

@ -43,10 +43,5 @@ template <typename SUM_TYPE> void define_pedestal_bindings(py::module &m, const
.def("push", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t> &f) {
auto v = make_view_2d(f);
pedestal.push(v);
})
.def("push_no_update", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t, py::array::c_style> &f) {
auto v = make_view_2d(f);
pedestal.push_no_update(v);
}, py::arg().noconvert())
.def("update_mean", &Pedestal<SUM_TYPE>::update_mean);
});
}

View File

@ -1,110 +0,0 @@
#include "aare/CtbRawFile.hpp"
#include "aare/File.hpp"
#include "aare/Frame.hpp"
#include "aare/RawFile.hpp"
#include "aare/RawMasterFile.hpp"
#include "aare/RawSubFile.hpp"
#include "aare/defs.hpp"
// #include "aare/fClusterFileV2.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
auto read_frame_from_RawSubFile(RawSubFile &self) {
py::array_t<DetectorHeader> header(1);
const uint8_t item_size = self.bytes_per_pixel();
std::vector<ssize_t> shape{static_cast<ssize_t>(self.rows()),
static_cast<ssize_t>(self.cols())};
py::array image;
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
}
auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
py::array_t<DetectorHeader> header(n_frames);
const uint8_t item_size = self.bytes_per_pixel();
std::vector<ssize_t> shape{
static_cast<ssize_t>(n_frames),
static_cast<ssize_t>(self.rows()),
static_cast<ssize_t>(self.cols())
};
py::array image;
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames,
header.mutable_data());
return py::make_tuple(header, image);
}
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
void define_raw_sub_file_io_bindings(py::module &m) {
py::class_<RawSubFile>(m, "RawSubFile")
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
size_t, size_t>())
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&RawSubFile::pixels_per_frame)
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
.def("seek", &RawSubFile::seek)
.def("tell", &RawSubFile::tell)
.def_property_readonly("rows", &RawSubFile::rows)
.def_property_readonly("cols", &RawSubFile::cols)
.def_property_readonly("frames_in_file", &RawSubFile::frames_in_file)
.def("read_frame", &read_frame_from_RawSubFile)
.def("read_n", &read_n_frames_from_RawSubFile)
.def("read", [](RawSubFile &self){
self.seek(0);
auto n_frames = self.frames_in_file();
return read_n_frames_from_RawSubFile(self, n_frames);
})
.def("__enter__", [](RawSubFile &self) { return &self; })
.def("__exit__",
[](RawSubFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
})
.def("__iter__", [](RawSubFile &self) { return &self; })
.def("__next__", [](RawSubFile &self) {
try {
return read_frame_from_RawSubFile(self);
} catch (std::runtime_error &e) {
throw py::stop_iteration();
}
});
}
#pragma GCC diagnostic pop

View File

@ -19,24 +19,15 @@ using namespace::aare;
void define_var_cluster_finder_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
reserved, energy, max, rows, cols, enes);
reserved, energy, max);
py::class_<VarClusterFinder<double>>(m, "VarClusterFinder")
.def(py::init<Shape<2>, double>())
.def("labeled",
[](VarClusterFinder<double> &self) {
auto *ptr = new NDArray<int, 2>(self.labeled());
auto ptr = new NDArray<int, 2>(self.labeled());
return return_image_data(ptr);
})
.def("set_noiseMap",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
noise_map) {
auto noise_map_span = make_view_2d(noise_map);
self.set_noiseMap(noise_map_span);
})
.def("set_peripheralThresholdFactor",
&VarClusterFinder<double>::set_peripheralThresholdFactor)
.def("find_clusters",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
@ -44,30 +35,6 @@ void define_var_cluster_finder_bindings(py::module &m) {
auto view = make_view_2d(img);
self.find_clusters(view);
})
.def("find_clusters_X",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.find_clusters_X(img_span);
})
.def("single_pass",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.single_pass(img_span);
})
.def("hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
self.steal_hits());
return return_vector(ptr);
})
.def("clear_hits",
[](VarClusterFinder<double> &self) {
self.clear_hits();
})
.def("steal_hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(

View File

@ -1,29 +0,0 @@
import os
from pathlib import Path
import pytest
def pytest_addoption(parser):
parser.addoption(
"--files", action="store_true", default=False, help="run slow tests"
)
def pytest_configure(config):
config.addinivalue_line("markers", "files: mark test as needing image files to run")
def pytest_collection_modifyitems(config, items):
if config.getoption("--files"):
return
skip = pytest.mark.skip(reason="need --files option to run")
for item in items:
if "files" in item.keywords:
item.add_marker(skip)
@pytest.fixture
def test_data_path():
return Path(os.environ["AARE_TEST_DATA"])

View File

@ -1,36 +0,0 @@
import pytest
import numpy as np
from aare import RawSubFile, DetectorType
@pytest.mark.files
def test_read_a_jungfrau_RawSubFile(test_data_path):
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
assert f.frames_in_file == 3
headers, frames = f.read()
assert headers.size == 3
assert frames.shape == (3, 512, 1024)
# Frame numbers in this file should be 4, 5, 6
for i,h in zip(range(4,7,1), headers):
assert h["frameNumber"] == i
# Compare to canned data using numpy
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
assert np.all(data[3:6] == frames)
@pytest.mark.files
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
i = 0
for header, frame in f:
assert header["frameNumber"] == i+1
assert np.all(frame == data[i])
i += 1
assert i == 3
assert header["frameNumber"] == 3

View File

@ -1,92 +0,0 @@
import pytest
import numpy as np
from aare import JungfrauDataFile
@pytest.mark.files
def test_jfungfrau_dat_read_number_of_frames(test_data_path):
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
assert dat_file.total_frames == 24
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
assert dat_file.total_frames == 53
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
assert dat_file.total_frames == 113
@pytest.mark.files
def test_jfungfrau_dat_read_number_of_file(test_data_path):
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
assert dat_file.n_files == 4
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
assert dat_file.n_files == 7
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
assert dat_file.n_files == 7
@pytest.mark.files
def test_read_module(test_data_path):
"""
Read all frames from the series of .dat files. Compare to canned data in npz format.
"""
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as f:
header, data = f.read()
#Sanity check
n_frames = 24
assert header.size == n_frames
assert data.shape == (n_frames, 512, 1024)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF500k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)
@pytest.mark.files
def test_read_half_module(test_data_path):
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as f:
header, data = f.read()
n_frames = 53
assert header.size == n_frames
assert data.shape == (n_frames, 256, 1024)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF250k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)
@pytest.mark.files
def test_read_single_chip(test_data_path):
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as f:
header, data = f.read()
n_frames = 113
assert header.size == n_frames
assert data.shape == (n_frames, 256, 256)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF65k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)

View File

@ -1,115 +1,34 @@
#include "aare/ClusterFile.hpp"
#include <algorithm>
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size): m_chunk_size(chunk_size) {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file: " + fname.string());
}
}
void ClusterFile::set_roi(ROI roi){
m_roi = roi;
ClusterFile::~ClusterFile() {
close();
}
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
m_gain_map = NDArray<double, 2>(gain_map);
// Gain map is passed as ADU/keV to avoid dividing in when applying the gain
// map we invert it here
for (auto &item : m_gain_map->view()) {
item = 1.0 / item;
}
}
ClusterFile::~ClusterFile() { close(); }
void ClusterFile::close() {
if (fp) {
void ClusterFile::close(){
if (fp){
fclose(fp);
fp = nullptr;
}
}
}
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
//First write the frame number - 4 bytes
int32_t frame_number = clusters.frame_number();
if(fwrite(&frame_number, sizeof(frame_number), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write frame number");
}
//Then write the number of clusters - 4 bytes
uint32_t n_clusters = clusters.size();
if(fwrite(&n_clusters, sizeof(n_clusters), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write number of clusters");
}
//Now write the clusters in the frame
if(fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp)!=clusters.size()){
throw std::runtime_error(LOCATION + "Could not write clusters");
}
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi){
return read_clusters_with_cut(n_clusters);
}else{
return read_clusters_without_cut(n_clusters);
}
}
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<int32_t> clusters(3,3, n_clusters);
std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
std::vector<Cluster> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
auto buf = reinterpret_cast<Cluster *>(clusters.data());
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
@ -119,15 +38,13 @@ ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters)
} else {
nn = nph;
}
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
nph_read += fread(reinterpret_cast<void *>(buf + nph_read), sizeof(Cluster), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
@ -135,8 +52,8 @@ ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters)
else
nn = nph;
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
nph_read +=
fread(reinterpret_cast<void *>(buf + nph_read), sizeof(Cluster), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
@ -147,256 +64,260 @@ ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters)
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<int32_t> clusters(3,3);
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
std::vector<Cluster> ClusterFile::read_frame(int32_t &out_fnum) {
if (m_num_left) {
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
throw std::runtime_error("There are still photons left in the last frame");
}
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
Cluster3x3 ClusterFile::read_one_cluster(){
Cluster3x3 c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
ClusterVector<int32_t> ClusterFile::read_frame(){
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi){
return read_frame_with_cut();
}else{
return read_frame_without_cut();
}
}
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
if (fread(&out_fnum, sizeof(out_fnum), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3, n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3);
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
while(m_num_left){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
std::vector<Cluster> clusters(n_clusters);
if (fread(clusters.data(), sizeof(Cluster), n_clusters, fp) != static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
}
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
double *noise_map,
int nx, int ny) {
std::vector<Cluster> clusters(n_clusters);
// size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
// uint32_t *n_left, double *noise_map, int
// nx, int ny) {
int iframe = 0;
// uint32_t nph = *n_left;
uint32_t nph = m_num_left;
// uint32_t nn = *n_left;
uint32_t nn = m_num_left;
size_t nph_read = 0;
bool ClusterFile::is_selected(Cluster3x3 &cl) {
//Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
int32_t t2max, tot1;
int32_t tot3;
// Cluster *ptr = buf;
Cluster *ptr = clusters.data();
int good = 1;
double noise;
// read photons left from previous frame
if (noise_map)
printf("Using noise map\n");
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to
// read we read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
for (size_t iph = 0; iph < nn; iph++) {
// read photons 1 by 1
size_t n_read = fread(reinterpret_cast<void *>(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
}
// TODO! error handling on read
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
NULL);
noise = noise_map[ptr->y * nx + ptr->x];
if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
;
} else {
good = 0;
printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
tot1, t2max, tot3);
}
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (m_noise_map){
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
if (nph_read < n_clusters) {
// // keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // printf("%d\n",nph_read);
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
return false;
if (fread(&nph, sizeof(nph), 1, fp)) {
// // printf("** %d\n",nph);
m_num_left = nph;
for (size_t iph = 0; iph < nph; iph++) {
// // read photons 1 by 1
size_t n_read =
fread(reinterpret_cast<void *>(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
// return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL,
NULL,
NULL, NULL, NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
noise = noise_map[ptr->y + ny * ptr->x];
if (tot1 > noise || t2max > 2 * noise ||
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x,
ptr->y); good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (nph_read >= n_clusters)
break;
}
}
// printf("%d\n",nph_read);
clusters.resize(nph_read);
return clusters;
}
int ClusterFile::analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
}
int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
//printf("*** %d %d %d %d -- %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = static_cast<double>(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = static_cast<double>(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
//we passed all checks
return true;
}
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
//TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = static_cast<double>(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = static_cast<double>(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return eta2;
return ok;
}
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2 struct
* containing etay, etax and the corner of the cluster.
*/
Eta2 calculate_eta2(Cluster3x3 &cl) {
Eta2 eta{};
std::array<int32_t, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
// no default to allow compiler to warn about missing cases
}
return eta;
}
Eta2 calculate_eta2(Cluster2x2 &cl) {
Eta2 eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2]+ cl.data[3];
eta.c = cBottomLeft; //TODO! This is not correct, but need to put something
return eta;
}
} // namespace aare

View File

@ -1,84 +0,0 @@
#include "aare/ClusterFile.hpp"
#include "test_config.hpp"
#include "aare/defs.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
using aare::ClusterFile;
TEST_CASE("Read one frame from a a cluster file", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile f(fpath);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
TEST_CASE("Read one frame using ROI", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 49);
REQUIRE(clusters.frame_number() == 135);
//Check that all clusters are within the ROI
for (size_t i = 0; i < clusters.size(); i++) {
auto c = clusters.at<aare::Cluster3x3>(i);
REQUIRE(c.x >= roi.xmin);
REQUIRE(c.x <= roi.xmax);
REQUIRE(c.y >= roi.ymin);
REQUIRE(c.y <= roi.ymax);
}
}
TEST_CASE("Read clusters from single frame file", "[.files]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
SECTION("Read fewer clusters than available") {
ClusterFile f(fpath);
auto clusters = f.read_clusters(50);
REQUIRE(clusters.size() == 50);
REQUIRE(clusters.frame_number() == 135);
}
SECTION("Read more clusters than available") {
ClusterFile f(fpath);
// 100 is the maximum number of clusters read
auto clusters = f.read_clusters(100);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
SECTION("Read all clusters") {
ClusterFile f(fpath);
auto clusters = f.read_clusters(97);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
}

View File

@ -1,198 +0,0 @@
#include <cstdint>
#include "aare/ClusterVector.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
using aare::ClusterVector;
struct Cluster_i2x2 {
int16_t x;
int16_t y;
int32_t data[4];
};
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
ClusterVector<int32_t> cv(2, 2, 4);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 2);
// int16_t, int16_t, 2x2 int32_t = 20 bytes
REQUIRE(cv.item_size() == 20);
//Create a cluster and push back into the vector
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 4);
//Read the cluster back out using copy. TODO! Can we improve the API?
Cluster_i2x2 c2;
std::byte *ptr = cv.element_ptr(0);
std::copy(ptr, ptr + cv.item_size(), reinterpret_cast<std::byte*>(&c2));
//Check that the data is the same
REQUIRE(c1.x == c2.x);
REQUIRE(c1.y == c2.y);
for(size_t i = 0; i < 4; i++) {
REQUIRE(c1.data[i] == c2.data[i]);
}
}
TEST_CASE("Summing 3x1 clusters of int64"){
struct Cluster_l3x1{
int16_t x;
int16_t y;
int32_t data[3];
};
ClusterVector<int32_t> cv(3, 1, 2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 3);
REQUIRE(cv.cluster_size_y() == 1);
//Create a cluster and push back into the vector
Cluster_l3x1 c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster_l3x1 c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
Cluster_l3x1 c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 3);
auto sums = cv.sum();
REQUIRE(sums.size() == 3);
REQUIRE(sums[0] == 12);
REQUIRE(sums[1] == 27);
REQUIRE(sums[2] == 42);
}
TEST_CASE("Storing floats"){
struct Cluster_f4x2{
int16_t x;
int16_t y;
float data[8];
};
ClusterVector<float> cv(2, 4, 10);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 4);
//Create a cluster and push back into the vector
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 1);
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 2);
auto sums = cv.sum();
REQUIRE(sums.size() == 2);
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
}
TEST_CASE("Push back more than initial capacity"){
ClusterVector<int32_t> cv(2, 2, 2);
auto initial_data = cv.data();
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 2);
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
REQUIRE(cv.size() == 2);
REQUIRE(cv.capacity() == 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
REQUIRE(cv.size() == 3);
REQUIRE(cv.capacity() == 4);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
//We should have allocated a new buffer, since we outgrew the initial capacity
REQUIRE(initial_data != cv.data());
}
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity"){
ClusterVector<int32_t> cv1(2, 2, 12);
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
ClusterVector<int32_t> cv2(2, 2, 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 12);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
ClusterVector<int32_t> cv1(2, 2, 2);
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
ClusterVector<int32_t> cv2(2, 2, 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 4);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
REQUIRE(ptr[1].y == 7);
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}

View File

@ -70,7 +70,7 @@ uint8_t Dtype::bitdepth() const {
/**
* @brief Get the number of bytes of the data type
*/
size_t Dtype::bytes() const { return bitdepth() / bits_per_byte; }
size_t Dtype::bytes() const { return bitdepth() / 8; }
/**
* @brief Construct a DType object from a TypeIndex

View File

@ -1,5 +1,4 @@
#include "aare/File.hpp"
#include "aare/JungfrauDataFile.hpp"
#include "aare/NumpyFile.hpp"
#include "aare/RawFile.hpp"
@ -28,8 +27,6 @@ File::File(const std::filesystem::path &fname, const std::string &mode,
else if (fname.extension() == ".npy") {
// file_impl = new NumpyFile(fname, mode, cfg);
file_impl = std::make_unique<NumpyFile>(fname, mode, cfg);
}else if(fname.extension() == ".dat"){
file_impl = std::make_unique<JungfrauDataFile>(fname);
} else {
throw std::runtime_error("Unsupported file type");
}
@ -48,8 +45,6 @@ File& File::operator=(File &&other) noexcept {
return *this;
}
// void File::close() { file_impl->close(); }
Frame File::read_frame() { return file_impl->read_frame(); }
Frame File::read_frame(size_t frame_index) {
return file_impl->read_frame(frame_index);
@ -63,8 +58,6 @@ void File::read_into(std::byte *image_buf) { file_impl->read_into(image_buf); }
void File::read_into(std::byte *image_buf, size_t n_frames) {
file_impl->read_into(image_buf, n_frames);
}
size_t File::frame_number() { return file_impl->frame_number(tell()); }
size_t File::frame_number(size_t frame_index) {
return file_impl->frame_number(frame_index);
}
@ -76,7 +69,7 @@ size_t File::tell() const { return file_impl->tell(); }
size_t File::rows() const { return file_impl->rows(); }
size_t File::cols() const { return file_impl->cols(); }
size_t File::bitdepth() const { return file_impl->bitdepth(); }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / 8; }
DetectorType File::detector_type() const { return file_impl->detector_type(); }

View File

@ -1,44 +0,0 @@
#include "aare/FilePtr.hpp"
#include <fmt/format.h>
#include <stdexcept>
#include <utility>
namespace aare {
FilePtr::FilePtr(const std::filesystem::path& fname, const std::string& mode = "rb") {
fp_ = fopen(fname.c_str(), mode.c_str());
if (!fp_)
throw std::runtime_error(fmt::format("Could not open: {}", fname.c_str()));
}
FilePtr::FilePtr(FilePtr &&other) { std::swap(fp_, other.fp_); }
FilePtr &FilePtr::operator=(FilePtr &&other) {
std::swap(fp_, other.fp_);
return *this;
}
FILE *FilePtr::get() { return fp_; }
int64_t FilePtr::tell() {
auto pos = ftell(fp_);
if (pos == -1)
throw std::runtime_error(fmt::format("Error getting file position: {}", error_msg()));
return pos;
}
FilePtr::~FilePtr() {
if (fp_)
fclose(fp_); // check?
}
std::string FilePtr::error_msg(){
if (feof(fp_)) {
return "End of file reached";
}
if (ferror(fp_)) {
return fmt::format("Error reading file: {}", std::strerror(errno));
}
return "";
}
} // namespace aare

View File

@ -1,276 +0,0 @@
#include "aare/Fit.hpp"
#include "aare/utils/task.hpp"
#include "aare/utils/par.hpp"
#include <lmcurve2.h>
#include <lmfit.hpp>
#include <thread>
#include <array>
namespace aare {
namespace func {
double gaus(const double x, const double *par) {
return par[0] * exp(-pow(x - par[1], 2) / (2 * pow(par[2], 2)));
}
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape(0)}, 0);
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = gaus(x(i), par.data());
}
return y;
}
double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = pol1(x(i), par.data());
}
return y;
}
} // namespace func
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result = gaus_init_par(x, y);
lm_status_struct status;
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &lm_control_double, &status);
return result;
}
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 3}, 0);
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_gaus(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
result(row, col, 2) = res(2);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
std::array<double, 3> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
// For sigma we estimate the fwhm and divide by 2.35
// assuming equally spaced x values
auto delta = x[1] - x[0];
start_par[2] =
std::count_if(y.begin(), y.end(),
[e, delta](double val) { return val > *e / 2; }) *
delta / 2.35;
return start_par;
}
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 2> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
return start_par;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double &chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 3");
}
// /* Collection of output parameters for status info. */
// typedef struct {
// double fnorm; /* norm of the residue vector fvec. */
// int nfev; /* actual number of iterations. */
// int outcome; /* Status indicator. Nonnegative values are used as
// index
// for the message text lm_infmsg, set in lmmin.c. */
// int userbreak; /* Set when function evaluation requests termination.
// */
// } lm_status_struct;
lm_status_struct status;
par_out = gaus_init_par(x, y);
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
// n_par - Number of free variables. Length of parameter vector par.
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
// dy - Array of length m_dat. Contains the standard deviations of the values y.
// f - A user-supplied parametric function f(ti;par).
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
}
lm_status_struct status;
par_out = pol1_init_par(x, y);
std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// // Check that we have the correct sizes
// if (y.size() != x.size() || y.size() != y_err.size() ||
// par_out.size() != 2 || par_err_out.size() != 2) {
// throw std::runtime_error("Data, x, data_err must have the same size "
// "and par_out, par_err_out must have size 2");
// }
NDArray<double, 1> par = pol1_init_par(x, y);
lm_status_struct status;
lmcurve(par.size(), par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &lm_control_double, &status);
return par;
}
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads) {
NDArray<double, 3> result({y.shape(0), y.shape(1), 2}, 0);
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
auto res = fit_pol1(x, values);
result(row, col, 0) = res(0);
result(row, col, 1) = res(1);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
} // namespace aare

View File

@ -19,7 +19,7 @@ TEST_CASE("Construct a frame") {
// data should be initialized to 0
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
REQUIRE(data != nullptr);
REQUIRE(*data == 0);
}
@ -40,7 +40,7 @@ TEST_CASE("Set a value in a 8 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@ -65,7 +65,7 @@ TEST_CASE("Set a value in a 64 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint64_t *data = reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
uint64_t *data = (uint64_t *)frame.pixel_ptr(i, j);
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@ -149,5 +149,4 @@ TEST_CASE("test explicit copy constructor") {
REQUIRE(frame2.bitdepth() == bitdepth);
REQUIRE(frame2.bytes() == rows * cols * bitdepth / 8);
REQUIRE(frame2.data() != data);
}
}

View File

@ -1,139 +0,0 @@
#include "aare/Interpolator.hpp"
#include "aare/algorithm.hpp"
namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
"The shape of the etacube does not match the shape of the bins");
}
// Cumulative sum in the x direction
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
}
}
}
// Normalize by the highest row, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
double norm = val < 1 ? 1 : val;
m_ietax(i, j, k) /= norm;
}
}
}
// Cumulative sum in the y direction
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
}
}
}
// Normalize by the highest column, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
double norm = val < 1 ? 1 : val;
m_ietay(i, j, k) /= norm;
}
}
}
}
std::vector<Photon> Interpolator::interpolate(const ClusterVector<int32_t>& clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster3x3>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
double dX{}, dY{};
// cBottomLeft = 0,
// cBottomRight = 1,
// cTopLeft = 2,
// cTopRight = 3
switch (eta.c) {
case cTopLeft:
dX = -1.;
dY = 0.;
break;
case cTopRight:;
dX = 0.;
dY = 0.;
break;
case cBottomLeft:
dX = -1.;
dY = -1.;
break;
case cBottomRight:
dX = 0.;
dY = -1.;
break;
}
photon.x += m_ietax(ix, iy, ie)*2 + dX;
photon.y += m_ietay(ix, iy, ie)*2 + dY;
photons.push_back(photon);
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster2x2>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Now do some actual interpolation.
//Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
photon.x += m_ietax(ix, iy, ie)*2; //eta goes between 0 and 1 but we could move the hit anywhere in the 2x2
photon.y += m_ietay(ix, iy, ie)*2;
photons.push_back(photon);
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported for interpolation");
}
return photons;
}
} // namespace aare

View File

@ -1,238 +0,0 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/algorithm.hpp"
#include "aare/defs.hpp"
#include <cerrno>
#include <fmt/format.h>
namespace aare {
JungfrauDataFile::JungfrauDataFile(const std::filesystem::path &fname) {
if (!std::filesystem::exists(fname)) {
throw std::runtime_error(LOCATION +
"File does not exist: " + fname.string());
}
find_frame_size(fname);
parse_fname(fname);
scan_files();
open_file(m_current_file_index);
}
// FileInterface
Frame JungfrauDataFile::read_frame(){
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
Frame JungfrauDataFile::read_frame(size_t frame_number){
seek(frame_number);
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
std::vector<Frame> JungfrauDataFile::read_n(size_t n_frames) {
std::vector<Frame> frames;
for(size_t i = 0; i < n_frames; ++i){
frames.push_back(read_frame());
}
return frames;
}
void JungfrauDataFile::read_into(std::byte *image_buf) {
read_into(image_buf, nullptr);
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames) {
read_into(image_buf, n_frames, nullptr);
}
size_t JungfrauDataFile::frame_number(size_t frame_index) {
seek(frame_index);
return read_header().framenum;
}
std::array<ssize_t, 2> JungfrauDataFile::shape() const {
return {static_cast<ssize_t>(rows()), static_cast<ssize_t>(cols())};
}
DetectorType JungfrauDataFile::detector_type() const { return DetectorType::Jungfrau; }
std::string JungfrauDataFile::base_name() const { return m_base_name; }
size_t JungfrauDataFile::bytes_per_frame() { return m_bytes_per_frame; }
size_t JungfrauDataFile::pixels_per_frame() { return m_rows * m_cols; }
size_t JungfrauDataFile::bytes_per_pixel() const { return sizeof(pixel_type); }
size_t JungfrauDataFile::bitdepth() const {
return bytes_per_pixel() * bits_per_byte;
}
void JungfrauDataFile::seek(size_t frame_index) {
if (frame_index >= m_total_frames) {
throw std::runtime_error(LOCATION + "Frame index out of range: " +
std::to_string(frame_index));
}
m_current_frame_index = frame_index;
auto file_index = first_larger(m_last_frame_in_file, frame_index);
if (file_index != m_current_file_index)
open_file(file_index);
auto frame_offset = (file_index)
? frame_index - m_last_frame_in_file[file_index - 1]
: frame_index;
auto byte_offset = frame_offset * (m_bytes_per_frame + header_size);
m_fp.seek(byte_offset);
};
size_t JungfrauDataFile::tell() { return m_current_frame_index; }
size_t JungfrauDataFile::total_frames() const { return m_total_frames; }
size_t JungfrauDataFile::rows() const { return m_rows; }
size_t JungfrauDataFile::cols() const { return m_cols; }
size_t JungfrauDataFile::n_files() const { return m_last_frame_in_file.size(); }
void JungfrauDataFile::find_frame_size(const std::filesystem::path &fname) {
static constexpr size_t module_data_size =
header_size + sizeof(pixel_type) * 512 * 1024;
static constexpr size_t half_data_size =
header_size + sizeof(pixel_type) * 256 * 1024;
static constexpr size_t chip_data_size =
header_size + sizeof(pixel_type) * 256 * 256;
auto file_size = std::filesystem::file_size(fname);
if (file_size == 0) {
throw std::runtime_error(LOCATION +
"Cannot guess frame size: file is empty");
}
if (file_size % module_data_size == 0) {
m_rows = 512;
m_cols = 1024;
m_bytes_per_frame = module_data_size - header_size;
} else if (file_size % half_data_size == 0) {
m_rows = 256;
m_cols = 1024;
m_bytes_per_frame = half_data_size - header_size;
} else if (file_size % chip_data_size == 0) {
m_rows = 256;
m_cols = 256;
m_bytes_per_frame = chip_data_size - header_size;
} else {
throw std::runtime_error(LOCATION +
"Cannot find frame size: file size is not a "
"multiple of any known frame size");
}
}
void JungfrauDataFile::parse_fname(const std::filesystem::path &fname) {
m_path = fname.parent_path();
m_base_name = fname.stem();
// find file index, then remove if from the base name
if (auto pos = m_base_name.find_last_of('_'); pos != std::string::npos) {
m_offset = std::stoul(m_base_name.substr(pos + 1));
m_base_name.erase(pos);
}
}
void JungfrauDataFile::scan_files() {
// find how many files we have and the number of frames in each file
m_last_frame_in_file.clear();
size_t file_index = m_offset;
while (std::filesystem::exists(fpath(file_index))) {
auto n_frames = std::filesystem::file_size(fpath(file_index)) /
(m_bytes_per_frame + header_size);
m_last_frame_in_file.push_back(n_frames);
++file_index;
}
// find where we need to open the next file and total number of frames
m_last_frame_in_file = cumsum(m_last_frame_in_file);
m_total_frames = m_last_frame_in_file.back();
}
void JungfrauDataFile::read_into(std::byte *image_buf,
JungfrauDataHeader *header) {
// read header if not passed nullptr
if (header) {
if (auto rc = fread(header, sizeof(JungfrauDataHeader), 1, m_fp.get());
rc != 1) {
throw std::runtime_error(
LOCATION +
"Could not read header from file:" + m_fp.error_msg());
}
} else {
m_fp.seek(header_size, SEEK_CUR);
}
// read data
if (auto rc = fread(image_buf, 1, m_bytes_per_frame, m_fp.get());
rc != m_bytes_per_frame) {
throw std::runtime_error(LOCATION + "Could not read image from file" +
m_fp.error_msg());
}
// prepare for next read
// if we are at the end of the file, open the next file
++m_current_frame_index;
if (m_current_frame_index >= m_last_frame_in_file[m_current_file_index] &&
(m_current_frame_index < m_total_frames)) {
++m_current_file_index;
open_file(m_current_file_index);
}
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames,
JungfrauDataHeader *header) {
if (header) {
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, header + i);
}else{
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, nullptr);
}
}
void JungfrauDataFile::read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header) {
if(image->shape()!=shape()){
throw std::runtime_error(LOCATION +
"Image shape does not match file size: " + std::to_string(rows()) + "x" + std::to_string(cols()));
}
read_into(reinterpret_cast<std::byte *>(image->data()), header);
}
JungfrauDataHeader JungfrauDataFile::read_header() {
JungfrauDataHeader header;
if (auto rc = fread(&header, 1, sizeof(header), m_fp.get());
rc != sizeof(header)) {
throw std::runtime_error(LOCATION + "Could not read header from file" +
m_fp.error_msg());
}
m_fp.seek(-header_size, SEEK_CUR);
return header;
}
void JungfrauDataFile::open_file(size_t file_index) {
// fmt::print(stderr, "Opening file: {}\n",
// fpath(file_index+m_offset).string());
m_fp = FilePtr(fpath(file_index + m_offset), "rb");
m_current_file_index = file_index;
}
std::filesystem::path JungfrauDataFile::fpath(size_t file_index) const {
auto fname = fmt::format("{}_{:0{}}.dat", m_base_name, file_index,
n_digits_in_file_index);
return m_path / fname;
}
} // namespace aare

View File

@ -1,114 +0,0 @@
#include "aare/JungfrauDataFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include "test_config.hpp"
using aare::JungfrauDataFile;
using aare::JungfrauDataHeader;
TEST_CASE("Open a Jungfrau data file", "[.files]") {
//we know we have 4 files with 7, 7, 7, and 3 frames
//firs frame number if 1 and the bunch id is frame_number**2
//so we can check the header
auto fpath = test_data_path() / "dat" / "AldoJF500k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
REQUIRE(f.rows() == 512);
REQUIRE(f.cols() == 1024);
REQUIRE(f.bytes_per_frame() == 1048576);
REQUIRE(f.pixels_per_frame() == 524288);
REQUIRE(f.bytes_per_pixel() == 2);
REQUIRE(f.bitdepth() == 16);
REQUIRE(f.base_name() == "AldoJF500k");
REQUIRE(f.n_files() == 4);
REQUIRE(f.tell() == 0);
REQUIRE(f.total_frames() == 24);
REQUIRE(f.current_file() == fpath);
//Check that the frame number and buch id is read correctly
for (size_t i = 0; i < 24; ++i) {
JungfrauDataHeader header;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &header);
REQUIRE(header.framenum == i + 1);
REQUIRE(header.bunchid == (i + 1) * (i + 1));
REQUIRE(image.shape(0) == 512);
REQUIRE(image.shape(1) == 1024);
}
}
TEST_CASE("Seek in a JungfrauDataFile", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//The file should have 113 frames
f.seek(19);
REQUIRE(f.tell() == 19);
auto h = f.read_header();
REQUIRE(h.framenum == 19+1);
//Reading again does not change the file pointer
auto h2 = f.read_header();
REQUIRE(h2.framenum == 19+1);
f.seek(59);
REQUIRE(f.tell() == 59);
auto h3 = f.read_header();
REQUIRE(h3.framenum == 59+1);
JungfrauDataHeader h4;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &h4);
REQUIRE(h4.framenum == 59+1);
//now we should be on the next frame
REQUIRE(f.tell() == 60);
REQUIRE(f.read_header().framenum == 60+1);
REQUIRE_THROWS(f.seek(86356)); //out of range
}
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000003.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//18 files per data file, opening the 3rd file we ignore the first 3
REQUIRE(f.total_frames() == 113-18*3);
REQUIRE(f.tell() == 0);
//Frame numbers start at 1 in the first file
REQUIRE(f.read_header().framenum == 18*3+1);
// moving relative to the third file
f.seek(5);
REQUIRE(f.read_header().framenum == 18*3+1+5);
// ignoring the first 3 files
REQUIRE(f.n_files() == 4);
REQUIRE(f.current_file().stem() == "AldoJF65k_000003");
}
TEST_CASE("Read into throws if size doesn't match", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
aare::NDArray<uint16_t> image({39, 85});
JungfrauDataHeader header;
REQUIRE_THROWS(f.read_into(&image, &header));
REQUIRE_THROWS(f.read_into(&image, nullptr));
REQUIRE_THROWS(f.read_into(&image));
REQUIRE(f.tell() == 0);
}

View File

@ -2,7 +2,6 @@
#include <array>
#include <catch2/benchmark/catch_benchmark.hpp>
#include <catch2/catch_test_macros.hpp>
#include <numeric>
using aare::NDArray;
using aare::NDView;
@ -35,24 +34,6 @@ TEST_CASE("Construct from an NDView") {
}
}
TEST_CASE("3D NDArray from NDView"){
std::vector<int> data(27);
std::iota(data.begin(), data.end(), 0);
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
NDArray<int, 3> image(view);
REQUIRE(image.shape() == view.shape());
REQUIRE(image.size() == view.size());
REQUIRE(image.data() != view.data());
for(int64_t i=0; i<image.shape(0); i++){
for(int64_t j=0; j<image.shape(1); j++){
for(int64_t k=0; k<image.shape(2); k++){
REQUIRE(image(i, j, k) == view(i, j, k));
}
}
}
}
TEST_CASE("1D image") {
std::array<int64_t, 1> shape{{20}};
NDArray<short, 1> img(shape, 3);
@ -183,14 +164,14 @@ TEST_CASE("Size and shape matches") {
int64_t h = 75;
std::array<int64_t, 2> shape{w, h};
NDArray<double> a{shape};
REQUIRE(a.size() == w * h);
REQUIRE(a.size() == static_cast<uint64_t>(w * h));
REQUIRE(a.shape() == shape);
}
TEST_CASE("Initial value matches for all elements") {
double v = 4.35;
NDArray<double> a{{5, 5}, v};
for (int i = 0; i < a.size(); ++i) {
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == v);
}
}
@ -398,32 +379,4 @@ TEST_CASE("Elementwise operations on images") {
REQUIRE(A(i) == a_val);
}
}
}
TEST_CASE("Assign an std::array to a 1D NDArray") {
NDArray<int, 1> a{{5}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Assign an std::array to a 1D NDArray of a different size") {
NDArray<int, 1> a{{3}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
REQUIRE(a.size() == 5);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Construct an NDArray from an std::array") {
std::array<int, 5> b{1, 2, 3, 4, 5};
NDArray<int, 1> a(b);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}

View File

@ -3,7 +3,6 @@
#include <iostream>
#include <vector>
#include <numeric>
using aare::NDView;
using aare::Shape;
@ -22,8 +21,10 @@ TEST_CASE("Element reference 1D") {
}
TEST_CASE("Element reference 2D") {
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(vec.size() == static_cast<size_t>(data.size()));
@ -57,8 +58,10 @@ TEST_CASE("Element reference 3D") {
}
TEST_CASE("Plus and miuns with single value") {
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
data += 5;
int i = 0;
@ -113,8 +116,10 @@ TEST_CASE("elementwise assign") {
}
TEST_CASE("iterators") {
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
NDView<int, 1> data(vec.data(), Shape<1>{12});
int i = 0;
for (const auto item : data) {
@ -162,31 +167,27 @@ TEST_CASE("divide with another span") {
}
TEST_CASE("Retrieve shape") {
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(data.shape()[0] == 3);
REQUIRE(data.shape()[1] == 4);
}
TEST_CASE("compare two views") {
std::vector<int> vec1(12);
std::iota(vec1.begin(), vec1.end(), 0);
std::vector<int> vec1;
for (int i = 0; i != 12; ++i) {
vec1.push_back(i);
}
NDView<int, 2> view1(vec1.data(), Shape<2>{3, 4});
std::vector<int> vec2(12);
std::iota(vec2.begin(), vec2.end(), 0);
std::vector<int> vec2;
for (int i = 0; i != 12; ++i) {
vec2.push_back(i);
}
NDView<int, 2> view2(vec2.data(), Shape<2>{3, 4});
REQUIRE((view1 == view2));
}
TEST_CASE("Create a view over a vector"){
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
auto v = aare::make_view(vec);
REQUIRE(v.shape()[0] == 12);
REQUIRE(v[0] == 0);
REQUIRE(v[11] == 11);
}

View File

@ -1,7 +1,6 @@
#include "aare/RawFile.hpp"
#include "aare/PixelMap.hpp"
#include "aare/defs.hpp"
#include "aare/geo_helpers.hpp"
#include <fmt/format.h>
#include <nlohmann/json.hpp>
@ -22,11 +21,8 @@ RawFile::RawFile(const std::filesystem::path &fname, const std::string &mode)
find_geometry();
update_geometry_with_roi();
if (m_master.roi()){
m_geometry = update_geometry_with_roi(m_geometry, m_master.roi().value());
}
open_subfiles();
} else {
throw std::runtime_error(LOCATION +
@ -76,12 +72,9 @@ size_t RawFile::n_mod() const { return n_subfile_parts; }
size_t RawFile::bytes_per_frame() {
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / bits_per_byte;
}
size_t RawFile::pixels_per_frame() {
// return m_rows * m_cols;
return m_geometry.pixels_x * m_geometry.pixels_y;
return m_rows * m_cols * m_master.bitdepth() / 8;
}
size_t RawFile::pixels_per_frame() { return m_rows * m_cols; }
DetectorType RawFile::detector_type() const { return m_master.detector_type(); }
@ -99,8 +92,8 @@ void RawFile::seek(size_t frame_index) {
size_t RawFile::tell() { return m_current_frame; };
size_t RawFile::total_frames() const { return m_master.frames_in_file(); }
size_t RawFile::rows() const { return m_geometry.pixels_y; }
size_t RawFile::cols() const { return m_geometry.pixels_x; }
size_t RawFile::rows() const { return m_rows; }
size_t RawFile::cols() const { return m_cols; }
size_t RawFile::bitdepth() const { return m_master.bitdepth(); }
xy RawFile::geometry() { return m_master.geometry(); }
@ -109,11 +102,11 @@ void RawFile::open_subfiles() {
for (size_t i = 0; i != n_subfiles; ++i) {
auto v = std::vector<RawSubFile *>(n_subfile_parts);
for (size_t j = 0; j != n_subfile_parts; ++j) {
auto pos = m_geometry.module_pixel_0[j];
auto pos = m_module_pixel_0[j];
v[j] = new RawSubFile(m_master.data_fname(j, i),
m_master.detector_type(), pos.height,
pos.width, m_master.bitdepth(),
pos.row_index, pos.col_index);
positions[j].row, positions[j].col);
}
subfiles.push_back(v);
@ -156,49 +149,112 @@ int RawFile::find_number_of_subfiles() {
RawMasterFile RawFile::master() const { return m_master; }
/**
* @brief Find the geometry of the detector by opening all the subfiles and
* reading the headers.
*/
void RawFile::find_geometry() {
//Hold the maximal row and column number found
//Later used for calculating the total number of rows and columns
uint16_t r{};
uint16_t c{};
for (size_t i = 0; i < n_subfile_parts; i++) {
auto h = read_header(m_master.data_fname(i, 0));
auto h = this->read_header(m_master.data_fname(i, 0));
r = std::max(r, h.row);
c = std::max(c, h.column);
// positions.push_back({h.row, h.column});
positions.push_back({h.row, h.column});
ModuleGeometry g;
g.origin_x = h.column * m_master.pixels_x();
g.origin_y = h.row * m_master.pixels_y();
g.row_index = h.row;
g.col_index = h.column;
g.x = h.column * m_master.pixels_x();
g.y = h.row * m_master.pixels_y();
g.width = m_master.pixels_x();
g.height = m_master.pixels_y();
m_geometry.module_pixel_0.push_back(g);
m_module_pixel_0.push_back(g);
}
r++;
c++;
m_geometry.pixels_y = (r * m_master.pixels_y());
m_geometry.pixels_x = (c * m_master.pixels_x());
m_geometry.modules_x = c;
m_geometry.modules_y = r;
m_geometry.pixels_y += static_cast<size_t>((r - 1) * cfg.module_gap_row);
m_rows = (r * m_master.pixels_y());
m_cols = (c * m_master.pixels_x());
m_rows += static_cast<size_t>((r - 1) * cfg.module_gap_row);
#ifdef AARE_VERBOSE
fmt::print("\nRawFile::find_geometry()\n");
for (size_t i = 0; i < m_module_pixel_0.size(); i++) {
fmt::print("Module {} at position: (r:{},c:{})\n", i,
m_module_pixel_0[i].y, m_module_pixel_0[i].x);
}
fmt::print("Image size: {}x{}\n\n", m_rows, m_cols);
#endif
}
void RawFile::update_geometry_with_roi() {
// TODO! implement this
if (m_master.roi()) {
auto roi = m_master.roi().value();
// TODO! can we do this cleaner?
int pos_y = 0;
int pos_y_increment = 0;
for (size_t row = 0; row < m_master.geometry().row; row++) {
int pos_x = 0;
for (size_t col = 0; col < m_master.geometry().col; col++) {
auto &m = m_module_pixel_0[row * m_master.geometry().col + col];
auto original_height = m.height;
auto original_width = m.width;
// module is to the left of the roi
if (m.x + m.width < roi.xmin) {
m.width = 0;
// roi is in module
} else {
// here we only arrive when the roi is in or to the left of
// the module
if (roi.xmin > m.x) {
m.width -= roi.xmin - m.x;
}
if (roi.xmax < m.x + m.width) {
m.width -= m.x + original_width - roi.xmax;
}
m.x = pos_x;
pos_x += m.width;
}
if (m.y + m.height < roi.ymin) {
m.height = 0;
} else {
if ((roi.ymin > m.y) && (roi.ymin < m.y + m.height)) {
m.height -= roi.ymin - m.y;
}
if (roi.ymax < m.y + m.height) {
m.height -= m.y + original_height - roi.ymax;
}
m.y = pos_y;
pos_y_increment = m.height;
}
}
// increment pos_y
pos_y += pos_y_increment;
}
m_rows = roi.height();
m_cols = roi.width();
}
#ifdef AARE_VERBOSE
fmt::print("RawFile::update_geometry_with_roi()\n");
for (const auto &m : m_module_pixel_0) {
fmt::print("Module at position: (r:{}, c:{}, h:{}, w:{})\n", m.y, m.x,
m.height, m.width);
}
fmt::print("Updated image size: {}x{}\n\n", m_rows, m_cols);
fmt::print("\n");
#endif
}
Frame RawFile::get_frame(size_t frame_index) {
auto f = Frame(m_geometry.pixels_y, m_geometry.pixels_x, Dtype::from_bitdepth(m_master.bitdepth()));
auto f = Frame(m_rows, m_cols, Dtype::from_bitdepth(m_master.bitdepth()));
std::byte *frame_buffer = f.data();
get_frame_into(frame_index, frame_buffer);
return f;
@ -222,10 +278,6 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
if (n_subfile_parts != 1) {
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto subfile_id = frame_index / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(LOCATION +
" Subfile out of range. Possible missing data.");
}
frame_numbers[part_idx] =
subfiles[subfile_id][part_idx]->frame_number(
frame_index % m_master.max_frames_per_file());
@ -259,16 +311,12 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto corrected_idx = frame_indices[part_idx];
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(LOCATION +
" Subfile out of range. Possible missing data.");
}
// This is where we start writing
auto offset = (m_geometry.module_pixel_0[part_idx].origin_y * m_geometry.pixels_x +
m_geometry.module_pixel_0[part_idx].origin_x)*m_master.bitdepth()/8;
auto offset = (m_module_pixel_0[part_idx].y * m_cols +
m_module_pixel_0[part_idx].x)*m_master.bitdepth()/8;
if (m_geometry.module_pixel_0[part_idx].origin_x!=0)
if (m_module_pixel_0[part_idx].x!=0)
throw std::runtime_error(LOCATION + "Implementation error. x pos not 0.");
//TODO! Risk for out of range access
@ -292,13 +340,9 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
// level
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
auto pos = m_geometry.module_pixel_0[part_idx];
auto pos = m_module_pixel_0[part_idx];
auto corrected_idx = frame_indices[part_idx];
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
if (subfile_id >= subfiles.size()) {
throw std::runtime_error(LOCATION +
" Subfile out of range. Possible missing data.");
}
subfiles[subfile_id][part_idx]->seek(corrected_idx % m_master.max_frames_per_file());
subfiles[subfile_id][part_idx]->read_into(part_buffer, header);
@ -308,9 +352,9 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
for (size_t cur_row = 0; cur_row < static_cast<size_t>(pos.height);
cur_row++) {
auto irow = (pos.origin_y + cur_row);
auto icol = pos.origin_x;
auto dest = (irow * this->m_geometry.pixels_x + icol);
auto irow = (pos.y + cur_row);
auto icol = pos.x;
auto dest = (irow * this->m_cols + icol);
dest = dest * m_master.bitdepth() / 8;
memcpy(frame_buffer + dest,
part_buffer + cur_row * pos.width *
@ -356,8 +400,4 @@ RawFile::~RawFile() {
}
}
} // namespace aare

View File

@ -1,13 +1,10 @@
#include "aare/File.hpp"
#include "aare/RawMasterFile.hpp" //needed for ROI
#include "aare/RawFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include "test_config.hpp"
using aare::File;
TEST_CASE("Read number of frames from a jungfrau raw file", "[.integration]") {
@ -151,5 +148,3 @@ TEST_CASE("Read file with unordered frames", "[.integration]") {
File f(fpath);
REQUIRE_THROWS((f.read_frame()));
}

View File

@ -1,29 +1,24 @@
#include "aare/RawSubFile.hpp"
#include "aare/PixelMap.hpp"
#include "aare/utils/ifstream_helpers.hpp"
#include <cstring> // memcpy
#include <fmt/core.h>
#include <iostream>
namespace aare {
RawSubFile::RawSubFile(const std::filesystem::path &fname,
DetectorType detector, size_t rows, size_t cols,
size_t bitdepth, uint32_t pos_row, uint32_t pos_col)
: m_detector_type(detector), m_bitdepth(bitdepth), m_fname(fname),
m_rows(rows), m_cols(cols),
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row),
m_pos_col(pos_col) {
: m_detector_type(detector), m_bitdepth(bitdepth), m_fname(fname), m_rows(rows), m_cols(cols),
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row), m_pos_col(pos_col) {
if (m_detector_type == DetectorType::Moench03_old) {
m_pixel_map = GenerateMoench03PixelMap();
} else if (m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0) {
}else if(m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0){
m_pixel_map = GenerateEigerFlipRowsPixelMap();
}
if (std::filesystem::exists(fname)) {
m_num_frames = std::filesystem::file_size(fname) /
n_frames = std::filesystem::file_size(fname) /
(sizeof(DetectorHeader) + rows * cols * bitdepth / 8);
} else {
throw std::runtime_error(
@ -38,7 +33,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
#ifdef AARE_VERBOSE
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), m_num_frames);
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), n_frames);
fmt::print("m_rows: {}, m_cols: {}, m_bitdepth: {}\n", m_rows, m_cols,
m_bitdepth);
fmt::print("file size: {}\n", std::filesystem::file_size(fname));
@ -46,8 +41,8 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
void RawSubFile::seek(size_t frame_index) {
if (frame_index >= m_num_frames) {
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, m_num_frames));
if (frame_index >= n_frames) {
throw std::runtime_error("Frame number out of range");
}
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
}
@ -56,68 +51,37 @@ size_t RawSubFile::tell() {
return m_file.tellg() / (sizeof(DetectorHeader) + bytes_per_frame());
}
void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
if (header) {
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
if(header){
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
} else {
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
// TODO! expand support for different bitdepths
if (m_pixel_map) {
//TODO! expand support for different bitdepths
if(m_pixel_map){
// read into a temporary buffer and then copy the data to the buffer
// in the correct order
// TODO! add 4 bit support
if(m_bitdepth == 8){
read_with_map<uint8_t>(image_buf);
}else if (m_bitdepth == 16) {
read_with_map<uint16_t>(image_buf);
} else if (m_bitdepth == 32) {
read_with_map<uint32_t>(image_buf);
}else{
throw std::runtime_error("Unsupported bitdepth for read with pixel map");
// currently this only supports 16 bit data!
auto part_buffer = new std::byte[bytes_per_frame()];
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
auto *data = reinterpret_cast<uint16_t *>(image_buf);
auto *part_data = reinterpret_cast<uint16_t *>(part_buffer);
for (size_t i = 0; i < pixels_per_frame(); i++) {
data[i] = part_data[(*m_pixel_map)(i)];
}
delete[] part_buffer;
} else {
// read directly into the buffer
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
}
void RawSubFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header) {
for (size_t i = 0; i < n_frames; i++) {
read_into(image_buf, header);
image_buf += bytes_per_frame();
if (header) {
++header;
}
}
}
template <typename T>
void RawSubFile::read_with_map(std::byte *image_buf) {
auto part_buffer = new std::byte[bytes_per_frame()];
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
auto *data = reinterpret_cast<T *>(image_buf);
auto *part_data = reinterpret_cast<T *>(part_buffer);
for (size_t i = 0; i < pixels_per_frame(); i++) {
data[i] = part_data[(*m_pixel_map)(i)];
}
delete[] part_buffer;
}
size_t RawSubFile::rows() const { return m_rows; }
size_t RawSubFile::cols() const { return m_cols; }
void RawSubFile::get_part(std::byte *buffer, size_t frame_index) {
seek(frame_index);
read_into(buffer, nullptr);
@ -130,4 +94,5 @@ size_t RawSubFile::frame_number(size_t frame_index) {
return h.frameNumber;
}
} // namespace aare

View File

@ -1,159 +0,0 @@
#include <catch2/catch_test_macros.hpp>
#include <aare/algorithm.hpp>
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2.3) == 2);
REQUIRE(aare::nearest_index(arr, 2.6) == 3);
REQUIRE(aare::nearest_index(arr, 45.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
}
TEST_CASE("Passing integers to nearest_index works", "[algorithm]"){
aare::NDArray<int, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2) == 2);
REQUIRE(aare::nearest_index(arr, 3) == 3);
REQUIRE(aare::nearest_index(arr, 45) == 4);
REQUIRE(aare::nearest_index(arr, 0) == 0);
REQUIRE(aare::nearest_index(arr, -1) == 0);
}
TEST_CASE("nearest_index works with std::vector", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
REQUIRE(aare::nearest_index(vec, 4555555.0) == 4);
REQUIRE(aare::nearest_index(vec, 0.0) == 0);
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
}
TEST_CASE("nearest index works with std::array", "[algorithm]"){
std::array<double, 5> arr = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
REQUIRE(aare::nearest_index(arr, 4555555.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element", "[algorithm]"){
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 5) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element also when all smaller", "[algorithm]"){
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 10) == 0);
}
TEST_CASE("last smaller", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -10.0) == 0);
REQUIRE(aare::last_smaller(arr, 0.0) == 0);
REQUIRE(aare::last_smaller(arr, 2.3) == 2);
REQUIRE(aare::last_smaller(arr, 253.) == 4);
}
TEST_CASE("returns last bin strictly smaller", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 2.0) == 1);
}
TEST_CASE("last_smaller with all elements smaller returns last element", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 50.) == 4);
}
TEST_CASE("last_smaller with all elements bigger returns first element", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -50.) == 0);
}
TEST_CASE("last smaller with all elements equal returns the first element", "[algorithm]"){
std::vector<int> vec = {5,5,5,5,5,5,5};
REQUIRE(aare::last_smaller(vec, 5) == 0);
}
TEST_CASE("first_lager with vector", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 2.5) == 3);
}
TEST_CASE("first_lager with all elements smaller returns last element", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 50.) == 4);
}
TEST_CASE("first_lager with all elements bigger returns first element", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, -50.) == 0);
}
TEST_CASE("first_lager with all elements the same as the check returns last", "[algorithm]"){
std::vector<int> vec = {14, 14, 14, 14, 14};
REQUIRE(aare::first_larger(vec, 14) == 4);
}
TEST_CASE("first larger with the same element", "[algorithm]"){
std::vector<int> vec = {7,8,9,10,11};
REQUIRE(aare::first_larger(vec, 9) == 3);
}
TEST_CASE("cumsum works", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == 1);
REQUIRE(result[2] == 3);
REQUIRE(result[3] == 6);
REQUIRE(result[4] == 10);
}
TEST_CASE("cumsum works with empty vector", "[algorithm]"){
std::vector<double> vec = {};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == 0);
}
TEST_CASE("cumsum works with negative numbers", "[algorithm]"){
std::vector<double> vec = {0, -1, -2, -3, -4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == -1);
REQUIRE(result[2] == -3);
REQUIRE(result[3] == -6);
REQUIRE(result[4] == -10);
}

View File

@ -1,102 +0,0 @@
#include "aare/decode.hpp"
#include <cmath>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input){
//we want bits 29,19,28,18,31,21,27,20,24,23,25,22 and then pad to 16
uint16_t output = 0;
output |= ((input >> 22) & 1) << 11;
output |= ((input >> 25) & 1) << 10;
output |= ((input >> 23) & 1) << 9;
output |= ((input >> 24) & 1) << 8;
output |= ((input >> 20) & 1) << 7;
output |= ((input >> 27) & 1) << 6;
output |= ((input >> 21) & 1) << 5;
output |= ((input >> 31) & 1) << 4;
output |= ((input >> 18) & 1) << 3;
output |= ((input >> 28) & 1) << 2;
output |= ((input >> 19) & 1) << 1;
output |= ((input >> 29) & 1) << 0;
return output;
}
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_05_decode64to16(input(i,j));
}
}
}
uint16_t adc_sar_04_decode64to16(uint64_t input){
// bit_map = array([15,17,19,21,23,4,6,8,10,12,14,16] LSB->MSB
uint16_t output = 0;
output |= ((input >> 16) & 1) << 11;
output |= ((input >> 14) & 1) << 10;
output |= ((input >> 12) & 1) << 9;
output |= ((input >> 10) & 1) << 8;
output |= ((input >> 8) & 1) << 7;
output |= ((input >> 6) & 1) << 6;
output |= ((input >> 4) & 1) << 5;
output |= ((input >> 23) & 1) << 4;
output |= ((input >> 21) & 1) << 3;
output |= ((input >> 19) & 1) << 2;
output |= ((input >> 17) & 1) << 1;
output |= ((input >> 15) & 1) << 0;
return output;
}
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_04_decode64to16(input(i,j));
}
}
}
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights) {
if(weights.size() > 16){
throw std::invalid_argument("weights size must be less than or equal to 16");
}
double result = 0.0;
for (ssize_t i = 0; i < weights.size(); ++i) {
result += ((input >> i) & 1) * std::pow(weights[i], i);
}
return result;
}
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double,1> weights) {
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
//Calculate weights to avoid repeatedly calling std::pow
std::vector<double> weights_powers(weights.size());
for (ssize_t i = 0; i < weights.size(); ++i) {
weights_powers[i] = std::pow(weights[i], i);
}
// Apply custom weights to each element in the input array
for (ssize_t i = 0; i < input.shape(0); i++) {
double result = 0.0;
for (size_t bit_index = 0; bit_index < weights_powers.size(); ++bit_index) {
result += ((input(i) >> bit_index) & 1) * weights_powers[bit_index];
}
output(i) = result;
}
}
} // namespace aare

View File

@ -1,80 +0,0 @@
#include "aare/decode.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include "aare/NDArray.hpp"
using Catch::Matchers::WithinAbs;
#include <vector>
TEST_CASE("test_adc_sar_05_decode64to16"){
uint64_t input = 0;
uint16_t output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 0);
// bit 29 on th input is bit 0 on the output
input = 1UL << 29;
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1);
// test all bits by iteratting through the bitlist
std::vector<int> bitlist = {29, 19, 28, 18, 31, 21, 27, 20, 24, 23, 25, 22};
for (size_t i = 0; i < bitlist.size(); i++) {
input = 1UL << bitlist[i];
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == (1 << i));
}
// test a few "random" values
input = 0;
input |= (1UL << 29);
input |= (1UL << 19);
input |= (1UL << 28);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 7UL);
input = 0;
input |= (1UL << 18);
input |= (1UL << 27);
input |= (1UL << 25);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1096UL);
input = 0;
input |= (1UL << 25);
input |= (1UL << 22);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 3072UL);
}
TEST_CASE("test_apply_custom_weights") {
uint16_t input = 1;
aare::NDArray<double, 1> weights_data({3}, 0.0);
weights_data(0) = 1.7;
weights_data(1) = 2.1;
weights_data(2) = 1.8;
auto weights = weights_data.view();
double output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(1.0, 0.001));
input = 1 << 1;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(2.1, 0.001));
input = 1 << 2;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(3.24, 0.001));
input = 0b111;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(6.34, 0.001));
}

View File

@ -1,71 +0,0 @@
#include "aare/geo_helpers.hpp"
#include "fmt/core.h"
namespace aare{
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi) {
#ifdef AARE_VERBOSE
fmt::println("update_geometry_with_roi() called with ROI: {} {} {} {}",
roi.xmin, roi.xmax, roi.ymin, roi.ymax);
fmt::println("Geometry: {} {} {} {} {} {}",
geo.modules_x, geo.modules_y, geo.pixels_x, geo.pixels_y, geo.module_gap_row, geo.module_gap_col);
#endif
int pos_y = 0;
int pos_y_increment = 0;
for (int row = 0; row < geo.modules_y; row++) {
int pos_x = 0;
for (int col = 0; col < geo.modules_x; col++) {
auto &m = geo.module_pixel_0[row * geo.modules_x + col];
auto original_height = m.height;
auto original_width = m.width;
// module is to the left of the roi
if (m.origin_x + m.width < roi.xmin) {
m.width = 0;
// roi is in module
} else {
// here we only arrive when the roi is in or to the left of
// the module
if (roi.xmin > m.origin_x) {
m.width -= roi.xmin - m.origin_x;
}
if (roi.xmax < m.origin_x + original_width) {
m.width -= m.origin_x + original_width - roi.xmax;
}
m.origin_x = pos_x;
pos_x += m.width;
}
if (m.origin_y + m.height < roi.ymin) {
m.height = 0;
} else {
if ((roi.ymin > m.origin_y) && (roi.ymin < m.origin_y + m.height)) {
m.height -= roi.ymin - m.origin_y;
}
if (roi.ymax < m.origin_y + original_height) {
m.height -= m.origin_y + original_height - roi.ymax;
}
m.origin_y = pos_y;
pos_y_increment = m.height;
}
#ifdef AARE_VERBOSE
fmt::println("Module {} {} {} {}", m.origin_x, m.origin_y, m.width, m.height);
#endif
}
// increment pos_y
pos_y += pos_y_increment;
}
// m_rows = roi.height();
// m_cols = roi.width();
geo.pixels_x = roi.width();
geo.pixels_y = roi.height();
return geo;
}
} // namespace aare

View File

@ -1,230 +0,0 @@
#include "aare/File.hpp"
#include "aare/RawMasterFile.hpp" //needed for ROI
#include "aare/RawFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include "aare/geo_helpers.hpp"
#include "test_config.hpp"
TEST_CASE("Simple ROIs on one module"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 1024;
geo.pixels_y = 512;
geo.modules_x = 1;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
SECTION("ROI is the whole module"){
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 1024;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1024);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
REQUIRE(updated_geo.module_pixel_0[0].width == 1024);
}
SECTION("ROI is the top left corner of the module"){
aare::ROI roi;
roi.xmin = 100;
roi.xmax = 200;
roi.ymin = 150;
roi.ymax = 200;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 100);
REQUIRE(updated_geo.pixels_y == 50);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 50);
REQUIRE(updated_geo.module_pixel_0[0].width == 100);
}
SECTION("ROI is a small square"){
aare::ROI roi;
roi.xmin = 1000;
roi.xmax = 1010;
roi.ymin = 500;
roi.ymax = 510;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 10);
REQUIRE(updated_geo.pixels_y == 10);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 10);
REQUIRE(updated_geo.module_pixel_0[0].width == 10);
}
SECTION("ROI is a few columns"){
aare::ROI roi;
roi.xmin = 750;
roi.xmax = 800;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 50);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 1);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
REQUIRE(updated_geo.module_pixel_0[0].width == 50);
}
}
TEST_CASE("Two modules side by side"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 2048;
geo.pixels_y = 512;
geo.modules_x = 2;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
SECTION("ROI is the whole image"){
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 2048;
roi.ymin = 0;
roi.ymax = 512;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 2048);
REQUIRE(updated_geo.pixels_y == 512);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 1);
}
SECTION("rectangle on both modules"){
aare::ROI roi;
roi.xmin = 800;
roi.xmax = 1300;
roi.ymin = 200;
roi.ymax = 499;
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 500);
REQUIRE(updated_geo.pixels_y == 299);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 299);
REQUIRE(updated_geo.module_pixel_0[0].width == 224);
REQUIRE(updated_geo.module_pixel_0[1].height == 299);
REQUIRE(updated_geo.module_pixel_0[1].width == 276);
}
}
TEST_CASE("Three modules side by side"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ROI roi;
roi.xmin = 700;
roi.xmax = 2500;
roi.ymin = 0;
roi.ymax = 123;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 3072;
geo.pixels_y = 512;
geo.modules_x = 3;
geo.modules_y = 1;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 2048;
geo.module_pixel_0.push_back(mod);
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1800);
REQUIRE(updated_geo.pixels_y == 123);
REQUIRE(updated_geo.modules_x == 3);
REQUIRE(updated_geo.modules_y == 1);
REQUIRE(updated_geo.module_pixel_0[0].height == 123);
REQUIRE(updated_geo.module_pixel_0[0].width == 324);
REQUIRE(updated_geo.module_pixel_0[1].height == 123);
REQUIRE(updated_geo.module_pixel_0[1].width == 1024);
REQUIRE(updated_geo.module_pixel_0[2].height == 123);
REQUIRE(updated_geo.module_pixel_0[2].width == 452);
}
TEST_CASE("Four modules as a square"){
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
aare::DetectorGeometry geo;
aare::ROI roi;
roi.xmin = 500;
roi.xmax = 2000;
roi.ymin = 500;
roi.ymax = 600;
aare::ModuleGeometry mod;
mod.origin_x = 0;
mod.origin_y = 0;
mod.width = 1024;
mod.height = 512;
geo.pixels_x = 2048;
geo.pixels_y = 1024;
geo.modules_x = 2;
geo.modules_y = 2;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 0;
mod.origin_y = 512;
geo.module_pixel_0.push_back(mod);
mod.origin_x = 1024;
geo.module_pixel_0.push_back(mod);
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
REQUIRE(updated_geo.pixels_x == 1500);
REQUIRE(updated_geo.pixels_y == 100);
REQUIRE(updated_geo.modules_x == 2);
REQUIRE(updated_geo.modules_y == 2);
REQUIRE(updated_geo.module_pixel_0[0].height == 12);
REQUIRE(updated_geo.module_pixel_0[0].width == 524);
REQUIRE(updated_geo.module_pixel_0[1].height == 12);
REQUIRE(updated_geo.module_pixel_0[1].width == 976);
REQUIRE(updated_geo.module_pixel_0[2].height == 88);
REQUIRE(updated_geo.module_pixel_0[2].width == 524);
REQUIRE(updated_geo.module_pixel_0[3].height == 88);
REQUIRE(updated_geo.module_pixel_0[3].width == 976);
}

View File

@ -1,18 +0,0 @@
#include "aare/utils/ifstream_helpers.hpp"
namespace aare {
std::string ifstream_error_msg(std::ifstream &ifs) {
std::ios_base::iostate state = ifs.rdstate();
if (state & std::ios_base::eofbit) {
return " End of file reached";
} else if (state & std::ios_base::badbit) {
return " Bad file stream";
} else if (state & std::ios_base::failbit) {
return " File read failed";
}else{
return " Unknown/no error";
}
}
} // namespace aare

View File

@ -1,30 +0,0 @@
#include "aare/utils/task.hpp"
namespace aare {
std::vector<std::pair<int, int>> split_task(int first, int last,
int n_threads) {
std::vector<std::pair<int, int>> vec;
vec.reserve(n_threads);
int n_frames = last - first;
if (n_threads >= n_frames) {
for (int i = 0; i != n_frames; ++i) {
vec.push_back({i, i + 1});
}
return vec;
}
int step = (n_frames) / n_threads;
for (int i = 0; i != n_threads; ++i) {
int start = step * i;
int stop = step * (i + 1);
if (i == n_threads - 1)
stop = last;
vec.push_back({start, stop});
}
return vec;
}
} // namespace aare

View File

@ -1,32 +0,0 @@
#include "aare/utils/task.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Split a range into multiple tasks"){
auto tasks = aare::split_task(0, 10, 3);
REQUIRE(tasks.size() == 3);
REQUIRE(tasks[0].first == 0);
REQUIRE(tasks[0].second == 3);
REQUIRE(tasks[1].first == 3);
REQUIRE(tasks[1].second == 6);
REQUIRE(tasks[2].first == 6);
REQUIRE(tasks[2].second == 10);
tasks = aare::split_task(0, 10, 1);
REQUIRE(tasks.size() == 1);
REQUIRE(tasks[0].first == 0);
REQUIRE(tasks[0].second == 10);
tasks = aare::split_task(0, 10, 10);
REQUIRE(tasks.size() == 10);
for (int i = 0; i < 10; i++){
REQUIRE(tasks[i].first == i);
REQUIRE(tasks[i].second == i+1);
}
}

Some files were not shown because too many files have changed in this diff Show More