Cluster finder improvements (#112)

This commit is contained in:
Erik Fröjdh 2024-12-16 14:26:35 +01:00 committed by GitHub
commit da67f58323
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
26 changed files with 1045 additions and 384 deletions

View File

@ -40,7 +40,7 @@ option(AARE_DOCS "Build documentation" OFF)
option(AARE_VERBOSE "Verbose output" OFF)
option(AARE_CUSTOM_ASSERT "Use custom assert" OFF)
option(AARE_INSTALL_PYTHONEXT "Install the python extension in the install tree under CMAKE_INSTALL_PREFIX/aare/" OFF)
option(AARE_ASAN "Enable AddressSanitizer" OFF)
# Configure which of the dependencies to use FetchContent for
option(AARE_FETCH_FMT "Use FetchContent to download fmt" ON)
@ -225,13 +225,6 @@ if(CMAKE_BUILD_TYPE STREQUAL "Release")
target_compile_options(aare_compiler_flags INTERFACE -O3)
else()
message(STATUS "Debug build")
target_compile_options(
aare_compiler_flags
INTERFACE
-Og
-ggdb3
)
endif()
# Common flags for GCC and Clang
@ -256,7 +249,21 @@ target_compile_options(
endif() #GCC/Clang specific
if(AARE_ASAN)
message(STATUS "AddressSanitizer enabled")
target_compile_options(
aare_compiler_flags
INTERFACE
-fsanitize=address,undefined,pointer-compare
-fno-omit-frame-pointer
)
target_link_libraries(
aare_compiler_flags
INTERFACE
-fsanitize=address,undefined,pointer-compare
-fno-omit-frame-pointer
)
endif()
@ -275,6 +282,7 @@ set(PUBLICHEADERS
include/aare/ClusterFinder.hpp
include/aare/ClusterFile.hpp
include/aare/CtbRawFile.hpp
include/aare/ClusterVector.hpp
include/aare/defs.hpp
include/aare/Dtype.hpp
include/aare/File.hpp
@ -316,6 +324,8 @@ target_include_directories(aare_core PUBLIC
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)
target_link_libraries(
aare_core
PUBLIC
@ -344,6 +354,7 @@ if(AARE_TESTS)
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp

View File

@ -1,6 +1,6 @@
package:
name: aare
version: 2024.11.28.dev0 #TODO! how to not duplicate this?
version: 2024.12.16.dev0 #TODO! how to not duplicate this?
source:

View File

@ -29,7 +29,6 @@ version = '@PROJECT_VERSION@'
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['breathe',
'sphinx_rtd_theme',
'sphinx.ext.autodoc',
'sphinx.ext.napoleon',
]

View File

@ -0,0 +1,6 @@
ClusterVector
=============
.. doxygenclass:: aare::ClusterVector
:members:
:undoc-members:

View File

@ -46,6 +46,7 @@ AARE
Dtype
ClusterFinder
ClusterFile
ClusterVector
Pedestal
RawFile
RawSubFile

View File

@ -1,12 +1,14 @@
#pragma once
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
#include <filesystem>
#include <fstream>
namespace aare {
struct Cluster {
struct Cluster3x3 {
int16_t x;
int16_t y;
int32_t data[9];
@ -38,30 +40,42 @@ struct ClusterAnalysis {
double etay;
};
/*
Binary cluster file. Expects data to be layed out as:
int32_t frame_number
uint32_t number_of_clusters
int16_t x, int16_t y, int32_t data[9] x number_of_clusters
int32_t frame_number
uint32_t number_of_clusters
....
*/
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{};
size_t m_chunk_size{};
const std::string m_mode;
public:
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000);
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
const std::string &mode = "r");
~ClusterFile();
std::vector<Cluster> read_clusters(size_t n_clusters);
std::vector<Cluster> read_frame(int32_t &out_fnum);
std::vector<Cluster>
std::vector<Cluster3x3> read_clusters(size_t n_clusters);
std::vector<Cluster3x3> read_frame(int32_t &out_fnum);
void write_frame(int32_t frame_number,
const ClusterVector<int32_t> &clusters);
std::vector<Cluster3x3>
read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y);
size_t chunk_size() const { return m_chunk_size; }
void close();
};
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster3x3& cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
NDArray<double, 2> calculate_eta2( ClusterVector<int>& clusters);
std::array<double,2> calculate_eta2( Cluster3x3& cl);
} // namespace aare

View File

@ -1,4 +1,6 @@
#pragma once
#include "aare/ClusterFile.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/Dtype.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
@ -9,7 +11,7 @@
namespace aare {
/** enum to define the event types */
enum eventType {
enum class eventType {
PEDESTAL, /** pedestal */
NEIGHBOUR, /** neighbour i.e. below threshold, but in the cluster of a
photon */
@ -21,239 +23,248 @@ enum eventType {
UNDEFINED_EVENT = -1 /** undefined */
};
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
typename CT = int32_t>
class ClusterFinder {
Shape<2> m_image_size;
const int m_cluster_sizeX;
const int m_cluster_sizeY;
const double m_threshold;
const double m_nSigma;
const double c2;
const double c3;
// const PEDESTAL_TYPE m_threshold;
const PEDESTAL_TYPE m_nSigma;
const PEDESTAL_TYPE c2;
const PEDESTAL_TYPE c3;
Pedestal<PEDESTAL_TYPE> m_pedestal;
ClusterVector<CT> m_clusters;
public:
ClusterFinder(Shape<2> image_size, Shape<2>cluster_size, double nSigma = 5.0,
double threshold = 0.0)
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]), m_cluster_sizeY(cluster_size[1]),
m_threshold(threshold), m_nSigma(nSigma),
/**
* @brief Construct a new ClusterFinder object
* @param image_size size of the image
* @param cluster_size size of the cluster (x, y)
* @param nSigma number of sigma above the pedestal to consider a photon
* @param capacity initial capacity of the cluster vector
*
*/
ClusterFinder(Shape<2> image_size, Shape<2> cluster_size,
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 1000000)
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]),
m_cluster_sizeY(cluster_size[1]),
m_nSigma(nSigma),
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
m_pedestal(image_size[0], image_size[1]) {
// c2 = sqrt((cluster_sizeY + 1) / 2 * (cluster_sizeX + 1) / 2);
// c3 = sqrt(cluster_sizeX * cluster_sizeY);
};
m_pedestal(image_size[0], image_size[1]),
m_clusters(m_cluster_sizeX, m_cluster_sizeY, capacity) {};
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
m_pedestal.push(frame);
}
NDArray<PEDESTAL_TYPE, 2> pedestal() {
return m_pedestal.mean();
NDArray<PEDESTAL_TYPE, 2> pedestal() { return m_pedestal.mean(); }
NDArray<PEDESTAL_TYPE, 2> noise() { return m_pedestal.std(); }
/**
* @brief Move the clusters from the ClusterVector in the ClusterFinder to a
* new ClusterVector and return it.
* @param realloc_same_capacity if true the new ClusterVector will have the
* same capacity as the old one
*
*/
ClusterVector<CT> steal_clusters(bool realloc_same_capacity = false) {
ClusterVector<CT> tmp = std::move(m_clusters);
if (realloc_same_capacity)
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY,
tmp.capacity());
else
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY);
return tmp;
}
void find_clusters(NDView<FRAME_TYPE, 2> frame) {
// // TODO! deal with even size clusters
// // currently 3,3 -> +/- 1
// // 4,4 -> +/- 2
int dy = m_cluster_sizeY / 2;
int dx = m_cluster_sizeX / 2;
std::vector<DynamicCluster>
find_clusters_without_threshold(NDView<FRAME_TYPE, 2> frame,
// Pedestal<PEDESTAL_TYPE> &pedestal,
bool late_update = false) {
struct pedestal_update {
int x;
int y;
FRAME_TYPE value;
};
std::vector<pedestal_update> pedestal_updates;
std::vector<DynamicCluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
long double val;
long double max;
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
// initialize max and total
max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
eventMask[iy][ix] = PEDESTAL;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
PEDESTAL_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
PEDESTAL_TYPE total = 0;
// What can we short circuit here?
PEDESTAL_TYPE rms = m_pedestal.std(iy, ix);
PEDESTAL_TYPE value = (frame(iy, ix) - m_pedestal.mean(iy, ix));
if (value < -m_nSigma * rms)
continue; // NEGATIVE_PEDESTAL go to next pixel
// TODO! No pedestal update???
for (int ir = -dy; ir < dy + 1; ir++) {
for (int ic = -dx; ic < dx + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
val = frame(iy + ir, ix + ic) -
m_pedestal.mean(iy + ir, ix + ic);
PEDESTAL_TYPE val =
frame(iy + ir, ix + ic) -
m_pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
max = std::max(max, val);
}
}
}
auto rms = m_pedestal.std(iy, ix);
if (frame(iy, ix) - m_pedestal.mean(iy, ix) < -m_nSigma * rms) {
eventMask[iy][ix] = NEGATIVE_PEDESTAL;
continue;
} else if (max > m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
if ((max > m_nSigma * rms)) {
if (value < max)
continue; // Not max go to the next pixel
// but also no pedestal update
} else if (total > c3 * m_nSigma * rms) {
eventMask[iy][ix] = PHOTON;
// pass
} else {
if (late_update) {
pedestal_updates.push_back({ix, iy, frame(iy, ix)});
} else {
m_pedestal.push(iy, ix, frame(iy, ix));
}
continue;
// m_pedestal.push(iy, ix, frame(iy, ix));
m_pedestal.push_fast(iy, ix, frame(iy, ix));
continue; // It was a pedestal value nothing to store
}
if (eventMask[iy][ix] == PHOTON &&
(frame(iy, ix) - m_pedestal.mean(iy, ix)) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
Dtype(typeid(PEDESTAL_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
// Store cluster
if (value == max) {
// Zero out the cluster data
std::fill(cluster_data.begin(), cluster_data.end(), 0);
// Fill the cluster data since we have a photon to store
// It's worth redoing the look since most of the time we
// don't have a photon
int i = 0;
for (int ir = -dy; ir < dy + 1; ir++) {
for (int ic = -dx; ic < dx + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
PEDESTAL_TYPE tmp =
static_cast<PEDESTAL_TYPE>(
frame(iy + ir, ix + ic)) -
CT tmp =
static_cast<CT>(frame(iy + ir, ix + ic)) -
m_pedestal.mean(iy + ir, ix + ic);
cluster.set<PEDESTAL_TYPE>(i, tmp);
cluster_data[i] =
tmp; // Watch for out of bounds access
i++;
}
}
}
clusters.push_back(cluster);
// Add the cluster to the output ClusterVector
m_clusters.push_back(
ix, iy,
reinterpret_cast<std::byte *>(cluster_data.data()));
}
}
}
if (late_update) {
for (auto &update : pedestal_updates) {
m_pedestal.push(update.y, update.x, update.value);
}
}
return clusters;
}
// template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
std::vector<DynamicCluster>
find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
Pedestal<PEDESTAL_TYPE> &pedestal) {
assert(m_threshold > 0);
std::vector<DynamicCluster> clusters;
std::vector<std::vector<eventType>> eventMask;
for (int i = 0; i < frame.shape(0); i++) {
eventMask.push_back(std::vector<eventType>(frame.shape(1)));
}
double tthr, tthr1, tthr2;
// // template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
// std::vector<DynamicCluster>
// find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
// Pedestal<PEDESTAL_TYPE> &pedestal) {
// assert(m_threshold > 0);
// std::vector<DynamicCluster> clusters;
// std::vector<std::vector<eventType>> eventMask;
// for (int i = 0; i < frame.shape(0); i++) {
// eventMask.push_back(std::vector<eventType>(frame.shape(1)));
// }
// double tthr, tthr1, tthr2;
NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
// convert to n photons
// nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can be
// optimized with expression templates?
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
auto val = frame(iy, ix) - pedestal.mean(iy, ix);
nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
rest(iy, ix) = val - nph(iy, ix) * m_threshold;
}
}
// iterate over frame pixels
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
eventMask[iy][ix] = PEDESTAL;
// initialize max and total
FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
long double total = 0;
if (rest(iy, ix) <= 0.25 * m_threshold) {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
eventMask[iy][ix] = NEIGHBOUR;
// iterate over cluster pixels around the current pixel (ix,iy)
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto val = frame(iy + ir, ix + ic) -
pedestal.mean(iy + ir, ix + ic);
total += val;
if (val > max) {
max = val;
}
}
}
}
// NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
// NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
// // convert to n photons
// // nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can
// be
// // optimized with expression templates?
// for (int iy = 0; iy < frame.shape(0); iy++) {
// for (int ix = 0; ix < frame.shape(1); ix++) {
// auto val = frame(iy, ix) - pedestal.mean(iy, ix);
// nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
// nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
// rest(iy, ix) = val - nph(iy, ix) * m_threshold;
// }
// }
// // iterate over frame pixels
// for (int iy = 0; iy < frame.shape(0); iy++) {
// for (int ix = 0; ix < frame.shape(1); ix++) {
// eventMask[iy][ix] = eventType::PEDESTAL;
// // initialize max and total
// FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
// long double total = 0;
// if (rest(iy, ix) <= 0.25 * m_threshold) {
// pedestal.push(iy, ix, frame(iy, ix));
// continue;
// }
// eventMask[iy][ix] = eventType::NEIGHBOUR;
// // iterate over cluster pixels around the current pixel
// (ix,iy) for (short ir = -(m_cluster_sizeY / 2);
// ir < (m_cluster_sizeY / 2) + 1; ir++) {
// for (short ic = -(m_cluster_sizeX / 2);
// ic < (m_cluster_sizeX / 2) + 1; ic++) {
// if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
// iy + ir >= 0 && iy + ir < frame.shape(0)) {
// auto val = frame(iy + ir, ix + ic) -
// pedestal.mean(iy + ir, ix + ic);
// total += val;
// if (val > max) {
// max = val;
// }
// }
// }
// }
auto rms = pedestal.std(iy, ix);
if (m_nSigma == 0) {
tthr = m_threshold;
tthr1 = m_threshold;
tthr2 = m_threshold;
} else {
tthr = m_nSigma * rms;
tthr1 = m_nSigma * rms * c3;
tthr2 = m_nSigma * rms * c2;
// auto rms = pedestal.std(iy, ix);
// if (m_nSigma == 0) {
// tthr = m_threshold;
// tthr1 = m_threshold;
// tthr2 = m_threshold;
// } else {
// tthr = m_nSigma * rms;
// tthr1 = m_nSigma * rms * c3;
// tthr2 = m_nSigma * rms * c2;
if (m_threshold > 2 * tthr)
tthr = m_threshold - tthr;
if (m_threshold > 2 * tthr1)
tthr1 = tthr - tthr1;
if (m_threshold > 2 * tthr2)
tthr2 = tthr - tthr2;
}
if (total > tthr1 || max > tthr) {
eventMask[iy][ix] = PHOTON;
nph(iy, ix) += 1;
rest(iy, ix) -= m_threshold;
} else {
pedestal.push(iy, ix, frame(iy, ix));
continue;
}
if (eventMask[iy][ix] == PHOTON &&
frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
eventMask[iy][ix] = PHOTON_MAX;
DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
Dtype(typeid(FRAME_TYPE)));
cluster.x = ix;
cluster.y = iy;
short i = 0;
for (short ir = -(m_cluster_sizeY / 2);
ir < (m_cluster_sizeY / 2) + 1; ir++) {
for (short ic = -(m_cluster_sizeX / 2);
ic < (m_cluster_sizeX / 2) + 1; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
auto tmp = frame(iy + ir, ix + ic) -
pedestal.mean(iy + ir, ix + ic);
cluster.set<FRAME_TYPE>(i, tmp);
i++;
}
}
}
clusters.push_back(cluster);
}
}
}
return clusters;
}
// if (m_threshold > 2 * tthr)
// tthr = m_threshold - tthr;
// if (m_threshold > 2 * tthr1)
// tthr1 = tthr - tthr1;
// if (m_threshold > 2 * tthr2)
// tthr2 = tthr - tthr2;
// }
// if (total > tthr1 || max > tthr) {
// eventMask[iy][ix] = eventType::PHOTON;
// nph(iy, ix) += 1;
// rest(iy, ix) -= m_threshold;
// } else {
// pedestal.push(iy, ix, frame(iy, ix));
// continue;
// }
// if (eventMask[iy][ix] == eventType::PHOTON &&
// frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
// eventMask[iy][ix] = eventType::PHOTON_MAX;
// DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
// Dtype(typeid(FRAME_TYPE)));
// cluster.x = ix;
// cluster.y = iy;
// short i = 0;
// for (short ir = -(m_cluster_sizeY / 2);
// ir < (m_cluster_sizeY / 2) + 1; ir++) {
// for (short ic = -(m_cluster_sizeX / 2);
// ic < (m_cluster_sizeX / 2) + 1; ic++) {
// if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
// iy + ir >= 0 && iy + ir < frame.shape(0)) {
// auto tmp = frame(iy + ir, ix + ic) -
// pedestal.mean(iy + ir, ix + ic);
// cluster.set<FRAME_TYPE>(i, tmp);
// i++;
// }
// }
// }
// clusters.push_back(cluster);
// }
// }
// }
// return clusters;
// }
};
} // namespace aare

View File

@ -0,0 +1,180 @@
#pragma once
#include <cstddef>
#include <cstdint>
#include <numeric>
#include <vector>
#include <fmt/core.h>
namespace aare {
/**
* @brief ClusterVector is a container for clusters of various sizes. It uses a
* contiguous memory buffer to store the clusters.
* @note push_back can invalidate pointers to elements in the container
* @tparam T data type of the pixels in the cluster
* @tparam CoordType data type of the x and y coordinates of the cluster (normally int16_t)
*/
template <typename T, typename CoordType=int16_t> class ClusterVector {
using value_type = T;
size_t m_cluster_size_x;
size_t m_cluster_size_y;
std::byte *m_data{};
size_t m_size{0};
size_t m_capacity;
/*
Format string used in the python bindings to create a numpy
array from the buffer
= - native byte order
h - short
d - double
i - int
*/
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:" ;
public:
/**
* @brief Construct a new ClusterVector object
* @param cluster_size_x size of the cluster in x direction
* @param cluster_size_y size of the cluster in y direction
* @param capacity initial capacity of the buffer in number of clusters
*/
ClusterVector(size_t cluster_size_x, size_t cluster_size_y,
size_t capacity = 1024)
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
m_capacity(capacity) {
allocate_buffer(capacity);
}
~ClusterVector() {
delete[] m_data;
}
//Move constructor
ClusterVector(ClusterVector &&other) noexcept
: m_cluster_size_x(other.m_cluster_size_x),
m_cluster_size_y(other.m_cluster_size_y), m_data(other.m_data),
m_size(other.m_size), m_capacity(other.m_capacity) {
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
}
//Move assignment operator
ClusterVector& operator=(ClusterVector &&other) noexcept {
if (this != &other) {
delete[] m_data;
m_cluster_size_x = other.m_cluster_size_x;
m_cluster_size_y = other.m_cluster_size_y;
m_data = other.m_data;
m_size = other.m_size;
m_capacity = other.m_capacity;
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
}
return *this;
}
/**
* @brief Reserve space for at least capacity clusters
* @param capacity number of clusters to reserve space for
* @note If capacity is less than the current capacity, the function does nothing.
*/
void reserve(size_t capacity) {
if (capacity > m_capacity) {
allocate_buffer(capacity);
}
}
/**
* @brief Add a cluster to the vector
* @param x x-coordinate of the cluster
* @param y y-coordinate of the cluster
* @param data pointer to the data of the cluster
* @warning The data pointer must point to a buffer of size cluster_size_x * cluster_size_y * sizeof(T)
*/
void push_back(CoordType x, CoordType y, const std::byte *data) {
if (m_size == m_capacity) {
allocate_buffer(m_capacity * 2);
}
std::byte *ptr = element_ptr(m_size);
*reinterpret_cast<CoordType *>(ptr) = x;
ptr += sizeof(CoordType);
*reinterpret_cast<CoordType *>(ptr) = y;
ptr += sizeof(CoordType);
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
ptr);
m_size++;
}
/**
* @brief Sum the pixels in each cluster
* @return std::vector<T> vector of sums for each cluster
*/
std::vector<T> sum() {
std::vector<T> sums(m_size);
const size_t stride = element_offset();
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
for (size_t i = 0; i < m_size; i++) {
sums[i] =
std::accumulate(reinterpret_cast<T *>(ptr),
reinterpret_cast<T *>(ptr) + n_pixels, T{});
ptr += stride;
}
return sums;
}
size_t size() const { return m_size; }
size_t capacity() const { return m_capacity; }
/**
* @brief Return the offset in bytes for a single cluster
*/
size_t element_offset() const {
return 2*sizeof(CoordType) +
m_cluster_size_x * m_cluster_size_y * sizeof(T);
}
/**
* @brief Return the offset in bytes for the i-th cluster
*/
size_t element_offset(size_t i) const { return element_offset() * i; }
/**
* @brief Return a pointer to the i-th cluster
*/
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
const std::byte * element_ptr(size_t i) const { return m_data + element_offset(i); }
size_t cluster_size_x() const { return m_cluster_size_x; }
size_t cluster_size_y() const { return m_cluster_size_y; }
std::byte *data() { return m_data; }
std::byte const *data() const { return m_data; }
template<typename V>
V& at(size_t i) {
return *reinterpret_cast<V*>(element_ptr(i));
}
const std::string_view fmt_base() const {
//TODO! how do we match on coord_t?
return m_fmt_base;
}
private:
void allocate_buffer(size_t new_capacity) {
size_t num_bytes = element_offset() * new_capacity;
std::byte *new_data = new std::byte[num_bytes]{};
std::copy(m_data, m_data + element_offset() * m_size, new_data);
delete[] m_data;
m_data = new_data;
m_capacity = new_capacity;
}
};
} // namespace aare

View File

@ -44,6 +44,7 @@ class File {
void read_into(std::byte *image_buf);
void read_into(std::byte *image_buf, size_t n_frames);
size_t frame_number(); //!< get the frame number at the current position
size_t frame_number(size_t frame_index); //!< get the frame number at the given frame index
size_t bytes_per_frame() const;
size_t pixels_per_frame() const;

View File

@ -87,7 +87,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
// Conversion operator from array expression to array
template <typename E>
NDArray(ArrayExpr<E, Ndim> &&expr) : NDArray(expr.shape()) {
for (int i = 0; i < size_; ++i) {
for (size_t i = 0; i < size_; ++i) {
data_[i] = expr[i];
}
}
@ -159,11 +159,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
}
// TODO! is int the right type for index?
T &operator()(int i) { return data_[i]; }
const T &operator()(int i) const { return data_[i]; }
T &operator()(int64_t i) { return data_[i]; }
const T &operator()(int64_t i) const { return data_[i]; }
T &operator[](int i) { return data_[i]; }
const T &operator[](int i) const { return data_[i]; }
T &operator[](int64_t i) { return data_[i]; }
const T &operator[](int64_t i) const { return data_[i]; }
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }

View File

@ -18,34 +18,48 @@ template <typename SUM_TYPE = double> class Pedestal {
uint32_t m_samples;
NDArray<uint32_t, 2> m_cur_samples;
//TODO! in case of int needs to be changed to uint64_t
NDArray<SUM_TYPE, 2> m_sum;
NDArray<SUM_TYPE, 2> m_sum2;
//Cache mean since it is used over and over in the ClusterFinder
//This optimization is related to the access pattern of the ClusterFinder
//Relies on having more reads than pushes to the pedestal
NDArray<SUM_TYPE, 2> m_mean;
public:
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
: m_rows(rows), m_cols(cols), m_samples(n_samples),
m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),
m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})),
m_mean(NDArray<SUM_TYPE, 2>({rows, cols})) {
assert(rows > 0 && cols > 0 && n_samples > 0);
m_sum = 0;
m_sum2 = 0;
m_mean = 0;
}
~Pedestal() = default;
NDArray<SUM_TYPE, 2> mean() {
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
}
return mean_array;
return m_mean;
}
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
return m_mean(row, col);
}
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
return std::sqrt(variance(row, col));
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum(row, col) / m_cur_samples(row, col);
return m_sum2(row, col) / m_cur_samples(row, col) -
mean(row, col) * mean(row, col);
}
NDArray<SUM_TYPE, 2> variance() {
@ -57,13 +71,7 @@ template <typename SUM_TYPE = double> class Pedestal {
return variance_array;
}
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
if (m_cur_samples(row, col) == 0) {
return 0.0;
}
return m_sum2(row, col) / m_cur_samples(row, col) -
mean(row, col) * mean(row, col);
}
NDArray<SUM_TYPE, 2> std() {
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
@ -75,14 +83,12 @@ template <typename SUM_TYPE = double> class Pedestal {
return standard_deviation_array;
}
SUM_TYPE std(const uint32_t row, const uint32_t col) const {
return std::sqrt(variance(row, col));
}
void clear() {
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
clear(i / m_cols, i % m_cols);
}
m_sum = 0;
m_sum2 = 0;
m_cur_samples = 0;
}
@ -92,7 +98,9 @@ template <typename SUM_TYPE = double> class Pedestal {
m_sum2(row, col) = 0;
m_cur_samples(row, col) = 0;
}
// frame level operations
template <typename T> void push(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
@ -102,17 +110,37 @@ template <typename SUM_TYPE = double> class Pedestal {
"Frame shape does not match pedestal shape");
}
for (uint32_t row = 0; row < m_rows; row++) {
for (uint32_t col = 0; col < m_cols; col++) {
for (size_t row = 0; row < m_rows; row++) {
for (size_t col = 0; col < m_cols; col++) {
push<T>(row, col, frame(row, col));
}
}
// // TODO: test the effect of #pragma omp parallel for
// for (uint32_t index = 0; index < m_rows * m_cols; index++) {
// push<T>(index / m_cols, index % m_cols, frame(index));
// }
}
/**
* Push but don't update the cached mean. Speeds up the process
* when intitializing the pedestal.
*
*/
template <typename T> void push_no_update(NDView<T, 2> frame) {
assert(frame.size() == m_rows * m_cols);
// TODO! move away from m_rows, m_cols
if (frame.shape() != std::array<int64_t, 2>{m_rows, m_cols}) {
throw std::runtime_error(
"Frame shape does not match pedestal shape");
}
for (size_t row = 0; row < m_rows; row++) {
for (size_t col = 0; col < m_cols; col++) {
push_no_update<T>(row, col, frame(row, col));
}
}
}
template <typename T> void push(Frame &frame) {
assert(frame.rows() == static_cast<size_t>(m_rows) &&
frame.cols() == static_cast<size_t>(m_cols));
@ -132,18 +160,48 @@ template <typename SUM_TYPE = double> class Pedestal {
template <typename T>
void push(const uint32_t row, const uint32_t col, const T val_) {
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
const uint32_t idx = index(row, col);
if (m_cur_samples(idx) < m_samples) {
m_sum(idx) += val;
m_sum2(idx) += val * val;
m_cur_samples(idx)++;
if (m_cur_samples(row, col) < m_samples) {
m_sum(row, col) += val;
m_sum2(row, col) += val * val;
m_cur_samples(row, col)++;
} else {
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
}
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
}
template <typename T>
void push_no_update(const uint32_t row, const uint32_t col, const T val_) {
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
if (m_cur_samples(row, col) < m_samples) {
m_sum(row, col) += val;
m_sum2(row, col) += val * val;
m_cur_samples(row, col)++;
} else {
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
}
}
uint32_t index(const uint32_t row, const uint32_t col) const {
return row * m_cols + col;
};
/**
* @brief Update the mean of the pedestal. This is used after having done
* push_no_update. It is not necessary to call this function after push.
*/
void update_mean(){
m_mean = m_sum / m_cur_samples;
}
template<typename T>
void push_fast(const uint32_t row, const uint32_t col, const T val_){
//Assume we reached the steady state where all pixels have
//m_samples samples
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
m_sum(row, col) += val - m_sum(row, col) / m_samples;
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
m_mean(row, col) = m_sum(row, col) / m_samples;
}
};
} // namespace aare

View File

@ -47,7 +47,7 @@ class DynamicCluster {
int cluster_sizeY;
int16_t x;
int16_t y;
Dtype dt;
Dtype dt; // 4 bytes
private:
std::byte *m_data;

View File

@ -4,7 +4,7 @@ build-backend = "scikit_build_core.build"
[project]
name = "aare"
version = "2024.11.28.dev0"
version = "2024.12.16.dev0"
[tool.scikit-build]
cmake.verbose = true

View File

@ -3,9 +3,10 @@ from . import _aare
from ._aare import File, RawMasterFile, RawSubFile
from ._aare import Pedestal, ClusterFinder, VarClusterFinder
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
from ._aare import DetectorType
from ._aare import ClusterFile
from ._aare import hitmap
from .CtbRawFile import CtbRawFile
from .RawFile import RawFile

View File

@ -1,15 +1,58 @@
import sys
sys.path.append('/home/l_msdetect/erik/aare/build')
#Our normal python imports
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
from pathlib import Path
from aare import ClusterFile
import boost_histogram as bh
import time
base = Path('~/data/aare_test_data/clusters').expanduser()
from aare import File, ClusterFinder, VarClusterFinder
f = ClusterFile(base / 'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust')
# f = ClusterFile(base / 'single_frame_97_clustrers.clust')
base = Path('/mnt/sls_det_storage/matterhorn_data/aare_test_data/')
f = File(base/'Moench03new/cu_half_speed_master_4.json')
cf = ClusterFinder((400,400), (3,3))
for i in range(1000):
cf.push_pedestal_frame(f.read_frame())
fig, ax = plt.subplots()
im = ax.imshow(cf.pedestal())
cf.pedestal()
cf.noise()
for i in range(10):
fn, cl = f.read_frame()
print(fn, cl.size)
N = 500
t0 = time.perf_counter()
hist1 = bh.Histogram(bh.axis.Regular(40, -2, 4000))
f.seek(0)
t0 = time.perf_counter()
data = f.read_n(N)
t_elapsed = time.perf_counter()-t0
n_bytes = data.itemsize*data.size
print(f'Reading {N} frames took {t_elapsed:.3f}s {N/t_elapsed:.0f} FPS, {n_bytes/1024**2:.4f} GB/s')
for frame in data:
a = cf.find_clusters(frame)
clusters = cf.steal_clusters()
# t_elapsed = time.perf_counter()-t0
# print(f'Clustering {N} frames took {t_elapsed:.2f}s {N/t_elapsed:.0f} FPS')
# t0 = time.perf_counter()
# total_clusters = clusters.size
# hist1.fill(clusters.sum())
# t_elapsed = time.perf_counter()-t0
# print(f'Filling histogram with the sum of {total_clusters} clusters took: {t_elapsed:.3f}s, {total_clusters/t_elapsed:.3g} clust/s')
# print(f'Average number of clusters per frame {total_clusters/N:.3f}')

View File

@ -1,4 +1,5 @@
#include "aare/ClusterFinder.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDView.hpp"
#include "aare/Pedestal.hpp"
#include "np_helper.hpp"
@ -9,30 +10,101 @@
#include <pybind11/stl.h>
namespace py = pybind11;
using pd_type = float;
template <typename T>
void define_cluster_vector(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("ClusterVector_{}", typestr);
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
.def(py::init<int, int>())
.def_property_readonly("size", &ClusterVector<T>::size)
.def("element_offset",
py::overload_cast<>(&ClusterVector<T>::element_offset, py::const_))
.def_property_readonly("fmt",
[typestr](ClusterVector<T> &self) {
return fmt::format(
self.fmt_base(), self.cluster_size_x(),
self.cluster_size_y(), typestr);
})
.def("sum", [](ClusterVector<T> &self) {
auto *vec = new std::vector<T>(self.sum());
return return_vector(vec);
})
.def_buffer([typestr](ClusterVector<T> &self) -> py::buffer_info {
return py::buffer_info(
self.data(), /* Pointer to buffer */
self.element_offset(), /* Size of one scalar */
fmt::format(self.fmt_base(), self.cluster_size_x(),
self.cluster_size_y(),
typestr), /* Format descriptor */
1, /* Number of dimensions */
{self.size()}, /* Buffer dimensions */
{self.element_offset()} /* Strides (in bytes) for each index */
);
});
}
void define_cluster_finder_bindings(py::module &m) {
py::class_<ClusterFinder<uint16_t, double>>(m, "ClusterFinder")
.def(py::init<Shape<2>, Shape<2>>())
py::class_<ClusterFinder<uint16_t, pd_type>>(m, "ClusterFinder")
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t>(), py::arg("image_size"),
py::arg("cluster_size"), py::arg("n_sigma") = 5.0,
py::arg("capacity") = 1'000'000)
.def("push_pedestal_frame",
[](ClusterFinder<uint16_t, double> &self,
[](ClusterFinder<uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
self.push_pedestal_frame(view);
})
.def("pedestal",
[](ClusterFinder<uint16_t, double> &self) {
auto pd = new NDArray<double, 2>{};
[](ClusterFinder<uint16_t, pd_type> &self) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal();
return return_image_data(pd);
})
.def("find_clusters_without_threshold",
[](ClusterFinder<uint16_t, double> &self,
.def("noise",
[](ClusterFinder<uint16_t, pd_type> &self) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise();
return return_image_data(arr);
})
.def("steal_clusters",
[](ClusterFinder<uint16_t, pd_type> &self, bool realloc_same_capacity) {
auto v = new ClusterVector<int>(self.steal_clusters(realloc_same_capacity));
return v;
}, py::arg("realloc_same_capacity") = false)
.def("find_clusters",
[](ClusterFinder<uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
auto clusters = self.find_clusters_without_threshold(view);
return clusters;
self.find_clusters(view);
return;
});
m.def("hitmap", [](std::array<size_t, 2> image_size, ClusterVector<int32_t>& cv){
py::array_t<int32_t> hitmap(image_size);
auto r = hitmap.mutable_unchecked<2>();
// Initialize hitmap to 0
for (py::ssize_t i = 0; i < r.shape(0); i++)
for (py::ssize_t j = 0; j < r.shape(1); j++)
r(i, j) = 0;
size_t stride = cv.element_offset();
auto ptr = cv.data();
for(size_t i=0; i<cv.size(); i++){
auto x = *reinterpret_cast<int16_t*>(ptr);
auto y = *reinterpret_cast<int16_t*>(ptr+sizeof(int16_t));
r(y, x) += 1;
ptr += stride;
}
return hitmap;
});
define_cluster_vector<int>(m, "i");
define_cluster_vector<double>(m, "d");
define_cluster_vector<float>(m, "f");
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
.def(py::init<int, int, Dtype>())
.def("size", &DynamicCluster::size)

View File

@ -1,7 +1,6 @@
#include "aare/ClusterFile.hpp"
#include "aare/defs.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
@ -11,40 +10,67 @@
#include <pybind11/stl/filesystem.h>
#include <string>
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
namespace py = pybind11;
using namespace ::aare;
void define_cluster_file_io_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(Cluster, x, y, data);
PYBIND11_NUMPY_DTYPE(Cluster3x3, x, y, data);
py::class_<ClusterFile>(m, "ClusterFile")
.def(py::init<const std::filesystem::path &, size_t>(), py::arg(), py::arg("chunk_size") = 1000)
.def(py::init<const std::filesystem::path &, size_t,
const std::string &>(),
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
.def("read_clusters",
[](ClusterFile &self, size_t n_clusters) {
auto* vec = new std::vector<Cluster>(self.read_clusters(n_clusters));
auto *vec =
new std::vector<Cluster3x3>(self.read_clusters(n_clusters));
return return_vector(vec);
})
.def("read_frame",
[](ClusterFile &self) {
int32_t frame_number;
auto* vec = new std::vector<Cluster>(self.read_frame(frame_number));
auto *vec =
new std::vector<Cluster3x3>(self.read_frame(frame_number));
return py::make_tuple(frame_number, return_vector(vec));
})
.def("write_frame", &ClusterFile::write_frame)
.def("read_cluster_with_cut",
[](ClusterFile &self, size_t n_clusters, py::array_t<double> noise_map, int nx, int ny) {
[](ClusterFile &self, size_t n_clusters,
py::array_t<double> noise_map, int nx, int ny) {
auto view = make_view_2d(noise_map);
auto* vec = new std::vector<Cluster>(self.read_cluster_with_cut(n_clusters, view.data(), nx, ny));
auto *vec =
new std::vector<Cluster3x3>(self.read_cluster_with_cut(
n_clusters, view.data(), nx, ny));
return return_vector(vec);
})
.def("__enter__", [](ClusterFile &self) { return &self; })
.def("__exit__", [](ClusterFile &self) { self.close();})
.def("__exit__",
[](ClusterFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
self.close();
})
.def("__iter__", [](ClusterFile &self) { return &self; })
.def("__next__", [](ClusterFile &self) {
auto vec = new std::vector<Cluster>(self.read_clusters(self.chunk_size()));
if(vec->size() == 0) {
auto vec =
new std::vector<Cluster3x3>(self.read_clusters(self.chunk_size()));
if (vec->size() == 0) {
throw py::stop_iteration();
}
return return_vector(vec);
});
}
m.def("calculate_eta2", []( aare::ClusterVector<int32_t> &clusters) {
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
return return_image_data(eta2);
});
}
#pragma GCC diagnostic pop

View File

@ -51,7 +51,8 @@ void define_file_io_bindings(py::module &m) {
.def(py::init<const std::filesystem::path &, const std::string &,
const FileConfig &>())
.def("frame_number", &File::frame_number)
.def("frame_number", py::overload_cast<>(&File::frame_number))
.def("frame_number", py::overload_cast<size_t>(&File::frame_number))
.def_property_readonly("bytes_per_frame", &File::bytes_per_frame)
.def_property_readonly("pixels_per_frame", &File::pixels_per_frame)
.def("seek", &File::seek)

View File

@ -22,8 +22,8 @@ PYBIND11_MODULE(_aare, m) {
define_raw_master_file_bindings(m);
define_var_cluster_finder_bindings(m);
define_pixel_map_bindings(m);
define_pedestal_bindings<double>(m, "Pedestal");
define_pedestal_bindings<float>(m, "Pedestal_float32");
define_pedestal_bindings<double>(m, "Pedestal_d");
define_pedestal_bindings<float>(m, "Pedestal_f");
define_cluster_finder_bindings(m);
define_cluster_file_io_bindings(m);
}

View File

@ -43,5 +43,10 @@ template <typename SUM_TYPE> void define_pedestal_bindings(py::module &m, const
.def("push", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t> &f) {
auto v = make_view_2d(f);
pedestal.push(v);
});
})
.def("push_no_update", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t, py::array::c_style> &f) {
auto v = make_view_2d(f);
pedestal.push_no_update(v);
}, py::arg().noconvert())
.def("update_mean", &Pedestal<SUM_TYPE>::update_mean);
}

View File

@ -1,34 +1,68 @@
#include "aare/ClusterFile.hpp"
#include <algorithm>
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size): m_chunk_size(chunk_size) {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file: " + fname.string());
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
ClusterFile::~ClusterFile() {
close();
}
ClusterFile::~ClusterFile() { close(); }
void ClusterFile::close(){
if (fp){
void ClusterFile::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
}
std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
std::vector<Cluster> clusters(n_clusters);
void ClusterFile::write_frame(int32_t frame_number,
const ClusterVector<int32_t> &clusters) {
if (m_mode != "w") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
fwrite(&frame_number, sizeof(frame_number), 1, fp);
uint32_t n_clusters = clusters.size();
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
fwrite(clusters.data(), clusters.element_offset(), clusters.size(), fp);
// write clusters
// fwrite(clusters.data(), sizeof(Cluster), clusters.size(), fp);
}
std::vector<Cluster3x3> ClusterFile::read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
std::vector<Cluster3x3> clusters(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
auto buf = reinterpret_cast<Cluster *>(clusters.data());
auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
@ -38,7 +72,8 @@ std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
} else {
nn = nph;
}
nph_read += fread(reinterpret_cast<void *>(buf + nph_read), sizeof(Cluster), nn, fp);
nph_read += fread(reinterpret_cast<void *>(buf + nph_read),
sizeof(Cluster3x3), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
@ -52,8 +87,8 @@ std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
else
nn = nph;
nph_read +=
fread(reinterpret_cast<void *>(buf + nph_read), sizeof(Cluster), nn, fp);
nph_read += fread(reinterpret_cast<void *>(buf + nph_read),
sizeof(Cluster3x3), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
@ -67,9 +102,13 @@ std::vector<Cluster> ClusterFile::read_clusters(size_t n_clusters) {
return clusters;
}
std::vector<Cluster> ClusterFile::read_frame(int32_t &out_fnum) {
std::vector<Cluster3x3> ClusterFile::read_frame(int32_t &out_fnum) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error("There are still photons left in the last frame");
throw std::runtime_error(
"There are still photons left in the last frame");
}
if (fread(&out_fnum, sizeof(out_fnum), 1, fp) != 1) {
@ -80,20 +119,22 @@ std::vector<Cluster> ClusterFile::read_frame(int32_t &out_fnum) {
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
std::vector<Cluster> clusters(n_clusters);
std::vector<Cluster3x3> clusters(n_clusters);
if (fread(clusters.data(), sizeof(Cluster), n_clusters, fp) != static_cast<size_t>(n_clusters)) {
if (fread(clusters.data(), sizeof(Cluster3x3), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
}
return clusters;
}
std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
double *noise_map,
int nx, int ny) {
std::vector<Cluster> clusters(n_clusters);
std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
double *noise_map,
int nx, int ny) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
std::vector<Cluster3x3> clusters(n_clusters);
// size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
// uint32_t *n_left, double *noise_map, int
// nx, int ny) {
@ -107,7 +148,7 @@ std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
int32_t t2max, tot1;
int32_t tot3;
// Cluster *ptr = buf;
Cluster *ptr = clusters.data();
Cluster3x3 *ptr = clusters.data();
int good = 1;
double noise;
// read photons left from previous frame
@ -124,7 +165,8 @@ std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
}
for (size_t iph = 0; iph < nn; iph++) {
// read photons 1 by 1
size_t n_read = fread(reinterpret_cast<void *>(ptr), sizeof(Cluster), 1, fp);
size_t n_read =
fread(reinterpret_cast<void *>(ptr), sizeof(Cluster3x3), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
@ -158,70 +200,132 @@ std::vector<Cluster> ClusterFile::read_cluster_with_cut(size_t n_clusters,
break;
}
}
if (nph_read < n_clusters) {
// // keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // printf("%d\n",nph_read);
if (nph_read < n_clusters) {
// // keep on reading frames and photons until reaching
// n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // printf("%d\n",nph_read);
if (fread(&nph, sizeof(nph), 1, fp)) {
// // printf("** %d\n",nph);
m_num_left = nph;
for (size_t iph = 0; iph < nph; iph++) {
// // read photons 1 by 1
size_t n_read =
fread(reinterpret_cast<void *>(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
// return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL,
NULL,
NULL, NULL, NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
noise = noise_map[ptr->y + ny * ptr->x];
if (tot1 > noise || t2max > 2 * noise ||
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x,
ptr->y); good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
if (fread(&nph, sizeof(nph), 1, fp)) {
// // printf("** %d\n",nph);
m_num_left = nph;
for (size_t iph = 0; iph < nph; iph++) {
// // read photons 1 by 1
size_t n_read = fread(reinterpret_cast<void *>(ptr),
sizeof(Cluster3x3), 1, fp);
if (n_read != 1) {
clusters.resize(nph_read);
return clusters;
// return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
NULL, NULL, NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
noise = noise_map[ptr->y + ny * ptr->x];
if (tot1 > noise || t2max > 2 * noise ||
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(m_num_left)--;
if (nph_read >= n_clusters)
break;
}
if (nph_read >= n_clusters)
break;
}
if (nph_read >= n_clusters)
break;
}
// printf("%d\n",nph_read);
clusters.resize(nph_read);
return clusters;
}
// printf("%d\n",nph_read);
clusters.resize(nph_read);
return clusters;
}
int ClusterFile::analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
NDArray<double, 2> eta2({clusters.size(), 2});
for (size_t i = 0; i < clusters.size(); i++) {
// int32_t t2;
// auto* ptr = reinterpret_cast<int32_t*> (clusters.element_ptr(i) + 2 *
// sizeof(int16_t)); analyze_cluster(clusters.at<Cluster3x3>(i), &t2,
// nullptr, nullptr, &eta2(i,0), &eta2(i,1) , nullptr, nullptr);
auto [x, y] = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = x;
eta2(i, 1) = y;
}
return eta2;
}
std::array<double, 2> calculate_eta2(Cluster3x3 &cl) {
std::array<double, 2> eta2{};
std::array<int32_t, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta2[0] =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta2[1] =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta2[0] =
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta2[1] =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta2[0] =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta2[1] =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta2[0] =
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta2[1] =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
break;
// default:;
}
return eta2;
}
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
}
int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
@ -263,12 +367,14 @@ int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *qua
c = i;
}
}
//printf("*** %d %d %d %d -- %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
// printf("*** %d %d %d %d --
// %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
@ -318,6 +424,4 @@ int ClusterFile::analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *qua
return ok;
}
} // namespace aare

108
src/ClusterVector.test.cpp Normal file
View File

@ -0,0 +1,108 @@
#include <cstdint>
#include "aare/ClusterVector.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
using aare::ClusterVector;
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
struct Cluster_i2x2 {
int16_t x;
int16_t y;
int32_t data[4];
};
ClusterVector<int32_t> cv(2, 2, 4);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 2);
// int16_t, int16_t, 2x2 int32_t = 20 bytes
REQUIRE(cv.element_offset() == 20);
//Create a cluster and push back into the vector
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 4);
//Read the cluster back out using copy. TODO! Can we improve the API?
Cluster_i2x2 c2;
std::byte *ptr = cv.element_ptr(0);
std::copy(ptr, ptr + cv.element_offset(), reinterpret_cast<std::byte*>(&c2));
//Check that the data is the same
REQUIRE(c1.x == c2.x);
REQUIRE(c1.y == c2.y);
for(size_t i = 0; i < 4; i++) {
REQUIRE(c1.data[i] == c2.data[i]);
}
}
TEST_CASE("Summing 3x1 clusters of int64"){
struct Cluster_l3x1{
int16_t x;
int16_t y;
int32_t data[3];
};
ClusterVector<int32_t> cv(3, 1, 2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 3);
REQUIRE(cv.cluster_size_y() == 1);
//Create a cluster and push back into the vector
Cluster_l3x1 c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster_l3x1 c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
Cluster_l3x1 c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 3);
auto sums = cv.sum();
REQUIRE(sums.size() == 3);
REQUIRE(sums[0] == 12);
REQUIRE(sums[1] == 27);
REQUIRE(sums[2] == 42);
}
TEST_CASE("Storing floats"){
struct Cluster_f4x2{
int16_t x;
int16_t y;
float data[8];
};
ClusterVector<float> cv(2, 4, 2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 4);
//Create a cluster and push back into the vector
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
auto sums = cv.sum();
REQUIRE(sums.size() == 2);
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
}

View File

@ -58,6 +58,8 @@ void File::read_into(std::byte *image_buf) { file_impl->read_into(image_buf); }
void File::read_into(std::byte *image_buf, size_t n_frames) {
file_impl->read_into(image_buf, n_frames);
}
size_t File::frame_number() { return file_impl->frame_number(tell()); }
size_t File::frame_number(size_t frame_index) {
return file_impl->frame_number(frame_index);
}

View File

@ -19,7 +19,7 @@ TEST_CASE("Construct a frame") {
// data should be initialized to 0
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
REQUIRE(*data == 0);
}
@ -40,7 +40,7 @@ TEST_CASE("Set a value in a 8 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint8_t *data = (uint8_t *)frame.pixel_ptr(i, j);
uint8_t *data = reinterpret_cast<uint8_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@ -65,7 +65,7 @@ TEST_CASE("Set a value in a 64 bit frame") {
// only the value we did set should be non-zero
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
uint64_t *data = (uint64_t *)frame.pixel_ptr(i, j);
uint64_t *data = reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
REQUIRE(data != nullptr);
if (i == 5 && j == 7) {
REQUIRE(*data == value);
@ -149,4 +149,5 @@ TEST_CASE("test explicit copy constructor") {
REQUIRE(frame2.bitdepth() == bitdepth);
REQUIRE(frame2.bytes() == rows * cols * bitdepth / 8);
REQUIRE(frame2.data() != data);
}
}

View File

@ -17,8 +17,8 @@ endif()
list(APPEND CMAKE_MODULE_PATH ${Catch2_SOURCE_DIR}/extras)
add_executable(tests test.cpp)
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain)
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain aare_core aare_compiler_flags)
# target_compile_options(tests PRIVATE -fno-omit-frame-pointer -fsanitize=address)
set_target_properties(tests PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
OUTPUT_NAME run_tests
@ -34,7 +34,7 @@ set(TestSources
target_sources(tests PRIVATE ${TestSources} )
#Work around to remove, this is not the way to do it =)
target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
#configure a header to pass test file paths

View File

@ -3,6 +3,7 @@
#include <climits>
#include <filesystem>
#include <fstream>
#include <fmt/core.h>
TEST_CASE("Test suite can find data assets", "[.integration]") {
auto fpath = test_data_path() / "numpy" / "test_numpy_file.npy";
@ -18,4 +19,20 @@ TEST_CASE("Test suite can open data assets", "[.integration]") {
TEST_CASE("Test float32 and char8") {
REQUIRE(sizeof(float) == 4);
REQUIRE(CHAR_BIT == 8);
}
}
/**
* Uncomment the following tests to verify that asan is working
*/
// TEST_CASE("trigger asan stack"){
// int arr[5] = {1,2,3,4,5};
// int val = arr[7];
// fmt::print("val: {}\n", val);
// }
// TEST_CASE("trigger asan heap"){
// auto *ptr = new int[5];
// ptr[70] = 5;
// fmt::print("ptr: {}\n", ptr[70]);
// }