mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-14 08:17:13 +02:00
Compare commits
3 Commits
main
...
enable_tes
Author | SHA1 | Date | |
---|---|---|---|
f665b493b1 | |||
fd4175ecb2 | |||
3970320635 |
42
.clang-tidy
42
.clang-tidy
@ -1,42 +0,0 @@
|
||||
|
||||
---
|
||||
Checks: '*,
|
||||
-altera-*,
|
||||
-android-cloexec-fopen,
|
||||
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
|
||||
-cppcoreguidelines-pro-bounds-pointer-arithmetic,
|
||||
-fuchsia*,
|
||||
-readability-else-after-return,
|
||||
-readability-avoid-const-params-in-decls,
|
||||
-readability-identifier-length,
|
||||
-cppcoreguidelines-pro-bounds-constant-array-index,
|
||||
-cppcoreguidelines-pro-type-reinterpret-cast,
|
||||
-llvm-header-guard,
|
||||
-modernize-use-nodiscard,
|
||||
-misc-non-private-member-variables-in-classes,
|
||||
-readability-static-accessed-through-instance,
|
||||
-readability-braces-around-statements,
|
||||
-readability-isolate-declaration,
|
||||
-readability-implicit-bool-conversion,
|
||||
-readability-identifier-length,
|
||||
-readability-identifier-naming,
|
||||
-hicpp-signed-bitwise,
|
||||
-hicpp-no-array-decay,
|
||||
-hicpp-braces-around-statements,
|
||||
-google-runtime-references,
|
||||
-google-readability-todo,
|
||||
-google-readability-braces-around-statements,
|
||||
-modernize-use-trailing-return-type,
|
||||
-llvmlibc-*'
|
||||
|
||||
HeaderFilterRegex: \.hpp
|
||||
FormatStyle: none
|
||||
CheckOptions:
|
||||
- { key: readability-identifier-naming.NamespaceCase, value: lower_case }
|
||||
# - { key: readability-identifier-naming.FunctionCase, value: lower_case }
|
||||
- { key: readability-identifier-naming.ClassCase, value: CamelCase }
|
||||
# - { key: readability-identifier-naming.MethodCase, value: CamelCase }
|
||||
# - { key: readability-identifier-naming.StructCase, value: CamelCase }
|
||||
# - { key: readability-identifier-naming.VariableCase, value: lower_case }
|
||||
- { key: readability-identifier-naming.GlobalConstantCase, value: UPPER_CASE }
|
||||
...
|
@ -1,58 +0,0 @@
|
||||
name: Build the package using cmake then documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pages: write
|
||||
id-token: write
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ]
|
||||
python-version: ["3.12", ]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup dev env
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install cmake gcc g++
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
environment-file: etc/dev-env.yml
|
||||
miniforge-version: latest
|
||||
channels: conda-forge
|
||||
conda-remove-defaults: "true"
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
|
||||
make -j 2
|
||||
make docs
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,36 +0,0 @@
|
||||
name: Build on RHEL8
|
||||
|
||||
on:
|
||||
push:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: "ubuntu-latest"
|
||||
container:
|
||||
image: gitea.psi.ch/images/rhel8-developer-gitea-actions
|
||||
steps:
|
||||
# workaround until actions/checkout@v4 is available for RH8
|
||||
# - uses: actions/checkout@v4
|
||||
- name: Clone repository
|
||||
run: |
|
||||
echo Cloning ${{ github.ref_name }}
|
||||
git clone https://${{secrets.GITHUB_TOKEN}}@gitea.psi.ch/${{ github.repository }}.git --branch=${{ github.ref_name }} .
|
||||
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
mkdir build && cd build
|
||||
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON -DPython_FIND_VIRTUALENV=FIRST
|
||||
make -j 2
|
||||
|
||||
- name: C++ unit tests
|
||||
working-directory: ${{gitea.workspace}}/build
|
||||
run: ctest
|
@ -1,31 +0,0 @@
|
||||
name: Build on RHEL9
|
||||
|
||||
on:
|
||||
push:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: "ubuntu-latest"
|
||||
container:
|
||||
image: gitea.psi.ch/images/rhel9-developer-gitea-actions
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
mkdir build && cd build
|
||||
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON
|
||||
make -j 2
|
||||
|
||||
- name: C++ unit tests
|
||||
working-directory: ${{gitea.workspace}}/build
|
||||
run: ctest
|
41
.github/workflows/build_conda.yml
vendored
41
.github/workflows/build_conda.yml
vendored
@ -1,41 +0,0 @@
|
||||
name: Build pkgs and deploy if on main
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- developer
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ] # macos-12, windows-2019]
|
||||
python-version: ["3.12",]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
# The setup-miniconda action needs this to activate miniconda
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
environment-file: etc/dev-env.yml
|
||||
miniforge-version: latest
|
||||
channels: conda-forge
|
||||
conda-remove-defaults: "true"
|
||||
|
||||
|
||||
- name: Disable upload
|
||||
run: conda config --set anaconda_upload no
|
||||
|
||||
- name: Build
|
||||
run: conda build conda-recipe
|
||||
|
31
.github/workflows/build_docs.yml
vendored
31
.github/workflows/build_docs.yml
vendored
@ -1,13 +1,11 @@
|
||||
name: Build the package using cmake then documentation
|
||||
name: Build package and docs, test, deploy if on main
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
push:
|
||||
|
||||
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pages: write
|
||||
@ -18,11 +16,12 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ]
|
||||
platform: [ubuntu-latest, ] # macos-12, windows-2019]
|
||||
python-version: ["3.12",]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
# The setup-miniconda action needs this to activate miniconda
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
@ -31,22 +30,28 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
uses: conda-incubator/setup-miniconda@v3.0.4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
environment-file: etc/dev-env.yml
|
||||
miniforge-version: latest
|
||||
channels: conda-forge
|
||||
conda-remove-defaults: "true"
|
||||
|
||||
- name: Build library
|
||||
- name: Prepare
|
||||
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy catch2
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_PYTHON_BINDINGS=ON -DAARE_DOCS=ON
|
||||
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_TESTS=ON -DAARE_DOCS=ON
|
||||
make -j 2
|
||||
make docs
|
||||
|
||||
- name: Test
|
||||
working-directory: ${{github.workspace}}/build
|
||||
# Execute tests defined by the CMake configuration.
|
||||
# See https://cmake.org/cmake/help/latest/manual/ctest.1.html for more detail
|
||||
run: ctest -C ${{env.BUILD_TYPE}} -j1
|
||||
|
||||
- name: Upload static files as artifact
|
||||
id: deployment
|
||||
uses: actions/upload-pages-artifact@v3
|
||||
@ -58,7 +63,7 @@ jobs:
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
runs-on: ubuntu-latest
|
||||
needs: build
|
||||
if: (github.event_name == 'release' && github.event.action == 'published') || (github.event_name == 'workflow_dispatch' )
|
||||
if: github.ref == 'refs/heads/main'
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
|
64
.github/workflows/build_wheel.yml
vendored
64
.github/workflows/build_wheel.yml
vendored
@ -1,64 +0,0 @@
|
||||
name: Build wheel
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
|
||||
|
||||
jobs:
|
||||
build_wheels:
|
||||
name: Build wheels on ${{ matrix.os }}
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest,]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Build wheels
|
||||
run: pipx run cibuildwheel==2.23.0
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }}
|
||||
path: ./wheelhouse/*.whl
|
||||
|
||||
build_sdist:
|
||||
name: Build source distribution
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Build sdist
|
||||
run: pipx run build --sdist
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: cibw-sdist
|
||||
path: dist/*.tar.gz
|
||||
|
||||
upload_pypi:
|
||||
needs: [build_wheels, build_sdist]
|
||||
runs-on: ubuntu-latest
|
||||
environment: pypi
|
||||
permissions:
|
||||
id-token: write
|
||||
if: github.event_name == 'release' && github.event.action == 'published'
|
||||
# or, alternatively, upload to PyPI on every tag starting with 'v' (remove on: release above to use this)
|
||||
# if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
# unpacks all CIBW artifacts into dist/
|
||||
pattern: cibw-*
|
||||
path: dist
|
||||
merge-multiple: true
|
||||
|
||||
- uses: pypa/gh-action-pypi-publish@release/v1
|
@ -1,9 +1,10 @@
|
||||
name: Build pkgs and deploy if on main
|
||||
|
||||
on:
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- developer
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@ -24,15 +25,16 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
uses: conda-incubator/setup-miniconda@v3.0.4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
environment-file: etc/dev-env.yml
|
||||
miniforge-version: latest
|
||||
channels: conda-forge
|
||||
conda-remove-defaults: "true"
|
||||
|
||||
- name: Prepare
|
||||
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
|
||||
|
||||
- name: Enable upload
|
||||
if: github.ref == 'refs/heads/main'
|
||||
run: conda config --set anaconda_upload yes
|
||||
|
||||
- name: Build
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -17,8 +17,7 @@ Testing/
|
||||
ctbDict.cpp
|
||||
ctbDict.h
|
||||
|
||||
wheelhouse/
|
||||
dist/
|
||||
|
||||
|
||||
*.pyc
|
||||
*/__pycache__/*
|
||||
|
149
CMakeLists.txt
149
CMakeLists.txt
@ -1,29 +1,16 @@
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
cmake_minimum_required(VERSION 3.14)
|
||||
|
||||
project(aare
|
||||
VERSION 1.0.0
|
||||
DESCRIPTION "Data processing library for PSI detectors"
|
||||
HOMEPAGE_URL "https://github.com/slsdetectorgroup/aare"
|
||||
LANGUAGES C CXX
|
||||
)
|
||||
|
||||
# Read VERSION file into project version
|
||||
set(VERSION_FILE "${CMAKE_CURRENT_SOURCE_DIR}/VERSION")
|
||||
file(READ "${VERSION_FILE}" VERSION_CONTENT)
|
||||
string(STRIP "${VERSION_CONTENT}" PROJECT_VERSION_STRING)
|
||||
set(PROJECT_VERSION ${PROJECT_VERSION_STRING})
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
|
||||
execute_process(
|
||||
COMMAND git log -1 --format=%h
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
|
||||
OUTPUT_VARIABLE GIT_HASH
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
message(STATUS "Building from git hash: ${GIT_HASH}")
|
||||
|
||||
if (${CMAKE_VERSION} VERSION_GREATER "3.24")
|
||||
cmake_policy(SET CMP0135 NEW) #Fetch content download timestamp
|
||||
endif()
|
||||
@ -44,7 +31,7 @@ set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
|
||||
|
||||
|
||||
# General options
|
||||
option(AARE_PYTHON_BINDINGS "Build python bindings" OFF)
|
||||
option(AARE_PYTHON_BINDINGS "Build python bindings" ON)
|
||||
option(AARE_TESTS "Build tests" OFF)
|
||||
option(AARE_BENCHMARKS "Build benchmarks" OFF)
|
||||
option(AARE_EXAMPLES "Build examples" OFF)
|
||||
@ -53,7 +40,7 @@ option(AARE_DOCS "Build documentation" OFF)
|
||||
option(AARE_VERBOSE "Verbose output" OFF)
|
||||
option(AARE_CUSTOM_ASSERT "Use custom assert" OFF)
|
||||
option(AARE_INSTALL_PYTHONEXT "Install the python extension in the install tree under CMAKE_INSTALL_PREFIX/aare/" OFF)
|
||||
option(AARE_ASAN "Enable AddressSanitizer" OFF)
|
||||
|
||||
|
||||
# Configure which of the dependencies to use FetchContent for
|
||||
option(AARE_FETCH_FMT "Use FetchContent to download fmt" ON)
|
||||
@ -61,7 +48,6 @@ option(AARE_FETCH_PYBIND11 "Use FetchContent to download pybind11" ON)
|
||||
option(AARE_FETCH_CATCH "Use FetchContent to download catch2" ON)
|
||||
option(AARE_FETCH_JSON "Use FetchContent to download nlohmann::json" ON)
|
||||
option(AARE_FETCH_ZMQ "Use FetchContent to download libzmq" ON)
|
||||
option(AARE_FETCH_LMFIT "Use FetchContent to download lmfit" ON)
|
||||
|
||||
|
||||
#Convenience option to use system libraries only (no FetchContent)
|
||||
@ -73,15 +59,10 @@ if(AARE_SYSTEM_LIBRARIES)
|
||||
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
|
||||
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
|
||||
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
|
||||
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
|
||||
# on conda-forge
|
||||
endif()
|
||||
|
||||
if(AARE_VERBOSE)
|
||||
add_compile_definitions(AARE_VERBOSE)
|
||||
add_compile_definitions(AARE_LOG_LEVEL=aare::logDEBUG5)
|
||||
else()
|
||||
add_compile_definitions(AARE_LOG_LEVEL=aare::logERROR)
|
||||
endif()
|
||||
|
||||
if(AARE_CUSTOM_ASSERT)
|
||||
@ -93,70 +74,18 @@ if(AARE_BENCHMARKS)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
if(AARE_FETCH_LMFIT)
|
||||
#TODO! Should we fetch lmfit from the web or inlcude a tar.gz in the repo?
|
||||
set(LMFIT_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
|
||||
|
||||
# For cmake < 3.28 we can't supply EXCLUDE_FROM_ALL to FetchContent_Declare
|
||||
# so we need this workaround
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.28")
|
||||
FetchContent_Declare(
|
||||
lmfit
|
||||
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
|
||||
GIT_TAG main
|
||||
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
|
||||
UPDATE_DISCONNECTED 1
|
||||
)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
lmfit
|
||||
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
|
||||
GIT_TAG main
|
||||
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
|
||||
UPDATE_DISCONNECTED 1
|
||||
EXCLUDE_FROM_ALL 1
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
#Disable what we don't need from lmfit
|
||||
set(BUILD_TESTING OFF CACHE BOOL "")
|
||||
set(LMFIT_CPPTEST OFF CACHE BOOL "")
|
||||
set(LIB_MAN OFF CACHE BOOL "")
|
||||
set(LMFIT_CPPTEST OFF CACHE BOOL "")
|
||||
set(BUILD_SHARED_LIBS OFF CACHE BOOL "")
|
||||
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.28")
|
||||
if(NOT lmfit_POPULATED)
|
||||
FetchContent_Populate(lmfit)
|
||||
add_subdirectory(${lmfit_SOURCE_DIR} ${lmfit_BINARY_DIR} EXCLUDE_FROM_ALL)
|
||||
endif()
|
||||
else()
|
||||
FetchContent_MakeAvailable(lmfit)
|
||||
endif()
|
||||
|
||||
set_property(TARGET lmfit PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
else()
|
||||
find_package(lmfit REQUIRED)
|
||||
endif()
|
||||
|
||||
|
||||
if(AARE_FETCH_ZMQ)
|
||||
# Fetchcontent_Declare is deprecated need to find a way to update this
|
||||
# for now setting the policy to old is enough
|
||||
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
|
||||
cmake_policy(SET CMP0169 OLD)
|
||||
endif()
|
||||
set(ZMQ_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/libzmq_cmake_version.patch)
|
||||
FetchContent_Declare(
|
||||
libzmq
|
||||
GIT_REPOSITORY https://github.com/zeromq/libzmq.git
|
||||
GIT_TAG v4.3.4
|
||||
PATCH_COMMAND ${ZMQ_PATCH_COMMAND}
|
||||
UPDATE_DISCONNECTED 1
|
||||
)
|
||||
# Disable unwanted options from libzmq
|
||||
set(BUILD_TESTS OFF CACHE BOOL "Switch off libzmq test build")
|
||||
@ -198,8 +127,8 @@ if (AARE_FETCH_FMT)
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
else()
|
||||
find_package(fmt 6 REQUIRED)
|
||||
endif()
|
||||
@ -217,6 +146,7 @@ if (AARE_FETCH_JSON)
|
||||
install(
|
||||
TARGETS nlohmann_json
|
||||
EXPORT "${TARGETS_EXPORT_NAME}"
|
||||
|
||||
)
|
||||
message(STATUS "target: ${NLOHMANN_JSON_TARGET_NAME}")
|
||||
else()
|
||||
@ -295,6 +225,13 @@ if(CMAKE_BUILD_TYPE STREQUAL "Release")
|
||||
target_compile_options(aare_compiler_flags INTERFACE -O3)
|
||||
else()
|
||||
message(STATUS "Debug build")
|
||||
target_compile_options(
|
||||
aare_compiler_flags
|
||||
INTERFACE
|
||||
-Og
|
||||
-ggdb3
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
# Common flags for GCC and Clang
|
||||
@ -319,21 +256,7 @@ target_compile_options(
|
||||
endif() #GCC/Clang specific
|
||||
|
||||
|
||||
if(AARE_ASAN)
|
||||
message(STATUS "AddressSanitizer enabled")
|
||||
target_compile_options(
|
||||
aare_compiler_flags
|
||||
INTERFACE
|
||||
-fsanitize=address,undefined,pointer-compare
|
||||
-fno-omit-frame-pointer
|
||||
)
|
||||
target_link_libraries(
|
||||
aare_compiler_flags
|
||||
INTERFACE
|
||||
-fsanitize=address,undefined,pointer-compare
|
||||
-fno-omit-frame-pointer
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
|
||||
@ -349,23 +272,14 @@ endif()
|
||||
|
||||
set(PUBLICHEADERS
|
||||
include/aare/ArrayExpr.hpp
|
||||
include/aare/CalculateEta.hpp
|
||||
include/aare/Cluster.hpp
|
||||
include/aare/ClusterFinder.hpp
|
||||
include/aare/ClusterFile.hpp
|
||||
include/aare/CtbRawFile.hpp
|
||||
include/aare/ClusterVector.hpp
|
||||
include/aare/decode.hpp
|
||||
include/aare/defs.hpp
|
||||
include/aare/Dtype.hpp
|
||||
include/aare/File.hpp
|
||||
include/aare/Fit.hpp
|
||||
include/aare/FileInterface.hpp
|
||||
include/aare/FilePtr.hpp
|
||||
include/aare/Frame.hpp
|
||||
include/aare/GainMap.hpp
|
||||
include/aare/geo_helpers.hpp
|
||||
include/aare/JungfrauDataFile.hpp
|
||||
include/aare/NDArray.hpp
|
||||
include/aare/NDView.hpp
|
||||
include/aare/NumpyFile.hpp
|
||||
@ -376,41 +290,32 @@ set(PUBLICHEADERS
|
||||
include/aare/RawMasterFile.hpp
|
||||
include/aare/RawSubFile.hpp
|
||||
include/aare/VarClusterFinder.hpp
|
||||
include/aare/utils/task.hpp
|
||||
|
||||
)
|
||||
|
||||
|
||||
set(SourceFiles
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/FilePtr.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/PixelMap.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/ifstream_helpers.cpp
|
||||
)
|
||||
|
||||
|
||||
add_library(aare_core STATIC ${SourceFiles})
|
||||
target_include_directories(aare_core PUBLIC
|
||||
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
)
|
||||
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
target_link_libraries(
|
||||
aare_core
|
||||
PUBLIC
|
||||
@ -419,9 +324,6 @@ target_link_libraries(
|
||||
${STD_FS_LIB} # from helpers.cmake
|
||||
PRIVATE
|
||||
aare_compiler_flags
|
||||
Threads::Threads
|
||||
$<BUILD_INTERFACE:lmfit>
|
||||
|
||||
)
|
||||
|
||||
set_target_properties(aare_core PROPERTIES
|
||||
@ -435,28 +337,17 @@ endif()
|
||||
|
||||
if(AARE_TESTS)
|
||||
set(TestSources
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Cluster.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CalculateEta.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinderMT.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.test.cpp
|
||||
|
||||
)
|
||||
target_sources(tests PRIVATE ${TestSources} )
|
||||
@ -534,4 +425,4 @@ if(AARE_MASTER_PROJECT)
|
||||
set(CMAKE_INSTALL_DIR "share/cmake/${PROJECT_NAME}")
|
||||
set(PROJECT_LIBRARIES aare-core aare-compiler-flags )
|
||||
include(cmake/package_config.cmake)
|
||||
endif()
|
||||
endif()
|
22
RELEASE.md
22
RELEASE.md
@ -1,22 +0,0 @@
|
||||
# Release notes
|
||||
|
||||
|
||||
### head
|
||||
|
||||
Features:
|
||||
|
||||
- Cluster finder now works with 5x5, 7x7 and 9x9 clusters
|
||||
|
||||
|
||||
### 2025.05.22
|
||||
|
||||
Features:
|
||||
|
||||
- Added scurve fitting
|
||||
|
||||
Bugfixes:
|
||||
|
||||
- Fixed crash when opening raw files with large number of data files
|
||||
|
||||
|
||||
|
@ -1,27 +1,11 @@
|
||||
find_package(benchmark REQUIRED)
|
||||
|
||||
include(FetchContent)
|
||||
add_executable(ndarray_benchmark ndarray_benchmark.cpp)
|
||||
|
||||
target_link_libraries(ndarray_benchmark benchmark::benchmark aare_core aare_compiler_flags)
|
||||
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
|
||||
|
||||
FetchContent_Declare(
|
||||
benchmark
|
||||
GIT_REPOSITORY https://github.com/google/benchmark.git
|
||||
GIT_TAG v1.8.3 # Change to the latest version if needed
|
||||
)
|
||||
|
||||
# Ensure Google Benchmark is built correctly
|
||||
set(BENCHMARK_ENABLE_TESTING OFF CACHE BOOL "" FORCE)
|
||||
|
||||
FetchContent_MakeAvailable(benchmark)
|
||||
|
||||
add_executable(benchmarks)
|
||||
|
||||
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp)
|
||||
|
||||
# Link Google Benchmark and other necessary libraries
|
||||
target_link_libraries(benchmarks PRIVATE benchmark::benchmark aare_core aare_compiler_flags)
|
||||
|
||||
# Set output properties
|
||||
set_target_properties(benchmarks PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
OUTPUT_NAME run_benchmarks
|
||||
set_target_properties(ndarray_benchmark PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
# OUTPUT_NAME run_tests
|
||||
)
|
@ -1,70 +0,0 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include <benchmark/benchmark.h>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
class ClusterFixture : public benchmark::Fixture {
|
||||
public:
|
||||
Cluster<int, 2, 2> cluster_2x2{};
|
||||
Cluster<int, 3, 3> cluster_3x3{};
|
||||
|
||||
private:
|
||||
using benchmark::Fixture::SetUp;
|
||||
|
||||
void SetUp([[maybe_unused]] const benchmark::State &state) override {
|
||||
int temp_data[4] = {1, 2, 3, 1};
|
||||
std::copy(std::begin(temp_data), std::end(temp_data),
|
||||
std::begin(cluster_2x2.data));
|
||||
|
||||
cluster_2x2.x = 0;
|
||||
cluster_2x2.y = 0;
|
||||
|
||||
int temp_data2[9] = {1, 2, 3, 1, 3, 4, 5, 1, 20};
|
||||
std::copy(std::begin(temp_data2), std::end(temp_data2),
|
||||
std::begin(cluster_3x3.data));
|
||||
|
||||
cluster_3x3.x = 0;
|
||||
cluster_3x3.y = 0;
|
||||
}
|
||||
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
};
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate2x2Eta)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_2x2);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture, CalculateGeneralEtaFor2x2Cluster)
|
||||
(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 2, 2>(cluster_2x2);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate3x3Eta)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture, CalculateGeneralEtaFor3x3Cluster)
|
||||
(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 3, 3>(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
// BENCHMARK_MAIN();
|
@ -1,132 +1,136 @@
|
||||
#include "aare/NDArray.hpp"
|
||||
#include <benchmark/benchmark.h>
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
|
||||
using aare::NDArray;
|
||||
|
||||
constexpr ssize_t size = 1024;
|
||||
class TwoArrays : public benchmark::Fixture {
|
||||
public:
|
||||
NDArray<int, 2> a{{size, size}, 0};
|
||||
NDArray<int, 2> b{{size, size}, 0};
|
||||
void SetUp(::benchmark::State &state) {
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
for (uint32_t j = 0; j < size; j++) {
|
||||
a(i, j) = i * j + 1;
|
||||
b(i, j) = i * j + 1;
|
||||
}
|
||||
}
|
||||
public:
|
||||
NDArray<int,2> a{{size,size},0};
|
||||
NDArray<int,2> b{{size,size},0};
|
||||
void SetUp(::benchmark::State& state) {
|
||||
for(uint32_t i = 0; i < size; i++){
|
||||
for(uint32_t j = 0; j < size; j++){
|
||||
a(i, j)= i*j+1;
|
||||
b(i, j)= i*j+1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
};
|
||||
|
||||
BENCHMARK_F(TwoArrays, AddWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a + b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
|
||||
|
||||
|
||||
BENCHMARK_F(TwoArrays, AddWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a+b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, AddWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, AddWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, SubtractWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a - b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, SubtractWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a-b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, SubtractWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) - b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, SubtractWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) - b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a * b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a*b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, DivideWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a / b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, DivideWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a/b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, DivideWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) / b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, DivideWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) / b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, FourAddWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a + b + a + b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, FourAddWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a+b+a+b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, FourAddWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i) + a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, FourAddWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i) + a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a * a + b / a;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a*a+b/a;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * a(i) + b(i) / a(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * a(i) + b(i) / a(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_MAIN();
|
@ -1,5 +1,28 @@
|
||||
python:
|
||||
- 3.11
|
||||
- 3.11
|
||||
- 3.11
|
||||
- 3.12
|
||||
- 3.12
|
||||
- 3.12
|
||||
- 3.13
|
||||
|
||||
|
||||
|
||||
numpy:
|
||||
- 1.26
|
||||
- 2.0
|
||||
- 2.1
|
||||
- 1.26
|
||||
- 2.0
|
||||
- 2.1
|
||||
- 2.1
|
||||
|
||||
|
||||
zip_keys:
|
||||
- python
|
||||
- numpy
|
||||
|
||||
pin_run_as_build:
|
||||
numpy: x.x
|
||||
python: x.x
|
@ -1,10 +1,7 @@
|
||||
source:
|
||||
path: ../
|
||||
|
||||
{% set version = load_file_regex(load_file = 'VERSION', regex_pattern = '(\d+(?:\.\d+)*(?:[\+\w\.]+))').group(1) %}
|
||||
package:
|
||||
name: aare
|
||||
version: {{version}}
|
||||
version: 2024.11.28.dev0 #TODO! how to not duplicate this?
|
||||
|
||||
|
||||
source:
|
||||
path: ..
|
||||
@ -12,39 +9,44 @@ source:
|
||||
build:
|
||||
number: 0
|
||||
script:
|
||||
- unset CMAKE_GENERATOR && {{ PYTHON }} -m pip install . -vv
|
||||
- unset CMAKE_GENERATOR && {{ PYTHON }} -m pip install . -vv # [not win]
|
||||
- {{ PYTHON }} -m pip install . -vv # [win]
|
||||
|
||||
requirements:
|
||||
build:
|
||||
- python {{python}}
|
||||
- numpy {{ numpy }}
|
||||
- {{ compiler('cxx') }}
|
||||
- cmake
|
||||
- ninja
|
||||
|
||||
|
||||
host:
|
||||
- python
|
||||
- cmake
|
||||
- ninja
|
||||
- python {{python}}
|
||||
- numpy {{ numpy }}
|
||||
- pip
|
||||
- numpy=2.1
|
||||
- scikit-build-core
|
||||
- pybind11 >=2.13.0
|
||||
- matplotlib # needed in host to solve the environment for run
|
||||
- fmt
|
||||
- zeromq
|
||||
- nlohmann_json
|
||||
- catch2
|
||||
|
||||
run:
|
||||
- python
|
||||
- {{ pin_compatible('numpy') }}
|
||||
- matplotlib
|
||||
|
||||
- python {{python}}
|
||||
- numpy {{ numpy }}
|
||||
|
||||
|
||||
test:
|
||||
imports:
|
||||
- aare
|
||||
requires:
|
||||
- pytest
|
||||
- boost-histogram
|
||||
source_files:
|
||||
- python/tests
|
||||
commands:
|
||||
- python -m pytest python/tests
|
||||
# requires:
|
||||
# - pytest
|
||||
# source_files:
|
||||
# - tests
|
||||
# commands:
|
||||
# - pytest tests
|
||||
|
||||
about:
|
||||
summary: Data analysis library for hybrid pixel detectors from PSI
|
||||
summary: An example project built with pybind11 and scikit-build.
|
||||
# license_file: LICENSE
|
@ -12,7 +12,28 @@ set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
|
||||
file(GLOB SPHINX_SOURCE_FILES CONFIGURE_DEPENDS "src/*.rst")
|
||||
|
||||
# set(SPHINX_SOURCE_FILES
|
||||
# src/index.rst
|
||||
# src/Installation.rst
|
||||
# src/Requirements.rst
|
||||
# src/NDArray.rst
|
||||
# src/NDView.rst
|
||||
# src/File.rst
|
||||
# src/Frame.rst
|
||||
# src/Dtype.rst
|
||||
# src/ClusterFinder.rst
|
||||
# src/ClusterFile.rst
|
||||
# src/Pedestal.rst
|
||||
# src/RawFile.rst
|
||||
# src/RawSubFile.rst
|
||||
# src/RawMasterFile.rst
|
||||
# src/VarClusterFinder.rst
|
||||
# src/pyVarClusterFinder.rst
|
||||
# src/pyFile.rst
|
||||
# src/pyCtbRawFile.rst
|
||||
# src/pyRawFile.rst
|
||||
# src/pyRawMasterFile.rst
|
||||
# )
|
||||
|
||||
|
||||
foreach(filename ${SPHINX_SOURCE_FILES})
|
||||
|
@ -29,6 +29,7 @@ version = '@PROJECT_VERSION@'
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = ['breathe',
|
||||
'sphinx_rtd_theme',
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.napoleon',
|
||||
]
|
||||
|
@ -4,5 +4,4 @@ ClusterFile
|
||||
.. doxygenclass:: aare::ClusterFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
:private-members:
|
@ -1,7 +0,0 @@
|
||||
ClusterFinderMT
|
||||
==================
|
||||
|
||||
|
||||
.. doxygenclass:: aare::ClusterFinderMT
|
||||
:members:
|
||||
:undoc-members:
|
@ -1,6 +0,0 @@
|
||||
ClusterVector
|
||||
=============
|
||||
|
||||
.. doxygenclass:: aare::ClusterVector
|
||||
:members:
|
||||
:undoc-members:
|
@ -1,25 +0,0 @@
|
||||
JungfrauDataFile
|
||||
==================
|
||||
|
||||
JungfrauDataFile is a class to read the .dat files that are produced by Aldo's receiver.
|
||||
It is mostly used for calibration.
|
||||
|
||||
The structure of the file is:
|
||||
|
||||
* JungfrauDataHeader
|
||||
* Binary data (256x256, 256x1024 or 512x1024)
|
||||
* JungfrauDataHeader
|
||||
* ...
|
||||
|
||||
There is no metadata indicating number of frames or the size of the image, but this
|
||||
will be infered by this reader.
|
||||
|
||||
.. doxygenstruct:: aare::JungfrauDataHeader
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
.. doxygenclass:: aare::JungfrauDataFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
@ -1,47 +0,0 @@
|
||||
****************
|
||||
Philosophy
|
||||
****************
|
||||
|
||||
|
||||
Fast code with a simple interface
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Aare should be fast and efficient, but also easy to use. We strive to keep a simple interface that feels intuitive.
|
||||
Internally we use C++ for performance and the ability to integrate the library in other programs, but we see most
|
||||
users using the Python interface.
|
||||
|
||||
Live at head
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
As a user of the library you should be able to, and is expected to, use the latest version. Bug fixes will rarely be backported
|
||||
to older releases. By upgrading frequently you will benefit from the latest features and minimize the effort to maintain your scripts/code
|
||||
by doing several small upgrades instead of one big upgrade.
|
||||
|
||||
API
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We aim to keep the API stable and only break it for good reasons. But specially now in the early stages of development
|
||||
the API will change. On those occasions it will be clearly stated in the release notes. However, the norm should be a
|
||||
backward compatible API.
|
||||
|
||||
Documentation
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Being a library it is important to have a well documented API. We use Doxygen to generate the C++ documentation
|
||||
and Sphinx for the Python part. Breathe is used to integrate the two into one Sphinx html site. The documentation is built
|
||||
automatically on release by the CI and published to GitHub pages. In addition to the generated API documentation,
|
||||
certain classes might need more descriptions of the usage. This is then placed in the .rst files in the docs/src directory.
|
||||
|
||||
.. attention::
|
||||
|
||||
The code should be well documented, but using descriptive names is more important. In the same spirit
|
||||
if a function is called `getNumberOfFrames()` you don't need to write a comment saying that it gets the
|
||||
number of frames.
|
||||
|
||||
|
||||
Dependencies
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Deployment in the scientific community is often tricky. Either due to old OS versions or the lack of package managers.
|
||||
We strive to keep the dependencies to a minimum and will vendor some libraries to simplify deployment even though it comes
|
||||
at a cost of build time.
|
@ -2,21 +2,18 @@ Requirements
|
||||
==============================================
|
||||
|
||||
- C++17 compiler (gcc 8/clang 7)
|
||||
- CMake 3.15+
|
||||
- CMake 3.14+
|
||||
|
||||
**Internally used libraries**
|
||||
|
||||
.. note ::
|
||||
|
||||
To save compile time some of the dependencies can also be picked up from the system/conda environment by specifying:
|
||||
These can also be picked up from the system/conda environment by specifying:
|
||||
-DAARE_SYSTEM_LIBRARIES=ON during the cmake configuration.
|
||||
|
||||
To simplify deployment we build and statically link a few libraries.
|
||||
|
||||
- fmt
|
||||
- lmfit - https://jugit.fz-juelich.de/mlz/lmfit
|
||||
- nlohmann_json
|
||||
- pybind11
|
||||
- fmt
|
||||
- nlohmann_json
|
||||
- ZeroMQ
|
||||
|
||||
**Extra dependencies for building documentation**
|
||||
|
@ -1,47 +0,0 @@
|
||||
****************
|
||||
Tests
|
||||
****************
|
||||
|
||||
We test the code both from the C++ and Python API. By default only tests that does not require image data is run.
|
||||
|
||||
C++
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DAARE_TESTS=ON
|
||||
make -j 4
|
||||
|
||||
export AARE_TEST_DATA=/path/to/test/data
|
||||
./run_test [.files] #or using ctest, [.files] is the option to include tests needing data
|
||||
|
||||
|
||||
|
||||
Python
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
#From the root dir of the library
|
||||
python -m pytest python/tests --files # passing --files will run the tests needing data
|
||||
|
||||
|
||||
|
||||
Getting the test data
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. attention ::
|
||||
|
||||
The tests needing the test data are not run by default. To make the data available, you need to set the environment variable
|
||||
AARE_TEST_DATA to the path of the test data directory. Then pass either [.files] for the C++ tests or --files for Python
|
||||
|
||||
The image files needed for the test are large and are not included in the repository. They are stored
|
||||
using GIT LFS in a separate repository. To get the test data, you need to clone the repository.
|
||||
To do this, you need to have GIT LFS installed. You can find instructions on how to install it here: https://git-lfs.github.com/
|
||||
Once you have GIT LFS installed, you can clone the repository like any normal repo using:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
git clone https://gitea.psi.ch/detectors/aare-test-data.git
|
@ -1,86 +0,0 @@
|
||||
****************
|
||||
Workflow
|
||||
****************
|
||||
|
||||
This page describes how we develop aare.
|
||||
|
||||
GitHub centric
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We use GitHub for all development. Issues and pull requests provide a platform for collaboration as well
|
||||
as a record of the development process. Even if we discuss things in person, we record the outcome in an issue.
|
||||
If a particular implementation is chosen over another, the reason should be recorded in the pull request.
|
||||
|
||||
|
||||
Branches
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We aim for an as lightweight branching strategy as possible. Short-lived feature branches are merged back into main.
|
||||
The main branch is expected to always be in a releasable state. A release is simply a tag on main which provides a
|
||||
reference and triggers the CI to build the release artifacts (conda, pypi etc.). For large features consider merging
|
||||
smaller chunks into main as they are completed, rather than waiting for the entire feature to be finished. Worst case
|
||||
make sure your feature branch merges with main regularly to avoid large merge conflicts later on.
|
||||
|
||||
.. note::
|
||||
|
||||
The main branch is expected to always work. Feel free to pull from main instead of sticking to a
|
||||
release
|
||||
|
||||
|
||||
Releases
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Release early, release often. As soon as "enough" new features have been implemented, a release is created.
|
||||
A release should not be a big thing, rather a routine part of development that does not require any special person or
|
||||
unfamiliar steps.
|
||||
|
||||
|
||||
|
||||
Checklists for deployment
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**Feature:**
|
||||
|
||||
#. Create a new issue for the feature (label feature)
|
||||
#. Create a new branch from main.
|
||||
#. Implement the feature including test and documentation
|
||||
#. Add the feature to RELEASE.md under head
|
||||
#. Create a pull request linked to the issue
|
||||
#. Code is reviewed by at least one other person
|
||||
#. Once approved, the branch is merged into main
|
||||
|
||||
|
||||
**BugFix:**
|
||||
|
||||
Essentially the same as for a feature, if possible start with
|
||||
a failing test that demonstrates the bug.
|
||||
|
||||
#. Create a new issue for the bug (label bug)
|
||||
#. Create a new branch from main.
|
||||
#. **Write a test that fails for the bug**
|
||||
#. Implement the fix
|
||||
#. **Run the test to ensure it passes**
|
||||
#. Add the bugfix to RELEASE.md under head
|
||||
#. Create a pull request linked to the issue.
|
||||
#. Code is reviewed by at least one other person
|
||||
#. Once approved, the branch is merged into main
|
||||
|
||||
**Release:**
|
||||
|
||||
#. Once "enough" new features have been implemented, a release is created
|
||||
#. Update RELEASE.md with the tag of the release and verify that it is complete
|
||||
#. Create the release in GitHub describing the new features and bug fixes
|
||||
#. CI makes magic
|
||||
|
||||
|
||||
**Update documentation only:**
|
||||
|
||||
.. attention::
|
||||
|
||||
It's possible to update the documentation without changing the code, but take
|
||||
care since the docs will reflect the code in main and not the latest release.
|
||||
|
||||
#. Create a PR to main with the documentation changes
|
||||
#. Create a pull request linked to the issue.
|
||||
#. Code is reviewed by at least one other person
|
||||
#. Once merged you can manually trigger the CI workflow for documentation
|
@ -1,5 +0,0 @@
|
||||
algorithm
|
||||
=============
|
||||
|
||||
.. doxygenfile:: algorithm.hpp
|
||||
|
@ -20,6 +20,9 @@ AARE
|
||||
Requirements
|
||||
Consume
|
||||
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: Python API
|
||||
:maxdepth: 1
|
||||
@ -27,30 +30,22 @@ AARE
|
||||
pyFile
|
||||
pyCtbRawFile
|
||||
pyClusterFile
|
||||
pyClusterVector
|
||||
pyJungfrauDataFile
|
||||
pyRawFile
|
||||
pyRawMasterFile
|
||||
pyVarClusterFinder
|
||||
|
||||
pyFit
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: C++ API
|
||||
:maxdepth: 1
|
||||
|
||||
algorithm
|
||||
NDArray
|
||||
NDView
|
||||
Frame
|
||||
File
|
||||
Dtype
|
||||
ClusterFinder
|
||||
ClusterFinderMT
|
||||
ClusterFile
|
||||
ClusterVector
|
||||
JungfrauDataFile
|
||||
Pedestal
|
||||
RawFile
|
||||
RawSubFile
|
||||
@ -59,10 +54,4 @@ AARE
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: Developer
|
||||
:maxdepth: 3
|
||||
|
||||
Philosophy
|
||||
Workflow
|
||||
Tests
|
||||
|
||||
|
@ -2,24 +2,9 @@
|
||||
ClusterFile
|
||||
============
|
||||
|
||||
|
||||
The :class:`ClusterFile` class is the main interface to read and write clusters in aare. Unfortunately the
|
||||
old file format does not include metadata like the cluster size and the data type. This means that the
|
||||
user has to know this information from other sources. Specifying the wrong cluster size or data type
|
||||
will lead to garbage data being read.
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: ClusterFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:inherited-members:
|
||||
|
||||
|
||||
Below is the API of the ClusterFile_Cluster3x3i but all variants share the same API.
|
||||
|
||||
.. autoclass:: aare._aare.ClusterFile_Cluster3x3i
|
||||
:special-members: __init__
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
@ -1,36 +0,0 @@
|
||||
ClusterVector
|
||||
================
|
||||
|
||||
The ClusterVector, holds clusters from the ClusterFinder. Since it is templated
|
||||
in C++ we use a suffix indicating the type of cluster it holds. The suffix follows
|
||||
the same pattern as for ClusterFile i.e. ``ClusterVector_Cluster3x3i``
|
||||
for a vector holding 3x3 integer clusters.
|
||||
|
||||
|
||||
At the moment the functionality from python is limited and it is not supported
|
||||
to push_back clusters to the vector. The intended use case is to pass it to
|
||||
C++ functions that support the ClusterVector or to view it as a numpy array.
|
||||
|
||||
**View ClusterVector as numpy array**
|
||||
|
||||
.. code:: python
|
||||
|
||||
from aare import ClusterFile
|
||||
with ClusterFile("path/to/file") as f:
|
||||
cluster_vector = f.read_frame()
|
||||
|
||||
# Create a copy of the cluster data in a numpy array
|
||||
clusters = np.array(cluster_vector)
|
||||
|
||||
# Avoid copying the data by passing copy=False
|
||||
clusters = np.array(cluster_vector, copy = False)
|
||||
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: aare._aare.ClusterVector_Cluster3x3i
|
||||
:special-members: __init__
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
:inherited-members:
|
@ -1,19 +0,0 @@
|
||||
|
||||
Fit
|
||||
========
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
|
||||
**Functions**
|
||||
|
||||
.. autofunction:: gaus
|
||||
|
||||
.. autofunction:: pol1
|
||||
|
||||
|
||||
**Fitting**
|
||||
|
||||
.. autofunction:: fit_gaus
|
||||
|
||||
.. autofunction:: fit_pol1
|
@ -1,10 +0,0 @@
|
||||
JungfrauDataFile
|
||||
===================
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: JungfrauDataFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
:inherited-members:
|
@ -1,16 +0,0 @@
|
||||
name: dev-environment
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- anaconda-client
|
||||
- conda-build
|
||||
- doxygen
|
||||
- sphinx
|
||||
- breathe
|
||||
- sphinx_rtd_theme
|
||||
- furo
|
||||
- zeromq
|
||||
- pybind11
|
||||
- numpy
|
||||
- matplotlib
|
||||
|
@ -1,25 +1,22 @@
|
||||
#pragma once
|
||||
#include "aare/defs.hpp"
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cstdint> //int64_t
|
||||
#include <cstddef> //size_t
|
||||
#include <array>
|
||||
|
||||
#include <cassert>
|
||||
namespace aare {
|
||||
|
||||
template <typename E, ssize_t Ndim> class ArrayExpr {
|
||||
template <typename E, int64_t Ndim> class ArrayExpr {
|
||||
public:
|
||||
static constexpr bool is_leaf = false;
|
||||
|
||||
auto operator[](size_t i) const { return static_cast<E const &>(*this)[i]; }
|
||||
auto operator()(size_t i) const { return static_cast<E const &>(*this)[i]; }
|
||||
auto size() const { return static_cast<E const &>(*this).size(); }
|
||||
std::array<ssize_t, Ndim> shape() const {
|
||||
return static_cast<E const &>(*this).shape();
|
||||
}
|
||||
std::array<int64_t, Ndim> shape() const { return static_cast<E const &>(*this).shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
class ArrayAdd : public ArrayExpr<ArrayAdd<A, B, Ndim>, Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -30,10 +27,10 @@ class ArrayAdd : public ArrayExpr<ArrayAdd<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] + arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
class ArraySub : public ArrayExpr<ArraySub<A, B, Ndim>, Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -44,11 +41,11 @@ class ArraySub : public ArrayExpr<ArraySub<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] - arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>, Ndim> {
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>,Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
|
||||
@ -58,10 +55,10 @@ class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] * arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
class ArrayDiv : public ArrayExpr<ArrayDiv<A, B, Ndim>, Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
@ -72,27 +69,31 @@ class ArrayDiv : public ArrayExpr<ArrayDiv<A, B, Ndim>, Ndim> {
|
||||
}
|
||||
auto operator[](int i) const { return arr1_[i] / arr2_[i]; }
|
||||
size_t size() const { return arr1_.size(); }
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
std::array<int64_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
|
||||
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
auto operator+(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayAdd<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator-(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
auto operator-(const ArrayExpr<A,Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArraySub<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
auto operator*(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayMul<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
template <typename A, typename B, int64_t Ndim>
|
||||
auto operator/(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayDiv<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,170 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
enum class corner : int {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
};
|
||||
|
||||
enum class pixel : int {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
};
|
||||
|
||||
template <typename T> struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
int c;
|
||||
T sum;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for all clusters in a Clustervector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters[i]);
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a generic sized cluster and return them
|
||||
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
|
||||
* subcluster.
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
Eta2<T>
|
||||
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
auto max_sum = cl.max_sum_2x2();
|
||||
eta.sum = max_sum.first;
|
||||
auto c = max_sum.second;
|
||||
|
||||
size_t cluster_center_index =
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
size_t index_bottom_left_max_2x2_subcluster =
|
||||
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
|
||||
|
||||
// check that cluster center is in max subcluster
|
||||
if (cluster_center_index != index_bottom_left_max_2x2_subcluster &&
|
||||
cluster_center_index != index_bottom_left_max_2x2_subcluster + 1 &&
|
||||
cluster_center_index !=
|
||||
index_bottom_left_max_2x2_subcluster + ClusterSizeX &&
|
||||
cluster_center_index !=
|
||||
index_bottom_left_max_2x2_subcluster + ClusterSizeX + 1)
|
||||
throw std::runtime_error("Photon center is not in max 2x2_subcluster");
|
||||
|
||||
if ((cluster_center_index - index_bottom_left_max_2x2_subcluster) %
|
||||
ClusterSizeX ==
|
||||
0) {
|
||||
if ((cl.data[cluster_center_index + 1] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index + 1]) /
|
||||
static_cast<double>((cl.data[cluster_center_index + 1] +
|
||||
cl.data[cluster_center_index]));
|
||||
} else {
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - 1]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>((cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]));
|
||||
}
|
||||
if ((cluster_center_index - index_bottom_left_max_2x2_subcluster) /
|
||||
ClusterSizeX <
|
||||
1) {
|
||||
assert(cluster_center_index + ClusterSizeX <
|
||||
ClusterSizeX * ClusterSizeY); // suppress warning
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]) != 0)
|
||||
eta.y = static_cast<double>(
|
||||
cl.data[cluster_center_index + ClusterSizeX]) /
|
||||
static_cast<double>(
|
||||
(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]));
|
||||
} else {
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - ClusterSizeX]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>(
|
||||
(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - ClusterSizeX]));
|
||||
}
|
||||
|
||||
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
|
||||
// underyling enum class
|
||||
return eta;
|
||||
}
|
||||
|
||||
// TODO! Look up eta2 calculation - photon center should be top right corner
|
||||
template <typename T>
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 2, 2, int16_t> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
if ((cl.data[0] + cl.data[1]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
|
||||
if ((cl.data[0] + cl.data[2]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
|
||||
eta.sum = cl.sum();
|
||||
eta.c = static_cast<int>(corner::cBottomLeft); // TODO! This is not correct,
|
||||
// but need to put something
|
||||
return eta;
|
||||
}
|
||||
|
||||
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
|
||||
// TODO only supported for 3x3 Clusters
|
||||
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
T sum = 0;
|
||||
|
||||
std::for_each(std::begin(cl.data), std::end(cl.data),
|
||||
[&sum](T x) { sum += x; });
|
||||
|
||||
eta.sum = sum;
|
||||
|
||||
eta.c = corner::cBottomLeft;
|
||||
|
||||
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
|
||||
|
||||
(cl.data[3] + cl.data[4] + cl.data[5]);
|
||||
|
||||
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
|
||||
|
||||
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
|
||||
|
||||
(cl.data[1] + cl.data[4] + cl.data[7]);
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,99 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <chrono>
|
||||
#include <fmt/color.h>
|
||||
#include <fmt/format.h>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <class ItemType> class CircularFifo {
|
||||
uint32_t fifo_size;
|
||||
aare::ProducerConsumerQueue<ItemType> free_slots;
|
||||
aare::ProducerConsumerQueue<ItemType> filled_slots;
|
||||
|
||||
public:
|
||||
CircularFifo() : CircularFifo(100){};
|
||||
CircularFifo(uint32_t size)
|
||||
: fifo_size(size), free_slots(size + 1), filled_slots(size + 1) {
|
||||
|
||||
// TODO! how do we deal with alignment for writing? alignas???
|
||||
// Do we give the user a chance to provide memory locations?
|
||||
// Templated allocator?
|
||||
for (size_t i = 0; i < fifo_size; ++i) {
|
||||
free_slots.write(ItemType{});
|
||||
}
|
||||
}
|
||||
|
||||
bool next() {
|
||||
// TODO! avoid default constructing ItemType
|
||||
ItemType it;
|
||||
if (!filled_slots.read(it))
|
||||
return false;
|
||||
if (!free_slots.write(std::move(it)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
~CircularFifo() {}
|
||||
|
||||
using value_type = ItemType;
|
||||
|
||||
auto numFilledSlots() const noexcept { return filled_slots.sizeGuess(); }
|
||||
auto numFreeSlots() const noexcept { return free_slots.sizeGuess(); }
|
||||
auto isFull() const noexcept { return filled_slots.isFull(); }
|
||||
|
||||
ItemType pop_free() {
|
||||
ItemType v;
|
||||
while (!free_slots.read(v))
|
||||
;
|
||||
return std::move(v);
|
||||
// return v;
|
||||
}
|
||||
|
||||
bool try_pop_free(ItemType &v) { return free_slots.read(v); }
|
||||
|
||||
ItemType pop_value(std::chrono::nanoseconds wait,
|
||||
std::atomic<bool> &stopped) {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v) && !stopped) {
|
||||
std::this_thread::sleep_for(wait);
|
||||
}
|
||||
return std::move(v);
|
||||
}
|
||||
|
||||
ItemType pop_value() {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v))
|
||||
;
|
||||
return std::move(v);
|
||||
}
|
||||
|
||||
ItemType *frontPtr() { return filled_slots.frontPtr(); }
|
||||
|
||||
// TODO! Add function to move item from filled to free to be used
|
||||
// with the frontPtr function
|
||||
|
||||
template <class... Args> void push_value(Args &&...recordArgs) {
|
||||
while (!filled_slots.write(std::forward<Args>(recordArgs)...))
|
||||
;
|
||||
}
|
||||
|
||||
template <class... Args> bool try_push_value(Args &&...recordArgs) {
|
||||
return filled_slots.write(std::forward<Args>(recordArgs)...);
|
||||
}
|
||||
|
||||
template <class... Args> void push_free(Args &&...recordArgs) {
|
||||
while (!free_slots.write(std::forward<Args>(recordArgs)...))
|
||||
;
|
||||
}
|
||||
|
||||
template <class... Args> bool try_push_free(Args &&...recordArgs) {
|
||||
return free_slots.write(std::forward<Args>(recordArgs)...);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,86 +0,0 @@
|
||||
|
||||
/************************************************
|
||||
* @file Cluster.hpp
|
||||
* @short definition of cluster, where CoordType (x,y) give
|
||||
* the cluster center coordinates and data the actual cluster data
|
||||
* cluster size is given as template parameters
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
#include <type_traits>
|
||||
|
||||
namespace aare {
|
||||
|
||||
// requires clause c++20 maybe update
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
struct Cluster {
|
||||
|
||||
static_assert(std::is_arithmetic_v<T>, "T needs to be an arithmetic type");
|
||||
static_assert(std::is_integral_v<CoordType>,
|
||||
"CoordType needs to be an integral type");
|
||||
static_assert(ClusterSizeX > 0 && ClusterSizeY > 0,
|
||||
"Cluster sizes must be bigger than zero");
|
||||
|
||||
CoordType x;
|
||||
CoordType y;
|
||||
std::array<T, ClusterSizeX * ClusterSizeY> data;
|
||||
|
||||
static constexpr uint8_t cluster_size_x = ClusterSizeX;
|
||||
static constexpr uint8_t cluster_size_y = ClusterSizeY;
|
||||
using value_type = T;
|
||||
using coord_type = CoordType;
|
||||
|
||||
T sum() const { return std::accumulate(data.begin(), data.end(), T{}); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
|
||||
if constexpr (cluster_size_x == 3 && cluster_size_y == 3) {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
|
||||
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
|
||||
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
|
||||
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
} else if constexpr (cluster_size_x == 2 && cluster_size_y == 2) {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3], 0);
|
||||
} else {
|
||||
constexpr size_t num_2x2_subclusters =
|
||||
(ClusterSizeX - 1) * (ClusterSizeY - 1);
|
||||
|
||||
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
|
||||
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
|
||||
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
|
||||
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
|
||||
data[i * ClusterSizeX + j] +
|
||||
data[i * ClusterSizeX + j + 1] +
|
||||
data[(i + 1) * ClusterSizeX + j] +
|
||||
data[(i + 1) * ClusterSizeX + j + 1];
|
||||
}
|
||||
|
||||
int index = std::max_element(sum_2x2_subcluster.begin(),
|
||||
sum_2x2_subcluster.end()) -
|
||||
sum_2x2_subcluster.begin();
|
||||
return std::make_pair(sum_2x2_subcluster[index], index);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Type Traits for is_cluster_type
|
||||
template <typename T>
|
||||
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
|
||||
|
||||
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
|
||||
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
|
||||
|
||||
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
|
||||
|
||||
} // namespace aare
|
@ -1,58 +0,0 @@
|
||||
#pragma once
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterCollector {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::vector<ClusterVector<ClusterType>> m_clusters;
|
||||
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterCollector started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
m_clusters.push_back(std::move(*clusters));
|
||||
m_source->popFront();
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
fmt::print("ClusterCollector stopped\n");
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterCollector(ClusterFinderMT<ClusterType, uint16_t, double> *source) {
|
||||
m_source = source->sink();
|
||||
m_thread =
|
||||
std::thread(&ClusterCollector::process,
|
||||
this); // only one process does that so why isnt it
|
||||
// automatically written to m_cluster in collect
|
||||
// - instead of writing first to m_sink?
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
}
|
||||
std::vector<ClusterVector<ClusterType>> steal_clusters() {
|
||||
if (!m_stopped) {
|
||||
throw std::runtime_error("ClusterCollector is still running");
|
||||
}
|
||||
return std::move(m_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,455 +1,67 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/GainMap.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/logger.hpp"
|
||||
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <optional>
|
||||
|
||||
namespace aare {
|
||||
|
||||
/*
|
||||
Binary cluster file. Expects data to be layed out as:
|
||||
int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
int16_t x, int16_t y, int32_t data[9] x number_of_clusters
|
||||
int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
....
|
||||
*/
|
||||
|
||||
// TODO: change to support any type of clusters, e.g. header line with
|
||||
// clsuter_size_x, cluster_size_y,
|
||||
/**
|
||||
* @brief Class to read and write cluster files
|
||||
* Expects data to be laid out as:
|
||||
*
|
||||
*
|
||||
* int32_t frame_number
|
||||
* uint32_t number_of_clusters
|
||||
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
|
||||
* int32_t frame_number
|
||||
* uint32_t number_of_clusters
|
||||
* etc.
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFile {
|
||||
FILE *fp{};
|
||||
const std::string m_filename{};
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
|
||||
std::string m_mode; /*Mode to open the file in*/
|
||||
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
|
||||
std::optional<NDArray<int32_t, 2>>
|
||||
m_noise_map; /*Noise map to cut photons, will be applied if set*/
|
||||
std::optional<InvertedGainMap> m_gain_map; /*Gain map to apply to the
|
||||
clusters, will be applied if set*/
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new Cluster File object
|
||||
* @param fname path to the file
|
||||
* @param chunk_size number of clusters to read at a time when iterating
|
||||
* over the file
|
||||
* @param mode mode to open the file in. "r" for reading, "w" for writing,
|
||||
* "a" for appending
|
||||
* @throws std::runtime_error if the file could not be opened
|
||||
*/
|
||||
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
|
||||
const std::string &mode = "r")
|
||||
|
||||
: m_filename(fname.string()), m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(m_filename.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
m_filename);
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(m_filename.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
m_filename);
|
||||
}
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(m_filename.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
m_filename);
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
~ClusterFile() { close(); }
|
||||
|
||||
/**
|
||||
* @brief Read n_clusters clusters from the file discarding
|
||||
* frame numbers. If EOF is reached the returned vector will
|
||||
* have less than n_clusters clusters
|
||||
*/
|
||||
ClusterVector<ClusterType> read_clusters(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_clusters_with_cut(n_clusters);
|
||||
} else {
|
||||
return read_clusters_without_cut(n_clusters);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file and return the
|
||||
* clusters. The cluster vector will have the frame number
|
||||
* set.
|
||||
* @throws std::runtime_error if the file is not opened for
|
||||
* reading or the file pointer not at the beginning of a
|
||||
* frame
|
||||
*/
|
||||
ClusterVector<ClusterType> read_frame() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error(LOCATION + "File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_frame_with_cut();
|
||||
} else {
|
||||
return read_frame_without_cut();
|
||||
}
|
||||
}
|
||||
|
||||
void write_frame(const ClusterVector<ClusterType> &clusters) {
|
||||
if (m_mode != "w" && m_mode != "a") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
|
||||
int32_t frame_number = clusters.frame_number();
|
||||
fwrite(&frame_number, sizeof(frame_number), 1, fp);
|
||||
uint32_t n_clusters = clusters.size();
|
||||
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
|
||||
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the chunk size
|
||||
*/
|
||||
size_t chunk_size() const { return m_chunk_size; }
|
||||
|
||||
/**
|
||||
* @brief Set the region of interest to use when reading
|
||||
* clusters. If set only clusters within the ROI will be
|
||||
* read.
|
||||
*/
|
||||
void set_roi(ROI roi) { m_roi = roi; }
|
||||
|
||||
/**
|
||||
* @brief Set the noise map to use when reading clusters. If
|
||||
* set clusters below the noise level will be discarded.
|
||||
* Selection criteria one of: Central pixel above noise,
|
||||
* highest 2x2 sum above 2 * noise, total sum above 3 *
|
||||
* noise.
|
||||
*/
|
||||
void set_noise_map(const NDView<int32_t, 2> noise_map) {
|
||||
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the gain map to use when reading clusters. If set the gain map
|
||||
* will be applied to the clusters that pass ROI and noise_map selection.
|
||||
* The gain map is expected to be in ADU/energy.
|
||||
*/
|
||||
void set_gain_map(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = InvertedGainMap(gain_map);
|
||||
}
|
||||
|
||||
void set_gain_map(const InvertedGainMap &gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
void set_gain_map(const InvertedGainMap &&gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Close the file. If not closed the file will be
|
||||
* closed in the destructor
|
||||
*/
|
||||
void close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
/** @brief Open the file in specific mode
|
||||
*
|
||||
*/
|
||||
void open(const std::string &mode) {
|
||||
if (fp) {
|
||||
close();
|
||||
}
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(m_filename.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
m_filename);
|
||||
}
|
||||
m_mode = "r";
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(m_filename.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
m_filename);
|
||||
}
|
||||
m_mode = "w";
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(m_filename.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
m_filename);
|
||||
}
|
||||
m_mode = "a";
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_frame_with_cut();
|
||||
ClusterVector<ClusterType> read_frame_without_cut();
|
||||
bool is_selected(ClusterType &cl);
|
||||
ClusterType read_one_cluster();
|
||||
struct Cluster {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[9];
|
||||
};
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
typedef enum {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
} corner;
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.resize(n_clusters);
|
||||
typedef enum {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
} pixel;
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
struct ClusterAnalysis {
|
||||
uint32_t c;
|
||||
int32_t tot;
|
||||
double etax;
|
||||
double etay;
|
||||
};
|
||||
|
||||
auto buf = clusters.data();
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to
|
||||
// read we read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread((buf + nph_read), clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
clusters.set_frame_number(iframe);
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read +=
|
||||
fread((buf + nph_read), clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
class ClusterFile {
|
||||
FILE *fp{};
|
||||
uint32_t m_num_left{};
|
||||
size_t m_chunk_size{};
|
||||
|
||||
// Resize the vector to the number o f clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
public:
|
||||
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000);
|
||||
~ClusterFile();
|
||||
std::vector<Cluster> read_clusters(size_t n_clusters);
|
||||
std::vector<Cluster> read_frame(int32_t &out_fnum);
|
||||
std::vector<Cluster>
|
||||
read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(n_clusters);
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x,
|
||||
double *eta3y);
|
||||
|
||||
// if there are photons left from previous frame read them first
|
||||
if (m_num_left) {
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
size_t chunk_size() const { return m_chunk_size; }
|
||||
void close();
|
||||
|
||||
// we did not have enough clusters left in the previous frame
|
||||
// keep on reading frames until reaching n_clusters
|
||||
if (clusters.size() < n_clusters) {
|
||||
// sanity check
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
LOCATION + "Entered second loop with clusters left\n");
|
||||
}
|
||||
|
||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||
clusters.set_frame_number(
|
||||
frame_number); // cluster vector will hold the last
|
||||
// frame number
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we have enough clusters, break out of the outer while loop
|
||||
if (clusters.size() >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
|
||||
ClusterType c;
|
||||
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||
}
|
||||
--m_num_left;
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not read number of clusters");
|
||||
}
|
||||
|
||||
LOG(logDEBUG1) << "Reading " << n_clusters << " clusters from frame "
|
||||
<< frame_number;
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
clusters.resize(n_clusters);
|
||||
|
||||
LOG(logDEBUG1) << "clusters.item_size(): " << clusters.item_size();
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read clusters");
|
||||
}
|
||||
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(m_num_left);
|
||||
clusters.set_frame_number(frame_number);
|
||||
while (m_num_left) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
|
||||
// Should fail fast
|
||||
if (m_roi) {
|
||||
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
size_t cluster_center_index =
|
||||
(ClusterType::cluster_size_x / 2) +
|
||||
(ClusterType::cluster_size_y / 2) * ClusterType::cluster_size_x;
|
||||
|
||||
if (m_noise_map) {
|
||||
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
|
||||
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
|
||||
auto total_sum = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise =
|
||||
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
|
||||
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise ||
|
||||
total_sum <= 3 * noise) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// we passed all checks
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
||||
|
@ -1,65 +0,0 @@
|
||||
#pragma once
|
||||
#include <atomic>
|
||||
#include <filesystem>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFileSink {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::ofstream m_file;
|
||||
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
LOG(logDEBUG) << "ClusterFileSink started";
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
// Write clusters to file
|
||||
int32_t frame_number =
|
||||
clusters->frame_number(); // TODO! Should we store frame
|
||||
// number already as int?
|
||||
uint32_t num_clusters = clusters->size();
|
||||
m_file.write(reinterpret_cast<const char *>(&frame_number),
|
||||
sizeof(frame_number));
|
||||
m_file.write(reinterpret_cast<const char *>(&num_clusters),
|
||||
sizeof(num_clusters));
|
||||
m_file.write(reinterpret_cast<const char *>(clusters->data()),
|
||||
clusters->size() * clusters->item_size());
|
||||
m_source->popFront();
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
LOG(logDEBUG) << "ClusterFileSink stopped";
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
|
||||
const std::filesystem::path &fname) {
|
||||
LOG(logDEBUG) << "ClusterFileSink: "
|
||||
<< "source: " << source->sink()
|
||||
<< ", file: " << fname.string();
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
m_file.close();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
148
include/aare/ClusterFileV2.hpp
Normal file
148
include/aare/ClusterFileV2.hpp
Normal file
@ -0,0 +1,148 @@
|
||||
#pragma once
|
||||
#include "aare/core/defs.hpp"
|
||||
#include <filesystem>
|
||||
#include <string>
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace aare {
|
||||
struct ClusterHeader {
|
||||
int32_t frame_number;
|
||||
int32_t n_clusters;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", n_clusters: " + std::to_string(n_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
struct ClusterV2_ {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
std::array<int32_t, 9> data;
|
||||
std::string to_string(bool detailed = false) const {
|
||||
if (detailed) {
|
||||
std::string data_str = "[";
|
||||
for (auto &d : data) {
|
||||
data_str += std::to_string(d) + ", ";
|
||||
}
|
||||
data_str += "]";
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) + ", data: " + data_str;
|
||||
}
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y);
|
||||
}
|
||||
};
|
||||
|
||||
struct ClusterV2 {
|
||||
ClusterV2_ cluster;
|
||||
int32_t frame_number;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", " + cluster.to_string();
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief
|
||||
* important not: fp always points to the clusters header and does not point to individual clusters
|
||||
*
|
||||
*/
|
||||
class ClusterFileV2 {
|
||||
std::filesystem::path m_fpath;
|
||||
std::string m_mode;
|
||||
FILE *fp{nullptr};
|
||||
|
||||
void check_open(){
|
||||
if (!fp)
|
||||
throw std::runtime_error(fmt::format("File: {} not open", m_fpath.string()));
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode): m_fpath(fpath), m_mode(mode) {
|
||||
if (m_mode != "r" && m_mode != "w")
|
||||
throw std::invalid_argument("mode must be 'r' or 'w'");
|
||||
if (m_mode == "r" && !std::filesystem::exists(m_fpath))
|
||||
throw std::invalid_argument("File does not exist");
|
||||
if (mode == "r") {
|
||||
fp = fopen(fpath.string().c_str(), "rb");
|
||||
} else if (mode == "w") {
|
||||
if (std::filesystem::exists(fpath)) {
|
||||
fp = fopen(fpath.string().c_str(), "r+b");
|
||||
} else {
|
||||
fp = fopen(fpath.string().c_str(), "wb");
|
||||
}
|
||||
}
|
||||
if (fp == nullptr) {
|
||||
throw std::runtime_error("Failed to open file");
|
||||
}
|
||||
}
|
||||
~ClusterFileV2() { close(); }
|
||||
std::vector<ClusterV2> read() {
|
||||
check_open();
|
||||
|
||||
ClusterHeader header;
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
std::vector<ClusterV2_> clusters_(header.n_clusters);
|
||||
fread(clusters_.data(), sizeof(ClusterV2_), header.n_clusters, fp);
|
||||
std::vector<ClusterV2> clusters;
|
||||
for (auto &c : clusters_) {
|
||||
ClusterV2 cluster;
|
||||
cluster.cluster = std::move(c);
|
||||
cluster.frame_number = header.frame_number;
|
||||
clusters.push_back(cluster);
|
||||
}
|
||||
|
||||
return clusters;
|
||||
}
|
||||
std::vector<std::vector<ClusterV2>> read(int n_frames) {
|
||||
std::vector<std::vector<ClusterV2>> clusters;
|
||||
for (int i = 0; i < n_frames; i++) {
|
||||
clusters.push_back(read());
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
size_t write(std::vector<ClusterV2> const &clusters) {
|
||||
check_open();
|
||||
if (m_mode != "w")
|
||||
throw std::runtime_error("File not opened in write mode");
|
||||
if (clusters.empty())
|
||||
return 0;
|
||||
|
||||
ClusterHeader header;
|
||||
header.frame_number = clusters[0].frame_number;
|
||||
header.n_clusters = clusters.size();
|
||||
fwrite(&header, sizeof(ClusterHeader), 1, fp);
|
||||
for (auto &c : clusters) {
|
||||
fwrite(&c.cluster, sizeof(ClusterV2_), 1, fp);
|
||||
}
|
||||
return clusters.size();
|
||||
}
|
||||
|
||||
size_t write(std::vector<std::vector<ClusterV2>> const &clusters) {
|
||||
check_open();
|
||||
if (m_mode != "w")
|
||||
throw std::runtime_error("File not opened in write mode");
|
||||
|
||||
size_t n_clusters = 0;
|
||||
for (auto &c : clusters) {
|
||||
n_clusters += write(c);
|
||||
}
|
||||
return n_clusters;
|
||||
}
|
||||
|
||||
int seek_to_begin() { return fseek(fp, 0, SEEK_SET); }
|
||||
int seek_to_end() { return fseek(fp, 0, SEEK_END); }
|
||||
|
||||
int32_t frame_number() {
|
||||
auto pos = ftell(fp);
|
||||
ClusterHeader header;
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
fseek(fp, pos, SEEK_SET);
|
||||
return header.frame_number;
|
||||
}
|
||||
|
||||
void close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace aare
|
@ -1,6 +1,4 @@
|
||||
#pragma once
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/Dtype.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
@ -10,151 +8,251 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
/** enum to define the event types */
|
||||
enum eventType {
|
||||
PEDESTAL, /** pedestal */
|
||||
NEIGHBOUR, /** neighbour i.e. below threshold, but in the cluster of a
|
||||
photon */
|
||||
PHOTON, /** photon i.e. above threshold */
|
||||
PHOTON_MAX, /** maximum of a cluster satisfying the photon conditions */
|
||||
NEGATIVE_PEDESTAL, /** negative value, will not be accounted for as pedestal
|
||||
in order to avoid drift of the pedestal towards
|
||||
negative values */
|
||||
UNDEFINED_EVENT = -1 /** undefined */
|
||||
};
|
||||
|
||||
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinder {
|
||||
Shape<2> m_image_size;
|
||||
const PEDESTAL_TYPE m_nSigma;
|
||||
const PEDESTAL_TYPE c2;
|
||||
const PEDESTAL_TYPE c3;
|
||||
const int m_cluster_sizeX;
|
||||
const int m_cluster_sizeY;
|
||||
const double m_threshold;
|
||||
const double m_nSigma;
|
||||
const double c2;
|
||||
const double c3;
|
||||
Pedestal<PEDESTAL_TYPE> m_pedestal;
|
||||
ClusterVector<ClusterType> m_clusters;
|
||||
|
||||
static const uint8_t ClusterSizeX = ClusterType::cluster_size_x;
|
||||
static const uint8_t ClusterSizeY = ClusterType::cluster_size_y;
|
||||
using CT = typename ClusterType::value_type;
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new ClusterFinder object
|
||||
* @param image_size size of the image
|
||||
* @param cluster_size size of the cluster (x, y)
|
||||
* @param nSigma number of sigma above the pedestal to consider a photon
|
||||
* @param capacity initial capacity of the cluster vector
|
||||
*
|
||||
*/
|
||||
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_nSigma(nSigma),
|
||||
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
|
||||
c3(sqrt(ClusterSizeX * ClusterSizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {
|
||||
LOG(logDEBUG) << "ClusterFinder: "
|
||||
<< "image_size: " << image_size[0] << "x" << image_size[1]
|
||||
<< ", nSigma: " << nSigma << ", capacity: " << capacity;
|
||||
}
|
||||
ClusterFinder(Shape<2> image_size, Shape<2>cluster_size, double nSigma = 5.0,
|
||||
double threshold = 0.0)
|
||||
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]), m_cluster_sizeY(cluster_size[1]),
|
||||
m_threshold(threshold), m_nSigma(nSigma),
|
||||
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
|
||||
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]) {
|
||||
|
||||
// c2 = sqrt((cluster_sizeY + 1) / 2 * (cluster_sizeX + 1) / 2);
|
||||
// c3 = sqrt(cluster_sizeX * cluster_sizeY);
|
||||
};
|
||||
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
m_pedestal.push(frame);
|
||||
}
|
||||
|
||||
NDArray<PEDESTAL_TYPE, 2> pedestal() { return m_pedestal.mean(); }
|
||||
NDArray<PEDESTAL_TYPE, 2> noise() { return m_pedestal.std(); }
|
||||
void clear_pedestal() { m_pedestal.clear(); }
|
||||
|
||||
/**
|
||||
* @brief Move the clusters from the ClusterVector in the ClusterFinder to a
|
||||
* new ClusterVector and return it.
|
||||
* @param realloc_same_capacity if true the new ClusterVector will have the
|
||||
* same capacity as the old one
|
||||
*
|
||||
*/
|
||||
ClusterVector<ClusterType>
|
||||
steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<ClusterType> tmp = std::move(m_clusters);
|
||||
if (realloc_same_capacity)
|
||||
m_clusters = ClusterVector<ClusterType>(tmp.capacity());
|
||||
else
|
||||
m_clusters = ClusterVector<ClusterType>{};
|
||||
return tmp;
|
||||
NDArray<PEDESTAL_TYPE, 2> pedestal() {
|
||||
return m_pedestal.mean();
|
||||
}
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
// // TODO! deal with even size clusters
|
||||
// // currently 3,3 -> +/- 1
|
||||
// // 4,4 -> +/- 2
|
||||
int dy = ClusterSizeY / 2;
|
||||
int dx = ClusterSizeX / 2;
|
||||
int has_center_pixel_x =
|
||||
ClusterSizeX %
|
||||
2; // for even sized clusters there is no proper cluster center and
|
||||
// even amount of pixels around the center
|
||||
int has_center_pixel_y = ClusterSizeY % 2;
|
||||
|
||||
m_clusters.set_frame_number(frame_number);
|
||||
std::vector<DynamicCluster>
|
||||
find_clusters_without_threshold(NDView<FRAME_TYPE, 2> frame,
|
||||
// Pedestal<PEDESTAL_TYPE> &pedestal,
|
||||
bool late_update = false) {
|
||||
struct pedestal_update {
|
||||
int x;
|
||||
int y;
|
||||
FRAME_TYPE value;
|
||||
};
|
||||
std::vector<pedestal_update> pedestal_updates;
|
||||
|
||||
std::vector<DynamicCluster> clusters;
|
||||
std::vector<std::vector<eventType>> eventMask;
|
||||
for (int i = 0; i < frame.shape(0); i++) {
|
||||
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
|
||||
}
|
||||
long double val;
|
||||
long double max;
|
||||
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
// initialize max and total
|
||||
max = std::numeric_limits<FRAME_TYPE>::min();
|
||||
long double total = 0;
|
||||
eventMask[iy][ix] = PEDESTAL;
|
||||
|
||||
PEDESTAL_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
|
||||
PEDESTAL_TYPE total = 0;
|
||||
|
||||
// What can we short circuit here?
|
||||
PEDESTAL_TYPE rms = m_pedestal.std(iy, ix);
|
||||
PEDESTAL_TYPE value = (frame(iy, ix) - m_pedestal.mean(iy, ix));
|
||||
|
||||
if (value < -m_nSigma * rms)
|
||||
continue; // NEGATIVE_PEDESTAL go to next pixel
|
||||
// TODO! No pedestal update???
|
||||
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
|
||||
for (short ir = -(m_cluster_sizeY / 2);
|
||||
ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
for (short ic = -(m_cluster_sizeX / 2);
|
||||
ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
PEDESTAL_TYPE val =
|
||||
frame(iy + ir, ix + ic) -
|
||||
m_pedestal.mean(iy + ir, ix + ic);
|
||||
|
||||
val = frame(iy + ir, ix + ic) -
|
||||
m_pedestal.mean(iy + ir, ix + ic);
|
||||
total += val;
|
||||
max = std::max(max, val);
|
||||
if (val > max) {
|
||||
max = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
auto rms = m_pedestal.std(iy, ix);
|
||||
|
||||
if (frame(iy, ix) - m_pedestal.mean(iy, ix) < -m_nSigma * rms) {
|
||||
eventMask[iy][ix] = NEGATIVE_PEDESTAL;
|
||||
continue;
|
||||
} else if (max > m_nSigma * rms) {
|
||||
eventMask[iy][ix] = PHOTON;
|
||||
|
||||
if ((max > m_nSigma * rms)) {
|
||||
if (value < max)
|
||||
continue; // Not max go to the next pixel
|
||||
// but also no pedestal update
|
||||
} else if (total > c3 * m_nSigma * rms) {
|
||||
// pass
|
||||
eventMask[iy][ix] = PHOTON;
|
||||
} else {
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
|
||||
m_pedestal.push_fast(
|
||||
iy, ix,
|
||||
frame(iy,
|
||||
ix)); // Assume we have reached n_samples in the
|
||||
// pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
if (late_update) {
|
||||
pedestal_updates.push_back({ix, iy, frame(iy, ix)});
|
||||
} else {
|
||||
m_pedestal.push(iy, ix, frame(iy, ix));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// Store cluster
|
||||
if (value == max) {
|
||||
ClusterType cluster{};
|
||||
if (eventMask[iy][ix] == PHOTON &&
|
||||
(frame(iy, ix) - m_pedestal.mean(iy, ix)) >= max) {
|
||||
eventMask[iy][ix] = PHOTON_MAX;
|
||||
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
|
||||
Dtype(typeid(PEDESTAL_TYPE)));
|
||||
cluster.x = ix;
|
||||
cluster.y = iy;
|
||||
short i = 0;
|
||||
|
||||
// Fill the cluster data since we have a photon to store
|
||||
// It's worth redoing the look since most of the time we
|
||||
// don't have a photon
|
||||
int i = 0;
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
|
||||
for (short ir = -(m_cluster_sizeY / 2);
|
||||
ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
for (short ic = -(m_cluster_sizeX / 2);
|
||||
ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
CT tmp =
|
||||
static_cast<CT>(frame(iy + ir, ix + ic)) -
|
||||
static_cast<CT>(
|
||||
m_pedestal.mean(iy + ir, ix + ic));
|
||||
cluster.data[i] =
|
||||
tmp; // Watch for out of bounds access
|
||||
PEDESTAL_TYPE tmp =
|
||||
static_cast<PEDESTAL_TYPE>(
|
||||
frame(iy + ir, ix + ic)) -
|
||||
m_pedestal.mean(iy + ir, ix + ic);
|
||||
cluster.set<PEDESTAL_TYPE>(i, tmp);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add the cluster to the output ClusterVector
|
||||
m_clusters.push_back(cluster);
|
||||
clusters.push_back(cluster);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (late_update) {
|
||||
for (auto &update : pedestal_updates) {
|
||||
m_pedestal.push(update.y, update.x, update.value);
|
||||
}
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
// template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
|
||||
std::vector<DynamicCluster>
|
||||
find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
|
||||
Pedestal<PEDESTAL_TYPE> &pedestal) {
|
||||
assert(m_threshold > 0);
|
||||
std::vector<DynamicCluster> clusters;
|
||||
std::vector<std::vector<eventType>> eventMask;
|
||||
for (int i = 0; i < frame.shape(0); i++) {
|
||||
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
|
||||
}
|
||||
double tthr, tthr1, tthr2;
|
||||
|
||||
NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
|
||||
NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
|
||||
// convert to n photons
|
||||
// nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can be
|
||||
// optimized with expression templates?
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
auto val = frame(iy, ix) - pedestal.mean(iy, ix);
|
||||
nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
|
||||
nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
|
||||
rest(iy, ix) = val - nph(iy, ix) * m_threshold;
|
||||
}
|
||||
}
|
||||
// iterate over frame pixels
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
eventMask[iy][ix] = PEDESTAL;
|
||||
// initialize max and total
|
||||
FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
|
||||
long double total = 0;
|
||||
if (rest(iy, ix) <= 0.25 * m_threshold) {
|
||||
pedestal.push(iy, ix, frame(iy, ix));
|
||||
continue;
|
||||
}
|
||||
eventMask[iy][ix] = NEIGHBOUR;
|
||||
// iterate over cluster pixels around the current pixel (ix,iy)
|
||||
for (short ir = -(m_cluster_sizeY / 2);
|
||||
ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
for (short ic = -(m_cluster_sizeX / 2);
|
||||
ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
auto val = frame(iy + ir, ix + ic) -
|
||||
pedestal.mean(iy + ir, ix + ic);
|
||||
total += val;
|
||||
if (val > max) {
|
||||
max = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto rms = pedestal.std(iy, ix);
|
||||
if (m_nSigma == 0) {
|
||||
tthr = m_threshold;
|
||||
tthr1 = m_threshold;
|
||||
tthr2 = m_threshold;
|
||||
} else {
|
||||
tthr = m_nSigma * rms;
|
||||
tthr1 = m_nSigma * rms * c3;
|
||||
tthr2 = m_nSigma * rms * c2;
|
||||
|
||||
if (m_threshold > 2 * tthr)
|
||||
tthr = m_threshold - tthr;
|
||||
if (m_threshold > 2 * tthr1)
|
||||
tthr1 = tthr - tthr1;
|
||||
if (m_threshold > 2 * tthr2)
|
||||
tthr2 = tthr - tthr2;
|
||||
}
|
||||
if (total > tthr1 || max > tthr) {
|
||||
eventMask[iy][ix] = PHOTON;
|
||||
nph(iy, ix) += 1;
|
||||
rest(iy, ix) -= m_threshold;
|
||||
} else {
|
||||
pedestal.push(iy, ix, frame(iy, ix));
|
||||
continue;
|
||||
}
|
||||
if (eventMask[iy][ix] == PHOTON &&
|
||||
frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
|
||||
eventMask[iy][ix] = PHOTON_MAX;
|
||||
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
|
||||
Dtype(typeid(FRAME_TYPE)));
|
||||
cluster.x = ix;
|
||||
cluster.y = iy;
|
||||
short i = 0;
|
||||
for (short ir = -(m_cluster_sizeY / 2);
|
||||
ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
for (short ic = -(m_cluster_sizeX / 2);
|
||||
ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
auto tmp = frame(iy + ir, ix + ic) -
|
||||
pedestal.mean(iy + ir, ix + ic);
|
||||
cluster.set<FRAME_TYPE>(i, tmp);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
clusters.push_back(cluster);
|
||||
}
|
||||
}
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -1,284 +0,0 @@
|
||||
#pragma once
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/logger.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
enum class FrameType {
|
||||
DATA,
|
||||
PEDESTAL,
|
||||
};
|
||||
|
||||
struct FrameWrapper {
|
||||
FrameType type;
|
||||
uint64_t frame_number;
|
||||
NDArray<uint16_t, 2> data;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief ClusterFinderMT is a multi-threaded version of ClusterFinder. It uses
|
||||
* a producer-consumer queue to distribute the frames to the threads. The
|
||||
* clusters are collected in a single output queue.
|
||||
* @tparam FRAME_TYPE type of the frame data
|
||||
* @tparam PEDESTAL_TYPE type of the pedestal data
|
||||
* @tparam CT type of the cluster data
|
||||
*/
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinderMT {
|
||||
|
||||
protected:
|
||||
using CT = typename ClusterType::value_type;
|
||||
size_t m_current_thread{0};
|
||||
size_t m_n_threads{0};
|
||||
using Finder = ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>;
|
||||
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
|
||||
using OutputQueue = ProducerConsumerQueue<ClusterVector<ClusterType>>;
|
||||
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
|
||||
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
|
||||
|
||||
OutputQueue m_sink{1000}; // All clusters go into this queue
|
||||
|
||||
std::vector<std::unique_ptr<Finder>> m_cluster_finders;
|
||||
std::vector<std::thread> m_threads;
|
||||
std::thread m_collect_thread;
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
|
||||
private:
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_processing_threads_stopped{true};
|
||||
|
||||
/**
|
||||
* @brief Function called by the processing threads. It reads the frames
|
||||
* from the input queue and processes them.
|
||||
*/
|
||||
void process(int thread_id) {
|
||||
auto cf = m_cluster_finders[thread_id].get();
|
||||
auto q = m_input_queues[thread_id].get();
|
||||
bool realloc_same_capacity = true;
|
||||
|
||||
while (!m_stop_requested || !q->isEmpty()) {
|
||||
if (FrameWrapper *frame = q->frontPtr(); frame != nullptr) {
|
||||
|
||||
switch (frame->type) {
|
||||
case FrameType::DATA:
|
||||
cf->find_clusters(frame->data.view(), frame->frame_number);
|
||||
m_output_queues[thread_id]->write(
|
||||
cf->steal_clusters(realloc_same_capacity));
|
||||
break;
|
||||
|
||||
case FrameType::PEDESTAL:
|
||||
m_cluster_finders[thread_id]->push_pedestal_frame(
|
||||
frame->data.view());
|
||||
break;
|
||||
}
|
||||
|
||||
// frame is processed now discard it
|
||||
m_input_queues[thread_id]->popFront();
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Collect all the clusters from the output queues and write them to
|
||||
* the sink
|
||||
*/
|
||||
void collect() {
|
||||
bool empty = true;
|
||||
while (!m_stop_requested || !empty || !m_processing_threads_stopped) {
|
||||
empty = true;
|
||||
for (auto &queue : m_output_queues) {
|
||||
if (!queue->isEmpty()) {
|
||||
|
||||
while (!m_sink.write(std::move(*queue->frontPtr()))) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
queue->popFront();
|
||||
empty = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new ClusterFinderMT object
|
||||
* @param image_size size of the image
|
||||
* @param cluster_size size of the cluster
|
||||
* @param nSigma number of sigma above the pedestal to consider a photon
|
||||
* @param capacity initial capacity of the cluster vector. Should match
|
||||
* expected number of clusters in a frame per frame.
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 2000, size_t n_threads = 3)
|
||||
: m_n_threads(n_threads) {
|
||||
|
||||
LOG(logDEBUG1) << "ClusterFinderMT: "
|
||||
<< "image_size: " << image_size[0] << "x"
|
||||
<< image_size[1] << ", nSigma: " << nSigma
|
||||
<< ", capacity: " << capacity
|
||||
<< ", n_threads: " << n_threads;
|
||||
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_cluster_finders.push_back(
|
||||
std::make_unique<
|
||||
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
|
||||
image_size, nSigma, capacity));
|
||||
}
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
|
||||
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
|
||||
}
|
||||
// TODO! Should we start automatically?
|
||||
start();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the sink queue where all the clusters are collected
|
||||
* @warning You need to empty this queue otherwise the cluster finder will
|
||||
* wait forever
|
||||
*/
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *sink() {
|
||||
return &m_sink;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start all processing threads
|
||||
*/
|
||||
void start() {
|
||||
m_processing_threads_stopped = false;
|
||||
m_stop_requested = false;
|
||||
|
||||
for (size_t i = 0; i < m_n_threads; i++) {
|
||||
m_threads.push_back(
|
||||
std::thread(&ClusterFinderMT::process, this, i));
|
||||
}
|
||||
|
||||
m_collect_thread = std::thread(&ClusterFinderMT::collect, this);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stop all processing threads
|
||||
*/
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
|
||||
for (auto &thread : m_threads) {
|
||||
thread.join();
|
||||
}
|
||||
m_threads.clear();
|
||||
|
||||
m_processing_threads_stopped = true;
|
||||
m_collect_thread.join();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Wait for all the queues to be empty. Mostly used for timing tests.
|
||||
*/
|
||||
void sync() {
|
||||
for (auto &q : m_input_queues) {
|
||||
while (!q->isEmpty()) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
for (auto &q : m_output_queues) {
|
||||
while (!q->isEmpty()) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
while (!m_sink.isEmpty()) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Push a pedestal frame to all the cluster finders. The frames is
|
||||
* expected to be dark. No photon finding is done. Just pedestal update.
|
||||
*/
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
FrameWrapper fw{FrameType::PEDESTAL, 0,
|
||||
NDArray(frame)}; // TODO! copies the data!
|
||||
|
||||
for (auto &queue : m_input_queues) {
|
||||
while (!queue->write(fw)) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Push the frame to the queue of the next available thread. Function
|
||||
* returns once the frame is in a queue.
|
||||
* @note Spin locks with a default wait if the queue is full.
|
||||
*/
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
FrameWrapper fw{FrameType::DATA, frame_number,
|
||||
NDArray(frame)}; // TODO! copies the data!
|
||||
while (!m_input_queues[m_current_thread % m_n_threads]->write(fw)) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
m_current_thread++;
|
||||
}
|
||||
|
||||
void clear_pedestal() {
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
for (auto &cf : m_cluster_finders) {
|
||||
cf->clear_pedestal();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pedestal currently used by the cluster finder
|
||||
* @param thread_index index of the thread
|
||||
*/
|
||||
auto pedestal(size_t thread_index = 0) {
|
||||
if (m_cluster_finders.empty()) {
|
||||
throw std::runtime_error("No cluster finders available");
|
||||
}
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
if (thread_index >= m_cluster_finders.size()) {
|
||||
throw std::runtime_error("Thread index out of range");
|
||||
}
|
||||
return m_cluster_finders[thread_index]->pedestal();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the noise currently used by the cluster finder
|
||||
* @param thread_index index of the thread
|
||||
*/
|
||||
auto noise(size_t thread_index = 0) {
|
||||
if (m_cluster_finders.empty()) {
|
||||
throw std::runtime_error("No cluster finders available");
|
||||
}
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
if (thread_index >= m_cluster_finders.size()) {
|
||||
throw std::runtime_error("Thread index out of range");
|
||||
}
|
||||
return m_cluster_finders[thread_index]->noise();
|
||||
}
|
||||
|
||||
// void push(FrameWrapper&& frame) {
|
||||
// //TODO! need to loop until we are successful
|
||||
// auto rc = m_input_queue.write(std::move(frame));
|
||||
// fmt::print("pushed frame {}\n", rc);
|
||||
// }
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,170 +0,0 @@
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
|
||||
#include <fmt/core.h>
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterVector; // Forward declaration
|
||||
|
||||
/**
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It
|
||||
* uses a contiguous memory buffer to store the clusters. It is templated on
|
||||
* the data type and the coordinate type of the clusters.
|
||||
* @note push_back can invalidate pointers to elements in the container
|
||||
* @warning ClusterVector is currently move only to catch unintended copies,
|
||||
* but this might change since there are probably use cases where copying is
|
||||
* needed.
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
|
||||
int32_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
|
||||
public:
|
||||
using value_type = T;
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new ClusterVector object
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
* @param frame_number frame number of the clusters. Default is 0, which is
|
||||
* also used to indicate that the clusters come from many frames
|
||||
*/
|
||||
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_frame_number(frame_number) {
|
||||
m_data.reserve(capacity);
|
||||
}
|
||||
|
||||
// Move constructor
|
||||
ClusterVector(ClusterVector &&other) noexcept
|
||||
: m_data(other.m_data), m_frame_number(other.m_frame_number) {
|
||||
other.m_data.clear();
|
||||
}
|
||||
|
||||
// Move assignment operator
|
||||
ClusterVector &operator=(ClusterVector &&other) noexcept {
|
||||
if (this != &other) {
|
||||
m_data = other.m_data;
|
||||
m_frame_number = other.m_frame_number;
|
||||
other.m_data.clear();
|
||||
other.m_frame_number = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sum the pixels in each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/
|
||||
std::vector<T> sum() {
|
||||
std::vector<T> sums(m_data.size());
|
||||
|
||||
std::transform(
|
||||
m_data.begin(), m_data.end(), sums.begin(),
|
||||
[](const ClusterType &cluster) { return cluster.sum(); });
|
||||
|
||||
return sums;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
|
||||
* each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/
|
||||
std::vector<T> sum_2x2() {
|
||||
std::vector<T> sums_2x2(m_data.size());
|
||||
|
||||
std::transform(m_data.begin(), m_data.end(), sums_2x2.begin(),
|
||||
[](const ClusterType &cluster) {
|
||||
return cluster.max_sum_2x2().first;
|
||||
});
|
||||
|
||||
return sums_2x2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reserve space for at least capacity clusters
|
||||
* @param capacity number of clusters to reserve space for
|
||||
* @note If capacity is less than the current capacity, the function does
|
||||
* nothing.
|
||||
*/
|
||||
void reserve(size_t capacity) { m_data.reserve(capacity); }
|
||||
|
||||
void resize(size_t size) { m_data.resize(size); }
|
||||
|
||||
void push_back(const ClusterType &cluster) { m_data.push_back(cluster); }
|
||||
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
m_data.insert(m_data.end(), other.begin(), other.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
*/
|
||||
size_t size() const { return m_data.size(); }
|
||||
|
||||
uint8_t cluster_size_x() const { return ClusterSizeX; }
|
||||
|
||||
uint8_t cluster_size_y() const { return ClusterSizeY; }
|
||||
|
||||
/**
|
||||
* @brief Return the capacity of the buffer in number of clusters. This is
|
||||
* the number of clusters that can be stored in the current buffer without
|
||||
* reallocation.
|
||||
*/
|
||||
size_t capacity() const { return m_data.capacity(); }
|
||||
|
||||
auto begin() const { return m_data.begin(); }
|
||||
|
||||
auto end() const { return m_data.end(); }
|
||||
|
||||
/**
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
*/
|
||||
size_t item_size() const {
|
||||
return sizeof(ClusterType); // 2 * sizeof(CoordType) + ClusterSizeX *
|
||||
// ClusterSizeY * sizeof(T);
|
||||
}
|
||||
|
||||
ClusterType *data() { return m_data.data(); }
|
||||
ClusterType const *data() const { return m_data.data(); }
|
||||
|
||||
/**
|
||||
* @brief Return a reference to the i-th cluster casted to type V
|
||||
* @tparam V type of the cluster
|
||||
*/
|
||||
ClusterType &operator[](size_t i) { return m_data[i]; }
|
||||
|
||||
const ClusterType &operator[](size_t i) const { return m_data[i]; }
|
||||
|
||||
/**
|
||||
* @brief Return the frame number of the clusters. 0 is used to indicate
|
||||
* that the clusters come from many frames
|
||||
*/
|
||||
int32_t frame_number() const { return m_frame_number; }
|
||||
|
||||
void set_frame_number(int32_t frame_number) {
|
||||
m_frame_number = frame_number;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,27 +1,27 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
|
||||
namespace aare {
|
||||
namespace aare{
|
||||
|
||||
class CtbRawFile {
|
||||
|
||||
class CtbRawFile{
|
||||
RawMasterFile m_master;
|
||||
std::ifstream m_file;
|
||||
size_t m_current_frame{0};
|
||||
size_t m_current_subfile{0};
|
||||
size_t m_num_subfiles{0};
|
||||
|
||||
public:
|
||||
public:
|
||||
CtbRawFile(const std::filesystem::path &fname);
|
||||
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
void read_into(std::byte *image_buf, DetectorHeader* header = nullptr);
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
|
||||
// in the specific class we can expose more functionality
|
||||
|
||||
@ -29,13 +29,13 @@ class CtbRawFile {
|
||||
size_t frames_in_file() const;
|
||||
|
||||
RawMasterFile master() const;
|
||||
|
||||
private:
|
||||
private:
|
||||
void find_subfiles();
|
||||
size_t sub_file_index(size_t frame_index) const {
|
||||
return frame_index / m_master.max_frames_per_file();
|
||||
}
|
||||
void open_data_file(size_t subfile_index);
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
||||
}
|
@ -6,37 +6,31 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
// The format descriptor is a single character that specifies the type of the
|
||||
// data
|
||||
// The format descriptor is a single character that specifies the type of the data
|
||||
// - python documentation: https://docs.python.org/3/c-api/arg.html#numbers
|
||||
// - py::format_descriptor<T>::format() (in pybind11) does not return the same
|
||||
// format as
|
||||
// - py::format_descriptor<T>::format() (in pybind11) does not return the same format as
|
||||
// written in python.org documentation.
|
||||
// - numpy also doesn't use the same format. and also numpy associates the
|
||||
// format
|
||||
// with variable bitdepth types. (e.g. long is int64 on linux64 and int32 on
|
||||
// win64) https://numpy.org/doc/stable/reference/arrays.scalars.html
|
||||
// - numpy also doesn't use the same format. and also numpy associates the format
|
||||
// with variable bitdepth types. (e.g. long is int64 on linux64 and int32 on win64)
|
||||
// https://numpy.org/doc/stable/reference/arrays.scalars.html
|
||||
//
|
||||
// github issue discussing this:
|
||||
// https://github.com/pybind/pybind11/issues/1908#issuecomment-658358767
|
||||
//
|
||||
// [IN LINUX] the difference is for int64 (long) and uint64 (unsigned long). The
|
||||
// format descriptor is 'q' and 'Q' respectively and in the documentation it is
|
||||
// 'l' and 'k'.
|
||||
// [IN LINUX] the difference is for int64 (long) and uint64 (unsigned long). The format
|
||||
// descriptor is 'q' and 'Q' respectively and in the documentation it is 'l' and 'k'.
|
||||
|
||||
// in practice numpy doesn't seem to care when reading buffer info: the library
|
||||
// interprets 'q' or 'l' as int64 and 'Q' or 'L' as uint64.
|
||||
// for this reason we decided to use the same format descriptor as pybind to
|
||||
// avoid any further discrepancies.
|
||||
// for this reason we decided to use the same format descriptor as pybind to avoid
|
||||
// any further discrepancies.
|
||||
|
||||
// in the following order:
|
||||
// int8, uint8, int16, uint16, int32, uint32, int64, uint64, float, double
|
||||
const char DTYPE_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i',
|
||||
'I', 'q', 'Q', 'f', 'd'};
|
||||
const char DTYPE_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i', 'I', 'q', 'Q', 'f', 'd'};
|
||||
|
||||
// on linux64 & apple
|
||||
const char NUMPY_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i',
|
||||
'I', 'l', 'L', 'f', 'd'};
|
||||
const char NUMPY_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i', 'I', 'l', 'L', 'f', 'd'};
|
||||
/**
|
||||
* @brief enum class to define the endianess of the system
|
||||
*/
|
||||
@ -58,29 +52,12 @@ enum class endian {
|
||||
*/
|
||||
class Dtype {
|
||||
public:
|
||||
enum TypeIndex {
|
||||
INT8,
|
||||
UINT8,
|
||||
INT16,
|
||||
UINT16,
|
||||
INT32,
|
||||
UINT32,
|
||||
INT64,
|
||||
UINT64,
|
||||
FLOAT,
|
||||
DOUBLE,
|
||||
ERROR,
|
||||
NONE
|
||||
};
|
||||
enum TypeIndex { INT8, UINT8, INT16, UINT16, INT32, UINT32, INT64, UINT64, FLOAT, DOUBLE, ERROR, NONE };
|
||||
|
||||
uint8_t bitdepth() const;
|
||||
size_t bytes() const;
|
||||
std::string format_descr() const {
|
||||
return std::string(1, DTYPE_FORMAT_DSC[static_cast<int>(m_type)]);
|
||||
}
|
||||
std::string numpy_descr() const {
|
||||
return std::string(1, NUMPY_FORMAT_DSC[static_cast<int>(m_type)]);
|
||||
}
|
||||
std::string format_descr() const { return std::string(1, DTYPE_FORMAT_DSC[static_cast<int>(m_type)]); }
|
||||
std::string numpy_descr() const { return std::string(1, NUMPY_FORMAT_DSC[static_cast<int>(m_type)]); }
|
||||
|
||||
explicit Dtype(const std::type_info &t);
|
||||
explicit Dtype(std::string_view sv);
|
||||
|
@ -5,12 +5,12 @@
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief RAII File class for reading, and in the future potentially writing
|
||||
* image files in various formats. Minimal generic interface. For specail
|
||||
* fuctions plase use the RawFile or NumpyFile classes directly. Wraps
|
||||
* FileInterface to abstract the underlying file format
|
||||
* @note **frame_number** refers the the frame number sent by the detector while
|
||||
* **frame_index** is the position of the frame in the file
|
||||
* @brief RAII File class for reading, and in the future potentially writing
|
||||
* image files in various formats. Minimal generic interface. For specail fuctions
|
||||
* plase use the RawFile or NumpyFile classes directly.
|
||||
* Wraps FileInterface to abstract the underlying file format
|
||||
* @note **frame_number** refers the the frame number sent by the detector while **frame_index**
|
||||
* is the position of the frame in the file
|
||||
*/
|
||||
class File {
|
||||
std::unique_ptr<FileInterface> file_impl;
|
||||
@ -25,46 +25,39 @@ class File {
|
||||
* @throws std::invalid_argument if the file mode is not supported
|
||||
*
|
||||
*/
|
||||
File(const std::filesystem::path &fname, const std::string &mode = "r",
|
||||
const FileConfig &cfg = {});
|
||||
|
||||
/**Since the object is responsible for managing the file we disable copy
|
||||
* construction */
|
||||
File(File const &other) = delete;
|
||||
File(const std::filesystem::path &fname, const std::string &mode="r", const FileConfig &cfg = {});
|
||||
|
||||
/**Since the object is responsible for managing the file we disable copy construction */
|
||||
File(File const &other) = delete;
|
||||
|
||||
/**The same goes for copy assignment */
|
||||
File &operator=(File const &other) = delete;
|
||||
File& operator=(File const &other) = delete;
|
||||
|
||||
File(File &&other) noexcept;
|
||||
File &operator=(File &&other) noexcept;
|
||||
File& operator=(File &&other) noexcept;
|
||||
~File() = default;
|
||||
|
||||
// void close(); //!< close the file
|
||||
|
||||
Frame
|
||||
read_frame(); //!< read one frame from the file at the current position
|
||||
Frame read_frame(size_t frame_index); //!< read one frame at the position
|
||||
//!< given by frame number
|
||||
std::vector<Frame> read_n(size_t n_frames); //!< read n_frames from the file
|
||||
//!< at the current position
|
||||
|
||||
Frame read_frame(); //!< read one frame from the file at the current position
|
||||
Frame read_frame(size_t frame_index); //!< read one frame at the position given by frame number
|
||||
std::vector<Frame> read_n(size_t n_frames); //!< read n_frames from the file at the current position
|
||||
|
||||
void read_into(std::byte *image_buf);
|
||||
void read_into(std::byte *image_buf, size_t n_frames);
|
||||
|
||||
size_t frame_number(); //!< get the frame number at the current position
|
||||
size_t frame_number(
|
||||
size_t frame_index); //!< get the frame number at the given frame index
|
||||
size_t bytes_per_frame() const;
|
||||
size_t pixels_per_frame() const;
|
||||
size_t bytes_per_pixel() const;
|
||||
|
||||
size_t frame_number(size_t frame_index); //!< get the frame number at the given frame index
|
||||
size_t bytes_per_frame() const;
|
||||
size_t pixels_per_frame() const;
|
||||
size_t bytes_per_pixel() const;
|
||||
size_t bitdepth() const;
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
size_t total_frames() const;
|
||||
size_t rows() const;
|
||||
size_t cols() const;
|
||||
|
||||
DetectorType detector_type() const;
|
||||
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -20,10 +20,8 @@ struct FileConfig {
|
||||
uint64_t rows{};
|
||||
uint64_t cols{};
|
||||
bool operator==(const FileConfig &other) const {
|
||||
return dtype == other.dtype && rows == other.rows &&
|
||||
cols == other.cols && geometry == other.geometry &&
|
||||
detector_type == other.detector_type &&
|
||||
max_frames_per_file == other.max_frames_per_file;
|
||||
return dtype == other.dtype && rows == other.rows && cols == other.cols && geometry == other.geometry &&
|
||||
detector_type == other.detector_type && max_frames_per_file == other.max_frames_per_file;
|
||||
}
|
||||
bool operator!=(const FileConfig &other) const { return !(*this == other); }
|
||||
|
||||
@ -34,11 +32,8 @@ struct FileConfig {
|
||||
int max_frames_per_file{};
|
||||
size_t total_frames{};
|
||||
std::string to_string() const {
|
||||
return "{ dtype: " + dtype.to_string() +
|
||||
", rows: " + std::to_string(rows) +
|
||||
", cols: " + std::to_string(cols) +
|
||||
", geometry: " + geometry.to_string() +
|
||||
", detector_type: " + ToString(detector_type) +
|
||||
return "{ dtype: " + dtype.to_string() + ", rows: " + std::to_string(rows) + ", cols: " + std::to_string(cols) +
|
||||
", geometry: " + geometry.to_string() + ", detector_type: " + ToString(detector_type) +
|
||||
", max_frames_per_file: " + std::to_string(max_frames_per_file) +
|
||||
", total_frames: " + std::to_string(total_frames) + " }";
|
||||
}
|
||||
@ -47,8 +42,7 @@ struct FileConfig {
|
||||
/**
|
||||
* @brief FileInterface class to define the interface for file operations
|
||||
* @note parent class for NumpyFile and RawFile
|
||||
* @note all functions are pure virtual and must be implemented by the derived
|
||||
* classes
|
||||
* @note all functions are pure virtual and must be implemented by the derived classes
|
||||
*/
|
||||
class FileInterface {
|
||||
public:
|
||||
@ -70,20 +64,17 @@ class FileInterface {
|
||||
* @param n_frames number of frames to read
|
||||
* @return vector of frames
|
||||
*/
|
||||
virtual std::vector<Frame>
|
||||
read_n(size_t n_frames) = 0; // Is this the right interface?
|
||||
virtual std::vector<Frame> read_n(size_t n_frames) = 0; // Is this the right interface?
|
||||
|
||||
/**
|
||||
* @brief read one frame from the file at the current position and store it
|
||||
* in the provided buffer
|
||||
* @brief read one frame from the file at the current position and store it in the provided buffer
|
||||
* @param image_buf buffer to store the frame
|
||||
* @return void
|
||||
*/
|
||||
virtual void read_into(std::byte *image_buf) = 0;
|
||||
|
||||
/**
|
||||
* @brief read n_frames from the file at the current position and store them
|
||||
* in the provided buffer
|
||||
* @brief read n_frames from the file at the current position and store them in the provided buffer
|
||||
* @param image_buf buffer to store the frames
|
||||
* @param n_frames number of frames to read
|
||||
* @return void
|
||||
@ -143,6 +134,7 @@ class FileInterface {
|
||||
*/
|
||||
virtual size_t bitdepth() const = 0;
|
||||
|
||||
|
||||
virtual DetectorType detector_type() const = 0;
|
||||
|
||||
// function to query the data type of the file
|
||||
|
@ -1,30 +0,0 @@
|
||||
#pragma once
|
||||
#include <cstdio>
|
||||
#include <filesystem>
|
||||
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* \brief RAII wrapper for FILE pointer
|
||||
*/
|
||||
class FilePtr {
|
||||
FILE *fp_{nullptr};
|
||||
|
||||
public:
|
||||
FilePtr() = default;
|
||||
FilePtr(const std::filesystem::path &fname, const std::string &mode);
|
||||
FilePtr(const FilePtr &) = delete; // we don't want a copy
|
||||
FilePtr &operator=(const FilePtr &) = delete; // since we handle a resource
|
||||
FilePtr(FilePtr &&other);
|
||||
FilePtr &operator=(FilePtr &&other);
|
||||
FILE *get();
|
||||
ssize_t tell();
|
||||
void seek(ssize_t offset, int whence = SEEK_SET) {
|
||||
if (fseek(fp_, offset, whence) != 0)
|
||||
throw std::runtime_error("Error seeking in file");
|
||||
}
|
||||
std::string error_msg();
|
||||
~FilePtr();
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,120 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <fmt/core.h>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
namespace func {
|
||||
double gaus(const double x, const double *par);
|
||||
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double pol1(const double x, const double *par);
|
||||
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double scurve(const double x, const double *par);
|
||||
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double scurve2(const double x, const double *par);
|
||||
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
} // namespace func
|
||||
|
||||
/**
|
||||
* @brief Estimate the initial parameters for a Gaussian fit
|
||||
*/
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
|
||||
static constexpr int DEFAULT_NUM_THREADS = 4;
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to data.
|
||||
* @param data data to fit
|
||||
* @param x x values
|
||||
*/
|
||||
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
|
||||
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian with error estimates
|
||||
* @param x x values
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters
|
||||
* @param par_err_out output error parameters
|
||||
*/
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2);
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
|
||||
* [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y values, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters, layout [row, col, values]
|
||||
* @param par_err_out output parameter errors, layout [row, col, values]
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out, int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
|
||||
|
||||
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2);
|
||||
|
||||
// TODO! not sure we need to offer the different version in C++
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out, int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
|
||||
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
} // namespace aare
|
@ -19,7 +19,7 @@ class Frame {
|
||||
uint32_t m_cols;
|
||||
Dtype m_dtype;
|
||||
std::byte *m_data;
|
||||
// TODO! Add frame number?
|
||||
//TODO! Add frame number?
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -39,7 +39,7 @@ class Frame {
|
||||
* @param dtype data type of the pixels
|
||||
*/
|
||||
Frame(const std::byte *bytes, uint32_t rows, uint32_t cols, Dtype dtype);
|
||||
~Frame() { delete[] m_data; };
|
||||
~Frame(){ delete[] m_data; };
|
||||
|
||||
/** @warning Copy is disabled to ensure performance when passing
|
||||
* frames around. Can discuss enabling it.
|
||||
@ -52,6 +52,7 @@ class Frame {
|
||||
Frame &operator=(Frame &&other) noexcept;
|
||||
Frame(Frame &&other) noexcept;
|
||||
|
||||
|
||||
Frame clone() const; //<- Explicit copy
|
||||
|
||||
uint32_t rows() const;
|
||||
@ -92,7 +93,7 @@ class Frame {
|
||||
if (row >= m_rows || col >= m_cols) {
|
||||
throw std::out_of_range("Invalid row or column index");
|
||||
}
|
||||
// TODO! add tests then reimplement using pixel_ptr
|
||||
//TODO! add tests then reimplement using pixel_ptr
|
||||
T data;
|
||||
std::memcpy(&data, m_data + (row * m_cols + col) * m_dtype.bytes(),
|
||||
m_dtype.bytes());
|
||||
@ -101,18 +102,18 @@ class Frame {
|
||||
/**
|
||||
* @brief Return an NDView of the frame. This is the preferred way to access
|
||||
* data in the frame.
|
||||
*
|
||||
*
|
||||
* @tparam T type of the pixels
|
||||
* @return NDView<T, 2>
|
||||
* @return NDView<T, 2>
|
||||
*/
|
||||
template <typename T> NDView<T, 2> view() {
|
||||
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
|
||||
static_cast<ssize_t>(m_cols)};
|
||||
std::array<int64_t, 2> shape = {static_cast<int64_t>(m_rows),
|
||||
static_cast<int64_t>(m_cols)};
|
||||
T *data = reinterpret_cast<T *>(m_data);
|
||||
return NDView<T, 2>(data, shape);
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* @brief Copy the frame data into a new NDArray. This is a deep copy.
|
||||
*/
|
||||
template <typename T> NDArray<T> image() {
|
||||
|
@ -1,68 +0,0 @@
|
||||
/************************************************
|
||||
* @file GainMap.hpp
|
||||
* @short function to apply gain map of image size to a vector of clusters -
|
||||
*note stored gainmap is inverted for efficient aaplication to images
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace aare {
|
||||
|
||||
class InvertedGainMap {
|
||||
|
||||
public:
|
||||
explicit InvertedGainMap(const NDArray<double, 2> &gain_map)
|
||||
: m_gain_map(gain_map) {
|
||||
for (auto &item : m_gain_map) {
|
||||
item = 1.0 / item;
|
||||
}
|
||||
};
|
||||
|
||||
explicit InvertedGainMap(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = NDArray<double, 2>(gain_map);
|
||||
for (auto &item : m_gain_map) {
|
||||
item = 1.0 / item;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
void apply_gain_map(ClusterVector<ClusterType> &clustervec) {
|
||||
// in principle we need to know the size of the image for this lookup
|
||||
size_t ClusterSizeX = clustervec.cluster_size_x();
|
||||
size_t ClusterSizeY = clustervec.cluster_size_y();
|
||||
|
||||
using T = typename ClusterVector<ClusterType>::value_type;
|
||||
|
||||
int64_t index_cluster_center_x = ClusterSizeX / 2;
|
||||
int64_t index_cluster_center_y = ClusterSizeY / 2;
|
||||
for (size_t i = 0; i < clustervec.size(); i++) {
|
||||
auto &cl = clustervec[i];
|
||||
|
||||
if (cl.x > 0 && cl.y > 0 && cl.x < m_gain_map.shape(1) - 1 &&
|
||||
cl.y < m_gain_map.shape(0) - 1) {
|
||||
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
|
||||
size_t x = cl.x + j % ClusterSizeX - index_cluster_center_x;
|
||||
size_t y = cl.y + j / ClusterSizeX - index_cluster_center_y;
|
||||
cl.data[j] = static_cast<T>(
|
||||
static_cast<double>(cl.data[j]) *
|
||||
m_gain_map(
|
||||
y, x)); // cast after conversion to keep precision
|
||||
}
|
||||
} else {
|
||||
// clear edge clusters
|
||||
cl.data.fill(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
NDArray<double, 2> m_gain_map{};
|
||||
};
|
||||
|
||||
} // end of namespace aare
|
@ -1,130 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
struct Photon {
|
||||
double x;
|
||||
double y;
|
||||
double energy;
|
||||
};
|
||||
|
||||
class Interpolator {
|
||||
NDArray<double, 3> m_ietax;
|
||||
NDArray<double, 3> m_ietay;
|
||||
|
||||
NDArray<double, 1> m_etabinsx;
|
||||
NDArray<double, 1> m_etabinsy;
|
||||
NDArray<double, 1> m_energy_bins;
|
||||
|
||||
public:
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
NDArray<double, 3> get_ietax() { return m_ietax; }
|
||||
NDArray<double, 3> get_ietay() { return m_ietay; }
|
||||
|
||||
template <typename ClusterType,
|
||||
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
|
||||
};
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType, typename Enable>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (const ClusterType &cluster : clusters) {
|
||||
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
|
||||
double dX, dY;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (static_cast<corner>(eta.c)) {
|
||||
case corner::cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0;
|
||||
break;
|
||||
case corner::cTopRight:;
|
||||
dX = 0;
|
||||
dY = 0;
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (const ClusterType &cluster : clusters) {
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie) *
|
||||
2; // eta goes between 0 and 1 but we could move the hit
|
||||
// anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie) * 2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,115 +0,0 @@
|
||||
#pragma once
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/FilePtr.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
namespace aare {
|
||||
|
||||
struct JungfrauDataHeader {
|
||||
uint64_t framenum;
|
||||
uint64_t bunchid;
|
||||
};
|
||||
|
||||
class JungfrauDataFile : public FileInterface {
|
||||
|
||||
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
|
||||
size_t
|
||||
m_cols{}; //!< number of columns in the image, from find_frame_size();
|
||||
size_t m_bytes_per_frame{}; //!< number of bytes per frame excluding header
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non
|
||||
//!< zero file
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with
|
||||
//!< reference to all files)
|
||||
|
||||
std::vector<size_t>
|
||||
m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
std::filesystem::path m_path; //!< path to the files
|
||||
std::string m_base_name; //!< base name used for formatting file names
|
||||
|
||||
FilePtr m_fp; //!< RAII wrapper for a FILE*
|
||||
|
||||
using pixel_type = uint16_t;
|
||||
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
|
||||
static constexpr size_t n_digits_in_file_index =
|
||||
6; //!< to format file names
|
||||
|
||||
public:
|
||||
JungfrauDataFile(const std::filesystem::path &fname);
|
||||
|
||||
std::string base_name()
|
||||
const; //!< get the base name of the file (without path and extension)
|
||||
size_t bytes_per_frame() override;
|
||||
size_t pixels_per_frame() override;
|
||||
size_t bytes_per_pixel() const;
|
||||
size_t bitdepth() const override;
|
||||
void seek(size_t frame_index)
|
||||
override; //!< seek to the given frame index (note not byte offset)
|
||||
size_t tell() override; //!< get the frame index of the file pointer
|
||||
size_t total_frames() const override;
|
||||
size_t rows() const override;
|
||||
size_t cols() const override;
|
||||
std::array<ssize_t, 2> shape() const;
|
||||
size_t n_files() const; //!< get the number of files in the series.
|
||||
|
||||
// Extra functions needed for FileInterface
|
||||
Frame read_frame() override;
|
||||
Frame read_frame(size_t frame_number) override;
|
||||
std::vector<Frame> read_n(size_t n_frames = 0) override;
|
||||
void read_into(std::byte *image_buf) override;
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
size_t frame_number(size_t frame_index) override;
|
||||
DetectorType detector_type() const override;
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is
|
||||
* responsible for allocating the buffer)
|
||||
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
|
||||
*/
|
||||
void read_into(std::byte *image_buf, JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Read a multiple frames from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is
|
||||
* responsible for allocating the buffer)
|
||||
* @param n_frames number of frames to read
|
||||
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
|
||||
*/
|
||||
void read_into(std::byte *image_buf, size_t n_frames,
|
||||
JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file into the given NDArray
|
||||
* @param image NDArray to read the frame into.
|
||||
*/
|
||||
void read_into(NDArray<uint16_t> *image,
|
||||
JungfrauDataHeader *header = nullptr);
|
||||
|
||||
JungfrauDataHeader read_header();
|
||||
std::filesystem::path current_file() const {
|
||||
return fpath(m_current_file_index + m_offset);
|
||||
}
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Find the size of the frame in the file. (256x256, 256x1024,
|
||||
* 512x1024)
|
||||
* @param fname path to the file
|
||||
* @throws std::runtime_error if the file is empty or the size cannot be
|
||||
* determined
|
||||
*/
|
||||
void find_frame_size(const std::filesystem::path &fname);
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t frame_index) const;
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -21,10 +21,11 @@ TODO! Add expression templates for operators
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename T, ssize_t Ndim = 2>
|
||||
|
||||
template <typename T, int64_t Ndim = 2>
|
||||
class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
std::array<ssize_t, Ndim> shape_;
|
||||
std::array<ssize_t, Ndim> strides_;
|
||||
std::array<int64_t, Ndim> shape_;
|
||||
std::array<int64_t, Ndim> strides_;
|
||||
size_t size_{};
|
||||
T *data_;
|
||||
|
||||
@ -33,7 +34,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
* @brief Default constructor. Will construct an empty NDArray.
|
||||
*
|
||||
*/
|
||||
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
|
||||
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
|
||||
|
||||
/**
|
||||
* @brief Construct a new NDArray object with a given shape.
|
||||
@ -41,19 +42,20 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
*
|
||||
* @param shape shape of the new NDArray
|
||||
*/
|
||||
explicit NDArray(std::array<ssize_t, Ndim> shape)
|
||||
explicit NDArray(std::array<int64_t, Ndim> shape)
|
||||
: shape_(shape), strides_(c_strides<Ndim>(shape_)),
|
||||
size_(std::accumulate(shape_.begin(), shape_.end(), 1,
|
||||
std::multiplies<>())),
|
||||
data_(new T[size_]) {}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Construct a new NDArray object with a shape and value.
|
||||
*
|
||||
* @param shape shape of the new array
|
||||
* @param value value to initialize the array with
|
||||
*/
|
||||
NDArray(std::array<ssize_t, Ndim> shape, T value) : NDArray(shape) {
|
||||
NDArray(std::array<int64_t, Ndim> shape, T value) : NDArray(shape) {
|
||||
this->operator=(value);
|
||||
}
|
||||
|
||||
@ -67,16 +69,12 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
std::copy(v.begin(), v.end(), begin());
|
||||
}
|
||||
|
||||
template <size_t Size>
|
||||
NDArray(const std::array<T, Size> &arr) : NDArray<T, 1>({Size}) {
|
||||
std::copy(arr.begin(), arr.end(), begin());
|
||||
}
|
||||
|
||||
// Move constructor
|
||||
NDArray(NDArray &&other) noexcept
|
||||
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
|
||||
size_(other.size_), data_(other.data_) {
|
||||
other.reset(); // TODO! is this necessary?
|
||||
|
||||
}
|
||||
|
||||
// Copy constructor
|
||||
@ -89,7 +87,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
// Conversion operator from array expression to array
|
||||
template <typename E>
|
||||
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
|
||||
for (size_t i = 0; i < size_; ++i) {
|
||||
for (int i = 0; i < size_; ++i) {
|
||||
data_[i] = expr[i];
|
||||
}
|
||||
}
|
||||
@ -99,9 +97,6 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
auto begin() { return data_; }
|
||||
auto end() { return data_ + size_; }
|
||||
|
||||
auto begin() const { return data_; }
|
||||
auto end() const { return data_ + size_; }
|
||||
|
||||
using value_type = T;
|
||||
|
||||
NDArray &operator=(NDArray &&other) noexcept; // Move assign
|
||||
@ -110,20 +105,6 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
NDArray &operator-=(const NDArray &other);
|
||||
NDArray &operator*=(const NDArray &other);
|
||||
|
||||
// Write directly to the data array, or create a new one
|
||||
template <size_t Size>
|
||||
NDArray<T, 1> &operator=(const std::array<T, Size> &other) {
|
||||
if (Size != size_) {
|
||||
delete[] data_;
|
||||
size_ = Size;
|
||||
data_ = new T[size_];
|
||||
}
|
||||
for (size_t i = 0; i < Size; ++i) {
|
||||
data_[i] = other[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// NDArray& operator/=(const NDArray& other);
|
||||
|
||||
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
|
||||
@ -178,22 +159,22 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
}
|
||||
|
||||
// TODO! is int the right type for index?
|
||||
T &operator()(ssize_t i) { return data_[i]; }
|
||||
const T &operator()(ssize_t i) const { return data_[i]; }
|
||||
T &operator()(int i) { return data_[i]; }
|
||||
const T &operator()(int i) const { return data_[i]; }
|
||||
|
||||
T &operator[](ssize_t i) { return data_[i]; }
|
||||
const T &operator[](ssize_t i) const { return data_[i]; }
|
||||
T &operator[](int i) { return data_[i]; }
|
||||
const T &operator[](int i) const { return data_[i]; }
|
||||
|
||||
T *data() { return data_; }
|
||||
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t size() const { return size_; }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<ssize_t, Ndim> shape() const noexcept { return shape_; }
|
||||
ssize_t shape(ssize_t i) const noexcept { return shape_[i]; }
|
||||
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
|
||||
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
|
||||
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
|
||||
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
|
||||
size_t bitdepth() const noexcept { return sizeof(T) * 8; }
|
||||
|
||||
std::array<ssize_t, Ndim> byte_strides() const noexcept {
|
||||
std::array<int64_t, Ndim> byte_strides() const noexcept {
|
||||
auto byte_strides = strides_;
|
||||
for (auto &val : byte_strides)
|
||||
val *= sizeof(T);
|
||||
@ -220,7 +201,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
};
|
||||
|
||||
// Move assign
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &
|
||||
NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
|
||||
if (this != &other) {
|
||||
@ -234,7 +215,7 @@ NDArray<T, Ndim>::operator=(NDArray<T, Ndim> &&other) noexcept {
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const NDArray<T, Ndim> &other) {
|
||||
// check shape
|
||||
if (shape_ == other.shape_) {
|
||||
@ -246,7 +227,7 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const NDArray<T, Ndim> &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const NDArray<T, Ndim> &other) {
|
||||
// check shape
|
||||
if (shape_ == other.shape_) {
|
||||
@ -258,7 +239,7 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const NDArray<T, Ndim> &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const NDArray<T, Ndim> &other) {
|
||||
// check shape
|
||||
if (shape_ == other.shape_) {
|
||||
@ -270,14 +251,14 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const NDArray<T, Ndim> &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator&=(const T &mask) {
|
||||
for (auto it = begin(); it != end(); ++it)
|
||||
*it &= mask;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<bool, Ndim> NDArray<T, Ndim>::operator>(const NDArray &other) {
|
||||
if (shape_ == other.shape_) {
|
||||
NDArray<bool, Ndim> result{shape_};
|
||||
@ -289,7 +270,7 @@ NDArray<bool, Ndim> NDArray<T, Ndim>::operator>(const NDArray &other) {
|
||||
throw(std::runtime_error("Shape of ImageDatas must match"));
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
|
||||
if (this != &other) {
|
||||
delete[] data_;
|
||||
@ -302,7 +283,7 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const NDArray<T, Ndim> &other) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
bool NDArray<T, Ndim>::operator==(const NDArray<T, Ndim> &other) const {
|
||||
if (shape_ != other.shape_)
|
||||
return false;
|
||||
@ -314,80 +295,80 @@ bool NDArray<T, Ndim>::operator==(const NDArray<T, Ndim> &other) const {
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
bool NDArray<T, Ndim>::operator!=(const NDArray<T, Ndim> &other) const {
|
||||
return !((*this) == other);
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator++() {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] += 1;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator=(const T &value) {
|
||||
std::fill_n(data_, size_, value);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] += value;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
|
||||
NDArray result = *this;
|
||||
result += value;
|
||||
return result;
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator-=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] -= value;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator-(const T &value) {
|
||||
NDArray result = *this;
|
||||
result -= value;
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator/=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] /= value;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator/(const T &value) {
|
||||
NDArray result = *this;
|
||||
result /= value;
|
||||
return result;
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> &NDArray<T, Ndim>::operator*=(const T &value) {
|
||||
for (uint32_t i = 0; i < size_; ++i)
|
||||
data_[i] *= value;
|
||||
return *this;
|
||||
}
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
|
||||
NDArray result = *this;
|
||||
result *= value;
|
||||
return result;
|
||||
}
|
||||
// template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
// if (shape_[0] < 20 && shape_[1] < 20)
|
||||
// Print_all();
|
||||
// else
|
||||
// Print_some();
|
||||
// }
|
||||
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
if (shape_[0] < 20 && shape_[1] < 20)
|
||||
Print_all();
|
||||
else
|
||||
Print_some();
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
|
||||
for (auto row = 0; row < arr.shape(0); ++row) {
|
||||
for (auto col = 0; col < arr.shape(1); ++col) {
|
||||
@ -399,7 +380,7 @@ std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
|
||||
return os;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_all() {
|
||||
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_all() {
|
||||
for (auto row = 0; row < shape_[0]; ++row) {
|
||||
for (auto col = 0; col < shape_[1]; ++col) {
|
||||
std::cout << std::setw(3);
|
||||
@ -408,7 +389,7 @@ template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_all() {
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_some() {
|
||||
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print_some() {
|
||||
for (auto row = 0; row < 5; ++row) {
|
||||
for (auto col = 0; col < 5; ++col) {
|
||||
std::cout << std::setw(7);
|
||||
@ -418,7 +399,7 @@ template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print_some() {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
void save(NDArray<T, Ndim> &img, std::string &pathname) {
|
||||
std::ofstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
@ -426,9 +407,9 @@ void save(NDArray<T, Ndim> &img, std::string &pathname) {
|
||||
f.close();
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> load(const std::string &pathname,
|
||||
std::array<ssize_t, Ndim> shape) {
|
||||
std::array<int64_t, Ndim> shape) {
|
||||
NDArray<T, Ndim> img{shape};
|
||||
std::ifstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
|
@ -1,6 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/ArrayExpr.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
@ -14,11 +14,10 @@
|
||||
#include <vector>
|
||||
namespace aare {
|
||||
|
||||
template <ssize_t Ndim> using Shape = std::array<ssize_t, Ndim>;
|
||||
template <int64_t Ndim> using Shape = std::array<int64_t, Ndim>;
|
||||
|
||||
// TODO! fix mismatch between signed and unsigned
|
||||
template <ssize_t Ndim>
|
||||
Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
|
||||
template <int64_t Ndim> Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
|
||||
if (shape.size() != Ndim)
|
||||
throw std::runtime_error("Shape size mismatch");
|
||||
Shape<Ndim> arr;
|
||||
@ -26,74 +25,62 @@ Shape<Ndim> make_shape(const std::vector<size_t> &shape) {
|
||||
return arr;
|
||||
}
|
||||
|
||||
template <ssize_t Dim = 0, typename Strides>
|
||||
ssize_t element_offset(const Strides & /*unused*/) {
|
||||
return 0;
|
||||
}
|
||||
template <int64_t Dim = 0, typename Strides> int64_t element_offset(const Strides & /*unused*/) { return 0; }
|
||||
|
||||
template <ssize_t Dim = 0, typename Strides, typename... Ix>
|
||||
ssize_t element_offset(const Strides &strides, ssize_t i, Ix... index) {
|
||||
template <int64_t Dim = 0, typename Strides, typename... Ix>
|
||||
int64_t element_offset(const Strides &strides, int64_t i, Ix... index) {
|
||||
return i * strides[Dim] + element_offset<Dim + 1>(strides, index...);
|
||||
}
|
||||
|
||||
template <ssize_t Ndim>
|
||||
std::array<ssize_t, Ndim> c_strides(const std::array<ssize_t, Ndim> &shape) {
|
||||
std::array<ssize_t, Ndim> strides{};
|
||||
template <int64_t Ndim> std::array<int64_t, Ndim> c_strides(const std::array<int64_t, Ndim> &shape) {
|
||||
std::array<int64_t, Ndim> strides{};
|
||||
std::fill(strides.begin(), strides.end(), 1);
|
||||
for (ssize_t i = Ndim - 1; i > 0; --i) {
|
||||
for (int64_t i = Ndim - 1; i > 0; --i) {
|
||||
strides[i - 1] = strides[i] * shape[i];
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
template <ssize_t Ndim>
|
||||
std::array<ssize_t, Ndim> make_array(const std::vector<ssize_t> &vec) {
|
||||
template <int64_t Ndim> std::array<int64_t, Ndim> make_array(const std::vector<int64_t> &vec) {
|
||||
assert(vec.size() == Ndim);
|
||||
std::array<ssize_t, Ndim> arr{};
|
||||
std::array<int64_t, Ndim> arr{};
|
||||
std::copy_n(vec.begin(), Ndim, arr.begin());
|
||||
return arr;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim = 2>
|
||||
class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
public:
|
||||
NDView() = default;
|
||||
~NDView() = default;
|
||||
NDView(const NDView &) = default;
|
||||
NDView(NDView &&) = default;
|
||||
|
||||
NDView(T *buffer, std::array<ssize_t, Ndim> shape)
|
||||
NDView(T *buffer, std::array<int64_t, Ndim> shape)
|
||||
: buffer_(buffer), strides_(c_strides<Ndim>(shape)), shape_(shape),
|
||||
size_(std::accumulate(std::begin(shape), std::end(shape), 1,
|
||||
std::multiplies<>())) {}
|
||||
size_(std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<>())) {}
|
||||
|
||||
// NDView(T *buffer, const std::vector<ssize_t> &shape)
|
||||
// : buffer_(buffer),
|
||||
// strides_(c_strides<Ndim>(make_array<Ndim>(shape))),
|
||||
// shape_(make_array<Ndim>(shape)),
|
||||
// size_(std::accumulate(std::begin(shape), std::end(shape), 1,
|
||||
// std::multiplies<>())) {}
|
||||
// NDView(T *buffer, const std::vector<int64_t> &shape)
|
||||
// : buffer_(buffer), strides_(c_strides<Ndim>(make_array<Ndim>(shape))), shape_(make_array<Ndim>(shape)),
|
||||
// size_(std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<>())) {}
|
||||
|
||||
template <typename... Ix>
|
||||
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
|
||||
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) {
|
||||
return buffer_[element_offset(strides_, index...)];
|
||||
}
|
||||
|
||||
template <typename... Ix>
|
||||
std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
|
||||
template <typename... Ix> std::enable_if_t<sizeof...(Ix) == Ndim, T &> operator()(Ix... index) const {
|
||||
return buffer_[element_offset(strides_, index...)];
|
||||
}
|
||||
|
||||
ssize_t size() const { return static_cast<ssize_t>(size_); }
|
||||
size_t size() const { return size_; }
|
||||
size_t total_bytes() const { return size_ * sizeof(T); }
|
||||
std::array<ssize_t, Ndim> strides() const noexcept { return strides_; }
|
||||
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
|
||||
|
||||
T *begin() { return buffer_; }
|
||||
T *end() { return buffer_ + size_; }
|
||||
T const *begin() const { return buffer_; }
|
||||
T const *end() const { return buffer_ + size_; }
|
||||
T &operator()(ssize_t i) const { return buffer_[i]; }
|
||||
T &operator[](ssize_t i) const { return buffer_[i]; }
|
||||
T &operator()(int64_t i) const { return buffer_[i]; }
|
||||
T &operator[](int64_t i) const { return buffer_[i]; }
|
||||
|
||||
bool operator==(const NDView &other) const {
|
||||
if (size_ != other.size_)
|
||||
@ -107,24 +94,10 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
|
||||
NDView &operator+=(const T val) { return elemenwise(val, std::plus<T>()); }
|
||||
NDView &operator-=(const T val) { return elemenwise(val, std::minus<T>()); }
|
||||
NDView &operator*=(const T val) {
|
||||
return elemenwise(val, std::multiplies<T>());
|
||||
}
|
||||
NDView &operator/=(const T val) {
|
||||
return elemenwise(val, std::divides<T>());
|
||||
}
|
||||
NDView &operator*=(const T val) { return elemenwise(val, std::multiplies<T>()); }
|
||||
NDView &operator/=(const T val) { return elemenwise(val, std::divides<T>()); }
|
||||
|
||||
NDView &operator/=(const NDView &other) {
|
||||
return elemenwise(other, std::divides<T>());
|
||||
}
|
||||
|
||||
template <size_t Size> NDView &operator=(const std::array<T, Size> &arr) {
|
||||
if (size() != static_cast<ssize_t>(arr.size()))
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Array and NDView size mismatch");
|
||||
std::copy(arr.begin(), arr.end(), begin());
|
||||
return *this;
|
||||
}
|
||||
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
|
||||
|
||||
NDView &operator=(const T val) {
|
||||
for (auto it = begin(); it != end(); ++it)
|
||||
@ -154,33 +127,31 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
}
|
||||
|
||||
auto &shape() const { return shape_; }
|
||||
auto shape(ssize_t i) const { return shape_[i]; }
|
||||
auto shape(int64_t i) const { return shape_[i]; }
|
||||
|
||||
T *data() { return buffer_; }
|
||||
void print_all() const;
|
||||
|
||||
private:
|
||||
T *buffer_{nullptr};
|
||||
std::array<ssize_t, Ndim> strides_{};
|
||||
std::array<ssize_t, Ndim> shape_{};
|
||||
std::array<int64_t, Ndim> strides_{};
|
||||
std::array<int64_t, Ndim> shape_{};
|
||||
uint64_t size_{};
|
||||
|
||||
template <class BinaryOperation>
|
||||
NDView &elemenwise(T val, BinaryOperation op) {
|
||||
template <class BinaryOperation> NDView &elemenwise(T val, BinaryOperation op) {
|
||||
for (uint64_t i = 0; i != size_; ++i) {
|
||||
buffer_[i] = op(buffer_[i], val);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
template <class BinaryOperation>
|
||||
NDView &elemenwise(const NDView &other, BinaryOperation op) {
|
||||
template <class BinaryOperation> NDView &elemenwise(const NDView &other, BinaryOperation op) {
|
||||
for (uint64_t i = 0; i != size_; ++i) {
|
||||
buffer_[i] = op(buffer_[i], other.buffer_[i]);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
template <typename T, ssize_t Ndim> void NDView<T, Ndim>::print_all() const {
|
||||
template <typename T, int64_t Ndim> void NDView<T, Ndim>::print_all() const {
|
||||
for (auto row = 0; row < shape_[0]; ++row) {
|
||||
for (auto col = 0; col < shape_[1]; ++col) {
|
||||
std::cout << std::setw(3);
|
||||
@ -190,8 +161,9 @@ template <typename T, ssize_t Ndim> void NDView<T, Ndim>::print_all() const {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
std::ostream &operator<<(std::ostream &os, const NDView<T, Ndim> &arr) {
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
|
||||
for (auto row = 0; row < arr.shape(0); ++row) {
|
||||
for (auto col = 0; col < arr.shape(1); ++col) {
|
||||
os << std::setw(3);
|
||||
@ -202,8 +174,5 @@ std::ostream &operator<<(std::ostream &os, const NDView<T, Ndim> &arr) {
|
||||
return os;
|
||||
}
|
||||
|
||||
template <typename T> NDView<T, 1> make_view(std::vector<T> &vec) {
|
||||
return NDView<T, 1>(vec.data(), {static_cast<ssize_t>(vec.size())});
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,8 +1,9 @@
|
||||
#pragma once
|
||||
#include "aare/Dtype.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/NumpyHelpers.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
|
||||
#include <filesystem>
|
||||
#include <iostream>
|
||||
@ -10,12 +11,13 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief NumpyFile class to read and write numpy files
|
||||
* @note derived from FileInterface
|
||||
* @note implements all the pure virtual functions from FileInterface
|
||||
* @note documentation for the functions can also be found in the FileInterface
|
||||
* class
|
||||
* @note documentation for the functions can also be found in the FileInterface class
|
||||
*/
|
||||
class NumpyFile : public FileInterface {
|
||||
|
||||
@ -26,35 +28,26 @@ class NumpyFile : public FileInterface {
|
||||
* @param mode file mode (r, w)
|
||||
* @param cfg file configuration
|
||||
*/
|
||||
explicit NumpyFile(const std::filesystem::path &fname,
|
||||
const std::string &mode = "r", FileConfig cfg = {});
|
||||
explicit NumpyFile(const std::filesystem::path &fname, const std::string &mode = "r", FileConfig cfg = {});
|
||||
|
||||
void write(Frame &frame);
|
||||
Frame read_frame() override { return get_frame(this->current_frame++); }
|
||||
Frame read_frame(size_t frame_number) override {
|
||||
return get_frame(frame_number);
|
||||
}
|
||||
Frame read_frame(size_t frame_number) override { return get_frame(frame_number); }
|
||||
|
||||
std::vector<Frame> read_n(size_t n_frames) override;
|
||||
void read_into(std::byte *image_buf) override {
|
||||
return get_frame_into(this->current_frame++, image_buf);
|
||||
}
|
||||
void read_into(std::byte *image_buf) override { return get_frame_into(this->current_frame++, image_buf); }
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
size_t frame_number(size_t frame_index) override { return frame_index; };
|
||||
size_t bytes_per_frame() override;
|
||||
size_t pixels_per_frame() override;
|
||||
void seek(size_t frame_number) override {
|
||||
this->current_frame = frame_number;
|
||||
}
|
||||
void seek(size_t frame_number) override { this->current_frame = frame_number; }
|
||||
size_t tell() override { return this->current_frame; }
|
||||
size_t total_frames() const override { return m_header.shape[0]; }
|
||||
size_t rows() const override { return m_header.shape[1]; }
|
||||
size_t cols() const override { return m_header.shape[2]; }
|
||||
size_t bitdepth() const override { return m_header.dtype.bitdepth(); }
|
||||
|
||||
DetectorType detector_type() const override {
|
||||
return DetectorType::Unknown;
|
||||
}
|
||||
DetectorType detector_type() const override { return DetectorType::Unknown; }
|
||||
|
||||
/**
|
||||
* @brief get the data type of the numpy file
|
||||
@ -76,9 +69,8 @@ class NumpyFile : public FileInterface {
|
||||
*/
|
||||
template <typename T, size_t NDim> NDArray<T, NDim> load() {
|
||||
NDArray<T, NDim> arr(make_shape<NDim>(m_header.shape));
|
||||
if (fseek(fp, static_cast<long>(header_size), SEEK_SET)) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Error seeking to the start of the data");
|
||||
if (fseek(fp, static_cast<int64_t>(header_size), SEEK_SET)) {
|
||||
throw std::runtime_error(LOCATION + "Error seeking to the start of the data");
|
||||
}
|
||||
size_t rc = fread(arr.data(), sizeof(T), arr.size(), fp);
|
||||
if (rc != static_cast<size_t>(arr.size())) {
|
||||
@ -86,20 +78,16 @@ class NumpyFile : public FileInterface {
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDView<TYPENAME, Ndim> &frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDView<TYPENAME, Ndim> &frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDArray<TYPENAME, Ndim> &frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDArray<TYPENAME, Ndim> &frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDView<TYPENAME, Ndim> &&frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDView<TYPENAME, Ndim> &&frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDArray<TYPENAME, Ndim> &&frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDArray<TYPENAME, Ndim> &&frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
|
||||
|
@ -40,18 +40,15 @@ bool parse_bool(const std::string &in);
|
||||
|
||||
std::string get_value_from_map(const std::string &mapstr);
|
||||
|
||||
std::unordered_map<std::string, std::string>
|
||||
parse_dict(std::string in, const std::vector<std::string> &keys);
|
||||
std::unordered_map<std::string, std::string> parse_dict(std::string in, const std::vector<std::string> &keys);
|
||||
|
||||
template <typename T, size_t N>
|
||||
bool in_array(T val, const std::array<T, N> &arr) {
|
||||
template <typename T, size_t N> bool in_array(T val, const std::array<T, N> &arr) {
|
||||
return std::find(std::begin(arr), std::end(arr), val) != std::end(arr);
|
||||
}
|
||||
bool is_digits(const std::string &str);
|
||||
|
||||
aare::Dtype parse_descr(std::string typestring);
|
||||
size_t write_header(const std::filesystem::path &fname,
|
||||
const NumpyHeader &header);
|
||||
size_t write_header(const std::filesystem::path &fname, const NumpyHeader &header);
|
||||
size_t write_header(std::ostream &out, const NumpyHeader &header);
|
||||
|
||||
} // namespace NumpyHelpers
|
||||
|
@ -18,46 +18,34 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
|
||||
uint32_t m_samples;
|
||||
NDArray<uint32_t, 2> m_cur_samples;
|
||||
|
||||
// TODO! in case of int needs to be changed to uint64_t
|
||||
NDArray<SUM_TYPE, 2> m_sum;
|
||||
NDArray<SUM_TYPE, 2> m_sum2;
|
||||
|
||||
// Cache mean since it is used over and over in the ClusterFinder
|
||||
// This optimization is related to the access pattern of the ClusterFinder
|
||||
// Relies on having more reads than pushes to the pedestal
|
||||
NDArray<SUM_TYPE, 2> m_mean;
|
||||
|
||||
public:
|
||||
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
|
||||
: m_rows(rows), m_cols(cols), m_samples(n_samples),
|
||||
m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),
|
||||
m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
|
||||
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})),
|
||||
m_mean(NDArray<SUM_TYPE, 2>({rows, cols})) {
|
||||
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
|
||||
assert(rows > 0 && cols > 0 && n_samples > 0);
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
m_mean = 0;
|
||||
}
|
||||
~Pedestal() = default;
|
||||
|
||||
NDArray<SUM_TYPE, 2> mean() { return m_mean; }
|
||||
NDArray<SUM_TYPE, 2> mean() {
|
||||
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
|
||||
}
|
||||
return mean_array;
|
||||
}
|
||||
|
||||
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
|
||||
return m_mean(row, col);
|
||||
}
|
||||
|
||||
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
|
||||
return std::sqrt(variance(row, col));
|
||||
}
|
||||
|
||||
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples(row, col) == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum2(row, col) / m_cur_samples(row, col) -
|
||||
mean(row, col) * mean(row, col);
|
||||
return m_sum(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
|
||||
NDArray<SUM_TYPE, 2> variance() {
|
||||
@ -69,6 +57,14 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
return variance_array;
|
||||
}
|
||||
|
||||
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples(row, col) == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum2(row, col) / m_cur_samples(row, col) -
|
||||
mean(row, col) * mean(row, col);
|
||||
}
|
||||
|
||||
NDArray<SUM_TYPE, 2> std() {
|
||||
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
@ -79,57 +75,44 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
return standard_deviation_array;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
m_cur_samples = 0;
|
||||
m_mean = 0;
|
||||
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
|
||||
return std::sqrt(variance(row, col));
|
||||
}
|
||||
|
||||
void clear() {
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
clear(i / m_cols, i % m_cols);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void clear(const uint32_t row, const uint32_t col) {
|
||||
m_sum(row, col) = 0;
|
||||
m_sum2(row, col) = 0;
|
||||
m_cur_samples(row, col) = 0;
|
||||
m_mean(row, col) = 0;
|
||||
}
|
||||
|
||||
// frame level operations
|
||||
template <typename T> void push(NDView<T, 2> frame) {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
|
||||
// TODO! move away from m_rows, m_cols
|
||||
if (frame.shape() != std::array<ssize_t, 2>{m_rows, m_cols}) {
|
||||
if (frame.shape() != std::array<int64_t, 2>{m_rows, m_cols}) {
|
||||
throw std::runtime_error(
|
||||
"Frame shape does not match pedestal shape");
|
||||
}
|
||||
|
||||
for (size_t row = 0; row < m_rows; row++) {
|
||||
for (size_t col = 0; col < m_cols; col++) {
|
||||
for (uint32_t row = 0; row < m_rows; row++) {
|
||||
for (uint32_t col = 0; col < m_cols; col++) {
|
||||
push<T>(row, col, frame(row, col));
|
||||
}
|
||||
}
|
||||
|
||||
// // TODO: test the effect of #pragma omp parallel for
|
||||
// for (uint32_t index = 0; index < m_rows * m_cols; index++) {
|
||||
// push<T>(index / m_cols, index % m_cols, frame(index));
|
||||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
* Push but don't update the cached mean. Speeds up the process
|
||||
* when initializing the pedestal.
|
||||
*
|
||||
*/
|
||||
template <typename T> void push_no_update(NDView<T, 2> frame) {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
|
||||
// TODO! move away from m_rows, m_cols
|
||||
if (frame.shape() != std::array<ssize_t, 2>{m_rows, m_cols}) {
|
||||
throw std::runtime_error(
|
||||
"Frame shape does not match pedestal shape");
|
||||
}
|
||||
|
||||
for (size_t row = 0; row < m_rows; row++) {
|
||||
for (size_t col = 0; col < m_cols; col++) {
|
||||
push_no_update<T>(row, col, frame(row, col));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void push(Frame &frame) {
|
||||
assert(frame.rows() == static_cast<size_t>(m_rows) &&
|
||||
frame.cols() == static_cast<size_t>(m_cols));
|
||||
@ -149,47 +132,18 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
template <typename T>
|
||||
void push(const uint32_t row, const uint32_t col, const T val_) {
|
||||
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
|
||||
if (m_cur_samples(row, col) < m_samples) {
|
||||
m_sum(row, col) += val;
|
||||
m_sum2(row, col) += val * val;
|
||||
m_cur_samples(row, col)++;
|
||||
const uint32_t idx = index(row, col);
|
||||
if (m_cur_samples(idx) < m_samples) {
|
||||
m_sum(idx) += val;
|
||||
m_sum2(idx) += val * val;
|
||||
m_cur_samples(idx)++;
|
||||
} else {
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_samples;
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
|
||||
}
|
||||
// Since we just did a push we know that m_cur_samples(row, col) is at
|
||||
// least 1
|
||||
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void push_no_update(const uint32_t row, const uint32_t col, const T val_) {
|
||||
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
|
||||
if (m_cur_samples(row, col) < m_samples) {
|
||||
m_sum(row, col) += val;
|
||||
m_sum2(row, col) += val * val;
|
||||
m_cur_samples(row, col)++;
|
||||
} else {
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
|
||||
m_sum2(row, col) +=
|
||||
val * val - m_sum2(row, col) / m_cur_samples(row, col);
|
||||
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
|
||||
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update the mean of the pedestal. This is used after having done
|
||||
* push_no_update. It is not necessary to call this function after push.
|
||||
*/
|
||||
void update_mean() { m_mean = m_sum / m_cur_samples; }
|
||||
|
||||
template <typename T>
|
||||
void push_fast(const uint32_t row, const uint32_t col, const T val_) {
|
||||
// Assume we reached the steady state where all pixels have
|
||||
// m_samples samples
|
||||
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_samples;
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
|
||||
m_mean(row, col) = m_sum(row, col) / m_samples;
|
||||
}
|
||||
uint32_t index(const uint32_t row, const uint32_t col) const {
|
||||
return row * m_cols + col;
|
||||
};
|
||||
};
|
||||
} // namespace aare
|
@ -1,7 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
@ -10,11 +10,11 @@ NDArray<ssize_t, 2> GenerateMoench05PixelMap();
|
||||
NDArray<ssize_t, 2> GenerateMoench05PixelMap1g();
|
||||
NDArray<ssize_t, 2> GenerateMoench05PixelMapOld();
|
||||
|
||||
// Matterhorn02
|
||||
NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap();
|
||||
//Matterhorn02
|
||||
NDArray<ssize_t, 2>GenerateMH02SingleCounterPixelMap();
|
||||
NDArray<ssize_t, 3> GenerateMH02FourCounterPixelMap();
|
||||
|
||||
// Eiger
|
||||
NDArray<ssize_t, 2> GenerateEigerFlipRowsPixelMap();
|
||||
//Eiger
|
||||
NDArray<ssize_t, 2>GenerateEigerFlipRowsPixelMap();
|
||||
|
||||
} // namespace aare
|
@ -1,205 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
// @author Bo Hu (bhu@fb.com)
|
||||
// @author Jordan DeLong (delong.j@fb.com)
|
||||
|
||||
// Changes made by PSD Detector Group:
|
||||
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size
|
||||
// = 128; from folly/lang/Align.h Changed extension to .hpp Changed namespace to
|
||||
// aare
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
constexpr std::size_t hardware_destructive_interference_size = 128;
|
||||
namespace aare {
|
||||
|
||||
/*
|
||||
* ProducerConsumerQueue is a one producer and one consumer queue
|
||||
* without locks.
|
||||
*/
|
||||
template <class T> struct ProducerConsumerQueue {
|
||||
typedef T value_type;
|
||||
|
||||
ProducerConsumerQueue(const ProducerConsumerQueue &) = delete;
|
||||
ProducerConsumerQueue &operator=(const ProducerConsumerQueue &) = delete;
|
||||
|
||||
ProducerConsumerQueue(ProducerConsumerQueue &&other) {
|
||||
size_ = other.size_;
|
||||
records_ = other.records_;
|
||||
other.records_ = nullptr;
|
||||
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
|
||||
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other) {
|
||||
size_ = other.size_;
|
||||
records_ = other.records_;
|
||||
other.records_ = nullptr;
|
||||
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
|
||||
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
|
||||
return *this;
|
||||
}
|
||||
|
||||
ProducerConsumerQueue() : ProducerConsumerQueue(2){};
|
||||
// size must be >= 2.
|
||||
//
|
||||
// Also, note that the number of usable slots in the queue at any
|
||||
// given time is actually (size-1), so if you start with an empty queue,
|
||||
// isFull() will return true after size-1 insertions.
|
||||
explicit ProducerConsumerQueue(uint32_t size)
|
||||
: size_(size),
|
||||
records_(static_cast<T *>(std::malloc(sizeof(T) * size))),
|
||||
readIndex_(0), writeIndex_(0) {
|
||||
assert(size >= 2);
|
||||
if (!records_) {
|
||||
throw std::bad_alloc();
|
||||
}
|
||||
}
|
||||
|
||||
~ProducerConsumerQueue() {
|
||||
// We need to destruct anything that may still exist in our queue.
|
||||
// (No real synchronization needed at destructor time: only one
|
||||
// thread can be doing this.)
|
||||
if (!std::is_trivially_destructible<T>::value) {
|
||||
size_t readIndex = readIndex_;
|
||||
size_t endIndex = writeIndex_;
|
||||
while (readIndex != endIndex) {
|
||||
records_[readIndex].~T();
|
||||
if (++readIndex == size_) {
|
||||
readIndex = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::free(records_);
|
||||
}
|
||||
|
||||
template <class... Args> bool write(Args &&...recordArgs) {
|
||||
auto const currentWrite = writeIndex_.load(std::memory_order_relaxed);
|
||||
auto nextRecord = currentWrite + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
|
||||
new (&records_[currentWrite]) T(std::forward<Args>(recordArgs)...);
|
||||
writeIndex_.store(nextRecord, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
// queue is full
|
||||
return false;
|
||||
}
|
||||
|
||||
// move (or copy) the value at the front of the queue to given variable
|
||||
bool read(T &record) {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
|
||||
// queue is empty
|
||||
return false;
|
||||
}
|
||||
|
||||
auto nextRecord = currentRead + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
record = std::move(records_[currentRead]);
|
||||
records_[currentRead].~T();
|
||||
readIndex_.store(nextRecord, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
// pointer to the value at the front of the queue (for use in-place) or
|
||||
// nullptr if empty.
|
||||
T *frontPtr() {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
|
||||
// queue is empty
|
||||
return nullptr;
|
||||
}
|
||||
return &records_[currentRead];
|
||||
}
|
||||
|
||||
// queue must not be empty
|
||||
void popFront() {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
assert(currentRead != writeIndex_.load(std::memory_order_acquire));
|
||||
|
||||
auto nextRecord = currentRead + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
records_[currentRead].~T();
|
||||
readIndex_.store(nextRecord, std::memory_order_release);
|
||||
}
|
||||
|
||||
bool isEmpty() const {
|
||||
return readIndex_.load(std::memory_order_acquire) ==
|
||||
writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
bool isFull() const {
|
||||
auto nextRecord = writeIndex_.load(std::memory_order_acquire) + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
|
||||
return false;
|
||||
}
|
||||
// queue is full
|
||||
return true;
|
||||
}
|
||||
|
||||
// * If called by consumer, then true size may be more (because producer may
|
||||
// be adding items concurrently).
|
||||
// * If called by producer, then true size may be less (because consumer may
|
||||
// be removing items concurrently).
|
||||
// * It is undefined to call this from any other thread.
|
||||
size_t sizeGuess() const {
|
||||
int ret = writeIndex_.load(std::memory_order_acquire) -
|
||||
readIndex_.load(std::memory_order_acquire);
|
||||
if (ret < 0) {
|
||||
ret += size_;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// maximum number of items in the queue.
|
||||
size_t capacity() const { return size_ - 1; }
|
||||
|
||||
private:
|
||||
using AtomicIndex = std::atomic<unsigned int>;
|
||||
|
||||
char pad0_[hardware_destructive_interference_size];
|
||||
// const uint32_t size_;
|
||||
uint32_t size_;
|
||||
// T *const records_;
|
||||
T *records_;
|
||||
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex readIndex_;
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex writeIndex_;
|
||||
|
||||
char pad1_[hardware_destructive_interference_size - sizeof(AtomicIndex)];
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,10 +1,11 @@
|
||||
#pragma once
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
#include "aare/NDArray.hpp" //for pixel map
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
|
||||
#include <optional>
|
||||
|
||||
namespace aare {
|
||||
@ -29,12 +30,19 @@ struct ModuleConfig {
|
||||
* Consider using that unless you need raw file specific functionality.
|
||||
*/
|
||||
class RawFile : public FileInterface {
|
||||
std::vector<std::unique_ptr<RawSubFile>> m_subfiles;
|
||||
size_t n_subfiles{}; //f0,f1...fn
|
||||
size_t n_subfile_parts{}; // d0,d1...dn
|
||||
//TODO! move to vector of SubFile instead of pointers
|
||||
std::vector<std::vector<RawSubFile *>> subfiles; //subfiles[f0,f1...fn][d0,d1...dn]
|
||||
std::vector<xy> positions;
|
||||
std::vector<ModuleGeometry> m_module_pixel_0;
|
||||
ModuleConfig cfg{0, 0};
|
||||
|
||||
RawMasterFile m_master;
|
||||
|
||||
size_t m_current_frame{};
|
||||
size_t m_current_subfile{};
|
||||
DetectorGeometry m_geometry;
|
||||
size_t m_rows{};
|
||||
size_t m_cols{};
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -44,7 +52,7 @@ class RawFile : public FileInterface {
|
||||
|
||||
*/
|
||||
RawFile(const std::filesystem::path &fname, const std::string &mode = "r");
|
||||
virtual ~RawFile() override = default;
|
||||
virtual ~RawFile() override;
|
||||
|
||||
Frame read_frame() override;
|
||||
Frame read_frame(size_t frame_number) override;
|
||||
@ -52,10 +60,10 @@ class RawFile : public FileInterface {
|
||||
void read_into(std::byte *image_buf) override;
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
|
||||
// TODO! do we need to adapt the API?
|
||||
//TODO! do we need to adapt the API?
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header);
|
||||
void read_into(std::byte *image_buf, size_t n_frames,
|
||||
DetectorHeader *header);
|
||||
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header);
|
||||
|
||||
|
||||
size_t frame_number(size_t frame_index) override;
|
||||
size_t bytes_per_frame() override;
|
||||
@ -68,21 +76,24 @@ class RawFile : public FileInterface {
|
||||
size_t cols() const override;
|
||||
size_t bitdepth() const override;
|
||||
xy geometry();
|
||||
size_t n_modules() const;
|
||||
|
||||
size_t n_mod() const;
|
||||
|
||||
RawMasterFile master() const;
|
||||
|
||||
|
||||
|
||||
DetectorType detector_type() const override;
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
* @brief read the frame at the given frame index into the image buffer
|
||||
* @param frame_number frame number to read
|
||||
* @param image_buf buffer to store the frame
|
||||
*/
|
||||
|
||||
void get_frame_into(size_t frame_index, std::byte *frame_buffer,
|
||||
DetectorHeader *header = nullptr);
|
||||
void get_frame_into(size_t frame_index, std::byte *frame_buffer, DetectorHeader *header = nullptr);
|
||||
|
||||
|
||||
/**
|
||||
* @brief get the frame at the given frame index
|
||||
@ -91,6 +102,8 @@ class RawFile : public FileInterface {
|
||||
*/
|
||||
Frame get_frame(size_t frame_index);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief read the header of the file
|
||||
* @param fname path to the data subfile
|
||||
@ -98,6 +111,9 @@ class RawFile : public FileInterface {
|
||||
*/
|
||||
static DetectorHeader read_header(const std::filesystem::path &fname);
|
||||
|
||||
void update_geometry_with_roi();
|
||||
int find_number_of_subfiles();
|
||||
|
||||
void open_subfiles();
|
||||
void find_geometry();
|
||||
};
|
||||
|
@ -45,7 +45,7 @@ class ScanParameters {
|
||||
int m_start = 0;
|
||||
int m_stop = 0;
|
||||
int m_step = 0;
|
||||
// TODO! add settleTime, requires string to time conversion
|
||||
//TODO! add settleTime, requires string to time conversion
|
||||
|
||||
public:
|
||||
ScanParameters(const std::string &par);
|
||||
@ -61,6 +61,18 @@ class ScanParameters {
|
||||
void increment_stop();
|
||||
};
|
||||
|
||||
|
||||
struct ROI{
|
||||
int64_t xmin{};
|
||||
int64_t xmax{};
|
||||
int64_t ymin{};
|
||||
int64_t ymax{};
|
||||
|
||||
int64_t height() const { return ymax - ymin; }
|
||||
int64_t width() const { return xmax - xmin; }
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief Class for parsing a master file either in our .json format or the old
|
||||
* .raw format
|
||||
@ -100,6 +112,7 @@ class RawMasterFile {
|
||||
|
||||
std::optional<ROI> m_roi;
|
||||
|
||||
|
||||
public:
|
||||
RawMasterFile(const std::filesystem::path &fpath);
|
||||
|
||||
@ -119,7 +132,6 @@ class RawMasterFile {
|
||||
|
||||
size_t total_frames_expected() const;
|
||||
xy geometry() const;
|
||||
size_t n_modules() const;
|
||||
|
||||
std::optional<size_t> analog_samples() const;
|
||||
std::optional<size_t> digital_samples() const;
|
||||
@ -127,8 +139,10 @@ class RawMasterFile {
|
||||
std::optional<size_t> number_of_rows() const;
|
||||
std::optional<uint8_t> quad() const;
|
||||
|
||||
|
||||
std::optional<ROI> roi() const;
|
||||
|
||||
|
||||
ScanParameters scan_parameters() const;
|
||||
|
||||
private:
|
||||
|
@ -10,34 +10,23 @@
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief Class to read a singe subfile written in .raw format. Used from
|
||||
* RawFile to read the entire detector. Can be used directly to read part of the
|
||||
* image.
|
||||
* @brief Class to read a singe subfile written in .raw format. Used from RawFile to read
|
||||
* the entire detector. Can be used directly to read part of the image.
|
||||
*/
|
||||
class RawSubFile {
|
||||
protected:
|
||||
std::ifstream m_file;
|
||||
DetectorType m_detector_type;
|
||||
size_t m_bitdepth;
|
||||
std::filesystem::path m_path; //!< path to the subfile
|
||||
std::string m_base_name; //!< base name used for formatting file names
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non
|
||||
//!< zero file
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
std::filesystem::path m_fname;
|
||||
size_t m_rows{};
|
||||
size_t m_cols{};
|
||||
size_t m_bytes_per_frame{};
|
||||
|
||||
int m_module_index{};
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with
|
||||
//!< reference to all files)
|
||||
std::vector<size_t>
|
||||
m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
|
||||
size_t n_frames{};
|
||||
uint32_t m_pos_row{};
|
||||
uint32_t m_pos_col{};
|
||||
|
||||
|
||||
|
||||
std::optional<NDArray<ssize_t, 2>> m_pixel_map;
|
||||
|
||||
public:
|
||||
@ -51,14 +40,12 @@ class RawSubFile {
|
||||
* @throws std::invalid_argument if the detector,type pair is not supported
|
||||
*/
|
||||
RawSubFile(const std::filesystem::path &fname, DetectorType detector,
|
||||
size_t rows, size_t cols, size_t bitdepth, uint32_t pos_row = 0,
|
||||
uint32_t pos_col = 0);
|
||||
size_t rows, size_t cols, size_t bitdepth, uint32_t pos_row = 0, uint32_t pos_col = 0);
|
||||
|
||||
~RawSubFile() = default;
|
||||
/**
|
||||
* @brief Seek to the given frame number
|
||||
* @note Puts the file pointer at the start of the header, not the start of
|
||||
* the data
|
||||
* @note Puts the file pointer at the start of the header, not the start of the data
|
||||
* @param frame_index frame position in file to seek to
|
||||
* @throws std::runtime_error if the frame number is out of range
|
||||
*/
|
||||
@ -66,30 +53,20 @@ class RawSubFile {
|
||||
size_t tell();
|
||||
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
|
||||
void read_into(std::byte *image_buf, size_t n_frames,
|
||||
DetectorHeader *header = nullptr);
|
||||
void get_part(std::byte *buffer, size_t frame_index);
|
||||
|
||||
|
||||
void read_header(DetectorHeader *header);
|
||||
|
||||
|
||||
size_t rows() const;
|
||||
size_t cols() const;
|
||||
|
||||
|
||||
size_t frame_number(size_t frame_index);
|
||||
|
||||
size_t bytes_per_frame() const { return m_bytes_per_frame; }
|
||||
size_t pixels_per_frame() const { return m_rows * m_cols; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / 8; }
|
||||
|
||||
size_t frames_in_file() const { return m_total_frames; }
|
||||
|
||||
private:
|
||||
template <typename T> void read_with_map(std::byte *image_buf);
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t file_index) const;
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -7,7 +7,7 @@
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
const int MAX_CLUSTER_SIZE = 50;
|
||||
const int MAX_CLUSTER_SIZE = 200;
|
||||
namespace aare {
|
||||
|
||||
template <typename T> class VarClusterFinder {
|
||||
@ -28,7 +28,7 @@ template <typename T> class VarClusterFinder {
|
||||
};
|
||||
|
||||
private:
|
||||
const std::array<ssize_t, 2> shape_;
|
||||
const std::array<int64_t, 2> shape_;
|
||||
NDView<T, 2> original_;
|
||||
NDArray<int, 2> labeled_;
|
||||
NDArray<int, 2> peripheral_labeled_;
|
||||
@ -38,13 +38,11 @@ template <typename T> class VarClusterFinder {
|
||||
bool use_noise_map = false;
|
||||
int peripheralThresholdFactor_ = 5;
|
||||
int current_label;
|
||||
const std::array<int, 4> di{
|
||||
{0, -1, -1, -1}}; // row ### 8-neighbour by scaning from left to right
|
||||
const std::array<int, 4> dj{
|
||||
{-1, -1, 0, 1}}; // col ### 8-neighbour by scaning from top to bottom
|
||||
const std::array<int, 4> di{{0, -1, -1, -1}}; // row ### 8-neighbour by scaning from left to right
|
||||
const std::array<int, 4> dj{{-1, -1, 0, 1}}; // col ### 8-neighbour by scaning from top to bottom
|
||||
const std::array<int, 8> di_{{0, 0, -1, 1, -1, 1, -1, 1}}; // row
|
||||
const std::array<int, 8> dj_{{-1, 1, 0, 0, 1, -1, -1, 1}}; // col
|
||||
std::map<int, int> child; // heirachy: key: child; val: parent
|
||||
std::map<int, int> child; // heirachy: key: child; val: parent
|
||||
std::unordered_map<int, Hit> h_size;
|
||||
std::vector<Hit> hits;
|
||||
// std::vector<std::vector<int16_t>> row
|
||||
@ -52,8 +50,7 @@ template <typename T> class VarClusterFinder {
|
||||
|
||||
public:
|
||||
VarClusterFinder(Shape<2> shape, T threshold)
|
||||
: shape_(shape), labeled_(shape, 0), peripheral_labeled_(shape, 0),
|
||||
binary_(shape), threshold_(threshold) {
|
||||
: shape_(shape), labeled_(shape, 0), peripheral_labeled_(shape, 0), binary_(shape), threshold_(threshold) {
|
||||
hits.reserve(2000);
|
||||
}
|
||||
|
||||
@ -63,9 +60,7 @@ template <typename T> class VarClusterFinder {
|
||||
noiseMap = noise_map;
|
||||
use_noise_map = true;
|
||||
}
|
||||
void set_peripheralThresholdFactor(int factor) {
|
||||
peripheralThresholdFactor_ = factor;
|
||||
}
|
||||
void set_peripheralThresholdFactor(int factor) { peripheralThresholdFactor_ = factor; }
|
||||
void find_clusters(NDView<T, 2> img);
|
||||
void find_clusters_X(NDView<T, 2> img);
|
||||
void rec_FillHit(int clusterIndex, int i, int j);
|
||||
@ -149,8 +144,7 @@ template <typename T> int VarClusterFinder<T>::check_neighbours(int i, int j) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void VarClusterFinder<T>::find_clusters(NDView<T, 2> img) {
|
||||
template <typename T> void VarClusterFinder<T>::find_clusters(NDView<T, 2> img) {
|
||||
original_ = img;
|
||||
labeled_ = 0;
|
||||
peripheral_labeled_ = 0;
|
||||
@ -162,8 +156,7 @@ void VarClusterFinder<T>::find_clusters(NDView<T, 2> img) {
|
||||
store_clusters();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void VarClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
|
||||
template <typename T> void VarClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
|
||||
original_ = img;
|
||||
int clusterIndex = 0;
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
@ -182,8 +175,7 @@ void VarClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
|
||||
h_size.clear();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void VarClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
template <typename T> void VarClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
// printf("original_(%d, %d)=%f\n", i, j, original_(i,j));
|
||||
// printf("h_size[%d].size=%d\n", clusterIndex, h_size[clusterIndex].size);
|
||||
if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE) {
|
||||
@ -211,15 +203,11 @@ void VarClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
} else {
|
||||
// if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE){
|
||||
// h_size[clusterIndex].size += 1;
|
||||
// h_size[clusterIndex].rows[h_size[clusterIndex].size] =
|
||||
// row; h_size[clusterIndex].cols[h_size[clusterIndex].size]
|
||||
// = col;
|
||||
// h_size[clusterIndex].enes[h_size[clusterIndex].size] =
|
||||
// original_(row, col);
|
||||
// h_size[clusterIndex].rows[h_size[clusterIndex].size] = row;
|
||||
// h_size[clusterIndex].cols[h_size[clusterIndex].size] = col;
|
||||
// h_size[clusterIndex].enes[h_size[clusterIndex].size] = original_(row, col);
|
||||
// }// ? weather to include peripheral pixels
|
||||
original_(row, col) =
|
||||
0; // remove peripheral pixels, to avoid potential influence
|
||||
// for pedestal updating
|
||||
original_(row, col) = 0; // remove peripheral pixels, to avoid potential influence for pedestal updating
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -238,7 +226,7 @@ template <typename T> void VarClusterFinder<T>::single_pass(NDView<T, 2> img) {
|
||||
|
||||
template <typename T> void VarClusterFinder<T>::first_pass() {
|
||||
|
||||
for (ssize_t i = 0; i < original_.size(); ++i) {
|
||||
for (size_t i = 0; i < original_.size(); ++i) {
|
||||
if (use_noise_map)
|
||||
threshold_ = 5 * noiseMap(i);
|
||||
binary_(i) = (original_(i) > threshold_);
|
||||
@ -262,7 +250,7 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
|
||||
|
||||
template <typename T> void VarClusterFinder<T>::second_pass() {
|
||||
|
||||
for (ssize_t i = 0; i != labeled_.size(); ++i) {
|
||||
for (size_t i = 0; i != labeled_.size(); ++i) {
|
||||
auto cl = labeled_(i);
|
||||
if (cl != 0) {
|
||||
auto it = child.find(cl);
|
||||
@ -287,8 +275,8 @@ template <typename T> void VarClusterFinder<T>::store_clusters() {
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
for (int j = 0; j < shape_[1]; ++j) {
|
||||
if (labeled_(i, j) != 0 || false
|
||||
// (i-1 >= 0 and labeled_(i-1, j) != 0) or // another circle of
|
||||
// peripheral pixels (j-1 >= 0 and labeled_(i, j-1) != 0) or
|
||||
// (i-1 >= 0 and labeled_(i-1, j) != 0) or // another circle of peripheral pixels
|
||||
// (j-1 >= 0 and labeled_(i, j-1) != 0) or
|
||||
// (i+1 < shape_[0] and labeled_(i+1, j) != 0) or
|
||||
// (j+1 < shape_[1] and labeled_(i, j+1) != 0)
|
||||
) {
|
||||
|
@ -1,112 +0,0 @@
|
||||
|
||||
#pragma once
|
||||
#include <aare/NDArray.hpp>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
namespace aare {
|
||||
/**
|
||||
* @brief Index of the last element that is smaller than val.
|
||||
* Requires a sorted array. Uses >= for ordering. If all elements
|
||||
* are smaller it returns the last element and if all elements are
|
||||
* larger it returns the first element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the last element that is smaller than val
|
||||
*
|
||||
*/
|
||||
template <typename T>
|
||||
size_t last_smaller(const T *first, const T *last, T val) {
|
||||
for (auto iter = first + 1; iter != last; ++iter) {
|
||||
if (*iter >= val) {
|
||||
return std::distance(first, iter - 1);
|
||||
}
|
||||
}
|
||||
return std::distance(first, last - 1);
|
||||
}
|
||||
|
||||
template <typename T> size_t last_smaller(const NDArray<T, 1> &arr, T val) {
|
||||
return last_smaller(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T> size_t last_smaller(const std::vector<T> &vec, T val) {
|
||||
return last_smaller(vec.data(), vec.data() + vec.size(), val);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Index of the first element that is larger than val.
|
||||
* Requires a sorted array. Uses > for ordering. If all elements
|
||||
* are larger it returns the first element and if all elements are
|
||||
* smaller it returns the last element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the first element that is larger than val
|
||||
*/
|
||||
template <typename T>
|
||||
size_t first_larger(const T *first, const T *last, T val) {
|
||||
for (auto iter = first; iter != last; ++iter) {
|
||||
if (*iter > val) {
|
||||
return std::distance(first, iter);
|
||||
}
|
||||
}
|
||||
return std::distance(first, last - 1);
|
||||
}
|
||||
|
||||
template <typename T> size_t first_larger(const NDArray<T, 1> &arr, T val) {
|
||||
return first_larger(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T> size_t first_larger(const std::vector<T> &vec, T val) {
|
||||
return first_larger(vec.data(), vec.data() + vec.size(), val);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Index of the nearest element to val.
|
||||
* Requires a sorted array. If there is no difference it takes the first
|
||||
* element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the nearest element
|
||||
*/
|
||||
template <typename T>
|
||||
size_t nearest_index(const T *first, const T *last, T val) {
|
||||
auto iter = std::min_element(first, last, [val](T a, T b) {
|
||||
return std::abs(a - val) < std::abs(b - val);
|
||||
});
|
||||
return std::distance(first, iter);
|
||||
}
|
||||
|
||||
template <typename T> size_t nearest_index(const NDArray<T, 1> &arr, T val) {
|
||||
return nearest_index(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T> size_t nearest_index(const std::vector<T> &vec, T val) {
|
||||
return nearest_index(vec.data(), vec.data() + vec.size(), val);
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
size_t nearest_index(const std::array<T, N> &arr, T val) {
|
||||
return nearest_index(arr.data(), arr.data() + arr.size(), val);
|
||||
}
|
||||
|
||||
template <typename T> std::vector<T> cumsum(const std::vector<T> &vec) {
|
||||
std::vector<T> result(vec.size());
|
||||
std::partial_sum(vec.begin(), vec.end(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename Container> bool all_equal(const Container &c) {
|
||||
if (!c.empty() &&
|
||||
std::all_of(begin(c), end(c),
|
||||
[c](const typename Container::value_type &element) {
|
||||
return element == c.front();
|
||||
}))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,27 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <aare/NDView.hpp>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
namespace aare {
|
||||
|
||||
uint16_t adc_sar_05_decode64to16(uint64_t input);
|
||||
uint16_t adc_sar_04_decode64to16(uint64_t input);
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input,
|
||||
NDView<uint16_t, 2> output);
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input,
|
||||
NDView<uint16_t, 2> output);
|
||||
|
||||
/**
|
||||
* @brief Apply custom weights to a 16-bit input value. Will sum up
|
||||
* weights[i]**i for each bit i that is set in the input value.
|
||||
* @throws std::out_of_range if weights.size() < 16
|
||||
* @param input 16-bit input value
|
||||
* @param weights vector of weights, size must be less than or equal to 16
|
||||
*/
|
||||
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights);
|
||||
|
||||
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output,
|
||||
const NDView<double, 1> weights);
|
||||
|
||||
} // namespace aare
|
@ -1,17 +1,20 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Dtype.hpp"
|
||||
// #include "aare/utils/logger.hpp"
|
||||
|
||||
#include <array>
|
||||
#include <stdexcept>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <variant>
|
||||
#include <vector>
|
||||
|
||||
|
||||
/**
|
||||
* @brief LOCATION macro to get the current location in the code
|
||||
*/
|
||||
@ -19,38 +22,39 @@
|
||||
std::string(__FILE__) + std::string(":") + std::to_string(__LINE__) + \
|
||||
":" + std::string(__func__) + ":"
|
||||
|
||||
|
||||
|
||||
#ifdef AARE_CUSTOM_ASSERT
|
||||
#define AARE_ASSERT(expr) \
|
||||
if (expr) { \
|
||||
} else \
|
||||
#define AARE_ASSERT(expr)\
|
||||
if (expr)\
|
||||
{}\
|
||||
else\
|
||||
aare::assert_failed(LOCATION + " Assertion failed: " + #expr + "\n");
|
||||
#else
|
||||
#define AARE_ASSERT(cond) \
|
||||
do { \
|
||||
(void)sizeof(cond); \
|
||||
} while (0)
|
||||
#define AARE_ASSERT(cond)\
|
||||
do { (void)sizeof(cond); } while(0)
|
||||
#endif
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
inline constexpr size_t bits_per_byte = 8;
|
||||
|
||||
void assert_failed(const std::string &msg);
|
||||
|
||||
|
||||
class DynamicCluster {
|
||||
public:
|
||||
int cluster_sizeX;
|
||||
int cluster_sizeY;
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
Dtype dt; // 4 bytes
|
||||
Dtype dt;
|
||||
|
||||
private:
|
||||
std::byte *m_data;
|
||||
|
||||
public:
|
||||
DynamicCluster(int cluster_sizeX_, int cluster_sizeY_,
|
||||
Dtype dt_ = Dtype(typeid(int32_t)))
|
||||
Dtype dt_ = Dtype(typeid(int32_t)))
|
||||
: cluster_sizeX(cluster_sizeX_), cluster_sizeY(cluster_sizeY_),
|
||||
dt(dt_) {
|
||||
m_data = new std::byte[cluster_sizeX * cluster_sizeY * dt.bytes()]{};
|
||||
@ -174,59 +178,26 @@ template <typename T> struct t_xy {
|
||||
};
|
||||
using xy = t_xy<uint32_t>;
|
||||
|
||||
/**
|
||||
* @brief Class to hold the geometry of a module. Where pixel 0 is located and
|
||||
* the size of the module
|
||||
*/
|
||||
struct ModuleGeometry {
|
||||
int origin_x{};
|
||||
int origin_y{};
|
||||
|
||||
struct ModuleGeometry{
|
||||
int x{};
|
||||
int y{};
|
||||
int height{};
|
||||
int width{};
|
||||
int row_index{};
|
||||
int col_index{};
|
||||
};
|
||||
|
||||
|
||||
using dynamic_shape = std::vector<int64_t>;
|
||||
|
||||
//TODO! Can we uniform enums between the libraries?
|
||||
|
||||
/**
|
||||
* @brief Class to hold the geometry of a detector. Number of modules, their
|
||||
* size and where pixel 0 for each module is located
|
||||
*/
|
||||
struct DetectorGeometry {
|
||||
int modules_x{};
|
||||
int modules_y{};
|
||||
int pixels_x{};
|
||||
int pixels_y{};
|
||||
int module_gap_row{};
|
||||
int module_gap_col{};
|
||||
std::vector<ModuleGeometry> module_pixel_0;
|
||||
|
||||
auto size() const { return module_pixel_0.size(); }
|
||||
};
|
||||
|
||||
struct ROI {
|
||||
ssize_t xmin{};
|
||||
ssize_t xmax{};
|
||||
ssize_t ymin{};
|
||||
ssize_t ymax{};
|
||||
|
||||
ssize_t height() const { return ymax - ymin; }
|
||||
ssize_t width() const { return xmax - xmin; }
|
||||
bool contains(ssize_t x, ssize_t y) const {
|
||||
return x >= xmin && x < xmax && y >= ymin && y < ymax;
|
||||
}
|
||||
};
|
||||
|
||||
using dynamic_shape = std::vector<ssize_t>;
|
||||
|
||||
// TODO! Can we uniform enums between the libraries?
|
||||
|
||||
/**
|
||||
* @brief Enum class to identify different detectors.
|
||||
* @brief Enum class to identify different detectors.
|
||||
* The values are the same as in slsDetectorPackage
|
||||
* Different spelling to avoid confusion with the slsDetectorPackage
|
||||
*/
|
||||
enum class DetectorType {
|
||||
// Standard detectors match the enum values from slsDetectorPackage
|
||||
//Standard detectors match the enum values from slsDetectorPackage
|
||||
Generic,
|
||||
Eiger,
|
||||
Gotthard,
|
||||
@ -237,9 +208,8 @@ enum class DetectorType {
|
||||
Gotthard2,
|
||||
Xilinx_ChipTestBoard,
|
||||
|
||||
// Additional detectors used for defining processing. Variants of the
|
||||
// standard ones.
|
||||
Moench03 = 100,
|
||||
//Additional detectors used for defining processing. Variants of the standard ones.
|
||||
Moench03=100,
|
||||
Moench03_old,
|
||||
Unknown
|
||||
};
|
||||
|
@ -1,15 +0,0 @@
|
||||
#pragma once
|
||||
#include "aare/RawMasterFile.hpp" //ROI refactor away
|
||||
#include "aare/defs.hpp"
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief Update the detector geometry given a region of interest
|
||||
*
|
||||
* @param geo
|
||||
* @param roi
|
||||
* @return DetectorGeometry
|
||||
*/
|
||||
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, ROI roi);
|
||||
|
||||
} // namespace aare
|
@ -1,141 +0,0 @@
|
||||
#pragma once
|
||||
/*Utility to log to console*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <sys/time.h>
|
||||
|
||||
namespace aare {
|
||||
|
||||
#define RED "\x1b[31m"
|
||||
#define GREEN "\x1b[32m"
|
||||
#define YELLOW "\x1b[33m"
|
||||
#define BLUE "\x1b[34m"
|
||||
#define MAGENTA "\x1b[35m"
|
||||
#define CYAN "\x1b[36m"
|
||||
#define GRAY "\x1b[37m"
|
||||
#define DARKGRAY "\x1b[30m"
|
||||
|
||||
#define BG_BLACK "\x1b[48;5;232m"
|
||||
#define BG_RED "\x1b[41m"
|
||||
#define BG_GREEN "\x1b[42m"
|
||||
#define BG_YELLOW "\x1b[43m"
|
||||
#define BG_BLUE "\x1b[44m"
|
||||
#define BG_MAGENTA "\x1b[45m"
|
||||
#define BG_CYAN "\x1b[46m"
|
||||
#define RESET "\x1b[0m"
|
||||
#define BOLD "\x1b[1m"
|
||||
|
||||
enum TLogLevel {
|
||||
logERROR,
|
||||
logWARNING,
|
||||
logINFOBLUE,
|
||||
logINFOGREEN,
|
||||
logINFORED,
|
||||
logINFOCYAN,
|
||||
logINFOMAGENTA,
|
||||
logINFO,
|
||||
logDEBUG, // constructors, destructors etc. should still give too much
|
||||
// output
|
||||
logDEBUG1,
|
||||
logDEBUG2,
|
||||
logDEBUG3,
|
||||
logDEBUG4,
|
||||
logDEBUG5
|
||||
};
|
||||
|
||||
// Compiler should optimize away anything below this value
|
||||
#ifndef AARE_LOG_LEVEL
|
||||
#define AARE_LOG_LEVEL \
|
||||
"LOG LEVEL NOT SET IN CMAKE" // This is configured in the main
|
||||
// CMakeLists.txt
|
||||
#endif
|
||||
|
||||
#define __AT__ \
|
||||
std::string(__FILE__) + std::string("::") + std::string(__func__) + \
|
||||
std::string("(): ")
|
||||
#define __SHORT_FORM_OF_FILE__ \
|
||||
(strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
|
||||
#define __SHORT_AT__ \
|
||||
std::string(__SHORT_FORM_OF_FILE__) + std::string("::") + \
|
||||
std::string(__func__) + std::string("(): ")
|
||||
|
||||
class Logger {
|
||||
std::ostringstream os;
|
||||
TLogLevel m_level = AARE_LOG_LEVEL;
|
||||
|
||||
public:
|
||||
Logger() = default;
|
||||
explicit Logger(TLogLevel level) : m_level(level){};
|
||||
~Logger() {
|
||||
// output in the destructor to allow for << syntax
|
||||
os << RESET << '\n';
|
||||
std::clog << os.str() << std::flush; // Single write
|
||||
}
|
||||
|
||||
static TLogLevel &
|
||||
ReportingLevel() { // singelton eeh TODO! Do we need a runtime option?
|
||||
static TLogLevel reportingLevel = logDEBUG5;
|
||||
return reportingLevel;
|
||||
}
|
||||
|
||||
// Danger this buffer need as many elements as TLogLevel
|
||||
static const char *Color(TLogLevel level) noexcept {
|
||||
static const char *const colors[] = {
|
||||
RED BOLD, YELLOW BOLD, BLUE, GREEN, RED, CYAN, MAGENTA,
|
||||
RESET, RESET, RESET, RESET, RESET, RESET, RESET};
|
||||
// out of bounds
|
||||
if (level < 0 || level >= sizeof(colors) / sizeof(colors[0])) {
|
||||
return RESET;
|
||||
}
|
||||
return colors[level];
|
||||
}
|
||||
|
||||
// Danger this buffer need as many elements as TLogLevel
|
||||
static std::string ToString(TLogLevel level) {
|
||||
static const char *const buffer[] = {
|
||||
"ERROR", "WARNING", "INFO", "INFO", "INFO",
|
||||
"INFO", "INFO", "INFO", "DEBUG", "DEBUG1",
|
||||
"DEBUG2", "DEBUG3", "DEBUG4", "DEBUG5"};
|
||||
// out of bounds
|
||||
if (level < 0 || level >= sizeof(buffer) / sizeof(buffer[0])) {
|
||||
return "UNKNOWN";
|
||||
}
|
||||
return buffer[level];
|
||||
}
|
||||
|
||||
std::ostringstream &Get() {
|
||||
os << Color(m_level) << "- " << Timestamp() << " " << ToString(m_level)
|
||||
<< ": ";
|
||||
return os;
|
||||
}
|
||||
|
||||
static std::string Timestamp() {
|
||||
constexpr size_t buffer_len = 12;
|
||||
char buffer[buffer_len];
|
||||
time_t t;
|
||||
::time(&t);
|
||||
tm r;
|
||||
strftime(buffer, buffer_len, "%X", localtime_r(&t, &r));
|
||||
buffer[buffer_len - 1] = '\0';
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, nullptr);
|
||||
constexpr size_t result_len = 100;
|
||||
char result[result_len];
|
||||
snprintf(result, result_len, "%s.%03ld", buffer,
|
||||
static_cast<long>(tv.tv_usec) / 1000);
|
||||
result[result_len - 1] = '\0';
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// TODO! Do we need to keep the runtime option?
|
||||
#define LOG(level) \
|
||||
if (level > AARE_LOG_LEVEL) \
|
||||
; \
|
||||
else if (level > aare::Logger::ReportingLevel()) \
|
||||
; \
|
||||
else \
|
||||
aare::Logger(level).Get()
|
||||
|
||||
} // namespace aare
|
@ -1,12 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief Get the error message from an ifstream object
|
||||
*/
|
||||
std::string ifstream_error_msg(std::ifstream &ifs);
|
||||
|
||||
} // namespace aare
|
@ -1,18 +0,0 @@
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename F>
|
||||
void RunInParallel(F func, const std::vector<std::pair<int, int>> &tasks) {
|
||||
// auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
std::vector<std::thread> threads;
|
||||
for (auto &task : tasks) {
|
||||
threads.push_back(std::thread(func, task.first, task.second));
|
||||
}
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
} // namespace aare
|
@ -1,8 +0,0 @@
|
||||
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace aare {
|
||||
std::vector<std::pair<int, int>> split_task(int first, int last, int n_threads);
|
||||
|
||||
} // namespace aare
|
@ -1,18 +0,0 @@
|
||||
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||||
index dd3d8eb9..c0187747 100644
|
||||
--- a/CMakeLists.txt
|
||||
+++ b/CMakeLists.txt
|
||||
@@ -1,11 +1,8 @@
|
||||
# CMake build script for ZeroMQ
|
||||
project(ZeroMQ)
|
||||
|
||||
-if(${CMAKE_SYSTEM_NAME} STREQUAL Darwin)
|
||||
- cmake_minimum_required(VERSION 3.0.2)
|
||||
-else()
|
||||
- cmake_minimum_required(VERSION 2.8.12)
|
||||
-endif()
|
||||
+cmake_minimum_required(VERSION 3.15)
|
||||
+message(STATUS "Patched cmake version")
|
||||
|
||||
include(CheckIncludeFiles)
|
||||
include(CheckCCompilerFlag)
|
@ -1,13 +0,0 @@
|
||||
diff --git a/lib/CMakeLists.txt b/lib/CMakeLists.txt
|
||||
index 4efb7ed..6533660 100644
|
||||
--- a/lib/CMakeLists.txt
|
||||
+++ b/lib/CMakeLists.txt
|
||||
@@ -11,7 +11,7 @@ target_compile_definitions(${lib} PRIVATE "LMFIT_EXPORT") # for Windows DLL expo
|
||||
|
||||
target_include_directories(${lib}
|
||||
PUBLIC
|
||||
- $<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/>
|
||||
+ $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/>
|
||||
$<INSTALL_INTERFACE:include/>
|
||||
)
|
||||
|
@ -1,41 +1,15 @@
|
||||
[tool.scikit-build.metadata.version]
|
||||
provider = "scikit_build_core.metadata.regex"
|
||||
input = "VERSION"
|
||||
regex = '^(?P<version>\d+(?:\.\d+)*(?:[\.\+\w]+)?)$'
|
||||
result = "{version}"
|
||||
|
||||
[build-system]
|
||||
requires = ["scikit-build-core>=0.10", "pybind11", "numpy"]
|
||||
build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "aare"
|
||||
dynamic = ["version"]
|
||||
requires-python = ">=3.11"
|
||||
dependencies = [
|
||||
"numpy",
|
||||
"matplotlib",
|
||||
]
|
||||
|
||||
|
||||
[tool.cibuildwheel]
|
||||
|
||||
build = "cp{311,312,313}-manylinux_x86_64"
|
||||
|
||||
|
||||
|
||||
version = "2024.11.28.dev0"
|
||||
|
||||
[tool.scikit-build]
|
||||
build.verbose = true
|
||||
cmake.build-type = "Release"
|
||||
install.components = ["python"]
|
||||
cmake.verbose = true
|
||||
|
||||
[tool.scikit-build.cmake.define]
|
||||
AARE_PYTHON_BINDINGS = "ON"
|
||||
AARE_INSTALL_PYTHONEXT = "ON"
|
||||
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
markers = [
|
||||
"files: marks tests that need additional data (deselect with '-m \"not files\"')",
|
||||
]
|
||||
AARE_SYSTEM_LIBRARIES = "ON"
|
||||
AARE_INSTALL_PYTHONEXT = "ON"
|
@ -1,13 +1,12 @@
|
||||
|
||||
find_package (Python 3.10 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
set(PYBIND11_FINDPYTHON ON) # Needed for RH8
|
||||
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
|
||||
|
||||
# Download or find pybind11 depending on configuration
|
||||
if(AARE_FETCH_PYBIND11)
|
||||
FetchContent_Declare(
|
||||
pybind11
|
||||
GIT_REPOSITORY https://github.com/pybind/pybind11
|
||||
GIT_TAG v2.13.6
|
||||
GIT_TAG v2.13.0
|
||||
)
|
||||
FetchContent_MakeAvailable(pybind11)
|
||||
else()
|
||||
@ -29,17 +28,12 @@ target_link_libraries(_aare PRIVATE aare_core aare_compiler_flags)
|
||||
set( PYTHON_FILES
|
||||
aare/__init__.py
|
||||
aare/CtbRawFile.py
|
||||
aare/ClusterFinder.py
|
||||
aare/ClusterVector.py
|
||||
|
||||
aare/func.py
|
||||
aare/RawFile.py
|
||||
aare/transform.py
|
||||
aare/ScanParameters.py
|
||||
aare/utils.py
|
||||
)
|
||||
|
||||
|
||||
# Copy the python files to the build directory
|
||||
foreach(FILE ${PYTHON_FILES})
|
||||
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
|
||||
@ -49,30 +43,17 @@ set_target_properties(_aare PROPERTIES
|
||||
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/aare
|
||||
)
|
||||
|
||||
set(PYTHON_EXAMPLES
|
||||
examples/play.py
|
||||
examples/fits.py
|
||||
)
|
||||
|
||||
|
||||
# Copy the python examples to the build directory
|
||||
foreach(FILE ${PYTHON_EXAMPLES})
|
||||
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
|
||||
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
|
||||
endforeach(FILE ${PYTHON_EXAMPLES})
|
||||
# Copy the examples/scripts to the build directory
|
||||
configure_file(examples/play.py ${CMAKE_BINARY_DIR}/play.py)
|
||||
|
||||
|
||||
if(AARE_INSTALL_PYTHONEXT)
|
||||
install(
|
||||
TARGETS _aare
|
||||
install(TARGETS _aare
|
||||
EXPORT "${TARGETS_EXPORT_NAME}"
|
||||
LIBRARY DESTINATION aare
|
||||
COMPONENT python
|
||||
)
|
||||
|
||||
install(
|
||||
FILES ${PYTHON_FILES}
|
||||
DESTINATION aare
|
||||
COMPONENT python
|
||||
)
|
||||
install(FILES ${PYTHON_FILES} DESTINATION aare)
|
||||
endif()
|
@ -1,87 +0,0 @@
|
||||
from . import _aare
|
||||
import numpy as np
|
||||
|
||||
_supported_cluster_sizes = [(2,2), (3,3), (5,5), (7,7), (9,9),]
|
||||
|
||||
def _type_to_char(dtype):
|
||||
if dtype == np.int32:
|
||||
return 'i'
|
||||
elif dtype == np.float32:
|
||||
return 'f'
|
||||
elif dtype == np.float64:
|
||||
return 'd'
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32, np.float32, and np.float64 are supported.")
|
||||
|
||||
def _get_class(name, cluster_size, dtype):
|
||||
"""
|
||||
Helper function to get the class based on the name, cluster size, and dtype.
|
||||
"""
|
||||
try:
|
||||
class_name = f"{name}_Cluster{cluster_size[0]}x{cluster_size[1]}{_type_to_char(dtype)}"
|
||||
cls = getattr(_aare, class_name)
|
||||
except AttributeError:
|
||||
raise ValueError(f"Unsupported combination of type and cluster size: {dtype}/{cluster_size} when requesting {class_name}")
|
||||
return cls
|
||||
|
||||
|
||||
|
||||
def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
|
||||
"""
|
||||
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
|
||||
the templated ClusterFinder in C++.
|
||||
"""
|
||||
cls = _get_class("ClusterFinder", cluster_size, dtype)
|
||||
return cls(image_size, n_sigma=n_sigma, capacity=capacity)
|
||||
|
||||
|
||||
|
||||
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
|
||||
"""
|
||||
Factory function to create a ClusterFinderMT object. Provides a cleaner syntax for
|
||||
the templated ClusterFinderMT in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFinderMT", cluster_size, dtype)
|
||||
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads)
|
||||
|
||||
|
||||
|
||||
def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
|
||||
"""
|
||||
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
|
||||
the templated ClusterCollector in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterCollector", cluster_size, dtype)
|
||||
return cls(clusterfindermt)
|
||||
|
||||
def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):
|
||||
"""
|
||||
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
|
||||
the templated ClusterCollector in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFileSink", clusterfindermt.cluster_size, dtype)
|
||||
return cls(clusterfindermt, cluster_file)
|
||||
|
||||
|
||||
def ClusterFile(fname, cluster_size=(3,3), dtype=np.int32, chunk_size = 1000):
|
||||
"""
|
||||
Factory function to create a ClusterFile object. Provides a cleaner syntax for
|
||||
the templated ClusterFile in C++.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from aare import ClusterFile
|
||||
|
||||
with ClusterFile("clusters.clust", cluster_size=(3,3), dtype=np.int32) as cf:
|
||||
# cf is now a ClusterFile_Cluster3x3i object but you don't need to know that.
|
||||
for clusters in cf:
|
||||
# Loop over clusters in chunks of 1000
|
||||
# The type of clusters will be a ClusterVector_Cluster3x3i in this case
|
||||
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFile", cluster_size, dtype)
|
||||
return cls(fname, chunk_size=chunk_size)
|
@ -1,11 +0,0 @@
|
||||
|
||||
|
||||
from ._aare import ClusterVector_Cluster3x3i
|
||||
import numpy as np
|
||||
|
||||
def ClusterVector(cluster_size, dtype = np.int32):
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterVector_Cluster3x3i()
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
@ -2,31 +2,13 @@
|
||||
from . import _aare
|
||||
|
||||
|
||||
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
|
||||
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarClusterFinder
|
||||
from ._aare import File, RawMasterFile, RawSubFile
|
||||
from ._aare import Pedestal, ClusterFinder, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
|
||||
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, ClusterFileSink, ClusterFile
|
||||
from .ClusterVector import ClusterVector
|
||||
|
||||
|
||||
from ._aare import fit_gaus, fit_pol1, fit_scurve, fit_scurve2
|
||||
from ._aare import Interpolator
|
||||
from ._aare import calculate_eta2
|
||||
|
||||
|
||||
from ._aare import apply_custom_weights
|
||||
from ._aare import ClusterFile
|
||||
|
||||
from .CtbRawFile import CtbRawFile
|
||||
from .RawFile import RawFile
|
||||
from .ScanParameters import ScanParameters
|
||||
|
||||
from .utils import random_pixels, random_pixel, flat_list, add_colorbar
|
||||
|
||||
|
||||
#make functions available in the top level API
|
||||
from .func import *
|
||||
from .utils import random_pixels, random_pixel
|
@ -1 +0,0 @@
|
||||
from ._aare import gaus, pol1, scurve, scurve2
|
@ -2,14 +2,6 @@ import numpy as np
|
||||
from . import _aare
|
||||
|
||||
|
||||
class AdcSar04Transform64to16:
|
||||
def __call__(self, data):
|
||||
return _aare.adc_sar_04_decode64to16(data)
|
||||
|
||||
class AdcSar05Transform64to16:
|
||||
def __call__(self, data):
|
||||
return _aare.adc_sar_05_decode64to16(data)
|
||||
|
||||
class Moench05Transform:
|
||||
#Could be moved to C++ without changing the interface
|
||||
def __init__(self):
|
||||
@ -53,6 +45,4 @@ class Matterhorn02Transform:
|
||||
moench05 = Moench05Transform()
|
||||
moench05_1g = Moench05Transform1g()
|
||||
moench05_old = Moench05TransformOld()
|
||||
matterhorn02 = Matterhorn02Transform()
|
||||
adc_sar_04_64to16 = AdcSar04Transform64to16()
|
||||
adc_sar_05_64to16 = AdcSar05Transform64to16()
|
||||
matterhorn02 = Matterhorn02Transform()
|
@ -1,6 +1,4 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
|
||||
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
"""Return a list of random pixels.
|
||||
@ -22,15 +20,4 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
Returns:
|
||||
tuple: (row, col)
|
||||
"""
|
||||
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
|
||||
|
||||
def flat_list(xss):
|
||||
"""Flatten a list of lists."""
|
||||
return [x for xs in xss for x in xs]
|
||||
|
||||
def add_colorbar(ax, im, size="5%", pad=0.05):
|
||||
"""Add a colorbar with the same height as the image."""
|
||||
divider = make_axes_locatable(ax)
|
||||
cax = divider.append_axes("right", size=size, pad=pad)
|
||||
plt.colorbar(im, cax=cax)
|
||||
return ax, im, cax
|
||||
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
|
@ -1,79 +0,0 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from aare import fit_gaus, fit_pol1
|
||||
from aare import gaus, pol1
|
||||
|
||||
textpm = f"±" #
|
||||
textmu = f"μ" #
|
||||
textsigma = f"σ" #
|
||||
|
||||
|
||||
|
||||
# ================================= Gauss fit =================================
|
||||
# Parameters
|
||||
mu = np.random.uniform(1, 100) # Mean of Gaussian
|
||||
sigma = np.random.uniform(4, 20) # Standard deviation
|
||||
num_points = 10000 # Number of points for smooth distribution
|
||||
noise_sigma = 100
|
||||
|
||||
# Generate Gaussian distribution
|
||||
data = np.random.normal(mu, sigma, num_points)
|
||||
|
||||
# Generate errors for each point
|
||||
errors = np.abs(np.random.normal(0, sigma, num_points)) # Errors with mean 0, std 0.5
|
||||
|
||||
# Create subplot
|
||||
fig0, ax0 = plt.subplots(1, 1, num=0, figsize=(12, 8))
|
||||
|
||||
x = np.histogram(data, bins=30)[1][:-1] + 0.05
|
||||
y = np.histogram(data, bins=30)[0]
|
||||
yerr = errors[:30]
|
||||
|
||||
|
||||
# Add the errors as error bars in the step plot
|
||||
ax0.errorbar(x, y, yerr=yerr, fmt=". ", capsize=5)
|
||||
ax0.grid()
|
||||
|
||||
par, err = fit_gaus(x, y, yerr)
|
||||
print(par, err)
|
||||
|
||||
x = np.linspace(x[0], x[-1], 1000)
|
||||
ax0.plot(x, gaus(x, par), marker="")
|
||||
ax0.set(xlabel="x", ylabel="Counts", title=f"A0 = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
|
||||
f"{textmu} = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
|
||||
f"{textsigma} = {par[2]:0.2f}{textpm}{err[2]:0.2f}\n"
|
||||
f"(init: {textmu}: {mu:0.2f}, {textsigma}: {sigma:0.2f})")
|
||||
fig0.tight_layout()
|
||||
|
||||
|
||||
|
||||
# ================================= pol1 fit =================================
|
||||
# Parameters
|
||||
n_points = 40
|
||||
|
||||
# Generate random slope and intercept (origin)
|
||||
slope = np.random.uniform(-10, 10) # Random slope between 0.5 and 2.0
|
||||
intercept = np.random.uniform(-10, 10) # Random intercept between -10 and 10
|
||||
|
||||
# Generate random x values
|
||||
x_values = np.random.uniform(-10, 10, n_points)
|
||||
|
||||
# Calculate y values based on the linear function y = mx + b + error
|
||||
errors = np.abs(np.random.normal(0, np.random.uniform(1, 5), n_points))
|
||||
var_points = np.random.normal(0, np.random.uniform(0.1, 2), n_points)
|
||||
y_values = slope * x_values + intercept + var_points
|
||||
|
||||
fig1, ax1 = plt.subplots(1, 1, num=1, figsize=(12, 8))
|
||||
ax1.errorbar(x_values, y_values, yerr=errors, fmt=". ", capsize=5)
|
||||
par, err = fit_pol1(x_values, y_values, errors)
|
||||
|
||||
|
||||
x = np.linspace(np.min(x_values), np.max(x_values), 1000)
|
||||
ax1.plot(x, pol1(x, par), marker="")
|
||||
ax1.set(xlabel="x", ylabel="y", title=f"a = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
|
||||
f"b = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
|
||||
f"(init: {slope:0.2f}, {intercept:0.2f})")
|
||||
fig1.tight_layout()
|
||||
|
||||
plt.show()
|
||||
|
@ -1,89 +1,15 @@
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
|
||||
from aare import RawSubFile, DetectorType, RawFile
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
plt.ion()
|
||||
from pathlib import Path
|
||||
path = Path("/home/l_msdetect/erik/data/aare-test-data/raw/jungfrau/")
|
||||
f = RawSubFile(path/"jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16)
|
||||
from aare import ClusterFile
|
||||
|
||||
# f = RawFile(path/"jungfrau_single_master_0.json")
|
||||
base = Path('~/data/aare_test_data/clusters').expanduser()
|
||||
|
||||
f = ClusterFile(base / 'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust')
|
||||
# f = ClusterFile(base / 'single_frame_97_clustrers.clust')
|
||||
|
||||
|
||||
# from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
# import pickle
|
||||
# import numpy as np
|
||||
# import matplotlib.pyplot as plt
|
||||
# import boost_histogram as bh
|
||||
# import torch
|
||||
# import math
|
||||
# import time
|
||||
|
||||
|
||||
|
||||
# def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
# """
|
||||
# Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
# The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
# res in one dimesion.
|
||||
# """
|
||||
# x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
# x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
# return 1 / (2*math.pi*sigma**2) * \
|
||||
# torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
|
||||
# scale = 1000 #Scale factor when converting to integer
|
||||
# pixel_size = 25 #um
|
||||
# grid = 2
|
||||
# resolution = 100
|
||||
# sigma_um = 10
|
||||
# xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
# ticks = [0, 25, 50]
|
||||
|
||||
# hit = np.array((20,20))
|
||||
# etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
|
||||
# local_resolution = 99
|
||||
# grid_size = 3
|
||||
# xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
# t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
# pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
# pixels = pixels.numpy()
|
||||
# pixels = (pixels*scale).astype(np.int32)
|
||||
# v = ClusterVector_i(3,3)
|
||||
# v.push_back(1,1, pixels)
|
||||
|
||||
# with open(etahist_fname, "rb") as f:
|
||||
# hist = pickle.load(f)
|
||||
# eta = hist.view().copy()
|
||||
# etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
# etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
# ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
# p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
|
||||
|
||||
|
||||
|
||||
# #Generate the hit
|
||||
|
||||
|
||||
|
||||
|
||||
# tmp = p.interpolate(v)
|
||||
# print(f'tmp:{tmp}')
|
||||
# pos = np.array((tmp['x'], tmp['y']))*25
|
||||
|
||||
|
||||
# print(pixels)
|
||||
# fig, ax = plt.subplots(figsize = (7,7))
|
||||
# ax.pcolormesh(xaxis, xaxis, t)
|
||||
# ax.plot(*pos, 'o')
|
||||
# ax.set_xticks([0,25,50,75])
|
||||
# ax.set_yticks([0,25,50,75])
|
||||
# ax.set_xlim(0,75)
|
||||
# ax.set_ylim(0,75)
|
||||
# ax.grid()
|
||||
# print(f'{hit=}')
|
||||
# print(f'{pos=}')
|
||||
for i in range(10):
|
||||
fn, cl = f.read_frame()
|
||||
print(fn, cl.size)
|
||||
|
@ -1,64 +0,0 @@
|
||||
#include "aare/Cluster.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <fmt/format.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_Cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
|
||||
m, class_name.c_str(), py::buffer_protocol())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
auto r = data.template unchecked<1>(); // no bounds checks
|
||||
for (py::ssize_t i = 0; i < data.size(); ++i) {
|
||||
cluster.data[i] = r(i);
|
||||
}
|
||||
return cluster;
|
||||
}));
|
||||
|
||||
/*
|
||||
//TODO! Review if to keep or not
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
c.data); // TODO dont iterate over centers!!!
|
||||
|
||||
});
|
||||
*/
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,44 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterCollector(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
|
||||
.def("stop", &ClusterCollector<ClusterType>::stop)
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterCollector<ClusterType> &self) {
|
||||
auto v = new std::vector<ClusterVector<ClusterType>>(
|
||||
self.steal_clusters());
|
||||
return v; // TODO change!!!
|
||||
},
|
||||
py::return_value_policy::take_ownership);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,94 +0,0 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFile(py::module &m, const std::string &typestr) {
|
||||
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
auto class_name = fmt::format("ClusterFile_{}", typestr);
|
||||
|
||||
py::class_<ClusterFile<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<const std::filesystem::path &, size_t,
|
||||
const std::string &>(),
|
||||
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
|
||||
.def(
|
||||
"read_clusters",
|
||||
[](ClusterFile<ClusterType> &self, size_t n_clusters) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(n_clusters));
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership, py::arg("n_clusters"))
|
||||
.def("read_frame",
|
||||
[](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(self.read_frame());
|
||||
return v;
|
||||
})
|
||||
.def("set_roi", &ClusterFile<ClusterType>::set_roi,
|
||||
py::arg("roi"))
|
||||
.def(
|
||||
"set_noise_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
self.set_noise_map(view);
|
||||
}, py::arg("noise_map"))
|
||||
|
||||
.def("set_gain_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
|
||||
auto view = make_view_2d(gain_map);
|
||||
self.set_gain_map(view);
|
||||
})
|
||||
|
||||
.def("close", &ClusterFile<ClusterType>::close)
|
||||
.def("write_frame", &ClusterFile<ClusterType>::write_frame)
|
||||
.def("__enter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](ClusterFile<ClusterType> &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
self.close();
|
||||
})
|
||||
.def("__iter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(self.chunk_size()));
|
||||
if (v->size() == 0) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
return v;
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_calculate_eta(py::module &m) {
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
m.def("calculate_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,37 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFileSink(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
|
||||
const std::filesystem::path &>())
|
||||
.def("stop", &ClusterFileSink<ClusterType>::stop);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,77 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFinder(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly(
|
||||
"pedestal",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly(
|
||||
"noise",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
bool realloc_same_capacity) {
|
||||
ClusterVector<ClusterType> clusters =
|
||||
self.steal_clusters(realloc_same_capacity);
|
||||
return clusters;
|
||||
},
|
||||
py::arg("realloc_same_capacity") = false)
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,81 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFinderMT(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0)
|
||||
.def_property_readonly(
|
||||
"cluster_size",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self) {
|
||||
return py::make_tuple(ClusterSizeX, ClusterSizeY);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
|
||||
.def(
|
||||
"pedestal",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},
|
||||
py::arg("thread_index") = 0)
|
||||
.def(
|
||||
"noise",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},
|
||||
py::arg("thread_index") = 0);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,107 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
using ClusterType = Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
|
||||
py::class_<ClusterVector<
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>, void>>(
|
||||
m, class_name.c_str(),
|
||||
py::buffer_protocol())
|
||||
|
||||
.def(py::init()) // TODO change!!!
|
||||
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
|
||||
self.push_back(cluster);
|
||||
})
|
||||
|
||||
.def("sum",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Type>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Type>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
[typestr](ClusterVector<ClusterType> &self) {
|
||||
return fmt_format<ClusterType>;
|
||||
})
|
||||
|
||||
.def_property_readonly("cluster_size_x",
|
||||
&ClusterVector<ClusterType>::cluster_size_x)
|
||||
.def_property_readonly("cluster_size_y",
|
||||
&ClusterVector<ClusterType>::cluster_size_y)
|
||||
.def_property_readonly("capacity",
|
||||
&ClusterVector<ClusterType>::capacity)
|
||||
.def_property("frame_number", &ClusterVector<ClusterType>::frame_number,
|
||||
&ClusterVector<ClusterType>::set_frame_number)
|
||||
.def_buffer(
|
||||
[typestr](ClusterVector<ClusterType> &self) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
self.data(), /* Pointer to buffer */
|
||||
self.item_size(), /* Size of one scalar */
|
||||
fmt_format<ClusterType>, /* Format descriptor */
|
||||
1, /* Number of dimensions */
|
||||
{self.size()}, /* Buffer dimensions */
|
||||
{self.item_size()} /* Strides (in bytes) for each index */
|
||||
);
|
||||
});
|
||||
|
||||
// Free functions using ClusterVector
|
||||
m.def("hitmap",
|
||||
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
|
||||
// Create a numpy array to hold the hitmap
|
||||
// The shape of the array is (image_size[0], image_size[1])
|
||||
// note that the python array is passed as [row, col] which
|
||||
// is the opposite of the clusters [x,y]
|
||||
py::array_t<int32_t> hitmap(image_size);
|
||||
auto r = hitmap.mutable_unchecked<2>();
|
||||
|
||||
// Initialize hitmap to 0
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
r(i, j) = 0;
|
||||
|
||||
// Loop over the clusters and increment the hitmap
|
||||
// Skip out of bound clusters
|
||||
for (const auto &cluster : cv) {
|
||||
auto x = cluster.x;
|
||||
auto y = cluster.y;
|
||||
if (x < image_size[1] && y < image_size[0])
|
||||
r(cluster.y, cluster.x) += 1;
|
||||
}
|
||||
|
||||
return hitmap;
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
52
python/src/cluster.hpp
Normal file
52
python/src/cluster.hpp
Normal file
@ -0,0 +1,52 @@
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
void define_cluster_finder_bindings(py::module &m) {
|
||||
py::class_<ClusterFinder<uint16_t, double>>(m, "ClusterFinder")
|
||||
.def(py::init<Shape<2>, Shape<2>>())
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<uint16_t, double> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("pedestal",
|
||||
[](ClusterFinder<uint16_t, double> &self) {
|
||||
auto pd = new NDArray<double, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def("find_clusters_without_threshold",
|
||||
[](ClusterFinder<uint16_t, double> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
auto clusters = self.find_clusters_without_threshold(view);
|
||||
return clusters;
|
||||
});
|
||||
|
||||
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
|
||||
.def(py::init<int, int, Dtype>())
|
||||
.def("size", &DynamicCluster::size)
|
||||
.def("begin", &DynamicCluster::begin)
|
||||
.def("end", &DynamicCluster::end)
|
||||
.def_readwrite("x", &DynamicCluster::x)
|
||||
.def_readwrite("y", &DynamicCluster::y)
|
||||
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
|
||||
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
|
||||
1, {c.size()}, {c.dt.bytes()});
|
||||
})
|
||||
|
||||
.def("__repr__", [](const DynamicCluster &a) {
|
||||
return "<DynamicCluster: x: " + std::to_string(a.x) +
|
||||
", y: " + std::to_string(a.y) + ">";
|
||||
});
|
||||
}
|
50
python/src/cluster_file.hpp
Normal file
50
python/src/cluster_file.hpp
Normal file
@ -0,0 +1,50 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
void define_cluster_file_io_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(Cluster, x, y, data);
|
||||
|
||||
py::class_<ClusterFile>(m, "ClusterFile")
|
||||
.def(py::init<const std::filesystem::path &, size_t>(), py::arg(), py::arg("chunk_size") = 1000)
|
||||
.def("read_clusters",
|
||||
[](ClusterFile &self, size_t n_clusters) {
|
||||
auto* vec = new std::vector<Cluster>(self.read_clusters(n_clusters));
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("read_frame",
|
||||
[](ClusterFile &self) {
|
||||
int32_t frame_number;
|
||||
auto* vec = new std::vector<Cluster>(self.read_frame(frame_number));
|
||||
return py::make_tuple(frame_number, return_vector(vec));
|
||||
})
|
||||
.def("read_cluster_with_cut",
|
||||
[](ClusterFile &self, size_t n_clusters, py::array_t<double> noise_map, int nx, int ny) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
auto* vec = new std::vector<Cluster>(self.read_cluster_with_cut(n_clusters, view.data(), nx, ny));
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("__enter__", [](ClusterFile &self) { return &self; })
|
||||
.def("__exit__", [](ClusterFile &self) { self.close();})
|
||||
.def("__iter__", [](ClusterFile &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile &self) {
|
||||
auto vec = new std::vector<Cluster>(self.read_clusters(self.chunk_size()));
|
||||
if(vec->size() == 0) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
return return_vector(vec);
|
||||
});
|
||||
|
||||
}
|
@ -6,12 +6,9 @@
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
#include "aare/decode.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
@ -26,76 +23,7 @@ using namespace ::aare;
|
||||
|
||||
void define_ctb_raw_file_io_bindings(py::module &m) {
|
||||
|
||||
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
if (input.ndim() != 2) {
|
||||
throw std::runtime_error(
|
||||
"Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
// Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0),
|
||||
input.shape(1) /
|
||||
static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
// Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(
|
||||
reinterpret_cast<uint64_t *>(input.mutable_data()),
|
||||
{output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(),
|
||||
{output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_05_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
if (input.ndim() != 2) {
|
||||
throw std::runtime_error(
|
||||
"Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
// Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0),
|
||||
input.shape(1) /
|
||||
static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
// Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(
|
||||
reinterpret_cast<uint64_t *>(input.mutable_data()),
|
||||
{output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(),
|
||||
{output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_04_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
m.def("apply_custom_weights",
|
||||
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast>
|
||||
&input,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
&weights) {
|
||||
// Create new array with same shape as the input array
|
||||
// (uninitialized values)
|
||||
py::buffer_info buf = input.request();
|
||||
py::array_t<double> output(buf.shape);
|
||||
|
||||
// Use NDViews to call into the C++ library
|
||||
auto weights_view = make_view_1d(weights);
|
||||
NDView<uint16_t, 1> input_view(input.mutable_data(),
|
||||
{input.size()});
|
||||
NDView<double, 1> output_view(output.mutable_data(),
|
||||
{output.size()});
|
||||
|
||||
apply_custom_weights(input_view, output_view, weights_view);
|
||||
return output;
|
||||
});
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
@ -125,4 +53,5 @@ void define_ctb_raw_file_io_bindings(py::module &m) {
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
}
|
||||
|
||||
}
|
@ -20,13 +20,9 @@
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
void define_file_io_bindings(py::module &m) {
|
||||
|
||||
|
||||
py::enum_<DetectorType>(m, "DetectorType")
|
||||
.value("Jungfrau", DetectorType::Jungfrau)
|
||||
.value("Eiger", DetectorType::Eiger)
|
||||
@ -37,10 +33,13 @@ void define_file_io_bindings(py::module &m) {
|
||||
.value("ChipTestBoard", DetectorType::ChipTestBoard)
|
||||
.value("Unknown", DetectorType::Unknown);
|
||||
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(DetectorHeader, frameNumber, expLength, packetNumber,
|
||||
bunchId, timestamp, modId, row, column, reserved,
|
||||
debug, roundRNumber, detType, version, packetMask);
|
||||
|
||||
|
||||
|
||||
py::class_<File>(m, "File")
|
||||
.def(py::init([](const std::filesystem::path &fname) {
|
||||
return File(fname, "r", {});
|
||||
@ -52,8 +51,7 @@ void define_file_io_bindings(py::module &m) {
|
||||
.def(py::init<const std::filesystem::path &, const std::string &,
|
||||
const FileConfig &>())
|
||||
|
||||
.def("frame_number", py::overload_cast<>(&File::frame_number))
|
||||
.def("frame_number", py::overload_cast<size_t>(&File::frame_number))
|
||||
.def("frame_number", &File::frame_number)
|
||||
.def_property_readonly("bytes_per_frame", &File::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame", &File::pixels_per_frame)
|
||||
.def("seek", &File::seek)
|
||||
@ -105,59 +103,26 @@ void define_file_io_bindings(py::module &m) {
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
})
|
||||
.def("read_n",
|
||||
[](File &self, size_t n_frames) {
|
||||
// adjust for actual frames left in the file
|
||||
n_frames =
|
||||
std::min(n_frames, self.total_frames() - self.tell());
|
||||
if (n_frames == 0) {
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
|
||||
|
||||
py::array image;
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames);
|
||||
return image;
|
||||
})
|
||||
.def("__enter__", [](File &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](File &self, const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](File &self) { return &self; })
|
||||
.def("__next__", [](File &self) {
|
||||
try {
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
} catch (std::runtime_error &e) {
|
||||
throw py::stop_iteration();
|
||||
.def("read_n", [](File &self, size_t n_frames) {
|
||||
//adjust for actual frames left in the file
|
||||
n_frames = std::min(n_frames, self.total_frames()-self.tell());
|
||||
if(n_frames == 0){
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
|
||||
|
||||
py::array image;
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames);
|
||||
return image;
|
||||
});
|
||||
|
||||
py::class_<FileConfig>(m, "FileConfig")
|
||||
@ -176,6 +141,8 @@ void define_file_io_bindings(py::module &m) {
|
||||
return "<FileConfig: " + a.to_string() + ">";
|
||||
});
|
||||
|
||||
|
||||
|
||||
py::class_<ScanParameters>(m, "ScanParameters")
|
||||
.def(py::init<const std::string &>())
|
||||
.def(py::init<const ScanParameters &>())
|
||||
@ -186,30 +153,58 @@ void define_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("stop", &ScanParameters::stop)
|
||||
.def_property_readonly("step", &ScanParameters::step);
|
||||
|
||||
|
||||
py::class_<ROI>(m, "ROI")
|
||||
.def(py::init<>())
|
||||
.def(py::init<ssize_t, ssize_t, ssize_t, ssize_t>(), py::arg("xmin"),
|
||||
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
|
||||
.def_readwrite("xmin", &ROI::xmin)
|
||||
.def_readwrite("xmax", &ROI::xmax)
|
||||
.def_readwrite("ymin", &ROI::ymin)
|
||||
.def_readwrite("ymax", &ROI::ymax)
|
||||
.def("__str__",
|
||||
[](const ROI &self) {
|
||||
return fmt::format("ROI: xmin: {} xmax: {} ymin: {} ymax: {}",
|
||||
self.xmin, self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__repr__",
|
||||
[](const ROI &self) {
|
||||
return fmt::format(
|
||||
"<ROI: xmin: {} xmax: {} ymin: {} ymax: {}>", self.xmin,
|
||||
self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__str__", [](const ROI& self){
|
||||
return fmt::format("ROI: xmin: {} xmax: {} ymin: {} ymax: {}", self.xmin, self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__repr__", [](const ROI& self){
|
||||
return fmt::format("<ROI: xmin: {} xmax: {} ymin: {} ymax: {}>", self.xmin, self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__iter__", [](const ROI &self) {
|
||||
return py::make_iterator(&self.xmin, &self.ymax + 1); // NOLINT
|
||||
return py::make_iterator(&self.xmin, &self.ymax+1); //NOLINT
|
||||
});
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
|
||||
|
||||
|
||||
py::class_<RawSubFile>(m, "RawSubFile")
|
||||
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
|
||||
size_t, size_t>())
|
||||
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&RawSubFile::pixels_per_frame)
|
||||
.def("seek", &RawSubFile::seek)
|
||||
.def("tell", &RawSubFile::tell)
|
||||
.def_property_readonly("rows", &RawSubFile::rows)
|
||||
.def_property_readonly("cols", &RawSubFile::cols)
|
||||
.def("read_frame",
|
||||
[](RawSubFile &self) {
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
fmt::print("item_size: {} rows: {} cols: {}\n", item_size, self.rows(), self.cols());
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
});
|
||||
|
||||
|
||||
// py::class_<ClusterHeader>(m, "ClusterHeader")
|
||||
// .def(py::init<>())
|
||||
// .def_readwrite("frame_number", &ClusterHeader::frame_number)
|
||||
|
@ -1,460 +0,0 @@
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
#include "aare/Fit.hpp"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace pybind11::literals;
|
||||
|
||||
void define_fit_bindings(py::module &m) {
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::gaus(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::pol1(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D polynomial function for all points in x using parameters par. (p0+p1*x)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the polynomial function.
|
||||
par : array_like
|
||||
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y =
|
||||
new NDArray<double, 1>{aare::func::scurve(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D scurve function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the scurve function.
|
||||
par : array_like
|
||||
The parameters of the scurve function. The first element is the background slope, the second element is the background intercept, the third element is the mean, the fourth element is the standard deviation, the fifth element is inflexion point count number, and the sixth element is C.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y =
|
||||
new NDArray<double, 1>{aare::func::scurve2(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D scurve2 function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the scurve function.
|
||||
par : array_like
|
||||
The parameters of the scurve2 function. The first element is the background slope, the second element is the background intercept, the third element is the mean, the fourth element is the standard deviation, the fifth element is inflexion point count number, and the sixth element is C.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
auto y_view = make_view_3d(y);
|
||||
auto x_view = make_view_1d(x);
|
||||
*par = aare::fit_gaus(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto y_view = make_view_1d(y);
|
||||
auto x_view = make_view_1d(x);
|
||||
*par = aare::fit_gaus(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
|
||||
Fit a 1D Gaussian to data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
// the memory
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
// Make views of the numpy arrays
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 3);
|
||||
} else if (y.ndim() == 1) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
// the memory
|
||||
auto par = new NDArray<double, 1>({3});
|
||||
auto par_err = new NDArray<double, 1>({3});
|
||||
|
||||
// Decode the numpy arrays
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
|
||||
Fit a 1D Gaussian to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_pol1(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_pol1(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
//=========
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_scurve(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_scurve(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_scurve2(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_scurve2(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 6});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({6});
|
||||
auto par_err = new NDArray<double, 1>({6});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
}
|
@ -1,82 +0,0 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "np_helper.hpp"
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator) {
|
||||
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
interpolator.def("interpolate",
|
||||
[](aare::Interpolator &self,
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
auto photons = self.interpolate<ClusterType>(clusters);
|
||||
auto *ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
}
|
||||
|
||||
void define_interpolation_bindings(py::module &m) {
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
|
||||
|
||||
auto interpolator =
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style |
|
||||
py::array::forcecast>
|
||||
etacube,
|
||||
py::array_t<double> xbins,
|
||||
py::array_t<double> ybins,
|
||||
py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
.def("get_ietax",
|
||||
[](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("get_ietay", [](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
|
||||
register_interpolate<int, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<float, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<double, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<int, 2, 2, uint16_t>(interpolator);
|
||||
register_interpolate<float, 2, 2, uint16_t>(interpolator);
|
||||
register_interpolate<double, 2, 2, uint16_t>(interpolator);
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"hej",
|
||||
[]() {
|
||||
// auto boost_histogram = py::module_::import("boost_histogram");
|
||||
// py::object axis =
|
||||
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
|
||||
// py::object histogram = boost_histogram.attr("Histogram")(axis);
|
||||
// return histogram;
|
||||
// return h;
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)");
|
||||
}
|
@ -1,111 +0,0 @@
|
||||
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/iostream.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
auto read_dat_frame(JungfrauDataFile &self) {
|
||||
py::array_t<JungfrauDataHeader> header(1);
|
||||
py::array_t<uint16_t> image({self.rows(), self.cols()});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
|
||||
// adjust for actual frames left in the file
|
||||
n_frames = std::min(n_frames, self.total_frames() - self.tell());
|
||||
if (n_frames == 0) {
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
|
||||
py::array_t<JungfrauDataHeader> header(n_frames);
|
||||
py::array_t<uint16_t> image({n_frames, self.rows(), self.cols()});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames, header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
void define_jungfrau_data_file_io_bindings(py::module &m) {
|
||||
// Make the JungfrauDataHeader usable from numpy
|
||||
PYBIND11_NUMPY_DTYPE(JungfrauDataHeader, framenum, bunchid);
|
||||
|
||||
py::class_<JungfrauDataFile>(m, "JungfrauDataFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("seek", &JungfrauDataFile::seek,
|
||||
R"(
|
||||
Seek to the given frame index.
|
||||
)")
|
||||
.def("tell", &JungfrauDataFile::tell,
|
||||
R"(
|
||||
Get the current frame index.
|
||||
)")
|
||||
.def_property_readonly("rows", &JungfrauDataFile::rows)
|
||||
.def_property_readonly("cols", &JungfrauDataFile::cols)
|
||||
.def_property_readonly("base_name", &JungfrauDataFile::base_name)
|
||||
.def_property_readonly("bytes_per_frame",
|
||||
&JungfrauDataFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&JungfrauDataFile::pixels_per_frame)
|
||||
.def_property_readonly("bytes_per_pixel",
|
||||
&JungfrauDataFile::bytes_per_pixel)
|
||||
.def_property_readonly("bitdepth", &JungfrauDataFile::bitdepth)
|
||||
.def_property_readonly("current_file", &JungfrauDataFile::current_file)
|
||||
.def_property_readonly("total_frames", &JungfrauDataFile::total_frames)
|
||||
.def_property_readonly("n_files", &JungfrauDataFile::n_files)
|
||||
.def("read_frame", &read_dat_frame,
|
||||
R"(
|
||||
Read a single frame from the file.
|
||||
)")
|
||||
.def("read_n", &read_n_dat_frames,
|
||||
R"(
|
||||
Read maximum n_frames frames from the file.
|
||||
)")
|
||||
.def(
|
||||
"read",
|
||||
[](JungfrauDataFile &self) {
|
||||
self.seek(0);
|
||||
auto n_frames = self.total_frames();
|
||||
return read_n_dat_frames(self, n_frames);
|
||||
},
|
||||
R"(
|
||||
Read all frames from the file. Seeks to the beginning before reading.
|
||||
)")
|
||||
.def("__enter__", [](JungfrauDataFile &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](JungfrauDataFile &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](JungfrauDataFile &self) { return &self; })
|
||||
.def("__next__", [](JungfrauDataFile &self) {
|
||||
try {
|
||||
return read_dat_frame(self);
|
||||
} catch (std::runtime_error &e) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user