Compare commits
234 Commits
Author | SHA1 | Date | |
---|---|---|---|
a2fceffc1b | |||
415d68b4dc | |||
00ff4117ea | |||
67853b8db4 | |||
60787bccb7 | |||
880d86d750 | |||
7a88e5e254 | |||
20f2a8ada4 | |||
42c092fc14 | |||
8153db9f67 | |||
62c969d6ad | |||
085620abae | |||
9ebe290966 | |||
c9cd96c521 | |||
d745cda4a5 | |||
1b5f70afa0 | |||
a034065a09 | |||
2a60c86b48 | |||
ccc075975f | |||
4982b05de0 | |||
2b0c392a3e | |||
099842b2bd | |||
bd3efd698a | |||
24f083e585 | |||
f43488af34 | |||
1b90d53466 | |||
c1b3a28351 | |||
5b45685257 | |||
e7b28a4e75 | |||
83a7d607a5 | |||
5eedd14b3f | |||
3db7dca7ba | |||
b2d1a0be02 | |||
69d22dd067 | |||
242da76c59 | |||
0c812a5dd5 | |||
4cfcb3d396 | |||
8018783eb5 | |||
fdb1609a41 | |||
e7dda3cda8 | |||
f788d74f15 | |||
0c620d4a08 | |||
5d65afa194 | |||
d312c99f96 | |||
526821e073 | |||
d606230feb | |||
ce5cff05a7 | |||
a738f74f88 | |||
4785c97f33 | |||
e68fedc7e5 | |||
2581996625 | |||
d014849abd | |||
aa6e668f97 | |||
85c74c39f0 | |||
0e97f44cc7 | |||
9c5f7e6284 | |||
167e5136b1 | |||
21d642b7d7 | |||
fe68b1de7e | |||
3291a67e7d | |||
041c5c0e8b | |||
566cebb01a | |||
a70b4fae57 | |||
97836b2906 | |||
7ee8eba007 | |||
5169e08777 | |||
ed8e6d262f | |||
426bb16792 | |||
554716fc9a | |||
69767da850 | |||
3e174f22e5 | |||
7c1e2fdf0c | |||
b61327b5f2 | |||
0e3aea142d | |||
c7b05d252f | |||
a65708004b | |||
af1336df78 | |||
966d6349df | |||
5dbb208e92 | |||
af70302bf3 | |||
8727e25a2d | |||
fac3592ab2 | |||
599e2e1e74 | |||
11fae5d47a | |||
7ee4b1c86a | |||
e76623e55e | |||
794d5c49d4 | |||
0b4f4b1ce9 | |||
15bd970a72 | |||
89ff0b15f5 | |||
9e3466fcaa | |||
55f3198f9d | |||
747b008d5e | |||
1a7cd2a4b5 | |||
eb4e30b7e0 | |||
82f3c53380 | |||
ac76d4b2c3 | |||
dab52d9508 | |||
b63ef90e11 | |||
d5ac2c6d56 | |||
36faad1d9d | |||
9140798c74 | |||
96eaa27e55 | |||
b418fb8300 | |||
699c5f3d11 | |||
6a822c4c85 | |||
c2e1f1def1 | |||
2b9775faed | |||
ea7d611819 | |||
9ef07cff19 | |||
12077dd5f3 | |||
3b1a2b1a0b | |||
8eee968344 | |||
97936d6c2a | |||
91d3a0ac9e | |||
4f1f03224c | |||
16a47cf3b3 | |||
e3de0f7217 | |||
983e0dab42 | |||
a6f97f59e8 | |||
bf3b44405d | |||
93a557fea9 | |||
b31c0b413c | |||
20527e8d2b | |||
e09538eaeb | |||
239949b7c0 | |||
7e6df95c49 | |||
e38993e69d | |||
6bf401aba8 | |||
0c4fffff0d | |||
2c727d34bd | |||
5e979eb9e3 | |||
ba6a99b912 | |||
315b025341 | |||
d0b67b8565 | |||
1761003d8a | |||
d42a53ed47 | |||
cd1e5c42c0 | |||
c2215e9b6d | |||
c5ec09a5e3 | |||
b0a4e35d3d | |||
db85eee329 | |||
67d0af292b | |||
241c2a9779 | |||
8c265027bf | |||
f5c405bee8 | |||
ae33ee825e | |||
f694249298 | |||
b7ac6d4359 | |||
e27ba7c711 | |||
ddaeda35c7 | |||
dac1237009 | |||
999ceba3b7 | |||
0a634ca8da | |||
1f1762063d | |||
fdb2027fd4 | |||
559e18ed5d | |||
d6202d4a6b | |||
4b3b14e4ac | |||
b4db41d672 | |||
16174f5cc4 | |||
b50783f6be | |||
f830acf70d | |||
ea41301605 | |||
6a341e5001 | |||
9bbed3b55d | |||
6bd2398f5e | |||
768dd77ef5 | |||
cf6f7a8506 | |||
654d281c49 | |||
950f76d4be | |||
238f3e4fbc | |||
826363a0f5 | |||
4822121b3b | |||
56609ad5ff | |||
a9b0a8a01d | |||
aa6bcb6c6b | |||
216de442a5 | |||
9507339c2a | |||
0c158db48f | |||
9bd959e656 | |||
65b28fffc6 | |||
0d8a30b995 | |||
c602a3df2e | |||
b19b70caae | |||
b08f3c27db | |||
e15f9c9c3e | |||
b62573fa09 | |||
f7f016cf1c | |||
8c8715b041 | |||
008761e661 | |||
4343d6e2b6 | |||
11e1a6b60c | |||
8be637a7f3 | |||
4fbfe21e99 | |||
b5b77d165a | |||
0e176cb2f3 | |||
2ba0964e07 | |||
b31f359ee7 | |||
63150a4b19 | |||
8d779b11f6 | |||
b2d603b3c5 | |||
2ddb0a668a | |||
de81f2fd9f | |||
b2fc2d604a | |||
78096efcef | |||
5b0f97959e | |||
8fb1c5f247 | |||
58641ab94f | |||
a6bcb8ffa1 | |||
7b6e6bf396 | |||
45f295fcf8 | |||
3c58fd2102 | |||
abbaded278 | |||
fbe992c901 | |||
dec282d1b7 | |||
4429823629 | |||
80fddb514a | |||
cfe9832c1e | |||
fd942672df | |||
60cb733ca7 | |||
7c2ecef56d | |||
468f33e606 | |||
dbc643aba9 | |||
0856705024 | |||
ce608f1b49 | |||
3eaf54eda3 | |||
a496267a9d | |||
1a3ebfbcbd | |||
7bcb23c1bd | |||
b28fe39bbb | |||
42c6e6b921 | |||
dba2dc6149 | |||
a0c9b0162b |
26
.github/workflows/deployment.yaml
vendored
Normal file
26
.github/workflows/deployment.yaml
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
name: Deployment
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
jobs:
|
||||
publish-conda-package:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Prepare
|
||||
run: |
|
||||
$CONDA/bin/conda install --quiet --yes conda-build anaconda-client
|
||||
$CONDA/bin/conda config --append channels conda-forge
|
||||
$CONDA/bin/conda config --set channel_priority strict
|
||||
$CONDA/bin/conda config --set anaconda_upload yes
|
||||
|
||||
- name: Build and upload
|
||||
env:
|
||||
ANACONDA_TOKEN: ${{ secrets.ANACONDA_TOKEN }}
|
||||
run: |
|
||||
$CONDA/bin/conda build --token $ANACONDA_TOKEN conda-recipe
|
33
.travis.yml
33
.travis.yml
@ -1,33 +0,0 @@
|
||||
language: python
|
||||
python:
|
||||
- 3.6
|
||||
- 3.7
|
||||
- 3.8
|
||||
|
||||
# Build only tagged commits
|
||||
if: tag IS present
|
||||
|
||||
before_install:
|
||||
- wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
|
||||
- bash miniconda.sh -b -p $HOME/miniconda
|
||||
- export PATH="$HOME/miniconda/bin:$PATH"
|
||||
- conda config --append channels conda-forge
|
||||
- conda config --set always_yes yes
|
||||
- conda config --set anaconda_upload no
|
||||
|
||||
install:
|
||||
- conda update -q conda
|
||||
- conda install -q python=$TRAVIS_PYTHON_VERSION conda-build anaconda-client
|
||||
|
||||
script:
|
||||
- conda build conda-recipe
|
||||
|
||||
deploy:
|
||||
provider: script
|
||||
script: anaconda -t $ANACONDA_TOKEN upload $HOME/miniconda/conda-bld/**/pyzebra-*.tar.bz2
|
||||
on:
|
||||
branch: master
|
||||
tags: true
|
||||
|
||||
notifications:
|
||||
email: false
|
2
.vscode/launch.json
vendored
2
.vscode/launch.json
vendored
@ -5,7 +5,7 @@
|
||||
"name": "pyzebra",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/pyzebra/cli.py",
|
||||
"program": "${workspaceFolder}/pyzebra/app/cli.py",
|
||||
"console": "internalConsole",
|
||||
"env": {},
|
||||
},
|
||||
|
2
conda-recipe/bld.bat
Normal file
2
conda-recipe/bld.bat
Normal file
@ -0,0 +1,2 @@
|
||||
"%PYTHON%" setup.py install --single-version-externally-managed --record=record.txt
|
||||
if errorlevel 1 exit 1
|
@ -8,20 +8,22 @@ source:
|
||||
path: ..
|
||||
|
||||
build:
|
||||
noarch: python
|
||||
number: 0
|
||||
entry_points:
|
||||
- pyzebra = pyzebra.cli:main
|
||||
- pyzebra = pyzebra.app.cli:main
|
||||
|
||||
requirements:
|
||||
build:
|
||||
- python
|
||||
- python >=3.7
|
||||
- setuptools
|
||||
run:
|
||||
- python
|
||||
- python >=3.7
|
||||
- numpy
|
||||
- scipy
|
||||
- h5py
|
||||
- bokeh
|
||||
- bokeh =2.3
|
||||
- matplotlib
|
||||
- numba
|
||||
- lmfit
|
||||
- uncertainties
|
||||
|
9
make_release.py
Normal file → Executable file
9
make_release.py
Normal file → Executable file
@ -3,14 +3,19 @@
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
|
||||
|
||||
def main():
|
||||
branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD", shell=True).decode().strip()
|
||||
if branch != "master":
|
||||
print("Aborting, not on 'master' branch.")
|
||||
return
|
||||
|
||||
filepath = "pyzebra/__init__.py"
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("level", type=str, choices=["patch", "minor", "major"])
|
||||
parser.add_argument("tag_msg", type=str, help="tag message")
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(filepath) as f:
|
||||
@ -35,7 +40,7 @@ def main():
|
||||
f.write(re.sub(r'__version__ = "(.*?)"', f'__version__ = "{new_version}"', file_content))
|
||||
|
||||
os.system(f"git commit {filepath} -m 'Updating for version {new_version}'")
|
||||
os.system(f"git tag -a {new_version} -m '{args.tag_msg}'")
|
||||
os.system(f"git tag -a {new_version} -m 'Release {new_version}'")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,10 +1,7 @@
|
||||
import pyzebra.ccl_dict_operation
|
||||
from pyzebra.anatric import *
|
||||
from pyzebra.ccl_findpeaks import ccl_findpeaks
|
||||
from pyzebra.comm_export import export_comm
|
||||
from pyzebra.fit2 import fitccl
|
||||
from pyzebra.ccl_io import *
|
||||
from pyzebra.h5 import *
|
||||
from pyzebra.load_1D import load_1D, parse_1D
|
||||
from pyzebra.xtal import *
|
||||
from pyzebra.ccl_process import *
|
||||
|
||||
__version__ = "0.1.1"
|
||||
__version__ = "0.3.2"
|
||||
|
@ -2,7 +2,6 @@ import subprocess
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
ANATRIC_PATH = "/afs/psi.ch/project/sinq/rhel7/bin/anatric"
|
||||
DATA_FACTORY_IMPLEMENTATION = [
|
||||
"trics",
|
||||
"morph",
|
||||
@ -24,8 +23,17 @@ REFLECTION_PRINTER_FORMATS = [
|
||||
ALGORITHMS = ["adaptivemaxcog", "adaptivedynamic"]
|
||||
|
||||
|
||||
def anatric(config_file):
|
||||
subprocess.run([ANATRIC_PATH, config_file], check=True)
|
||||
def anatric(config_file, anatric_path="/afs/psi.ch/project/sinq/rhel7/bin/anatric", cwd=None):
|
||||
comp_proc = subprocess.run(
|
||||
[anatric_path, config_file],
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.STDOUT,
|
||||
cwd=cwd,
|
||||
check=True,
|
||||
text=True,
|
||||
)
|
||||
print(" ".join(comp_proc.args))
|
||||
print(comp_proc.stdout)
|
||||
|
||||
|
||||
class AnatricConfig:
|
||||
@ -52,10 +60,13 @@ class AnatricConfig:
|
||||
def save_as(self, filename):
|
||||
self._tree.write(filename)
|
||||
|
||||
def tostring(self):
|
||||
return ET.tostring(self._tree.getroot(), encoding="unicode")
|
||||
|
||||
def _get_attr(self, name, tag, attr):
|
||||
elem = self._tree.find(name).find(tag)
|
||||
if elem is None:
|
||||
return None
|
||||
return ""
|
||||
return elem.attrib[attr]
|
||||
|
||||
def _set_attr(self, name, tag, attr, value):
|
||||
@ -218,7 +229,7 @@ class AnatricConfig:
|
||||
elem = self._tree.find("crystal").find("UB")
|
||||
if elem is not None:
|
||||
return elem.text
|
||||
return None
|
||||
return ""
|
||||
|
||||
@crystal_UB.setter
|
||||
def crystal_UB(self, value):
|
||||
@ -237,12 +248,37 @@ class AnatricConfig:
|
||||
|
||||
@property
|
||||
def dataFactory_dist1(self):
|
||||
return self._tree.find("DataFactory").find("dist1").attrib["value"]
|
||||
elem = self._tree.find("DataFactory").find("dist1")
|
||||
if elem is not None:
|
||||
return elem.attrib["value"]
|
||||
return ""
|
||||
|
||||
@dataFactory_dist1.setter
|
||||
def dataFactory_dist1(self, value):
|
||||
self._tree.find("DataFactory").find("dist1").attrib["value"] = value
|
||||
|
||||
@property
|
||||
def dataFactory_dist2(self):
|
||||
elem = self._tree.find("DataFactory").find("dist2")
|
||||
if elem is not None:
|
||||
return elem.attrib["value"]
|
||||
return ""
|
||||
|
||||
@dataFactory_dist2.setter
|
||||
def dataFactory_dist2(self, value):
|
||||
self._tree.find("DataFactory").find("dist2").attrib["value"] = value
|
||||
|
||||
@property
|
||||
def dataFactory_dist3(self):
|
||||
elem = self._tree.find("DataFactory").find("dist3")
|
||||
if elem is not None:
|
||||
return elem.attrib["value"]
|
||||
return ""
|
||||
|
||||
@dataFactory_dist3.setter
|
||||
def dataFactory_dist3(self, value):
|
||||
self._tree.find("DataFactory").find("dist3").attrib["value"] = value
|
||||
|
||||
@property
|
||||
def reflectionPrinter_format(self):
|
||||
return self._tree.find("ReflectionPrinter").attrib["format"]
|
||||
@ -254,6 +290,14 @@ class AnatricConfig:
|
||||
|
||||
self._tree.find("ReflectionPrinter").attrib["format"] = value
|
||||
|
||||
@property
|
||||
def reflectionPrinter_file(self):
|
||||
return self._tree.find("ReflectionPrinter").attrib["file"]
|
||||
|
||||
@reflectionPrinter_file.setter
|
||||
def reflectionPrinter_file(self, value):
|
||||
self._tree.find("ReflectionPrinter").attrib["file"] = value
|
||||
|
||||
@property
|
||||
def algorithm(self):
|
||||
return self._tree.find("Algorithm").attrib["implementation"]
|
||||
@ -270,7 +314,7 @@ class AnatricConfig:
|
||||
def _get_alg_attr(self, alg, tag, attr):
|
||||
param_elem = self._alg_elems[alg].find(tag)
|
||||
if param_elem is None:
|
||||
return None
|
||||
return ""
|
||||
return param_elem.attrib[attr]
|
||||
|
||||
def _set_alg_attr(self, alg, tag, attr, value):
|
||||
|
@ -1,4 +1,3 @@
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
from io import StringIO
|
||||
@ -10,15 +9,11 @@ from bokeh.models import Tabs, TextAreaInput
|
||||
import panel_ccl_integrate
|
||||
import panel_hdf_anatric
|
||||
import panel_hdf_viewer
|
||||
import panel_param_study
|
||||
import panel_spind
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
prog="pyzebra", formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
doc = curdoc()
|
||||
doc.title = "pyzebra"
|
||||
|
||||
sys.stdout = StringIO()
|
||||
stdout_textareainput = TextAreaInput(title="print output:", height=150)
|
||||
@ -26,7 +21,7 @@ stdout_textareainput = TextAreaInput(title="print output:", height=150)
|
||||
bokeh_stream = StringIO()
|
||||
bokeh_handler = logging.StreamHandler(bokeh_stream)
|
||||
bokeh_handler.setFormatter(logging.Formatter(logging.BASIC_FORMAT))
|
||||
bokeh_logger = logging.getLogger('bokeh')
|
||||
bokeh_logger = logging.getLogger("bokeh")
|
||||
bokeh_logger.addHandler(bokeh_handler)
|
||||
bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
|
||||
|
||||
@ -34,10 +29,12 @@ bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
|
||||
tab_hdf_viewer = panel_hdf_viewer.create()
|
||||
tab_hdf_anatric = panel_hdf_anatric.create()
|
||||
tab_ccl_integrate = panel_ccl_integrate.create()
|
||||
tab_param_study = panel_param_study.create()
|
||||
tab_spind = panel_spind.create()
|
||||
|
||||
doc.add_root(
|
||||
column(
|
||||
Tabs(tabs=[tab_hdf_viewer, tab_hdf_anatric, tab_ccl_integrate]),
|
||||
Tabs(tabs=[tab_hdf_viewer, tab_hdf_anatric, tab_ccl_integrate, tab_param_study, tab_spind]),
|
||||
row(stdout_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
|
||||
)
|
||||
)
|
||||
|
@ -6,6 +6,8 @@ from bokeh.application.application import Application
|
||||
from bokeh.application.handlers import ScriptHandler
|
||||
from bokeh.server.server import Server
|
||||
|
||||
from pyzebra.app.handler import PyzebraHandler
|
||||
|
||||
logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -16,7 +18,7 @@ def main():
|
||||
This is a wrapper around a bokeh server that provides an interface to launch the application,
|
||||
bundled with the pyzebra package.
|
||||
"""
|
||||
app_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "app", "app.py")
|
||||
app_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "app.py")
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
prog="pyzebra", formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
@ -35,6 +37,13 @@ def main():
|
||||
help="hostname that can connect to the server websocket",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--anatric-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="path to anatric executable",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--args",
|
||||
nargs=argparse.REMAINDER,
|
||||
@ -46,9 +55,10 @@ def main():
|
||||
|
||||
logger.info(app_path)
|
||||
|
||||
pyzebra_handler = PyzebraHandler(args.anatric_path)
|
||||
handler = ScriptHandler(filename=app_path, argv=args.args)
|
||||
server = Server(
|
||||
{"/": Application(handler)},
|
||||
{"/": Application(pyzebra_handler, handler)},
|
||||
port=args.port,
|
||||
allow_websocket_origin=args.allow_websocket_origin,
|
||||
)
|
30
pyzebra/app/handler.py
Normal file
30
pyzebra/app/handler.py
Normal file
@ -0,0 +1,30 @@
|
||||
from bokeh.application.handlers import Handler
|
||||
|
||||
|
||||
class PyzebraHandler(Handler):
|
||||
"""Provides a mechanism for generic bokeh applications to build up new streamvis documents.
|
||||
"""
|
||||
|
||||
def __init__(self, anatric_path):
|
||||
"""Initialize a pyzebra handler for bokeh applications.
|
||||
|
||||
Args:
|
||||
args (Namespace): Command line parsed arguments.
|
||||
"""
|
||||
super().__init__() # no-op
|
||||
|
||||
self.anatric_path = anatric_path
|
||||
|
||||
def modify_document(self, doc):
|
||||
"""Modify an application document with pyzebra specific features.
|
||||
|
||||
Args:
|
||||
doc (Document) : A bokeh Document to update in-place
|
||||
|
||||
Returns:
|
||||
Document
|
||||
"""
|
||||
doc.title = "pyzebra"
|
||||
doc.anatric_path = self.anatric_path
|
||||
|
||||
return doc
|
@ -2,25 +2,34 @@ import base64
|
||||
import io
|
||||
import os
|
||||
import tempfile
|
||||
import types
|
||||
|
||||
import numpy as np
|
||||
from bokeh.layouts import column, row
|
||||
from bokeh.models import (
|
||||
Asterisk,
|
||||
BasicTicker,
|
||||
Button,
|
||||
CheckboxEditor,
|
||||
CheckboxGroup,
|
||||
ColumnDataSource,
|
||||
CustomJS,
|
||||
DataRange1d,
|
||||
DataTable,
|
||||
Div,
|
||||
Dropdown,
|
||||
FileInput,
|
||||
Grid,
|
||||
Legend,
|
||||
Line,
|
||||
LinearAxis,
|
||||
MultiLine,
|
||||
MultiSelect,
|
||||
NumberEditor,
|
||||
Panel,
|
||||
PanTool,
|
||||
Plot,
|
||||
RadioButtonGroup,
|
||||
ResetTool,
|
||||
Scatter,
|
||||
Select,
|
||||
Spacer,
|
||||
@ -29,520 +38,548 @@ from bokeh.models import (
|
||||
TableColumn,
|
||||
TextAreaInput,
|
||||
TextInput,
|
||||
Toggle,
|
||||
WheelZoomTool,
|
||||
Whisker,
|
||||
)
|
||||
|
||||
import pyzebra
|
||||
from pyzebra.ccl_io import AREA_METHODS
|
||||
|
||||
|
||||
javaScript = """
|
||||
setTimeout(function() {
|
||||
const filename = 'output' + js_data.data['ext']
|
||||
const blob = new Blob([js_data.data['cont']], {type: 'text/plain'})
|
||||
const link = document.createElement('a');
|
||||
document.body.appendChild(link);
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
link.href = url;
|
||||
link.download = filename;
|
||||
link.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
document.body.removeChild(link);
|
||||
}, 500);
|
||||
"""
|
||||
let j = 0;
|
||||
for (let i = 0; i < js_data.data['fname'].length; i++) {
|
||||
if (js_data.data['content'][i] === "") continue;
|
||||
|
||||
PROPOSAL_PATH = "/afs/psi.ch/project/sinqdata/2020/zebra/"
|
||||
setTimeout(function() {
|
||||
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
|
||||
const link = document.createElement('a');
|
||||
document.body.appendChild(link);
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
link.href = url;
|
||||
link.download = js_data.data['fname'][i];
|
||||
link.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
document.body.removeChild(link);
|
||||
}, 100 * j)
|
||||
|
||||
j++;
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def create():
|
||||
det_data = {}
|
||||
peak_pos_textinput_lock = False
|
||||
js_data = ColumnDataSource(data=dict(cont=[], ext=[]))
|
||||
fit_params = {}
|
||||
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""]))
|
||||
|
||||
def proposal_textinput_callback(_attr, _old, new):
|
||||
ccl_path = os.path.join(PROPOSAL_PATH, new)
|
||||
ccl_file_list = []
|
||||
for file in os.listdir(ccl_path):
|
||||
if file.endswith(".ccl"):
|
||||
ccl_file_list.append((os.path.join(ccl_path, file), file))
|
||||
ccl_file_select.options = ccl_file_list
|
||||
ccl_file_select.value = ccl_file_list[0][0]
|
||||
proposal = new.strip()
|
||||
year = new[:4]
|
||||
proposal_path = f"/afs/psi.ch/project/sinqdata/{year}/zebra/{proposal}"
|
||||
file_list = []
|
||||
for file in os.listdir(proposal_path):
|
||||
if file.endswith((".ccl", ".dat")):
|
||||
file_list.append((os.path.join(proposal_path, file), file))
|
||||
file_select.options = file_list
|
||||
|
||||
proposal_textinput = TextInput(title="Enter proposal number:", default_size=145)
|
||||
proposal_textinput = TextInput(title="Proposal number:", width=210)
|
||||
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||
|
||||
def ccl_file_select_callback(_attr, _old, new):
|
||||
nonlocal det_data
|
||||
with open(new) as file:
|
||||
_, ext = os.path.splitext(new)
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
scan_list = list(det_data["scan"].keys())
|
||||
hkl = [
|
||||
f'{int(m["h_index"])} {int(m["k_index"])} {int(m["l_index"])}'
|
||||
for m in det_data["scan"].values()
|
||||
]
|
||||
def _init_datatable():
|
||||
scan_list = [s["idx"] for s in det_data]
|
||||
hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in det_data]
|
||||
export = [s.get("active", True) for s in det_data]
|
||||
scan_table_source.data.update(
|
||||
scan=scan_list, hkl=hkl, peaks=[0] * len(scan_list), fit=[0] * len(scan_list)
|
||||
scan=scan_list, hkl=hkl, fit=[0] * len(scan_list), export=export,
|
||||
)
|
||||
scan_table_source.selected.indices = []
|
||||
scan_table_source.selected.indices = [0]
|
||||
|
||||
ccl_file_select = Select(title="Available .ccl files")
|
||||
ccl_file_select.on_change("value", ccl_file_select_callback)
|
||||
merge_options = [(str(i), f"{i} ({idx})") for i, idx in enumerate(scan_list)]
|
||||
merge_source_select.options = merge_options
|
||||
merge_source_select.value = merge_options[0][0]
|
||||
merge_dest_select.options = merge_options
|
||||
merge_dest_select.value = merge_options[0][0]
|
||||
|
||||
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
|
||||
|
||||
def file_open_button_callback():
|
||||
nonlocal det_data
|
||||
det_data = []
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
base, ext = os.path.splitext(f_name)
|
||||
if det_data:
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
pyzebra.merge_datasets(det_data, append_data)
|
||||
else:
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
|
||||
pyzebra.merge_duplicates(det_data)
|
||||
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
|
||||
|
||||
_init_datatable()
|
||||
|
||||
file_open_button = Button(label="Open New", width=100)
|
||||
file_open_button.on_click(file_open_button_callback)
|
||||
|
||||
def file_append_button_callback():
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
_, ext = os.path.splitext(f_name)
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
pyzebra.merge_datasets(det_data, append_data)
|
||||
|
||||
_init_datatable()
|
||||
|
||||
file_append_button = Button(label="Append", width=100)
|
||||
file_append_button.on_click(file_append_button_callback)
|
||||
|
||||
def upload_button_callback(_attr, _old, new):
|
||||
nonlocal det_data
|
||||
with io.StringIO(base64.b64decode(new).decode()) as file:
|
||||
_, ext = os.path.splitext(upload_button.filename)
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
det_data = []
|
||||
for f_str, f_name in zip(new, upload_button.filename):
|
||||
with io.StringIO(base64.b64decode(f_str).decode()) as file:
|
||||
base, ext = os.path.splitext(f_name)
|
||||
if det_data:
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
pyzebra.merge_datasets(det_data, append_data)
|
||||
else:
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
|
||||
pyzebra.merge_duplicates(det_data)
|
||||
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
|
||||
|
||||
scan_list = list(det_data["scan"].keys())
|
||||
hkl = [
|
||||
f'{int(m["h_index"])} {int(m["k_index"])} {int(m["l_index"])}'
|
||||
for m in det_data["scan"].values()
|
||||
]
|
||||
scan_table_source.data.update(
|
||||
scan=scan_list, hkl=hkl, peaks=[0] * len(scan_list), fit=[0] * len(scan_list)
|
||||
)
|
||||
scan_table_source.selected.indices = []
|
||||
scan_table_source.selected.indices = [0]
|
||||
_init_datatable()
|
||||
|
||||
upload_button = FileInput(accept=".ccl")
|
||||
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
|
||||
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
|
||||
upload_button.on_change("value", upload_button_callback)
|
||||
|
||||
def append_upload_button_callback(_attr, _old, new):
|
||||
for f_str, f_name in zip(new, append_upload_button.filename):
|
||||
with io.StringIO(base64.b64decode(f_str).decode()) as file:
|
||||
_, ext = os.path.splitext(f_name)
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
pyzebra.merge_datasets(det_data, append_data)
|
||||
|
||||
_init_datatable()
|
||||
|
||||
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
|
||||
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
|
||||
append_upload_button.on_change("value", append_upload_button_callback)
|
||||
|
||||
def monitor_spinner_callback(_attr, old, new):
|
||||
if det_data:
|
||||
pyzebra.normalize_dataset(det_data, new)
|
||||
_update_plot(_get_selected_scan())
|
||||
|
||||
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
|
||||
monitor_spinner.on_change("value", monitor_spinner_callback)
|
||||
|
||||
def _update_table():
|
||||
num_of_peaks = [scan.get("num_of_peaks", 0) for scan in det_data["scan"].values()]
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"].values()]
|
||||
scan_table_source.data.update(peaks=num_of_peaks, fit=fit_ok)
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
|
||||
scan_table_source.data.update(fit=fit_ok)
|
||||
|
||||
def _update_plot(ind):
|
||||
nonlocal peak_pos_textinput_lock
|
||||
peak_pos_textinput_lock = True
|
||||
def _update_plot(scan):
|
||||
scan_motor = scan["scan_motor"]
|
||||
|
||||
scan = det_data["scan"][ind]
|
||||
y = scan["Counts"]
|
||||
x = scan["om"]
|
||||
x = scan[scan_motor]
|
||||
|
||||
plot.axis[0].axis_label = scan_motor
|
||||
plot_scatter_source.data.update(x=x, y=y, y_upper=y + np.sqrt(y), y_lower=y - np.sqrt(y))
|
||||
|
||||
num_of_peaks = scan.get("num_of_peaks")
|
||||
if num_of_peaks is not None and num_of_peaks > 0:
|
||||
peak_indexes = scan["peak_indexes"]
|
||||
if len(peak_indexes) == 1:
|
||||
peak_pos_textinput.value = str(scan["om"][peak_indexes[0]])
|
||||
else:
|
||||
peak_pos_textinput.value = str([scan["om"][ind] for ind in peak_indexes])
|
||||
|
||||
plot_peak_source.data.update(x=scan["om"][peak_indexes], y=scan["peak_heights"])
|
||||
plot_line_smooth_source.data.update(x=x, y=scan["smooth_peaks"])
|
||||
else:
|
||||
peak_pos_textinput.value = None
|
||||
plot_peak_source.data.update(x=[], y=[])
|
||||
plot_line_smooth_source.data.update(x=[], y=[])
|
||||
|
||||
peak_pos_textinput_lock = False
|
||||
|
||||
fit = scan.get("fit")
|
||||
if fit is not None:
|
||||
plot_gauss_source.data.update(x=x, y=scan["fit"]["comps"]["gaussian"])
|
||||
plot_bkg_source.data.update(x=x, y=scan["fit"]["comps"]["background"])
|
||||
params = fit["result"].params
|
||||
fit_output_textinput.value = (
|
||||
"%s \n"
|
||||
"Gaussian: centre = %9.4f, sigma = %9.4f, area = %9.4f \n"
|
||||
"background: slope = %9.4f, intercept = %9.4f \n"
|
||||
"Int. area = %9.4f +/- %9.4f \n"
|
||||
"fit area = %9.4f +/- %9.4f \n"
|
||||
"ratio((fit-int)/fit) = %9.4f"
|
||||
% (
|
||||
ind,
|
||||
params["g_cen"].value,
|
||||
params["g_width"].value,
|
||||
params["g_amp"].value,
|
||||
params["slope"].value,
|
||||
params["intercept"].value,
|
||||
fit["int_area"].n,
|
||||
fit["int_area"].s,
|
||||
params["g_amp"].value,
|
||||
params["g_amp"].stderr,
|
||||
(params["g_amp"].value - fit["int_area"].n) / params["g_amp"].value,
|
||||
)
|
||||
)
|
||||
numfit_min, numfit_max = fit["numfit"]
|
||||
if numfit_min is None:
|
||||
numfit_min_span.location = None
|
||||
else:
|
||||
numfit_min_span.location = x[numfit_min]
|
||||
x_fit = np.linspace(x[0], x[-1], 100)
|
||||
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
|
||||
|
||||
if numfit_max is None:
|
||||
numfit_max_span.location = None
|
||||
else:
|
||||
numfit_max_span.location = x[numfit_max]
|
||||
x_bkg = []
|
||||
y_bkg = []
|
||||
xs_peak = []
|
||||
ys_peak = []
|
||||
comps = fit.eval_components(x=x_fit)
|
||||
for i, model in enumerate(fit_params):
|
||||
if "linear" in model:
|
||||
x_bkg = x_fit
|
||||
y_bkg = comps[f"f{i}_"]
|
||||
|
||||
elif any(val in model for val in ("gaussian", "voigt", "pvoigt")):
|
||||
xs_peak.append(x_fit)
|
||||
ys_peak.append(comps[f"f{i}_"])
|
||||
|
||||
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
|
||||
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
|
||||
|
||||
fit_output_textinput.value = fit.fit_report()
|
||||
|
||||
else:
|
||||
plot_gauss_source.data.update(x=[], y=[])
|
||||
plot_fit_source.data.update(x=[], y=[])
|
||||
plot_bkg_source.data.update(x=[], y=[])
|
||||
plot_peak_source.data.update(xs=[], ys=[])
|
||||
fit_output_textinput.value = ""
|
||||
numfit_min_span.location = None
|
||||
numfit_max_span.location = None
|
||||
|
||||
# Main plot
|
||||
plot = Plot(
|
||||
x_range=DataRange1d(),
|
||||
y_range=DataRange1d(),
|
||||
plot_height=400,
|
||||
y_range=DataRange1d(only_visible=True),
|
||||
plot_height=470,
|
||||
plot_width=700,
|
||||
toolbar_location=None,
|
||||
)
|
||||
|
||||
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
||||
plot.add_layout(LinearAxis(axis_label="Omega"), place="below")
|
||||
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
|
||||
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
|
||||
plot.add_glyph(plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue"))
|
||||
plot_scatter = plot.add_glyph(
|
||||
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue")
|
||||
)
|
||||
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
|
||||
|
||||
plot_line_smooth_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot.add_glyph(
|
||||
plot_line_smooth_source, Line(x="x", y="y", line_color="steelblue", line_dash="dashed")
|
||||
)
|
||||
|
||||
plot_gauss_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot.add_glyph(plot_gauss_source, Line(x="x", y="y", line_color="red", line_dash="dashed"))
|
||||
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
|
||||
|
||||
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot.add_glyph(plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed"))
|
||||
plot_bkg = plot.add_glyph(
|
||||
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
|
||||
)
|
||||
|
||||
plot_peak_source = ColumnDataSource(dict(x=[], y=[]))
|
||||
plot.add_glyph(plot_peak_source, Asterisk(x="x", y="y", size=10, line_color="red"))
|
||||
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
|
||||
plot_peak = plot.add_glyph(
|
||||
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
|
||||
)
|
||||
|
||||
numfit_min_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(numfit_min_span)
|
||||
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(fit_from_span)
|
||||
|
||||
numfit_max_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(numfit_max_span)
|
||||
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(fit_to_span)
|
||||
|
||||
plot.add_layout(
|
||||
Legend(
|
||||
items=[
|
||||
("data", [plot_scatter]),
|
||||
("best fit", [plot_fit]),
|
||||
("peak", [plot_peak]),
|
||||
("linear", [plot_bkg]),
|
||||
],
|
||||
location="top_left",
|
||||
click_policy="hide",
|
||||
)
|
||||
)
|
||||
|
||||
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
plot.toolbar.logo = None
|
||||
|
||||
# Scan select
|
||||
def scan_table_callback(_attr, _old, new):
|
||||
if new:
|
||||
_update_plot(scan_table_source.data["scan"][new[-1]])
|
||||
def scan_table_select_callback(_attr, old, new):
|
||||
if not new:
|
||||
# skip empty selections
|
||||
return
|
||||
|
||||
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||
if len(new) > 1:
|
||||
# drop selection to the previous one
|
||||
scan_table_source.selected.indices = old
|
||||
return
|
||||
|
||||
if len(old) > 1:
|
||||
# skip unnecessary update caused by selection drop
|
||||
return
|
||||
|
||||
_update_plot(det_data[new[0]])
|
||||
|
||||
def scan_table_source_callback(_attr, _old, _new):
|
||||
_update_preview()
|
||||
|
||||
scan_table_source = ColumnDataSource(dict(scan=[], hkl=[], fit=[], export=[]))
|
||||
scan_table_source.on_change("data", scan_table_source_callback)
|
||||
|
||||
scan_table_source = ColumnDataSource(dict(scan=[], hkl=[], peaks=[], fit=[]))
|
||||
scan_table = DataTable(
|
||||
source=scan_table_source,
|
||||
columns=[
|
||||
TableColumn(field="scan", title="scan"),
|
||||
TableColumn(field="hkl", title="hkl"),
|
||||
TableColumn(field="peaks", title="Peaks"),
|
||||
TableColumn(field="fit", title="Fit"),
|
||||
TableColumn(field="scan", title="Scan", width=50),
|
||||
TableColumn(field="hkl", title="hkl", width=100),
|
||||
TableColumn(field="fit", title="Fit", width=50),
|
||||
TableColumn(field="export", title="Export", editor=CheckboxEditor(), width=50),
|
||||
],
|
||||
width=200,
|
||||
index_position=None,
|
||||
width=310, # +60 because of the index column
|
||||
height=350,
|
||||
autosize_mode="none",
|
||||
editable=True,
|
||||
)
|
||||
|
||||
scan_table_source.selected.on_change("indices", scan_table_callback)
|
||||
scan_table_source.selected.on_change("indices", scan_table_select_callback)
|
||||
|
||||
def peak_pos_textinput_callback(_attr, _old, new):
|
||||
if new is not None and not peak_pos_textinput_lock:
|
||||
sel_ind = scan_table_source.selected.indices[-1]
|
||||
scan_name = scan_table_source.data["scan"][sel_ind]
|
||||
scan = det_data["scan"][scan_name]
|
||||
def _get_selected_scan():
|
||||
return det_data[scan_table_source.selected.indices[0]]
|
||||
|
||||
scan["num_of_peaks"] = 1
|
||||
peak_ind = (np.abs(scan["om"] - float(new))).argmin()
|
||||
scan["peak_indexes"] = np.array([peak_ind], dtype=np.int64)
|
||||
scan["peak_heights"] = np.array([scan["smooth_peaks"][peak_ind]])
|
||||
_update_table()
|
||||
_update_plot(scan_name)
|
||||
merge_dest_select = Select(title="destination:", width=100)
|
||||
merge_source_select = Select(title="source:", width=100)
|
||||
|
||||
peak_pos_textinput = TextInput(title="Peak position:", default_size=145)
|
||||
peak_pos_textinput.on_change("value", peak_pos_textinput_callback)
|
||||
def merge_button_callback():
|
||||
scan_dest_ind = int(merge_dest_select.value)
|
||||
scan_source_ind = int(merge_source_select.value)
|
||||
|
||||
peak_int_ratio_spinner = Spinner(
|
||||
title="Peak intensity ratio:", value=0.8, step=0.01, low=0, high=1, default_size=145
|
||||
if scan_dest_ind == scan_source_ind:
|
||||
print("WARNING: Selected scans for merging are identical")
|
||||
return
|
||||
|
||||
pyzebra.merge_scans(det_data[scan_dest_ind], det_data[scan_source_ind])
|
||||
_update_plot(_get_selected_scan())
|
||||
|
||||
merge_button = Button(label="Merge scans", width=145)
|
||||
merge_button.on_click(merge_button_callback)
|
||||
|
||||
def fit_from_spinner_callback(_attr, _old, new):
|
||||
fit_from_span.location = new
|
||||
|
||||
fit_from_spinner = Spinner(title="Fit from:", width=145)
|
||||
fit_from_spinner.on_change("value", fit_from_spinner_callback)
|
||||
|
||||
def fit_to_spinner_callback(_attr, _old, new):
|
||||
fit_to_span.location = new
|
||||
|
||||
fit_to_spinner = Spinner(title="to:", width=145)
|
||||
fit_to_spinner.on_change("value", fit_to_spinner_callback)
|
||||
|
||||
def fitparams_add_dropdown_callback(click):
|
||||
# bokeh requires (str, str) for MultiSelect options
|
||||
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
|
||||
fitparams_select.options.append((new_tag, click.item))
|
||||
fit_params[new_tag] = fitparams_factory(click.item)
|
||||
fitparams_select.tags[0] += 1
|
||||
|
||||
fitparams_add_dropdown = Dropdown(
|
||||
label="Add fit function",
|
||||
menu=[
|
||||
("Linear", "linear"),
|
||||
("Gaussian", "gaussian"),
|
||||
("Voigt", "voigt"),
|
||||
("Pseudo Voigt", "pvoigt"),
|
||||
# ("Pseudo Voigt1", "pseudovoigt1"),
|
||||
],
|
||||
width=145,
|
||||
disabled=True,
|
||||
)
|
||||
peak_prominence_spinner = Spinner(title="Peak prominence:", value=50, low=0, default_size=145)
|
||||
smooth_toggle = Toggle(label="Smooth curve", default_size=145)
|
||||
window_size_spinner = Spinner(title="Window size:", value=7, step=2, low=1, default_size=145)
|
||||
poly_order_spinner = Spinner(title="Poly order:", value=3, low=0, default_size=145)
|
||||
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
|
||||
|
||||
centre_guess = Spinner(default_size=100)
|
||||
centre_vary = Toggle(default_size=100, active=True)
|
||||
centre_min = Spinner(default_size=100)
|
||||
centre_max = Spinner(default_size=100)
|
||||
sigma_guess = Spinner(default_size=100)
|
||||
sigma_vary = Toggle(default_size=100, active=True)
|
||||
sigma_min = Spinner(default_size=100)
|
||||
sigma_max = Spinner(default_size=100)
|
||||
ampl_guess = Spinner(default_size=100)
|
||||
ampl_vary = Toggle(default_size=100, active=True)
|
||||
ampl_min = Spinner(default_size=100)
|
||||
ampl_max = Spinner(default_size=100)
|
||||
slope_guess = Spinner(default_size=100)
|
||||
slope_vary = Toggle(default_size=100, active=True)
|
||||
slope_min = Spinner(default_size=100)
|
||||
slope_max = Spinner(default_size=100)
|
||||
offset_guess = Spinner(default_size=100)
|
||||
offset_vary = Toggle(default_size=100, active=True)
|
||||
offset_min = Spinner(default_size=100)
|
||||
offset_max = Spinner(default_size=100)
|
||||
integ_from = Spinner(title="Integrate from:", default_size=145)
|
||||
integ_to = Spinner(title="to:", default_size=145)
|
||||
def fitparams_select_callback(_attr, old, new):
|
||||
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||
if len(new) > 1:
|
||||
# drop selection to the previous one
|
||||
fitparams_select.value = old
|
||||
return
|
||||
|
||||
def fitparam_reset_button_callback():
|
||||
centre_guess.value = None
|
||||
centre_vary.active = True
|
||||
centre_min.value = None
|
||||
centre_max.value = None
|
||||
sigma_guess.value = None
|
||||
sigma_vary.active = True
|
||||
sigma_min.value = None
|
||||
sigma_max.value = None
|
||||
ampl_guess.value = None
|
||||
ampl_vary.active = True
|
||||
ampl_min.value = None
|
||||
ampl_max.value = None
|
||||
slope_guess.value = None
|
||||
slope_vary.active = True
|
||||
slope_min.value = None
|
||||
slope_max.value = None
|
||||
offset_guess.value = None
|
||||
offset_vary.active = True
|
||||
offset_min.value = None
|
||||
offset_max.value = None
|
||||
integ_from.value = None
|
||||
integ_to.value = None
|
||||
if len(old) > 1:
|
||||
# skip unnecessary update caused by selection drop
|
||||
return
|
||||
|
||||
fitparam_reset_button = Button(label="Reset to defaults", default_size=145)
|
||||
fitparam_reset_button.on_click(fitparam_reset_button_callback)
|
||||
if new:
|
||||
fitparams_table_source.data.update(fit_params[new[0]])
|
||||
else:
|
||||
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
|
||||
|
||||
fit_output_textinput = TextAreaInput(title="Fit results:", width=450, height=400)
|
||||
fitparams_select = MultiSelect(options=[], height=120, width=145)
|
||||
fitparams_select.tags = [0]
|
||||
fitparams_select.on_change("value", fitparams_select_callback)
|
||||
|
||||
def peakfind_all_button_callback():
|
||||
for scan in det_data["scan"].values():
|
||||
pyzebra.ccl_findpeaks(
|
||||
scan,
|
||||
int_threshold=peak_int_ratio_spinner.value,
|
||||
prominence=peak_prominence_spinner.value,
|
||||
smooth=smooth_toggle.active,
|
||||
window_size=window_size_spinner.value,
|
||||
poly_order=poly_order_spinner.value,
|
||||
)
|
||||
def fitparams_remove_button_callback():
|
||||
if fitparams_select.value:
|
||||
sel_tag = fitparams_select.value[0]
|
||||
del fit_params[sel_tag]
|
||||
for elem in fitparams_select.options:
|
||||
if elem[0] == sel_tag:
|
||||
fitparams_select.options.remove(elem)
|
||||
break
|
||||
|
||||
_update_table()
|
||||
fitparams_select.value = []
|
||||
|
||||
sel_ind = scan_table_source.selected.indices[-1]
|
||||
_update_plot(scan_table_source.data["scan"][sel_ind])
|
||||
fitparams_remove_button = Button(label="Remove fit function", width=145, disabled=True)
|
||||
fitparams_remove_button.on_click(fitparams_remove_button_callback)
|
||||
|
||||
peakfind_all_button = Button(label="Peak Find All", button_type="primary", default_size=145)
|
||||
peakfind_all_button.on_click(peakfind_all_button_callback)
|
||||
def fitparams_factory(function):
|
||||
if function == "linear":
|
||||
params = ["slope", "intercept"]
|
||||
elif function == "gaussian":
|
||||
params = ["amplitude", "center", "sigma"]
|
||||
elif function == "voigt":
|
||||
params = ["amplitude", "center", "sigma", "gamma"]
|
||||
elif function == "pvoigt":
|
||||
params = ["amplitude", "center", "sigma", "fraction"]
|
||||
elif function == "pseudovoigt1":
|
||||
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
|
||||
else:
|
||||
raise ValueError("Unknown fit function")
|
||||
|
||||
def peakfind_button_callback():
|
||||
sel_ind = scan_table_source.selected.indices[-1]
|
||||
scan = scan_table_source.data["scan"][sel_ind]
|
||||
pyzebra.ccl_findpeaks(
|
||||
det_data["scan"][scan],
|
||||
int_threshold=peak_int_ratio_spinner.value,
|
||||
prominence=peak_prominence_spinner.value,
|
||||
smooth=smooth_toggle.active,
|
||||
window_size=window_size_spinner.value,
|
||||
poly_order=poly_order_spinner.value,
|
||||
n = len(params)
|
||||
fitparams = dict(
|
||||
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
|
||||
)
|
||||
|
||||
_update_table()
|
||||
_update_plot(scan)
|
||||
if function == "linear":
|
||||
fitparams["value"] = [0, 1]
|
||||
fitparams["vary"] = [False, True]
|
||||
fitparams["min"] = [None, 0]
|
||||
|
||||
peakfind_button = Button(label="Peak Find Current", default_size=145)
|
||||
peakfind_button.on_click(peakfind_button_callback)
|
||||
elif function == "gaussian":
|
||||
fitparams["min"] = [0, None, None]
|
||||
|
||||
return fitparams
|
||||
|
||||
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
|
||||
fitparams_table = DataTable(
|
||||
source=fitparams_table_source,
|
||||
columns=[
|
||||
TableColumn(field="param", title="Parameter"),
|
||||
TableColumn(field="value", title="Value", editor=NumberEditor()),
|
||||
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
|
||||
TableColumn(field="min", title="Min", editor=NumberEditor()),
|
||||
TableColumn(field="max", title="Max", editor=NumberEditor()),
|
||||
],
|
||||
height=200,
|
||||
width=350,
|
||||
index_position=None,
|
||||
editable=True,
|
||||
auto_edit=True,
|
||||
)
|
||||
|
||||
# start with `background` and `gauss` fit functions added
|
||||
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
|
||||
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
|
||||
fitparams_select.value = ["gaussian-1"] # add selection to gauss
|
||||
|
||||
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
|
||||
|
||||
def fit_all_button_callback():
|
||||
for scan in det_data["scan"].values():
|
||||
pyzebra.fitccl(
|
||||
scan,
|
||||
guess=[
|
||||
centre_guess.value,
|
||||
sigma_guess.value,
|
||||
ampl_guess.value,
|
||||
slope_guess.value,
|
||||
offset_guess.value,
|
||||
],
|
||||
vary=[
|
||||
centre_vary.active,
|
||||
sigma_vary.active,
|
||||
ampl_vary.active,
|
||||
slope_vary.active,
|
||||
offset_vary.active,
|
||||
],
|
||||
constraints_min=[
|
||||
centre_min.value,
|
||||
sigma_min.value,
|
||||
ampl_min.value,
|
||||
slope_min.value,
|
||||
offset_min.value,
|
||||
],
|
||||
constraints_max=[
|
||||
centre_max.value,
|
||||
sigma_max.value,
|
||||
ampl_max.value,
|
||||
slope_max.value,
|
||||
offset_max.value,
|
||||
],
|
||||
numfit_min=integ_from.value,
|
||||
numfit_max=integ_to.value,
|
||||
)
|
||||
for scan, export in zip(det_data, scan_table_source.data["export"]):
|
||||
if export:
|
||||
pyzebra.fit_scan(
|
||||
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
|
||||
)
|
||||
|
||||
sel_ind = scan_table_source.selected.indices[-1]
|
||||
_update_plot(scan_table_source.data["scan"][sel_ind])
|
||||
_update_plot(_get_selected_scan())
|
||||
_update_table()
|
||||
|
||||
fit_all_button = Button(label="Fit All", button_type="primary", default_size=145)
|
||||
fit_all_button = Button(label="Fit All", button_type="primary", width=145)
|
||||
fit_all_button.on_click(fit_all_button_callback)
|
||||
|
||||
def fit_button_callback():
|
||||
sel_ind = scan_table_source.selected.indices[-1]
|
||||
scan = scan_table_source.data["scan"][sel_ind]
|
||||
|
||||
pyzebra.fitccl(
|
||||
det_data["scan"][scan],
|
||||
guess=[
|
||||
centre_guess.value,
|
||||
sigma_guess.value,
|
||||
ampl_guess.value,
|
||||
slope_guess.value,
|
||||
offset_guess.value,
|
||||
],
|
||||
vary=[
|
||||
centre_vary.active,
|
||||
sigma_vary.active,
|
||||
ampl_vary.active,
|
||||
slope_vary.active,
|
||||
offset_vary.active,
|
||||
],
|
||||
constraints_min=[
|
||||
centre_min.value,
|
||||
sigma_min.value,
|
||||
ampl_min.value,
|
||||
slope_min.value,
|
||||
offset_min.value,
|
||||
],
|
||||
constraints_max=[
|
||||
centre_max.value,
|
||||
sigma_max.value,
|
||||
ampl_max.value,
|
||||
slope_max.value,
|
||||
offset_max.value,
|
||||
],
|
||||
numfit_min=integ_from.value,
|
||||
numfit_max=integ_to.value,
|
||||
scan = _get_selected_scan()
|
||||
pyzebra.fit_scan(
|
||||
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
|
||||
)
|
||||
|
||||
_update_plot(scan)
|
||||
_update_table()
|
||||
|
||||
fit_button = Button(label="Fit Current", default_size=145)
|
||||
fit_button = Button(label="Fit Current", width=145)
|
||||
fit_button.on_click(fit_button_callback)
|
||||
|
||||
def area_method_radiobutton_callback(_attr, _old, new):
|
||||
det_data["meta"]["area_method"] = ("fit", "integ")[new]
|
||||
def area_method_radiobutton_callback(_handler):
|
||||
_update_preview()
|
||||
|
||||
area_method_radiobutton = RadioButtonGroup(
|
||||
labels=["Fit", "Integral"], active=0, default_size=145
|
||||
labels=["Fit area", "Int area"], active=0, width=145, disabled=True
|
||||
)
|
||||
area_method_radiobutton.on_change("active", area_method_radiobutton_callback)
|
||||
area_method_radiobutton.on_click(area_method_radiobutton_callback)
|
||||
|
||||
preview_output_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
|
||||
def lorentz_checkbox_callback(_handler):
|
||||
_update_preview()
|
||||
|
||||
def preview_output_button_callback():
|
||||
if det_data["meta"]["indices"] == "hkl":
|
||||
ext = ".comm"
|
||||
elif det_data["meta"]["indices"] == "real":
|
||||
ext = ".incomm"
|
||||
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=[13, 5, 5, 5])
|
||||
lorentz_checkbox.on_click(lorentz_checkbox_callback)
|
||||
|
||||
export_preview_textinput = TextAreaInput(title="Export file preview:", width=500, height=400)
|
||||
|
||||
def _update_preview():
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_file = temp_dir + "/temp"
|
||||
pyzebra.export_comm(det_data, temp_file)
|
||||
export_data = []
|
||||
for s, export in zip(det_data, scan_table_source.data["export"]):
|
||||
if export:
|
||||
export_data.append(s)
|
||||
|
||||
with open(f"{temp_file}{ext}") as f:
|
||||
preview_output_textinput.value = f.read()
|
||||
pyzebra.export_1D(
|
||||
export_data,
|
||||
temp_file,
|
||||
area_method=AREA_METHODS[int(area_method_radiobutton.active)],
|
||||
lorentz=bool(lorentz_checkbox.active),
|
||||
hkl_precision=int(hkl_precision_select.value),
|
||||
)
|
||||
|
||||
preview_output_button = Button(label="Preview file", default_size=220)
|
||||
preview_output_button.on_click(preview_output_button_callback)
|
||||
exported_content = ""
|
||||
file_content = []
|
||||
for ext in (".comm", ".incomm"):
|
||||
fname = temp_file + ext
|
||||
if os.path.isfile(fname):
|
||||
with open(fname) as f:
|
||||
content = f.read()
|
||||
exported_content += f"{ext} file:\n" + content
|
||||
else:
|
||||
content = ""
|
||||
file_content.append(content)
|
||||
|
||||
def export_results(det_data):
|
||||
if det_data["meta"]["indices"] == "hkl":
|
||||
ext = ".comm"
|
||||
elif det_data["meta"]["indices"] == "real":
|
||||
ext = ".incomm"
|
||||
js_data.data.update(content=file_content)
|
||||
export_preview_textinput.value = exported_content
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_file = temp_dir + "/temp"
|
||||
pyzebra.export_comm(det_data, temp_file)
|
||||
def hkl_precision_select_callback(_attr, _old, _new):
|
||||
_update_preview()
|
||||
|
||||
with open(f"{temp_file}{ext}") as f:
|
||||
output_content = f.read()
|
||||
hkl_precision_select = Select(
|
||||
title="hkl precision:", options=["2", "3", "4"], value="2", width=80
|
||||
)
|
||||
hkl_precision_select.on_change("value", hkl_precision_select_callback)
|
||||
|
||||
return output_content, ext
|
||||
|
||||
def save_button_callback():
|
||||
cont, ext = export_results(det_data)
|
||||
js_data.data.update(cont=[cont], ext=[ext])
|
||||
|
||||
save_button = Button(label="Download file", button_type="success", default_size=220)
|
||||
save_button.on_click(save_button_callback)
|
||||
save_button = Button(label="Download File", button_type="success", width=200)
|
||||
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
|
||||
|
||||
findpeak_controls = column(
|
||||
row(peak_pos_textinput, column(Spacer(height=19), smooth_toggle)),
|
||||
row(peak_int_ratio_spinner, peak_prominence_spinner),
|
||||
row(window_size_spinner, poly_order_spinner),
|
||||
row(peakfind_button, peakfind_all_button),
|
||||
)
|
||||
|
||||
div_1 = Div(text="Guess:")
|
||||
div_2 = Div(text="Vary:")
|
||||
div_3 = Div(text="Min:")
|
||||
div_4 = Div(text="Max:")
|
||||
div_5 = Div(text="Gauss Centre:", margin=[5, 5, -5, 5])
|
||||
div_6 = Div(text="Gauss Sigma:", margin=[5, 5, -5, 5])
|
||||
div_7 = Div(text="Gauss Ampl.:", margin=[5, 5, -5, 5])
|
||||
div_8 = Div(text="Slope:", margin=[5, 5, -5, 5])
|
||||
div_9 = Div(text="Offset:", margin=[5, 5, -5, 5])
|
||||
fitpeak_controls = row(
|
||||
column(
|
||||
Spacer(height=36),
|
||||
div_1,
|
||||
Spacer(height=12),
|
||||
div_2,
|
||||
Spacer(height=12),
|
||||
div_3,
|
||||
Spacer(height=12),
|
||||
div_4,
|
||||
),
|
||||
column(div_5, centre_guess, centre_vary, centre_min, centre_max),
|
||||
column(div_6, sigma_guess, sigma_vary, sigma_min, sigma_max),
|
||||
column(div_7, ampl_guess, ampl_vary, ampl_min, ampl_max),
|
||||
column(div_8, slope_guess, slope_vary, slope_min, slope_max),
|
||||
column(div_9, offset_guess, offset_vary, offset_min, offset_max),
|
||||
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
|
||||
fitparams_table,
|
||||
Spacer(width=20),
|
||||
column(
|
||||
row(integ_from, integ_to),
|
||||
row(fitparam_reset_button, area_method_radiobutton),
|
||||
row(fit_from_spinner, fit_to_spinner),
|
||||
row(area_method_radiobutton, lorentz_checkbox),
|
||||
row(fit_button, fit_all_button),
|
||||
),
|
||||
)
|
||||
|
||||
export_layout = column(preview_output_textinput, row(preview_output_button, save_button))
|
||||
scan_layout = column(
|
||||
scan_table,
|
||||
monitor_spinner,
|
||||
row(column(Spacer(height=19), merge_button), merge_dest_select, merge_source_select),
|
||||
)
|
||||
|
||||
import_layout = column(
|
||||
proposal_textinput,
|
||||
file_select,
|
||||
row(file_open_button, file_append_button),
|
||||
upload_div,
|
||||
upload_button,
|
||||
append_upload_div,
|
||||
append_upload_button,
|
||||
)
|
||||
|
||||
export_layout = column(
|
||||
export_preview_textinput,
|
||||
row(hkl_precision_select, column(Spacer(height=19), row(save_button))),
|
||||
)
|
||||
|
||||
upload_div = Div(text="Or upload .ccl file:")
|
||||
tab_layout = column(
|
||||
row(proposal_textinput, ccl_file_select),
|
||||
row(column(Spacer(height=5), upload_div), upload_button),
|
||||
row(scan_table, plot, Spacer(width=30), fit_output_textinput, export_layout),
|
||||
row(findpeak_controls, Spacer(width=30), fitpeak_controls),
|
||||
row(import_layout, scan_layout, plot, Spacer(width=30), export_layout),
|
||||
row(fitpeak_controls, fit_output_textinput),
|
||||
)
|
||||
|
||||
return Panel(child=tab_layout, title="ccl integrate")
|
||||
|
@ -1,5 +1,6 @@
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
|
||||
@ -10,8 +11,9 @@ from bokeh.models import (
|
||||
Div,
|
||||
FileInput,
|
||||
Panel,
|
||||
RadioButtonGroup,
|
||||
Select,
|
||||
Spacer,
|
||||
Tabs,
|
||||
TextAreaInput,
|
||||
TextInput,
|
||||
)
|
||||
@ -21,13 +23,14 @@ from pyzebra.anatric import DATA_FACTORY_IMPLEMENTATION, REFLECTION_PRINTER_FORM
|
||||
|
||||
|
||||
def create():
|
||||
doc = curdoc()
|
||||
config = pyzebra.AnatricConfig()
|
||||
|
||||
def _load_config_file(file):
|
||||
config.load_from_file(file)
|
||||
|
||||
logfile_textinput.value = config.logfile
|
||||
logfile_verbosity_select.value = config.logfile_verbosity
|
||||
logfile_verbosity.value = config.logfile_verbosity
|
||||
|
||||
filelist_type.value = config.filelist_type
|
||||
filelist_format_textinput.value = config.filelist_format
|
||||
@ -42,11 +45,16 @@ def create():
|
||||
ub_textareainput.value = config.crystal_UB
|
||||
|
||||
dataFactory_implementation_select.value = config.dataFactory_implementation
|
||||
dataFactory_dist1_textinput.value = config.dataFactory_dist1
|
||||
if config.dataFactory_dist1 is not None:
|
||||
dataFactory_dist1_textinput.value = config.dataFactory_dist1
|
||||
if config.dataFactory_dist2 is not None:
|
||||
dataFactory_dist2_textinput.value = config.dataFactory_dist2
|
||||
if config.dataFactory_dist3 is not None:
|
||||
dataFactory_dist3_textinput.value = config.dataFactory_dist3
|
||||
reflectionPrinter_format_select.value = config.reflectionPrinter_format
|
||||
|
||||
set_active_widgets(config.algorithm)
|
||||
if config.algorithm == "adaptivemaxcog":
|
||||
algorithm_params.active = 0
|
||||
threshold_textinput.value = config.threshold
|
||||
shell_textinput.value = config.shell
|
||||
steepness_textinput.value = config.steepness
|
||||
@ -55,6 +63,7 @@ def create():
|
||||
aps_window_textinput.value = str(tuple(map(int, config.aps_window.values())))
|
||||
|
||||
elif config.algorithm == "adaptivedynamic":
|
||||
algorithm_params.active = 1
|
||||
adm_window_textinput.value = str(tuple(map(int, config.adm_window.values())))
|
||||
border_textinput.value = str(tuple(map(int, config.border.values())))
|
||||
minWindow_textinput.value = str(tuple(map(int, config.minWindow.values())))
|
||||
@ -64,46 +73,16 @@ def create():
|
||||
loop_textinput.value = config.loop
|
||||
minPeakCount_textinput.value = config.minPeakCount
|
||||
displacementCurve_textinput.value = "\n".join(map(str, config.displacementCurve))
|
||||
|
||||
else:
|
||||
raise ValueError("Unknown processing mode.")
|
||||
|
||||
def set_active_widgets(implementation):
|
||||
if implementation == "adaptivemaxcog":
|
||||
mode_radio_button_group.active = 0
|
||||
disable_adaptivemaxcog = False
|
||||
disable_adaptivedynamic = True
|
||||
|
||||
elif implementation == "adaptivedynamic":
|
||||
mode_radio_button_group.active = 1
|
||||
disable_adaptivemaxcog = True
|
||||
disable_adaptivedynamic = False
|
||||
else:
|
||||
raise ValueError("Implementation can be either 'adaptivemaxcog' or 'adaptivedynamic'")
|
||||
|
||||
threshold_textinput.disabled = disable_adaptivemaxcog
|
||||
shell_textinput.disabled = disable_adaptivemaxcog
|
||||
steepness_textinput.disabled = disable_adaptivemaxcog
|
||||
duplicateDistance_textinput.disabled = disable_adaptivemaxcog
|
||||
maxequal_textinput.disabled = disable_adaptivemaxcog
|
||||
aps_window_textinput.disabled = disable_adaptivemaxcog
|
||||
|
||||
adm_window_textinput.disabled = disable_adaptivedynamic
|
||||
border_textinput.disabled = disable_adaptivedynamic
|
||||
minWindow_textinput.disabled = disable_adaptivedynamic
|
||||
reflectionFile_textinput.disabled = disable_adaptivedynamic
|
||||
targetMonitor_textinput.disabled = disable_adaptivedynamic
|
||||
smoothSize_textinput.disabled = disable_adaptivedynamic
|
||||
loop_textinput.disabled = disable_adaptivedynamic
|
||||
minPeakCount_textinput.disabled = disable_adaptivedynamic
|
||||
displacementCurve_textinput.disabled = disable_adaptivedynamic
|
||||
|
||||
upload_div = Div(text="Open XML configuration file:")
|
||||
|
||||
def upload_button_callback(_attr, _old, new):
|
||||
with io.BytesIO(base64.b64decode(new)) as file:
|
||||
_load_config_file(file)
|
||||
|
||||
upload_button = FileInput(accept=".xml")
|
||||
upload_div = Div(text="Open .xml config:")
|
||||
upload_button = FileInput(accept=".xml", width=200)
|
||||
upload_button.on_change("value", upload_button_callback)
|
||||
|
||||
# General parameters
|
||||
@ -111,16 +90,14 @@ def create():
|
||||
def logfile_textinput_callback(_attr, _old, new):
|
||||
config.logfile = new
|
||||
|
||||
logfile_textinput = TextInput(title="Logfile:", value="logfile.log", width=520)
|
||||
logfile_textinput = TextInput(title="Logfile:", value="logfile.log")
|
||||
logfile_textinput.on_change("value", logfile_textinput_callback)
|
||||
|
||||
def logfile_verbosity_select_callback(_attr, _old, new):
|
||||
def logfile_verbosity_callback(_attr, _old, new):
|
||||
config.logfile_verbosity = new
|
||||
|
||||
logfile_verbosity_select = Select(
|
||||
title="verbosity:", options=["0", "5", "10", "15", "30"], width=70
|
||||
)
|
||||
logfile_verbosity_select.on_change("value", logfile_verbosity_select_callback)
|
||||
logfile_verbosity = TextInput(title="verbosity:", width=70)
|
||||
logfile_verbosity.on_change("value", logfile_verbosity_callback)
|
||||
|
||||
# ---- FileList
|
||||
def filelist_type_callback(_attr, _old, new):
|
||||
@ -132,7 +109,7 @@ def create():
|
||||
def filelist_format_textinput_callback(_attr, _old, new):
|
||||
config.filelist_format = new
|
||||
|
||||
filelist_format_textinput = TextInput(title="format:", width=490)
|
||||
filelist_format_textinput = TextInput(title="format:", width=290)
|
||||
filelist_format_textinput.on_change("value", filelist_format_textinput_callback)
|
||||
|
||||
def filelist_datapath_textinput_callback(_attr, _old, new):
|
||||
@ -147,20 +124,20 @@ def create():
|
||||
ranges.append(re.findall(r"\b\d+\b", line))
|
||||
config.filelist_ranges = ranges
|
||||
|
||||
filelist_ranges_textareainput = TextAreaInput(title="ranges:", height=100)
|
||||
filelist_ranges_textareainput = TextAreaInput(title="ranges:", rows=1)
|
||||
filelist_ranges_textareainput.on_change("value", filelist_ranges_textareainput_callback)
|
||||
|
||||
# ---- crystal
|
||||
def crystal_sample_textinput_callback(_attr, _old, new):
|
||||
config.crystal_sample = new
|
||||
|
||||
crystal_sample_textinput = TextInput(title="Sample Name:")
|
||||
crystal_sample_textinput = TextInput(title="Sample Name:", width=290)
|
||||
crystal_sample_textinput.on_change("value", crystal_sample_textinput_callback)
|
||||
|
||||
def lambda_textinput_callback(_attr, _old, new):
|
||||
config.crystal_lambda = new
|
||||
|
||||
lambda_textinput = TextInput(title="lambda:", width=140)
|
||||
lambda_textinput = TextInput(title="lambda:", width=100)
|
||||
lambda_textinput.on_change("value", lambda_textinput_callback)
|
||||
|
||||
def ub_textareainput_callback(_attr, _old, new):
|
||||
@ -172,19 +149,19 @@ def create():
|
||||
def zeroOM_textinput_callback(_attr, _old, new):
|
||||
config.crystal_zeroOM = new
|
||||
|
||||
zeroOM_textinput = TextInput(title="zeroOM:", width=140)
|
||||
zeroOM_textinput = TextInput(title="zeroOM:", width=100)
|
||||
zeroOM_textinput.on_change("value", zeroOM_textinput_callback)
|
||||
|
||||
def zeroSTT_textinput_callback(_attr, _old, new):
|
||||
config.crystal_zeroSTT = new
|
||||
|
||||
zeroSTT_textinput = TextInput(title="zeroSTT:", width=140)
|
||||
zeroSTT_textinput = TextInput(title="zeroSTT:", width=100)
|
||||
zeroSTT_textinput.on_change("value", zeroSTT_textinput_callback)
|
||||
|
||||
def zeroCHI_textinput_callback(_attr, _old, new):
|
||||
config.crystal_zeroCHI = new
|
||||
|
||||
zeroCHI_textinput = TextInput(title="zeroCHI:", width=140)
|
||||
zeroCHI_textinput = TextInput(title="zeroCHI:", width=100)
|
||||
zeroCHI_textinput.on_change("value", zeroCHI_textinput_callback)
|
||||
|
||||
# ---- DataFactory
|
||||
@ -192,16 +169,28 @@ def create():
|
||||
config.dataFactory_implementation = new
|
||||
|
||||
dataFactory_implementation_select = Select(
|
||||
title="DataFactory implementation:", options=DATA_FACTORY_IMPLEMENTATION, width=300,
|
||||
title="DataFactory implement.:", options=DATA_FACTORY_IMPLEMENTATION, width=145,
|
||||
)
|
||||
dataFactory_implementation_select.on_change("value", dataFactory_implementation_select_callback)
|
||||
|
||||
def dataFactory_dist1_textinput_callback(_attr, _old, new):
|
||||
config.dataFactory_dist1 = new
|
||||
|
||||
dataFactory_dist1_textinput = TextInput(title="dist1:", width=290)
|
||||
dataFactory_dist1_textinput = TextInput(title="dist1:", width=75)
|
||||
dataFactory_dist1_textinput.on_change("value", dataFactory_dist1_textinput_callback)
|
||||
|
||||
def dataFactory_dist2_textinput_callback(_attr, _old, new):
|
||||
config.dataFactory_dist2 = new
|
||||
|
||||
dataFactory_dist2_textinput = TextInput(title="dist2:", width=75)
|
||||
dataFactory_dist2_textinput.on_change("value", dataFactory_dist2_textinput_callback)
|
||||
|
||||
def dataFactory_dist3_textinput_callback(_attr, _old, new):
|
||||
config.dataFactory_dist3 = new
|
||||
|
||||
dataFactory_dist3_textinput = TextInput(title="dist3:", width=75)
|
||||
dataFactory_dist3_textinput.on_change("value", dataFactory_dist3_textinput_callback)
|
||||
|
||||
# ---- BackgroundProcessor
|
||||
|
||||
# ---- DetectorEfficency
|
||||
@ -211,7 +200,7 @@ def create():
|
||||
config.reflectionPrinter_format = new
|
||||
|
||||
reflectionPrinter_format_select = Select(
|
||||
title="ReflectionPrinter format:", options=REFLECTION_PRINTER_FORMATS, width=300,
|
||||
title="ReflectionPrinter format:", options=REFLECTION_PRINTER_FORMATS, width=145,
|
||||
)
|
||||
reflectionPrinter_format_select.on_change("value", reflectionPrinter_format_select_callback)
|
||||
|
||||
@ -220,42 +209,42 @@ def create():
|
||||
def threshold_textinput_callback(_attr, _old, new):
|
||||
config.threshold = new
|
||||
|
||||
threshold_textinput = TextInput(title="Threshold:")
|
||||
threshold_textinput = TextInput(title="Threshold:", width=145)
|
||||
threshold_textinput.on_change("value", threshold_textinput_callback)
|
||||
|
||||
# ---- shell
|
||||
def shell_textinput_callback(_attr, _old, new):
|
||||
config.shell = new
|
||||
|
||||
shell_textinput = TextInput(title="Shell:")
|
||||
shell_textinput = TextInput(title="Shell:", width=145)
|
||||
shell_textinput.on_change("value", shell_textinput_callback)
|
||||
|
||||
# ---- steepness
|
||||
def steepness_textinput_callback(_attr, _old, new):
|
||||
config.steepness = new
|
||||
|
||||
steepness_textinput = TextInput(title="Steepness:")
|
||||
steepness_textinput = TextInput(title="Steepness:", width=145)
|
||||
steepness_textinput.on_change("value", steepness_textinput_callback)
|
||||
|
||||
# ---- duplicateDistance
|
||||
def duplicateDistance_textinput_callback(_attr, _old, new):
|
||||
config.duplicateDistance = new
|
||||
|
||||
duplicateDistance_textinput = TextInput(title="Duplicate Distance:")
|
||||
duplicateDistance_textinput = TextInput(title="Duplicate Distance:", width=145)
|
||||
duplicateDistance_textinput.on_change("value", duplicateDistance_textinput_callback)
|
||||
|
||||
# ---- maxequal
|
||||
def maxequal_textinput_callback(_attr, _old, new):
|
||||
config.maxequal = new
|
||||
|
||||
maxequal_textinput = TextInput(title="Max Equal:")
|
||||
maxequal_textinput = TextInput(title="Max Equal:", width=145)
|
||||
maxequal_textinput.on_change("value", maxequal_textinput_callback)
|
||||
|
||||
# ---- window
|
||||
def aps_window_textinput_callback(_attr, _old, new):
|
||||
config.aps_window = dict(zip(("x", "y", "z"), re.findall(r"\b\d+\b", new)))
|
||||
|
||||
aps_window_textinput = TextInput(title="Window (x, y, z):")
|
||||
aps_window_textinput = TextInput(title="Window (x, y, z):", width=145)
|
||||
aps_window_textinput.on_change("value", aps_window_textinput_callback)
|
||||
|
||||
# Adaptive Dynamic Mask Integration (adaptivedynamic)
|
||||
@ -263,56 +252,56 @@ def create():
|
||||
def adm_window_textinput_callback(_attr, _old, new):
|
||||
config.adm_window = dict(zip(("x", "y", "z"), re.findall(r"\b\d+\b", new)))
|
||||
|
||||
adm_window_textinput = TextInput(title="Window (x, y, z):")
|
||||
adm_window_textinput = TextInput(title="Window (x, y, z):", width=145)
|
||||
adm_window_textinput.on_change("value", adm_window_textinput_callback)
|
||||
|
||||
# ---- border
|
||||
def border_textinput_callback(_attr, _old, new):
|
||||
config.border = dict(zip(("x", "y", "z"), re.findall(r"\b\d+\b", new)))
|
||||
|
||||
border_textinput = TextInput(title="Border (x, y, z):")
|
||||
border_textinput = TextInput(title="Border (x, y, z):", width=145)
|
||||
border_textinput.on_change("value", border_textinput_callback)
|
||||
|
||||
# ---- minWindow
|
||||
def minWindow_textinput_callback(_attr, _old, new):
|
||||
config.minWindow = dict(zip(("x", "y", "z"), re.findall(r"\b\d+\b", new)))
|
||||
|
||||
minWindow_textinput = TextInput(title="Min Window (x, y, z):")
|
||||
minWindow_textinput = TextInput(title="Min Window (x, y, z):", width=145)
|
||||
minWindow_textinput.on_change("value", minWindow_textinput_callback)
|
||||
|
||||
# ---- reflectionFile
|
||||
def reflectionFile_textinput_callback(_attr, _old, new):
|
||||
config.reflectionFile = new
|
||||
|
||||
reflectionFile_textinput = TextInput(title="Reflection File:")
|
||||
reflectionFile_textinput = TextInput(title="Reflection File:", width=145)
|
||||
reflectionFile_textinput.on_change("value", reflectionFile_textinput_callback)
|
||||
|
||||
# ---- targetMonitor
|
||||
def targetMonitor_textinput_callback(_attr, _old, new):
|
||||
config.targetMonitor = new
|
||||
|
||||
targetMonitor_textinput = TextInput(title="Target Monitor:")
|
||||
targetMonitor_textinput = TextInput(title="Target Monitor:", width=145)
|
||||
targetMonitor_textinput.on_change("value", targetMonitor_textinput_callback)
|
||||
|
||||
# ---- smoothSize
|
||||
def smoothSize_textinput_callback(_attr, _old, new):
|
||||
config.smoothSize = new
|
||||
|
||||
smoothSize_textinput = TextInput(title="Smooth Size:")
|
||||
smoothSize_textinput = TextInput(title="Smooth Size:", width=145)
|
||||
smoothSize_textinput.on_change("value", smoothSize_textinput_callback)
|
||||
|
||||
# ---- loop
|
||||
def loop_textinput_callback(_attr, _old, new):
|
||||
config.loop = new
|
||||
|
||||
loop_textinput = TextInput(title="Loop:")
|
||||
loop_textinput = TextInput(title="Loop:", width=145)
|
||||
loop_textinput.on_change("value", loop_textinput_callback)
|
||||
|
||||
# ---- minPeakCount
|
||||
def minPeakCount_textinput_callback(_attr, _old, new):
|
||||
config.minPeakCount = new
|
||||
|
||||
minPeakCount_textinput = TextInput(title="Min Peak Count:")
|
||||
minPeakCount_textinput = TextInput(title="Min Peak Count:", width=145)
|
||||
minPeakCount_textinput.on_change("value", minPeakCount_textinput_callback)
|
||||
|
||||
# ---- displacementCurve
|
||||
@ -323,87 +312,86 @@ def create():
|
||||
config.displacementCurve = maps
|
||||
|
||||
displacementCurve_textinput = TextAreaInput(
|
||||
title="Displacement Curve (twotheta, x, y):", height=100
|
||||
title="Displ. Curve (2θ, x, y):", width=145, height=100
|
||||
)
|
||||
displacementCurve_textinput.on_change("value", displacementCurve_textinput_callback)
|
||||
|
||||
def mode_radio_button_group_callback(active):
|
||||
if active == 0:
|
||||
def algorithm_tabs_callback(_attr, _old, new):
|
||||
if new == 0:
|
||||
config.algorithm = "adaptivemaxcog"
|
||||
set_active_widgets("adaptivemaxcog")
|
||||
else:
|
||||
config.algorithm = "adaptivedynamic"
|
||||
set_active_widgets("adaptivedynamic")
|
||||
|
||||
mode_radio_button_group = RadioButtonGroup(
|
||||
labels=["Adaptive Peak Detection", "Adaptive Dynamic Integration"], active=0
|
||||
algorithm_params = Tabs(
|
||||
tabs=[
|
||||
Panel(
|
||||
child=column(
|
||||
row(threshold_textinput, shell_textinput, steepness_textinput),
|
||||
row(duplicateDistance_textinput, maxequal_textinput, aps_window_textinput),
|
||||
),
|
||||
title="Peak Search",
|
||||
),
|
||||
Panel(
|
||||
child=column(
|
||||
row(adm_window_textinput, border_textinput, minWindow_textinput),
|
||||
row(reflectionFile_textinput, targetMonitor_textinput, smoothSize_textinput),
|
||||
row(loop_textinput, minPeakCount_textinput, displacementCurve_textinput),
|
||||
),
|
||||
title="Dynamic Integration",
|
||||
),
|
||||
]
|
||||
)
|
||||
mode_radio_button_group.on_click(mode_radio_button_group_callback)
|
||||
set_active_widgets("adaptivemaxcog")
|
||||
algorithm_params.on_change("active", algorithm_tabs_callback)
|
||||
|
||||
def process_button_callback():
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_file = temp_dir + "/temp.xml"
|
||||
temp_file = temp_dir + "/config.xml"
|
||||
config.save_as(temp_file)
|
||||
pyzebra.anatric(temp_file)
|
||||
if doc.anatric_path:
|
||||
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path, cwd=temp_dir)
|
||||
else:
|
||||
pyzebra.anatric(temp_file, cwd=temp_dir)
|
||||
|
||||
with open(config.logfile) as f_log:
|
||||
with open(os.path.join(temp_dir, config.logfile)) as f_log:
|
||||
output_log.value = f_log.read()
|
||||
|
||||
with open(os.path.join(temp_dir, config.reflectionPrinter_file)) as f_res:
|
||||
output_res.value = f_res.read()
|
||||
|
||||
process_button = Button(label="Process", button_type="primary")
|
||||
process_button.on_click(process_button_callback)
|
||||
|
||||
output_log = TextAreaInput(title="Logfile output:", height=700, disabled=True)
|
||||
output_config = TextAreaInput(title="Current config:", height=700, width=400, disabled=True)
|
||||
output_log = TextAreaInput(title="Logfile output:", height=320, width=465, disabled=True)
|
||||
output_res = TextAreaInput(title="Result output:", height=320, width=465, disabled=True)
|
||||
output_config = TextAreaInput(title="Current config:", height=320, width=465, disabled=True)
|
||||
|
||||
general_params_layout = column(
|
||||
row(column(Spacer(height=2), upload_div), upload_button),
|
||||
row(logfile_textinput, logfile_verbosity),
|
||||
row(filelist_type, filelist_format_textinput),
|
||||
filelist_datapath_textinput,
|
||||
filelist_ranges_textareainput,
|
||||
row(crystal_sample_textinput, lambda_textinput),
|
||||
ub_textareainput,
|
||||
row(zeroOM_textinput, zeroSTT_textinput, zeroCHI_textinput),
|
||||
row(
|
||||
dataFactory_implementation_select,
|
||||
dataFactory_dist1_textinput,
|
||||
dataFactory_dist2_textinput,
|
||||
dataFactory_dist3_textinput,
|
||||
),
|
||||
row(reflectionPrinter_format_select),
|
||||
)
|
||||
|
||||
tab_layout = row(
|
||||
column(
|
||||
upload_div,
|
||||
upload_button,
|
||||
row(logfile_textinput, logfile_verbosity_select),
|
||||
row(filelist_type, filelist_format_textinput),
|
||||
filelist_datapath_textinput,
|
||||
filelist_ranges_textareainput,
|
||||
crystal_sample_textinput,
|
||||
row(lambda_textinput, zeroOM_textinput, zeroSTT_textinput, zeroCHI_textinput),
|
||||
ub_textareainput,
|
||||
row(dataFactory_implementation_select, dataFactory_dist1_textinput),
|
||||
reflectionPrinter_format_select,
|
||||
process_button,
|
||||
),
|
||||
column(
|
||||
mode_radio_button_group,
|
||||
row(
|
||||
column(
|
||||
threshold_textinput,
|
||||
shell_textinput,
|
||||
steepness_textinput,
|
||||
duplicateDistance_textinput,
|
||||
maxequal_textinput,
|
||||
aps_window_textinput,
|
||||
),
|
||||
column(
|
||||
adm_window_textinput,
|
||||
border_textinput,
|
||||
minWindow_textinput,
|
||||
reflectionFile_textinput,
|
||||
targetMonitor_textinput,
|
||||
smoothSize_textinput,
|
||||
loop_textinput,
|
||||
minPeakCount_textinput,
|
||||
displacementCurve_textinput,
|
||||
),
|
||||
),
|
||||
),
|
||||
output_config,
|
||||
output_log,
|
||||
general_params_layout,
|
||||
column(output_config, algorithm_params, row(process_button)),
|
||||
column(output_log, output_res),
|
||||
)
|
||||
|
||||
async def update_config():
|
||||
config.save_as("debug.xml")
|
||||
with open("debug.xml") as f_config:
|
||||
output_config.value = f_config.read()
|
||||
output_config.value = config.tostring()
|
||||
|
||||
curdoc().add_periodic_callback(update_config, 1000)
|
||||
doc.add_periodic_callback(update_config, 1000)
|
||||
|
||||
return Panel(child=tab_layout, title="hdf anatric")
|
||||
|
@ -9,11 +9,15 @@ from bokeh.models import (
|
||||
BoxEditTool,
|
||||
BoxZoomTool,
|
||||
Button,
|
||||
CheckboxGroup,
|
||||
ColumnDataSource,
|
||||
DataRange1d,
|
||||
DataTable,
|
||||
Div,
|
||||
FileInput,
|
||||
Grid,
|
||||
MultiSelect,
|
||||
NumberFormatter,
|
||||
HoverTool,
|
||||
Image,
|
||||
Line,
|
||||
@ -22,16 +26,17 @@ from bokeh.models import (
|
||||
Panel,
|
||||
PanTool,
|
||||
Plot,
|
||||
RadioButtonGroup,
|
||||
Range1d,
|
||||
Rect,
|
||||
ResetTool,
|
||||
Select,
|
||||
Slider,
|
||||
Spacer,
|
||||
Spinner,
|
||||
TableColumn,
|
||||
TextAreaInput,
|
||||
TextInput,
|
||||
Title,
|
||||
Toggle,
|
||||
WheelZoomTool,
|
||||
)
|
||||
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
|
||||
@ -40,20 +45,35 @@ import pyzebra
|
||||
|
||||
IMAGE_W = 256
|
||||
IMAGE_H = 128
|
||||
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
|
||||
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
|
||||
|
||||
|
||||
def create():
|
||||
det_data = {}
|
||||
roi_selection = {}
|
||||
|
||||
def proposal_textinput_callback(_attr, _old, new):
|
||||
proposal = new.strip()
|
||||
year = new[:4]
|
||||
proposal_path = f"/afs/psi.ch/project/sinqdata/{year}/zebra/{proposal}"
|
||||
file_list = []
|
||||
for file in os.listdir(proposal_path):
|
||||
if file.endswith(".hdf"):
|
||||
file_list.append((os.path.join(proposal_path, file), file))
|
||||
file_select.options = file_list
|
||||
|
||||
proposal_textinput = TextInput(title="Proposal number:", width=210)
|
||||
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||
|
||||
def upload_button_callback(_attr, _old, new):
|
||||
with io.StringIO(base64.b64decode(new).decode()) as file:
|
||||
h5meta_list = pyzebra.parse_h5meta(file)
|
||||
file_list = h5meta_list["filelist"]
|
||||
filelist.options = [(entry, os.path.basename(entry)) for entry in file_list]
|
||||
filelist.value = file_list[0]
|
||||
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
|
||||
|
||||
upload_button = FileInput(accept=".cami")
|
||||
upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
|
||||
upload_button = FileInput(accept=".cami", width=200)
|
||||
upload_button.on_change("value", upload_button_callback)
|
||||
|
||||
def update_image(index=None):
|
||||
@ -73,9 +93,9 @@ def create():
|
||||
)
|
||||
image_source.data.update(image=[current_image])
|
||||
|
||||
if auto_toggle.active:
|
||||
im_max = int(np.max(current_image))
|
||||
im_min = int(np.min(current_image))
|
||||
if main_auto_checkbox.active:
|
||||
im_min = np.min(current_image)
|
||||
im_max = np.max(current_image)
|
||||
|
||||
display_min_spinner.value = im_min
|
||||
display_max_spinner.value = im_max
|
||||
@ -83,18 +103,18 @@ def create():
|
||||
image_glyph.color_mapper.low = im_min
|
||||
image_glyph.color_mapper.high = im_max
|
||||
|
||||
if "magnetic_field" in det_data:
|
||||
magnetic_field_spinner.value = det_data["magnetic_field"][index]
|
||||
if "mf" in det_data:
|
||||
metadata_table_source.data.update(mf=[det_data["mf"][index]])
|
||||
else:
|
||||
magnetic_field_spinner.value = None
|
||||
metadata_table_source.data.update(mf=[None])
|
||||
|
||||
if "temperature" in det_data:
|
||||
temperature_spinner.value = det_data["temperature"][index]
|
||||
if "temp" in det_data:
|
||||
metadata_table_source.data.update(temp=[det_data["temp"][index]])
|
||||
else:
|
||||
temperature_spinner.value = None
|
||||
metadata_table_source.data.update(temp=[None])
|
||||
|
||||
gamma, nu = calculate_pol(det_data, index)
|
||||
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["rot_angle"][index]
|
||||
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
|
||||
image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])
|
||||
|
||||
def update_overview_plot():
|
||||
@ -103,12 +123,12 @@ def create():
|
||||
overview_x = np.mean(h5_data, axis=1)
|
||||
overview_y = np.mean(h5_data, axis=2)
|
||||
|
||||
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x])
|
||||
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y])
|
||||
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
|
||||
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
|
||||
|
||||
if proj_auto_toggle.active:
|
||||
im_max = int(max(np.max(overview_x), np.max(overview_y)))
|
||||
im_min = int(min(np.min(overview_x), np.min(overview_y)))
|
||||
if proj_auto_checkbox.active:
|
||||
im_min = min(np.min(overview_x), np.min(overview_y))
|
||||
im_max = max(np.max(overview_x), np.max(overview_y))
|
||||
|
||||
proj_display_min_spinner.value = im_min
|
||||
proj_display_max_spinner.value = im_max
|
||||
@ -118,46 +138,75 @@ def create():
|
||||
overview_plot_x_image_glyph.color_mapper.high = im_max
|
||||
overview_plot_y_image_glyph.color_mapper.high = im_max
|
||||
|
||||
if frame_button_group.active == 0: # Frame
|
||||
overview_plot_x.axis[1].axis_label = "Frame"
|
||||
overview_plot_y.axis[1].axis_label = "Frame"
|
||||
frame_range.start = 0
|
||||
frame_range.end = n_im
|
||||
frame_range.reset_start = 0
|
||||
frame_range.reset_end = n_im
|
||||
frame_range.bounds = (0, n_im)
|
||||
|
||||
overview_plot_x_image_source.data.update(y=[0], dh=[n_im])
|
||||
overview_plot_y_image_source.data.update(y=[0], dh=[n_im])
|
||||
scan_motor = det_data["scan_motor"]
|
||||
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
|
||||
|
||||
elif frame_button_group.active == 1: # Omega
|
||||
overview_plot_x.axis[1].axis_label = "Omega"
|
||||
overview_plot_y.axis[1].axis_label = "Omega"
|
||||
var = det_data[scan_motor]
|
||||
var_start = var[0]
|
||||
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
|
||||
|
||||
om = det_data["rot_angle"]
|
||||
om_start = om[0]
|
||||
om_end = (om[-1] - om[0]) * n_im / (n_im - 1)
|
||||
overview_plot_x_image_source.data.update(y=[om_start], dh=[om_end])
|
||||
overview_plot_y_image_source.data.update(y=[om_start], dh=[om_end])
|
||||
scanning_motor_range.start = var_start
|
||||
scanning_motor_range.end = var_end
|
||||
scanning_motor_range.reset_start = var_start
|
||||
scanning_motor_range.reset_end = var_end
|
||||
scanning_motor_range.bounds = (var_start, var_end)
|
||||
|
||||
def filelist_callback(_attr, _old, new):
|
||||
def file_select_callback(_attr, old, new):
|
||||
nonlocal det_data
|
||||
det_data = pyzebra.read_detector_data(new)
|
||||
if not new:
|
||||
# skip empty selections
|
||||
return
|
||||
|
||||
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||
if len(new) > 1:
|
||||
# drop selection to the previous one
|
||||
file_select.value = old
|
||||
return
|
||||
|
||||
if len(old) > 1:
|
||||
# skip unnecessary update caused by selection drop
|
||||
return
|
||||
|
||||
det_data = pyzebra.read_detector_data(new[0])
|
||||
|
||||
index_spinner.value = 0
|
||||
index_spinner.high = det_data["data"].shape[0] - 1
|
||||
index_slider.end = det_data["data"].shape[0] - 1
|
||||
|
||||
zebra_mode = det_data["zebra_mode"]
|
||||
if zebra_mode == "nb":
|
||||
metadata_table_source.data.update(geom=["normal beam"])
|
||||
else: # zebra_mode == "bi"
|
||||
metadata_table_source.data.update(geom=["bisecting"])
|
||||
|
||||
update_image(0)
|
||||
update_overview_plot()
|
||||
|
||||
filelist = Select()
|
||||
filelist.on_change("value", filelist_callback)
|
||||
file_select = MultiSelect(title="Available .hdf files:", width=210, height=250)
|
||||
file_select.on_change("value", file_select_callback)
|
||||
|
||||
def index_spinner_callback(_attr, _old, new):
|
||||
def index_callback(_attr, _old, new):
|
||||
update_image(new)
|
||||
|
||||
index_spinner = Spinner(title="Image index:", value=0, low=0)
|
||||
index_spinner.on_change("value", index_spinner_callback)
|
||||
index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)
|
||||
|
||||
index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
|
||||
index_spinner.on_change("value", index_callback)
|
||||
|
||||
index_slider.js_link("value_throttled", index_spinner, "value")
|
||||
index_spinner.js_link("value", index_slider, "value")
|
||||
|
||||
plot = Plot(
|
||||
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
|
||||
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
|
||||
plot_height=IMAGE_H * 3,
|
||||
plot_width=IMAGE_W * 3,
|
||||
plot_height=IMAGE_PLOT_H,
|
||||
plot_width=IMAGE_PLOT_W,
|
||||
toolbar_location="left",
|
||||
)
|
||||
|
||||
@ -210,8 +259,8 @@ def create():
|
||||
proj_v = Plot(
|
||||
x_range=plot.x_range,
|
||||
y_range=DataRange1d(),
|
||||
plot_height=200,
|
||||
plot_width=IMAGE_W * 3,
|
||||
plot_height=150,
|
||||
plot_width=IMAGE_PLOT_W,
|
||||
toolbar_location=None,
|
||||
)
|
||||
|
||||
@ -227,8 +276,8 @@ def create():
|
||||
proj_h = Plot(
|
||||
x_range=DataRange1d(),
|
||||
y_range=plot.y_range,
|
||||
plot_height=IMAGE_H * 3,
|
||||
plot_width=200,
|
||||
plot_height=IMAGE_PLOT_H,
|
||||
plot_width=150,
|
||||
toolbar_location=None,
|
||||
)
|
||||
|
||||
@ -284,15 +333,18 @@ def create():
|
||||
)
|
||||
plot.toolbar.active_scroll = wheelzoomtool
|
||||
|
||||
# shared frame range
|
||||
frame_range = DataRange1d()
|
||||
# shared frame ranges
|
||||
frame_range = Range1d(0, 1, bounds=(0, 1))
|
||||
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
|
||||
|
||||
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
|
||||
overview_plot_x = Plot(
|
||||
title=Title(text="Projections on X-axis"),
|
||||
x_range=det_x_range,
|
||||
y_range=frame_range,
|
||||
plot_height=500,
|
||||
plot_width=IMAGE_W * 3,
|
||||
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
||||
plot_height=400,
|
||||
plot_width=IMAGE_PLOT_W - 3,
|
||||
)
|
||||
|
||||
# ---- tools
|
||||
@ -328,8 +380,9 @@ def create():
|
||||
title=Title(text="Projections on Y-axis"),
|
||||
x_range=det_y_range,
|
||||
y_range=frame_range,
|
||||
plot_height=500,
|
||||
plot_width=IMAGE_H * 3,
|
||||
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
||||
plot_height=400,
|
||||
plot_width=IMAGE_PLOT_H + 22,
|
||||
)
|
||||
|
||||
# ---- tools
|
||||
@ -343,7 +396,12 @@ def create():
|
||||
# ---- axes
|
||||
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
|
||||
overview_plot_y.add_layout(
|
||||
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
|
||||
LinearAxis(
|
||||
y_range_name="scanning_motor",
|
||||
axis_label="Scanning motor",
|
||||
major_label_orientation="vertical",
|
||||
),
|
||||
place="right",
|
||||
)
|
||||
|
||||
# ---- grid lines
|
||||
@ -360,17 +418,11 @@ def create():
|
||||
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
|
||||
)
|
||||
|
||||
def frame_button_group_callback(_active):
|
||||
update_overview_plot()
|
||||
|
||||
frame_button_group = RadioButtonGroup(labels=["Frames", "Omega"], active=0)
|
||||
frame_button_group.on_click(frame_button_group_callback)
|
||||
|
||||
roi_avg_plot = Plot(
|
||||
x_range=DataRange1d(),
|
||||
y_range=DataRange1d(),
|
||||
plot_height=200,
|
||||
plot_width=IMAGE_W * 3,
|
||||
plot_height=150,
|
||||
plot_width=IMAGE_PLOT_W,
|
||||
toolbar_location="left",
|
||||
)
|
||||
|
||||
@ -400,16 +452,13 @@ def create():
|
||||
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||
|
||||
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), default_size=145)
|
||||
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), width=210)
|
||||
colormap.on_change("value", colormap_callback)
|
||||
colormap.value = "plasma"
|
||||
|
||||
radio_button_group = RadioButtonGroup(labels=["nb", "nb_bi"], active=0)
|
||||
|
||||
STEP = 1
|
||||
|
||||
# ---- colormap auto toggle button
|
||||
def auto_toggle_callback(state):
|
||||
def main_auto_checkbox_callback(state):
|
||||
if state:
|
||||
display_min_spinner.disabled = True
|
||||
display_max_spinner.disabled = True
|
||||
@ -419,43 +468,43 @@ def create():
|
||||
|
||||
update_image()
|
||||
|
||||
auto_toggle = Toggle(
|
||||
label="Main Auto Range", active=True, button_type="default", default_size=125
|
||||
main_auto_checkbox = CheckboxGroup(
|
||||
labels=["Main Auto Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
||||
)
|
||||
auto_toggle.on_click(auto_toggle_callback)
|
||||
main_auto_checkbox.on_click(main_auto_checkbox_callback)
|
||||
|
||||
# ---- colormap display max value
|
||||
def display_max_spinner_callback(_attr, _old_value, new_value):
|
||||
display_min_spinner.high = new_value - STEP
|
||||
image_glyph.color_mapper.high = new_value
|
||||
|
||||
display_max_spinner = Spinner(
|
||||
title="Max Value:",
|
||||
low=0 + STEP,
|
||||
value=1,
|
||||
step=STEP,
|
||||
disabled=auto_toggle.active,
|
||||
default_size=80,
|
||||
disabled=bool(main_auto_checkbox.active),
|
||||
width=100,
|
||||
height=31,
|
||||
)
|
||||
display_max_spinner.on_change("value", display_max_spinner_callback)
|
||||
|
||||
# ---- colormap display min value
|
||||
def display_min_spinner_callback(_attr, _old_value, new_value):
|
||||
display_max_spinner.low = new_value + STEP
|
||||
image_glyph.color_mapper.low = new_value
|
||||
|
||||
display_min_spinner = Spinner(
|
||||
title="Min Value:",
|
||||
low=0,
|
||||
high=1 - STEP,
|
||||
value=0,
|
||||
step=STEP,
|
||||
disabled=auto_toggle.active,
|
||||
default_size=80,
|
||||
disabled=bool(main_auto_checkbox.active),
|
||||
width=100,
|
||||
height=31,
|
||||
)
|
||||
display_min_spinner.on_change("value", display_min_spinner_callback)
|
||||
|
||||
# ---- proj colormap auto toggle button
|
||||
def proj_auto_toggle_callback(state):
|
||||
PROJ_STEP = 0.1
|
||||
|
||||
def proj_auto_checkbox_callback(state):
|
||||
if state:
|
||||
proj_display_min_spinner.disabled = True
|
||||
proj_display_max_spinner.disabled = True
|
||||
@ -465,50 +514,48 @@ def create():
|
||||
|
||||
update_overview_plot()
|
||||
|
||||
proj_auto_toggle = Toggle(
|
||||
label="Proj Auto Range", active=True, button_type="default", default_size=125
|
||||
proj_auto_checkbox = CheckboxGroup(
|
||||
labels=["Projections Auto Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
||||
)
|
||||
proj_auto_toggle.on_click(proj_auto_toggle_callback)
|
||||
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
|
||||
|
||||
# ---- proj colormap display max value
|
||||
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
|
||||
proj_display_min_spinner.high = new_value - STEP
|
||||
proj_display_min_spinner.high = new_value - PROJ_STEP
|
||||
overview_plot_x_image_glyph.color_mapper.high = new_value
|
||||
overview_plot_y_image_glyph.color_mapper.high = new_value
|
||||
|
||||
proj_display_max_spinner = Spinner(
|
||||
title="Max Value:",
|
||||
low=0 + STEP,
|
||||
low=0 + PROJ_STEP,
|
||||
value=1,
|
||||
step=STEP,
|
||||
disabled=proj_auto_toggle.active,
|
||||
default_size=80,
|
||||
step=PROJ_STEP,
|
||||
disabled=bool(proj_auto_checkbox.active),
|
||||
width=100,
|
||||
height=31,
|
||||
)
|
||||
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
|
||||
|
||||
# ---- proj colormap display min value
|
||||
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
|
||||
proj_display_max_spinner.low = new_value + STEP
|
||||
proj_display_max_spinner.low = new_value + PROJ_STEP
|
||||
overview_plot_x_image_glyph.color_mapper.low = new_value
|
||||
overview_plot_y_image_glyph.color_mapper.low = new_value
|
||||
|
||||
proj_display_min_spinner = Spinner(
|
||||
title="Min Value:",
|
||||
high=1 - STEP,
|
||||
low=0,
|
||||
high=1 - PROJ_STEP,
|
||||
value=0,
|
||||
step=STEP,
|
||||
disabled=proj_auto_toggle.active,
|
||||
default_size=80,
|
||||
step=PROJ_STEP,
|
||||
disabled=bool(proj_auto_checkbox.active),
|
||||
width=100,
|
||||
height=31,
|
||||
)
|
||||
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
|
||||
|
||||
def hkl_button_callback():
|
||||
index = index_spinner.value
|
||||
setup_type = "nb_bi" if radio_button_group.active else "nb"
|
||||
h, k, l = calculate_hkl(det_data, index, setup_type)
|
||||
h, k, l = calculate_hkl(det_data, index)
|
||||
image_source.data.update(h=[h], k=[k], l=[l])
|
||||
|
||||
hkl_button = Button(label="Calculate hkl (slow)")
|
||||
hkl_button = Button(label="Calculate hkl (slow)", width=210)
|
||||
hkl_button.on_click(hkl_button_callback)
|
||||
|
||||
selection_list = TextAreaInput(rows=7)
|
||||
@ -524,7 +571,7 @@ def create():
|
||||
int(np.ceil(frame_range.end)),
|
||||
]
|
||||
|
||||
filename_id = filelist.value[-8:-4]
|
||||
filename_id = file_select.value[0][-8:-4]
|
||||
if filename_id in roi_selection:
|
||||
roi_selection[f"{filename_id}"].append(selection)
|
||||
else:
|
||||
@ -535,31 +582,38 @@ def create():
|
||||
selection_button = Button(label="Add selection")
|
||||
selection_button.on_click(selection_button_callback)
|
||||
|
||||
magnetic_field_spinner = Spinner(
|
||||
title="Magnetic field:", format="0.00", width=145, disabled=True
|
||||
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
|
||||
num_formatter = NumberFormatter(format="0.00", nan_format="")
|
||||
metadata_table = DataTable(
|
||||
source=metadata_table_source,
|
||||
columns=[
|
||||
TableColumn(field="geom", title="Geometry", width=100),
|
||||
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
|
||||
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
|
||||
],
|
||||
width=300,
|
||||
height=50,
|
||||
autosize_mode="none",
|
||||
index_position=None,
|
||||
)
|
||||
temperature_spinner = Spinner(title="Temperature:", format="0.00", width=145, disabled=True)
|
||||
|
||||
# Final layout
|
||||
import_layout = column(proposal_textinput, upload_div, upload_button, file_select)
|
||||
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
|
||||
colormap_layout = column(
|
||||
row(colormap),
|
||||
row(column(Spacer(height=19), auto_toggle), display_max_spinner, display_min_spinner),
|
||||
row(
|
||||
column(Spacer(height=19), proj_auto_toggle),
|
||||
proj_display_max_spinner,
|
||||
proj_display_min_spinner,
|
||||
),
|
||||
colormap,
|
||||
main_auto_checkbox,
|
||||
row(display_min_spinner, display_max_spinner),
|
||||
proj_auto_checkbox,
|
||||
row(proj_display_min_spinner, proj_display_max_spinner),
|
||||
)
|
||||
hkl_layout = column(radio_button_group, hkl_button)
|
||||
params_layout = row(magnetic_field_spinner, temperature_spinner)
|
||||
|
||||
layout_controls = row(
|
||||
column(selection_button, selection_list),
|
||||
Spacer(width=20),
|
||||
column(frame_button_group, colormap_layout),
|
||||
Spacer(width=20),
|
||||
column(index_spinner, params_layout, hkl_layout),
|
||||
column(
|
||||
row(index_spinner, column(Spacer(height=25), index_slider)), metadata_table, hkl_button
|
||||
),
|
||||
)
|
||||
|
||||
layout_overview = column(
|
||||
@ -571,44 +625,41 @@ def create():
|
||||
),
|
||||
)
|
||||
|
||||
upload_div = Div(text="Upload .cami file:")
|
||||
tab_layout = row(
|
||||
column(
|
||||
row(column(Spacer(height=5), upload_div), upload_button, filelist),
|
||||
layout_overview,
|
||||
layout_controls,
|
||||
),
|
||||
column(import_layout, colormap_layout),
|
||||
column(layout_overview, layout_controls),
|
||||
column(roi_avg_plot, layout_image),
|
||||
)
|
||||
|
||||
return Panel(child=tab_layout, title="hdf viewer")
|
||||
|
||||
|
||||
def calculate_hkl(det_data, index, setup_type="nb_bi"):
|
||||
def calculate_hkl(det_data, index):
|
||||
h = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||
k = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||
l = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||
|
||||
wave = det_data["wave"]
|
||||
ddist = det_data["ddist"]
|
||||
gammad = det_data["pol_angle"][index]
|
||||
om = det_data["rot_angle"][index]
|
||||
nud = det_data["tlt_angle"]
|
||||
ub = det_data["UB"]
|
||||
gammad = det_data["gamma"][index]
|
||||
om = det_data["omega"][index]
|
||||
nud = det_data["nu"]
|
||||
ub = det_data["ub"]
|
||||
geometry = det_data["zebra_mode"]
|
||||
|
||||
if setup_type == "nb_bi":
|
||||
ch = det_data["chi_angle"][index]
|
||||
ph = det_data["phi_angle"][index]
|
||||
elif setup_type == "nb":
|
||||
ch = 0
|
||||
ph = 0
|
||||
if geometry == "bi":
|
||||
chi = det_data["chi"][index]
|
||||
phi = det_data["phi"][index]
|
||||
elif geometry == "nb":
|
||||
chi = 0
|
||||
phi = 0
|
||||
else:
|
||||
raise ValueError(f"Unknown setup type '{setup_type}'")
|
||||
raise ValueError(f"Unknown geometry type '{geometry}'")
|
||||
|
||||
for xi in np.arange(IMAGE_W):
|
||||
for yi in np.arange(IMAGE_H):
|
||||
h[yi, xi], k[yi, xi], l[yi, xi] = pyzebra.ang2hkl(
|
||||
wave, ddist, gammad, om, ch, ph, nud, ub, xi, yi
|
||||
wave, ddist, gammad, om, chi, phi, nud, ub, xi, yi
|
||||
)
|
||||
|
||||
return h, k, l
|
||||
@ -619,8 +670,8 @@ def calculate_pol(det_data, index):
|
||||
nu = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||
|
||||
ddist = det_data["ddist"]
|
||||
gammad = det_data["pol_angle"][index]
|
||||
nud = det_data["tlt_angle"]
|
||||
gammad = det_data["gamma"][index]
|
||||
nud = det_data["nu"]
|
||||
|
||||
for xi in np.arange(IMAGE_W):
|
||||
for yi in np.arange(IMAGE_H):
|
||||
|
658
pyzebra/app/panel_param_study.py
Normal file
658
pyzebra/app/panel_param_study.py
Normal file
@ -0,0 +1,658 @@
|
||||
import base64
|
||||
import io
|
||||
import itertools
|
||||
import os
|
||||
import tempfile
|
||||
import types
|
||||
|
||||
import numpy as np
|
||||
from bokeh.layouts import column, row
|
||||
from bokeh.models import (
|
||||
BasicTicker,
|
||||
Button,
|
||||
CheckboxEditor,
|
||||
CheckboxGroup,
|
||||
ColumnDataSource,
|
||||
CustomJS,
|
||||
DataRange1d,
|
||||
DataTable,
|
||||
Div,
|
||||
Dropdown,
|
||||
FileInput,
|
||||
Grid,
|
||||
HoverTool,
|
||||
Legend,
|
||||
Line,
|
||||
LinearAxis,
|
||||
MultiLine,
|
||||
MultiSelect,
|
||||
NumberEditor,
|
||||
Panel,
|
||||
PanTool,
|
||||
Plot,
|
||||
RadioButtonGroup,
|
||||
ResetTool,
|
||||
Scatter,
|
||||
Select,
|
||||
Spacer,
|
||||
Span,
|
||||
Spinner,
|
||||
TableColumn,
|
||||
Tabs,
|
||||
TextAreaInput,
|
||||
TextInput,
|
||||
WheelZoomTool,
|
||||
Whisker,
|
||||
)
|
||||
from bokeh.palettes import Category10, Turbo256
|
||||
from bokeh.transform import linear_cmap
|
||||
|
||||
import pyzebra
|
||||
from pyzebra.ccl_io import AREA_METHODS
|
||||
|
||||
javaScript = """
|
||||
for (let i = 0; i < js_data.data['fname'].length; i++) {
|
||||
if (js_data.data['content'][i] === "") continue;
|
||||
|
||||
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
|
||||
const link = document.createElement('a');
|
||||
document.body.appendChild(link);
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
link.href = url;
|
||||
link.download = js_data.data['fname'][i];
|
||||
link.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
document.body.removeChild(link);
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def color_palette(n_colors):
|
||||
palette = itertools.cycle(Category10[10])
|
||||
return list(itertools.islice(palette, n_colors))
|
||||
|
||||
|
||||
def create():
|
||||
det_data = []
|
||||
fit_params = {}
|
||||
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""]))
|
||||
|
||||
def proposal_textinput_callback(_attr, _old, new):
|
||||
proposal = new.strip()
|
||||
year = new[:4]
|
||||
proposal_path = f"/afs/psi.ch/project/sinqdata/{year}/zebra/{proposal}"
|
||||
file_list = []
|
||||
for file in os.listdir(proposal_path):
|
||||
if file.endswith((".ccl", ".dat")):
|
||||
file_list.append((os.path.join(proposal_path, file), file))
|
||||
file_select.options = file_list
|
||||
|
||||
proposal_textinput = TextInput(title="Proposal number:", width=210)
|
||||
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||
|
||||
def _init_datatable():
|
||||
scan_list = [s["idx"] for s in det_data]
|
||||
file_list = []
|
||||
for scan in det_data:
|
||||
file_list.append(os.path.basename(scan["original_filename"]))
|
||||
|
||||
scan_table_source.data.update(
|
||||
file=file_list,
|
||||
scan=scan_list,
|
||||
param=[None] * len(scan_list),
|
||||
fit=[0] * len(scan_list),
|
||||
export=[True] * len(scan_list),
|
||||
)
|
||||
scan_table_source.selected.indices = []
|
||||
scan_table_source.selected.indices = [0]
|
||||
|
||||
param_select.value = "user defined"
|
||||
|
||||
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
|
||||
|
||||
def file_open_button_callback():
|
||||
nonlocal det_data
|
||||
det_data = []
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
base, ext = os.path.splitext(f_name)
|
||||
if det_data:
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
det_data.extend(append_data)
|
||||
else:
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
|
||||
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
|
||||
|
||||
_init_datatable()
|
||||
|
||||
file_open_button = Button(label="Open New", width=100)
|
||||
file_open_button.on_click(file_open_button_callback)
|
||||
|
||||
def file_append_button_callback():
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
_, ext = os.path.splitext(f_name)
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
det_data.extend(append_data)
|
||||
|
||||
_init_datatable()
|
||||
|
||||
file_append_button = Button(label="Append", width=100)
|
||||
file_append_button.on_click(file_append_button_callback)
|
||||
|
||||
def upload_button_callback(_attr, _old, new):
|
||||
nonlocal det_data
|
||||
det_data = []
|
||||
for f_str, f_name in zip(new, upload_button.filename):
|
||||
with io.StringIO(base64.b64decode(f_str).decode()) as file:
|
||||
base, ext = os.path.splitext(f_name)
|
||||
if det_data:
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
det_data.extend(append_data)
|
||||
else:
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
|
||||
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
|
||||
|
||||
_init_datatable()
|
||||
|
||||
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
|
||||
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
|
||||
upload_button.on_change("value", upload_button_callback)
|
||||
|
||||
def append_upload_button_callback(_attr, _old, new):
|
||||
for f_str, f_name in zip(new, append_upload_button.filename):
|
||||
with io.StringIO(base64.b64decode(f_str).decode()) as file:
|
||||
_, ext = os.path.splitext(f_name)
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
det_data.extend(append_data)
|
||||
|
||||
_init_datatable()
|
||||
|
||||
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
|
||||
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
|
||||
append_upload_button.on_change("value", append_upload_button_callback)
|
||||
|
||||
def monitor_spinner_callback(_attr, _old, new):
|
||||
if det_data:
|
||||
pyzebra.normalize_dataset(det_data, new)
|
||||
_update_plot()
|
||||
|
||||
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
|
||||
monitor_spinner.on_change("value", monitor_spinner_callback)
|
||||
|
||||
def _update_table():
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
|
||||
scan_table_source.data.update(fit=fit_ok)
|
||||
|
||||
def _update_plot():
|
||||
_update_single_scan_plot(_get_selected_scan())
|
||||
_update_overview()
|
||||
|
||||
def _update_single_scan_plot(scan):
|
||||
scan_motor = scan["scan_motor"]
|
||||
|
||||
y = scan["Counts"]
|
||||
x = scan[scan_motor]
|
||||
|
||||
plot.axis[0].axis_label = scan_motor
|
||||
plot_scatter_source.data.update(x=x, y=y, y_upper=y + np.sqrt(y), y_lower=y - np.sqrt(y))
|
||||
|
||||
fit = scan.get("fit")
|
||||
if fit is not None:
|
||||
x_fit = np.linspace(x[0], x[-1], 100)
|
||||
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
|
||||
|
||||
x_bkg = []
|
||||
y_bkg = []
|
||||
xs_peak = []
|
||||
ys_peak = []
|
||||
comps = fit.eval_components(x=x_fit)
|
||||
for i, model in enumerate(fit_params):
|
||||
if "linear" in model:
|
||||
x_bkg = x_fit
|
||||
y_bkg = comps[f"f{i}_"]
|
||||
|
||||
elif any(val in model for val in ("gaussian", "voigt", "pvoigt")):
|
||||
xs_peak.append(x_fit)
|
||||
ys_peak.append(comps[f"f{i}_"])
|
||||
|
||||
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
|
||||
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
|
||||
|
||||
fit_output_textinput.value = fit.fit_report()
|
||||
|
||||
else:
|
||||
plot_fit_source.data.update(x=[], y=[])
|
||||
plot_bkg_source.data.update(x=[], y=[])
|
||||
plot_peak_source.data.update(xs=[], ys=[])
|
||||
fit_output_textinput.value = ""
|
||||
|
||||
def _update_overview():
|
||||
xs = []
|
||||
ys = []
|
||||
param = []
|
||||
x = []
|
||||
y = []
|
||||
par = []
|
||||
for s, p in enumerate(scan_table_source.data["param"]):
|
||||
if p is not None:
|
||||
scan = det_data[s]
|
||||
scan_motor = scan["scan_motor"]
|
||||
xs.append(scan[scan_motor])
|
||||
x.extend(scan[scan_motor])
|
||||
ys.append(scan["Counts"])
|
||||
y.extend([float(p)] * len(scan[scan_motor]))
|
||||
param.append(float(p))
|
||||
par.extend(scan["Counts"])
|
||||
|
||||
if det_data:
|
||||
scan_motor = det_data[0]["scan_motor"]
|
||||
ov_plot.axis[0].axis_label = scan_motor
|
||||
ov_param_plot.axis[0].axis_label = scan_motor
|
||||
|
||||
ov_plot_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
|
||||
|
||||
if y:
|
||||
mapper["transform"].low = np.min([np.min(y) for y in ys])
|
||||
mapper["transform"].high = np.max([np.max(y) for y in ys])
|
||||
ov_param_plot_scatter_source.data.update(x=x, y=y, param=par)
|
||||
|
||||
# Main plot
|
||||
plot = Plot(
|
||||
x_range=DataRange1d(),
|
||||
y_range=DataRange1d(only_visible=True),
|
||||
plot_height=450,
|
||||
plot_width=700,
|
||||
)
|
||||
|
||||
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
||||
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
|
||||
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
|
||||
plot_scatter = plot.add_glyph(
|
||||
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue")
|
||||
)
|
||||
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
|
||||
|
||||
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
|
||||
|
||||
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot_bkg = plot.add_glyph(
|
||||
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
|
||||
)
|
||||
|
||||
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
|
||||
plot_peak = plot.add_glyph(
|
||||
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
|
||||
)
|
||||
|
||||
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(fit_from_span)
|
||||
|
||||
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(fit_to_span)
|
||||
|
||||
plot.add_layout(
|
||||
Legend(
|
||||
items=[
|
||||
("data", [plot_scatter]),
|
||||
("best fit", [plot_fit]),
|
||||
("peak", [plot_peak]),
|
||||
("linear", [plot_bkg]),
|
||||
],
|
||||
location="top_left",
|
||||
click_policy="hide",
|
||||
)
|
||||
)
|
||||
|
||||
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
plot.toolbar.logo = None
|
||||
|
||||
# Overview multilines plot
|
||||
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
|
||||
|
||||
ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
||||
ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
|
||||
ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
ov_plot_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
|
||||
ov_plot.add_glyph(ov_plot_mline_source, MultiLine(xs="xs", ys="ys", line_color="color"))
|
||||
|
||||
hover_tool = HoverTool(tooltips=[("param", "@param")])
|
||||
ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool())
|
||||
|
||||
ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
ov_plot.toolbar.logo = None
|
||||
|
||||
# Overview perams plot
|
||||
ov_param_plot = Plot(
|
||||
x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700
|
||||
)
|
||||
|
||||
ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
|
||||
ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
|
||||
ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[]))
|
||||
mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50)
|
||||
ov_param_plot.add_glyph(
|
||||
ov_param_plot_scatter_source,
|
||||
Scatter(x="x", y="y", line_color=mapper, fill_color=mapper, size=10),
|
||||
)
|
||||
|
||||
ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
ov_param_plot.toolbar.logo = None
|
||||
|
||||
# Plot tabs
|
||||
plots = Tabs(
|
||||
tabs=[
|
||||
Panel(child=plot, title="single scan"),
|
||||
Panel(child=ov_plot, title="overview"),
|
||||
Panel(child=ov_param_plot, title="overview map"),
|
||||
]
|
||||
)
|
||||
|
||||
# Scan select
|
||||
def scan_table_select_callback(_attr, old, new):
|
||||
if not new:
|
||||
# skip empty selections
|
||||
return
|
||||
|
||||
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||
if len(new) > 1:
|
||||
# drop selection to the previous one
|
||||
scan_table_source.selected.indices = old
|
||||
return
|
||||
|
||||
if len(old) > 1:
|
||||
# skip unnecessary update caused by selection drop
|
||||
return
|
||||
|
||||
_update_plot()
|
||||
|
||||
def scan_table_source_callback(_attr, _old, _new):
|
||||
_update_preview()
|
||||
|
||||
scan_table_source = ColumnDataSource(dict(file=[], scan=[], param=[], fit=[], export=[]))
|
||||
scan_table_source.on_change("data", scan_table_source_callback)
|
||||
|
||||
scan_table = DataTable(
|
||||
source=scan_table_source,
|
||||
columns=[
|
||||
TableColumn(field="file", title="file", width=150),
|
||||
TableColumn(field="scan", title="scan", width=50),
|
||||
TableColumn(field="param", title="param", editor=NumberEditor(), width=50),
|
||||
TableColumn(field="fit", title="Fit", width=50),
|
||||
TableColumn(field="export", title="Export", editor=CheckboxEditor(), width=50),
|
||||
],
|
||||
width=410, # +60 because of the index column
|
||||
editable=True,
|
||||
autosize_mode="none",
|
||||
)
|
||||
|
||||
def scan_table_source_callback(_attr, _old, _new):
|
||||
if scan_table_source.selected.indices:
|
||||
_update_plot()
|
||||
|
||||
scan_table_source.selected.on_change("indices", scan_table_select_callback)
|
||||
scan_table_source.on_change("data", scan_table_source_callback)
|
||||
|
||||
def _get_selected_scan():
|
||||
return det_data[scan_table_source.selected.indices[0]]
|
||||
|
||||
def param_select_callback(_attr, _old, new):
|
||||
if new == "user defined":
|
||||
param = [None] * len(det_data)
|
||||
else:
|
||||
param = [scan[new] for scan in det_data]
|
||||
|
||||
scan_table_source.data["param"] = param
|
||||
|
||||
param_select = Select(
|
||||
title="Parameter:",
|
||||
options=["user defined", "temp", "mf", "h", "k", "l"],
|
||||
value="user defined",
|
||||
width=145,
|
||||
)
|
||||
param_select.on_change("value", param_select_callback)
|
||||
|
||||
def fit_from_spinner_callback(_attr, _old, new):
|
||||
fit_from_span.location = new
|
||||
|
||||
fit_from_spinner = Spinner(title="Fit from:", width=145)
|
||||
fit_from_spinner.on_change("value", fit_from_spinner_callback)
|
||||
|
||||
def fit_to_spinner_callback(_attr, _old, new):
|
||||
fit_to_span.location = new
|
||||
|
||||
fit_to_spinner = Spinner(title="to:", width=145)
|
||||
fit_to_spinner.on_change("value", fit_to_spinner_callback)
|
||||
|
||||
def fitparams_add_dropdown_callback(click):
|
||||
# bokeh requires (str, str) for MultiSelect options
|
||||
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
|
||||
fitparams_select.options.append((new_tag, click.item))
|
||||
fit_params[new_tag] = fitparams_factory(click.item)
|
||||
fitparams_select.tags[0] += 1
|
||||
|
||||
fitparams_add_dropdown = Dropdown(
|
||||
label="Add fit function",
|
||||
menu=[
|
||||
("Linear", "linear"),
|
||||
("Gaussian", "gaussian"),
|
||||
("Voigt", "voigt"),
|
||||
("Pseudo Voigt", "pvoigt"),
|
||||
# ("Pseudo Voigt1", "pseudovoigt1"),
|
||||
],
|
||||
width=145,
|
||||
)
|
||||
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
|
||||
|
||||
def fitparams_select_callback(_attr, old, new):
|
||||
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||
if len(new) > 1:
|
||||
# drop selection to the previous one
|
||||
fitparams_select.value = old
|
||||
return
|
||||
|
||||
if len(old) > 1:
|
||||
# skip unnecessary update caused by selection drop
|
||||
return
|
||||
|
||||
if new:
|
||||
fitparams_table_source.data.update(fit_params[new[0]])
|
||||
else:
|
||||
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
|
||||
|
||||
fitparams_select = MultiSelect(options=[], height=120, width=145)
|
||||
fitparams_select.tags = [0]
|
||||
fitparams_select.on_change("value", fitparams_select_callback)
|
||||
|
||||
def fitparams_remove_button_callback():
|
||||
if fitparams_select.value:
|
||||
sel_tag = fitparams_select.value[0]
|
||||
del fit_params[sel_tag]
|
||||
for elem in fitparams_select.options:
|
||||
if elem[0] == sel_tag:
|
||||
fitparams_select.options.remove(elem)
|
||||
break
|
||||
|
||||
fitparams_select.value = []
|
||||
|
||||
fitparams_remove_button = Button(label="Remove fit function", width=145)
|
||||
fitparams_remove_button.on_click(fitparams_remove_button_callback)
|
||||
|
||||
def fitparams_factory(function):
|
||||
if function == "linear":
|
||||
params = ["slope", "intercept"]
|
||||
elif function == "gaussian":
|
||||
params = ["amplitude", "center", "sigma"]
|
||||
elif function == "voigt":
|
||||
params = ["amplitude", "center", "sigma", "gamma"]
|
||||
elif function == "pvoigt":
|
||||
params = ["amplitude", "center", "sigma", "fraction"]
|
||||
elif function == "pseudovoigt1":
|
||||
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
|
||||
else:
|
||||
raise ValueError("Unknown fit function")
|
||||
|
||||
n = len(params)
|
||||
fitparams = dict(
|
||||
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
|
||||
)
|
||||
|
||||
if function == "linear":
|
||||
fitparams["value"] = [0, 1]
|
||||
fitparams["vary"] = [False, True]
|
||||
fitparams["min"] = [None, 0]
|
||||
|
||||
elif function == "gaussian":
|
||||
fitparams["min"] = [0, None, None]
|
||||
|
||||
return fitparams
|
||||
|
||||
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
|
||||
fitparams_table = DataTable(
|
||||
source=fitparams_table_source,
|
||||
columns=[
|
||||
TableColumn(field="param", title="Parameter"),
|
||||
TableColumn(field="value", title="Value", editor=NumberEditor()),
|
||||
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
|
||||
TableColumn(field="min", title="Min", editor=NumberEditor()),
|
||||
TableColumn(field="max", title="Max", editor=NumberEditor()),
|
||||
],
|
||||
height=200,
|
||||
width=350,
|
||||
index_position=None,
|
||||
editable=True,
|
||||
auto_edit=True,
|
||||
)
|
||||
|
||||
# start with `background` and `gauss` fit functions added
|
||||
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
|
||||
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
|
||||
fitparams_select.value = ["gaussian-1"] # add selection to gauss
|
||||
|
||||
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
|
||||
|
||||
def fit_all_button_callback():
|
||||
for scan, export in zip(det_data, scan_table_source.data["export"]):
|
||||
if export:
|
||||
pyzebra.fit_scan(
|
||||
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
|
||||
)
|
||||
|
||||
_update_plot()
|
||||
_update_table()
|
||||
|
||||
fit_all_button = Button(label="Fit All", button_type="primary", width=145)
|
||||
fit_all_button.on_click(fit_all_button_callback)
|
||||
|
||||
def fit_button_callback():
|
||||
scan = _get_selected_scan()
|
||||
pyzebra.fit_scan(
|
||||
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
|
||||
)
|
||||
|
||||
_update_plot()
|
||||
_update_table()
|
||||
|
||||
fit_button = Button(label="Fit Current", width=145)
|
||||
fit_button.on_click(fit_button_callback)
|
||||
|
||||
def area_method_radiobutton_callback(_handler):
|
||||
_update_preview()
|
||||
|
||||
area_method_radiobutton = RadioButtonGroup(
|
||||
labels=["Fit area", "Int area"], active=0, width=145, disabled=True
|
||||
)
|
||||
area_method_radiobutton.on_click(area_method_radiobutton_callback)
|
||||
|
||||
def lorentz_checkbox_callback(_handler):
|
||||
_update_preview()
|
||||
|
||||
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=[13, 5, 5, 5])
|
||||
lorentz_checkbox.on_click(lorentz_checkbox_callback)
|
||||
|
||||
export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
|
||||
|
||||
def _update_preview():
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_file = temp_dir + "/temp"
|
||||
export_data = []
|
||||
for s, export in zip(det_data, scan_table_source.data["export"]):
|
||||
if export:
|
||||
export_data.append(s)
|
||||
|
||||
pyzebra.export_1D(
|
||||
export_data,
|
||||
temp_file,
|
||||
area_method=AREA_METHODS[int(area_method_radiobutton.active)],
|
||||
lorentz=bool(lorentz_checkbox.active),
|
||||
)
|
||||
|
||||
exported_content = ""
|
||||
file_content = []
|
||||
for ext in (".comm", ".incomm"):
|
||||
fname = temp_file + ext
|
||||
if os.path.isfile(fname):
|
||||
with open(fname) as f:
|
||||
content = f.read()
|
||||
exported_content += f"{ext} file:\n" + content
|
||||
else:
|
||||
content = ""
|
||||
file_content.append(content)
|
||||
|
||||
js_data.data.update(content=file_content)
|
||||
export_preview_textinput.value = exported_content
|
||||
|
||||
save_button = Button(label="Download File", button_type="success", width=220)
|
||||
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
|
||||
|
||||
fitpeak_controls = row(
|
||||
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
|
||||
fitparams_table,
|
||||
Spacer(width=20),
|
||||
column(
|
||||
row(fit_from_spinner, fit_to_spinner),
|
||||
row(area_method_radiobutton, lorentz_checkbox),
|
||||
row(fit_button, fit_all_button),
|
||||
),
|
||||
)
|
||||
|
||||
scan_layout = column(scan_table, row(monitor_spinner, param_select))
|
||||
|
||||
import_layout = column(
|
||||
proposal_textinput,
|
||||
file_select,
|
||||
row(file_open_button, file_append_button),
|
||||
upload_div,
|
||||
upload_button,
|
||||
append_upload_div,
|
||||
append_upload_button,
|
||||
)
|
||||
|
||||
export_layout = column(export_preview_textinput, row(save_button))
|
||||
|
||||
tab_layout = column(
|
||||
row(import_layout, scan_layout, plots, Spacer(width=30), export_layout),
|
||||
row(fitpeak_controls, fit_output_textinput),
|
||||
)
|
||||
|
||||
return Panel(child=tab_layout, title="param study")
|
272
pyzebra/app/panel_spind.py
Normal file
272
pyzebra/app/panel_spind.py
Normal file
@ -0,0 +1,272 @@
|
||||
import ast
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
from bokeh.layouts import column, row
|
||||
from bokeh.models import (
|
||||
Button,
|
||||
ColumnDataSource,
|
||||
DataTable,
|
||||
Panel,
|
||||
Spinner,
|
||||
TableColumn,
|
||||
TextAreaInput,
|
||||
TextInput,
|
||||
)
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
import pyzebra
|
||||
|
||||
|
||||
def create():
|
||||
path_prefix_textinput = TextInput(title="Path prefix:", value="")
|
||||
selection_list = TextAreaInput(title="ROIs:", rows=7)
|
||||
lattice_const_textinput = TextInput(
|
||||
title="Lattice constants:", value="8.3211,8.3211,8.3211,90.00,90.00,90.00"
|
||||
)
|
||||
max_res_spinner = Spinner(title="max-res:", value=2, step=0.01, width=145)
|
||||
seed_pool_size_spinner = Spinner(title="seed-pool-size:", value=5, step=0.01, width=145)
|
||||
seed_len_tol_spinner = Spinner(title="seed-len-tol:", value=0.02, step=0.01, width=145)
|
||||
seed_angle_tol_spinner = Spinner(title="seed-angle-tol:", value=1, step=0.01, width=145)
|
||||
eval_hkl_tol_spinner = Spinner(title="eval-hkl-tol:", value=0.15, step=0.01, width=145)
|
||||
|
||||
diff_vec = []
|
||||
ub_matrices = []
|
||||
|
||||
def process_button_callback():
|
||||
# drop table selection to clear result fields
|
||||
results_table_source.selected.indices = []
|
||||
|
||||
nonlocal diff_vec
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_peak_list_dir = os.path.join(temp_dir, "peak_list")
|
||||
os.mkdir(temp_peak_list_dir)
|
||||
temp_event_file = os.path.join(temp_peak_list_dir, "event-0.txt")
|
||||
temp_hkl_file = os.path.join(temp_dir, "hkl.h5")
|
||||
roi_dict = ast.literal_eval(selection_list.value)
|
||||
|
||||
comp_proc = subprocess.run(
|
||||
[
|
||||
"mpiexec",
|
||||
"-n",
|
||||
"2",
|
||||
"python",
|
||||
os.path.expanduser("~/spind/gen_hkl_table.py"),
|
||||
lattice_const_textinput.value,
|
||||
"--max-res",
|
||||
str(max_res_spinner.value),
|
||||
"-o",
|
||||
temp_hkl_file,
|
||||
],
|
||||
check=True,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.STDOUT,
|
||||
text=True,
|
||||
)
|
||||
print(" ".join(comp_proc.args))
|
||||
print(comp_proc.stdout)
|
||||
|
||||
diff_vec = prepare_event_file(temp_event_file, roi_dict, path_prefix_textinput.value)
|
||||
|
||||
print(f"Content of {temp_event_file}:")
|
||||
with open(temp_event_file) as f:
|
||||
print(f.read())
|
||||
|
||||
comp_proc = subprocess.run(
|
||||
[
|
||||
"mpiexec",
|
||||
"-n",
|
||||
"2",
|
||||
"python",
|
||||
os.path.expanduser("~/spind/SPIND.py"),
|
||||
temp_peak_list_dir,
|
||||
temp_hkl_file,
|
||||
"-o",
|
||||
temp_dir,
|
||||
"--seed-pool-size",
|
||||
str(seed_pool_size_spinner.value),
|
||||
"--seed-len-tol",
|
||||
str(seed_len_tol_spinner.value),
|
||||
"--seed-angle-tol",
|
||||
str(seed_angle_tol_spinner.value),
|
||||
"--eval-hkl-tol",
|
||||
str(eval_hkl_tol_spinner.value),
|
||||
],
|
||||
check=True,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.STDOUT,
|
||||
text=True,
|
||||
)
|
||||
print(" ".join(comp_proc.args))
|
||||
print(comp_proc.stdout)
|
||||
|
||||
spind_out_file = os.path.join(temp_dir, "spind.txt")
|
||||
spind_res = dict(
|
||||
label=[], crystal_id=[], match_rate=[], matched_peaks=[], column_5=[], ub_matrix=[],
|
||||
)
|
||||
try:
|
||||
with open(spind_out_file) as f_out:
|
||||
for line in f_out:
|
||||
c1, c2, c3, c4, c5, *c_rest = line.split()
|
||||
spind_res["label"].append(c1)
|
||||
spind_res["crystal_id"].append(c2)
|
||||
spind_res["match_rate"].append(c3)
|
||||
spind_res["matched_peaks"].append(c4)
|
||||
spind_res["column_5"].append(c5)
|
||||
|
||||
# last digits are spind UB matrix
|
||||
vals = list(map(float, c_rest))
|
||||
ub_matrix_spind = np.transpose(np.array(vals).reshape(3, 3))
|
||||
ub_matrix = np.linalg.inv(ub_matrix_spind)
|
||||
ub_matrices.append(ub_matrix)
|
||||
spind_res["ub_matrix"].append(str(ub_matrix_spind * 1e-10))
|
||||
|
||||
print(f"Content of {spind_out_file}:")
|
||||
with open(spind_out_file) as f:
|
||||
print(f.read())
|
||||
|
||||
except FileNotFoundError:
|
||||
print("No results from spind")
|
||||
|
||||
results_table_source.data.update(spind_res)
|
||||
|
||||
process_button = Button(label="Process", button_type="primary")
|
||||
process_button.on_click(process_button_callback)
|
||||
|
||||
ub_matrix_textareainput = TextAreaInput(title="UB matrix:", rows=7, width=400)
|
||||
hkl_textareainput = TextAreaInput(title="hkl values:", rows=7, width=400)
|
||||
|
||||
def results_table_select_callback(_attr, old, new):
|
||||
if new:
|
||||
ind = new[0]
|
||||
ub_matrix = ub_matrices[ind]
|
||||
res = ""
|
||||
for vec in diff_vec:
|
||||
res += f"{ub_matrix @ vec}\n"
|
||||
ub_matrix_textareainput.value = str(ub_matrix * 1e10)
|
||||
hkl_textareainput.value = res
|
||||
else:
|
||||
ub_matrix_textareainput.value = ""
|
||||
hkl_textareainput.value = ""
|
||||
|
||||
results_table_source = ColumnDataSource(
|
||||
dict(label=[], crystal_id=[], match_rate=[], matched_peaks=[], column_5=[], ub_matrix=[])
|
||||
)
|
||||
results_table = DataTable(
|
||||
source=results_table_source,
|
||||
columns=[
|
||||
TableColumn(field="label", title="Label", width=50),
|
||||
TableColumn(field="crystal_id", title="Crystal ID", width=100),
|
||||
TableColumn(field="match_rate", title="Match Rate", width=100),
|
||||
TableColumn(field="matched_peaks", title="Matched Peaks", width=100),
|
||||
TableColumn(field="column_5", title="", width=100),
|
||||
TableColumn(field="ub_matrix", title="UB Matrix", width=700),
|
||||
],
|
||||
height=300,
|
||||
width=1200,
|
||||
autosize_mode="none",
|
||||
index_position=None,
|
||||
)
|
||||
|
||||
results_table_source.selected.on_change("indices", results_table_select_callback)
|
||||
|
||||
tab_layout = row(
|
||||
column(
|
||||
path_prefix_textinput,
|
||||
selection_list,
|
||||
lattice_const_textinput,
|
||||
row(max_res_spinner, seed_pool_size_spinner),
|
||||
row(seed_len_tol_spinner, seed_angle_tol_spinner),
|
||||
row(eval_hkl_tol_spinner),
|
||||
process_button,
|
||||
),
|
||||
column(results_table, row(ub_matrix_textareainput, hkl_textareainput)),
|
||||
)
|
||||
|
||||
return Panel(child=tab_layout, title="spind")
|
||||
|
||||
|
||||
def gauss(x, *p):
|
||||
"""Defines Gaussian function
|
||||
Args:
|
||||
A - amplitude, mu - position of the center, sigma - width
|
||||
Returns:
|
||||
Gaussian function
|
||||
"""
|
||||
A, mu, sigma = p
|
||||
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
|
||||
|
||||
|
||||
def prepare_event_file(export_filename, roi_dict, path_prefix=""):
|
||||
diff_vec = []
|
||||
p0 = [1.0, 0.0, 1.0]
|
||||
maxfev = 100000
|
||||
with open(export_filename, "w") as f:
|
||||
for file, rois in roi_dict.items():
|
||||
dat = pyzebra.read_detector_data(path_prefix + file + ".hdf")
|
||||
|
||||
wave = dat["wave"]
|
||||
ddist = dat["ddist"]
|
||||
|
||||
gamma = dat["gamma"][0]
|
||||
omega = dat["omega"][0]
|
||||
nu = dat["nu"][0]
|
||||
chi = dat["chi"][0]
|
||||
phi = dat["phi"][0]
|
||||
|
||||
scan_motor = dat["scan_motor"]
|
||||
var_angle = dat[scan_motor]
|
||||
|
||||
for roi in rois:
|
||||
x0, xN, y0, yN, fr0, frN = roi
|
||||
data_roi = dat["data"][fr0:frN, y0:yN, x0:xN]
|
||||
|
||||
cnts = np.sum(data_roi, axis=(1, 2))
|
||||
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
|
||||
|
||||
m = cnts.mean()
|
||||
sd = cnts.std()
|
||||
snr_cnts = np.where(sd == 0, 0, m / sd)
|
||||
|
||||
frC = fr0 + coeff[1]
|
||||
var_F = var_angle[math.floor(frC)]
|
||||
var_C = var_angle[math.ceil(frC)]
|
||||
frStep = frC - math.floor(frC)
|
||||
var_step = var_C - var_F
|
||||
var_p = var_F + var_step * frStep
|
||||
|
||||
if scan_motor == "gamma":
|
||||
gamma = var_p
|
||||
elif scan_motor == "omega":
|
||||
omega = var_p
|
||||
elif scan_motor == "nu":
|
||||
nu = var_p
|
||||
elif scan_motor == "chi":
|
||||
chi = var_p
|
||||
elif scan_motor == "phi":
|
||||
phi = var_p
|
||||
|
||||
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
|
||||
|
||||
projX = np.sum(data_roi, axis=(0, 1))
|
||||
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
|
||||
x_pos = x0 + coeff[1]
|
||||
|
||||
projY = np.sum(data_roi, axis=(0, 2))
|
||||
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
|
||||
y_pos = y0 + coeff[1]
|
||||
|
||||
ga, nu = pyzebra.det2pol(ddist, gamma, nu, x_pos, y_pos)
|
||||
diff_vector = pyzebra.z1frmd(wave, ga, omega, chi, phi, nu)
|
||||
d_spacing = float(pyzebra.dandth(wave, diff_vector)[0])
|
||||
diff_vector = diff_vector.flatten() * 1e10
|
||||
dv1, dv2, dv3 = diff_vector
|
||||
|
||||
diff_vec.append(diff_vector)
|
||||
|
||||
f.write(f"{x_pos} {y_pos} {intensity} {snr_cnts} {dv1} {dv2} {dv3} {d_spacing}\n")
|
||||
|
||||
return diff_vec
|
@ -1,513 +0,0 @@
|
||||
import numpy as np
|
||||
import uncertainties as u
|
||||
|
||||
from .fit2 import create_uncertanities
|
||||
|
||||
|
||||
def add_dict(dict1, dict2):
|
||||
"""adds two dictionaries, meta of the new is saved as meata+original_filename and
|
||||
measurements are shifted to continue with numbering of first dict
|
||||
:arg dict1 : dictionarry to add to
|
||||
:arg dict2 : dictionarry from which to take the measurements
|
||||
:return dict1 : combined dictionary
|
||||
Note: dict1 must be made from ccl, otherwise we would have to change the structure of loaded
|
||||
dat file"""
|
||||
max_measurement_dict1 = max([int(str(keys)[1:]) for keys in dict1["scan"]])
|
||||
if dict2["meta"]["data_type"] == ".ccl":
|
||||
new_filenames = [
|
||||
"M" + str(x + max_measurement_dict1)
|
||||
for x in [int(str(keys)[1:]) for keys in dict2["scan"]]
|
||||
]
|
||||
new_meta_name = "meta" + str(dict2["meta"]["original_filename"])
|
||||
if new_meta_name not in dict1:
|
||||
for keys, name in zip(dict2["scan"], new_filenames):
|
||||
dict2["scan"][keys]["file_of_origin"] = str(dict2["meta"]["original_filename"])
|
||||
dict1["scan"][name] = dict2["scan"][keys]
|
||||
|
||||
dict1[new_meta_name] = dict2["meta"]
|
||||
|
||||
else:
|
||||
raise KeyError(
|
||||
str(
|
||||
"The file %s has alredy been added to %s"
|
||||
% (dict2["meta"]["original_filename"], dict1["meta"]["original_filename"])
|
||||
)
|
||||
)
|
||||
elif dict2["meta"]["data_type"] == ".dat":
|
||||
d = {}
|
||||
new_name = "M" + str(max_measurement_dict1 + 1)
|
||||
hkl = dict2["meta"]["title"]
|
||||
d["h_index"] = float(hkl.split()[-3])
|
||||
d["k_index"] = float(hkl.split()[-2])
|
||||
d["l_index"] = float(hkl.split()[-1])
|
||||
d["number_of_measurements"] = len(dict2["scan"]["NP"])
|
||||
d["om"] = dict2["scan"]["om"]
|
||||
d["Counts"] = dict2["scan"]["Counts"]
|
||||
d["monitor"] = dict2["scan"]["Monitor1"][0]
|
||||
d["temperature"] = dict2["meta"]["temp"]
|
||||
d["mag_field"] = dict2["meta"]["mf"]
|
||||
d["omega_angle"] = dict2["meta"]["omega"]
|
||||
dict1["scan"][new_name] = d
|
||||
print(hkl.split())
|
||||
for keys in d:
|
||||
print(keys)
|
||||
|
||||
print("s")
|
||||
|
||||
return dict1
|
||||
|
||||
|
||||
def auto(dict):
|
||||
"""takes just unique tuples from all tuples in dictionary returend by scan_dict
|
||||
intendet for automatic merge if you doesent want to specify what scans to merge together
|
||||
args: dict - dictionary from scan_dict function
|
||||
:return dict - dict without repetitions"""
|
||||
for keys in dict:
|
||||
tuple_list = dict[keys]
|
||||
new = list()
|
||||
for i in range(len(tuple_list)):
|
||||
if tuple_list[0][0] == tuple_list[i][0]:
|
||||
new.append(tuple_list[i])
|
||||
dict[keys] = new
|
||||
return dict
|
||||
|
||||
|
||||
def scan_dict(dict):
|
||||
"""scans dictionary for duplicate hkl indexes
|
||||
:arg dict : dictionary to scan
|
||||
:return dictionary with matching scans, if there are none, the dict is empty
|
||||
note: can be checked by "not d", true if empty
|
||||
"""
|
||||
|
||||
d = {}
|
||||
for i in dict["scan"]:
|
||||
for j in dict["scan"]:
|
||||
if dict["scan"][str(i)] != dict["scan"][str(j)]:
|
||||
itup = (
|
||||
dict["scan"][str(i)]["h_index"],
|
||||
dict["scan"][str(i)]["k_index"],
|
||||
dict["scan"][str(i)]["l_index"],
|
||||
)
|
||||
jtup = (
|
||||
dict["scan"][str(j)]["h_index"],
|
||||
dict["scan"][str(j)]["k_index"],
|
||||
dict["scan"][str(j)]["l_index"],
|
||||
)
|
||||
if itup != jtup:
|
||||
pass
|
||||
else:
|
||||
|
||||
if str(itup) not in d:
|
||||
d[str(itup)] = list()
|
||||
d[str(itup)].append((i, j))
|
||||
else:
|
||||
d[str(itup)].append((i, j))
|
||||
else:
|
||||
continue
|
||||
return d
|
||||
|
||||
|
||||
def compare_hkl(dict1, dict2):
|
||||
"""Compares two dictionaries based on hkl indexes and return dictionary with str(h k l) as
|
||||
key and tuple with keys to same scan in dict1 and dict2
|
||||
:arg dict1 : first dictionary
|
||||
:arg dict2 : second dictionary
|
||||
:return d : dict with matches
|
||||
example of one key: '0.0 0.0 -1.0 : ('M1', 'M9')' meaning that 001 hkl scan is M1 in
|
||||
first dict and M9 in second"""
|
||||
d = {}
|
||||
dupl = 0
|
||||
for keys in dict1["scan"]:
|
||||
for key in dict2["scan"]:
|
||||
if (
|
||||
dict1["scan"][str(keys)]["h_index"] == dict2["scan"][str(key)]["h_index"]
|
||||
and dict1["scan"][str(keys)]["k_index"] == dict2["scan"][str(key)]["k_index"]
|
||||
and dict1["scan"][str(keys)]["l_index"] == dict2["scan"][str(key)]["l_index"]
|
||||
):
|
||||
|
||||
if (
|
||||
str(
|
||||
(
|
||||
str(dict1["scan"][str(keys)]["h_index"])
|
||||
+ " "
|
||||
+ str(dict1["scan"][str(keys)]["k_index"])
|
||||
+ " "
|
||||
+ str(dict1["scan"][str(keys)]["l_index"])
|
||||
)
|
||||
)
|
||||
not in d
|
||||
):
|
||||
d[
|
||||
str(
|
||||
str(dict1["scan"][str(keys)]["h_index"])
|
||||
+ " "
|
||||
+ str(dict1["scan"][str(keys)]["k_index"])
|
||||
+ " "
|
||||
+ str(dict1["scan"][str(keys)]["l_index"])
|
||||
)
|
||||
] = (str(keys), str(key))
|
||||
else:
|
||||
dupl = dupl + 1
|
||||
d[
|
||||
str(
|
||||
str(dict1["scan"][str(keys)]["h_index"])
|
||||
+ " "
|
||||
+ str(dict1["scan"][str(keys)]["k_index"])
|
||||
+ " "
|
||||
+ str(dict1["scan"][str(keys)]["l_index"])
|
||||
+ "_dupl"
|
||||
+ str(dupl)
|
||||
)
|
||||
] = (str(keys), str(key))
|
||||
else:
|
||||
continue
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def create_tuples(x, y, y_err):
|
||||
"""creates tuples for sorting and merginng of the data
|
||||
Counts need to be normalized to monitor before"""
|
||||
t = list()
|
||||
for i in range(len(x)):
|
||||
tup = (x[i], y[i], y_err[i])
|
||||
t.append(tup)
|
||||
return t
|
||||
|
||||
|
||||
def normalize(dict, key, monitor):
|
||||
"""Normalizes the scan to monitor, checks if sigma exists, otherwise creates it
|
||||
:arg dict : dictionary to from which to tkae the scan
|
||||
:arg key : which scan to normalize from dict1
|
||||
:arg monitor : final monitor
|
||||
:return counts - normalized counts
|
||||
:return sigma - normalized sigma"""
|
||||
|
||||
counts = np.array(dict["scan"][key]["Counts"])
|
||||
sigma = np.sqrt(counts) if "sigma" not in dict["scan"][key] else dict["scan"][key]["sigma"]
|
||||
monitor_ratio = monitor / dict["scan"][key]["monitor"]
|
||||
scaled_counts = counts * monitor_ratio
|
||||
scaled_sigma = np.array(sigma) * monitor_ratio
|
||||
|
||||
return scaled_counts, scaled_sigma
|
||||
|
||||
|
||||
def merge(dict1, dict2, keys, auto=True, monitor=100000):
|
||||
"""merges the two tuples and sorts them, if om value is same, Counts value is average
|
||||
averaging is propagated into sigma if dict1 == dict2, key[1] is deleted after merging
|
||||
:arg dict1 : dictionary to which scan will be merged
|
||||
:arg dict2 : dictionary from which scan will be merged
|
||||
:arg keys : tuple with key to dict1 and dict2
|
||||
:arg auto : if true, when monitors are same, does not change it, if flase, takes monitor always
|
||||
:arg monitor : final monitor after merging
|
||||
note: dict1 and dict2 can be same dict
|
||||
:return dict1 with merged scan"""
|
||||
if auto:
|
||||
if dict1["scan"][keys[0]]["monitor"] == dict2["scan"][keys[1]]["monitor"]:
|
||||
monitor = dict1["scan"][keys[0]]["monitor"]
|
||||
|
||||
# load om and Counts
|
||||
x1, x2 = dict1["scan"][keys[0]]["om"], dict2["scan"][keys[1]]["om"]
|
||||
cor_y1, y_err1 = normalize(dict1, keys[0], monitor=monitor)
|
||||
cor_y2, y_err2 = normalize(dict2, keys[1], monitor=monitor)
|
||||
# creates touples (om, Counts, sigma) for sorting and further processing
|
||||
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
|
||||
# Sort the list on om and add 0 0 0 tuple to the last position
|
||||
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
|
||||
sorted_t.append((0, 0, 0))
|
||||
om, Counts, sigma = [], [], []
|
||||
seen = list()
|
||||
for i in range(len(sorted_t) - 1):
|
||||
if sorted_t[i][0] not in seen:
|
||||
if sorted_t[i][0] != sorted_t[i + 1][0]:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
Counts = np.append(Counts, sorted_t[i][1])
|
||||
sigma = np.append(sigma, sorted_t[i][2])
|
||||
else:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
|
||||
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
|
||||
count_err1 = u.ufloat(counts1, sigma1)
|
||||
count_err2 = u.ufloat(counts2, sigma2)
|
||||
avg = (count_err1 + count_err2) / 2
|
||||
Counts = np.append(Counts, avg.n)
|
||||
sigma = np.append(sigma, avg.s)
|
||||
seen.append(sorted_t[i][0])
|
||||
else:
|
||||
continue
|
||||
|
||||
if dict1 == dict2:
|
||||
del dict1["scan"][keys[1]]
|
||||
|
||||
note = (
|
||||
f"This scan was merged with scan {keys[1]} from "
|
||||
f'file {dict2["meta"]["original_filename"]} \n'
|
||||
)
|
||||
if "notes" not in dict1["scan"][str(keys[0])]:
|
||||
dict1["scan"][str(keys[0])]["notes"] = note
|
||||
else:
|
||||
dict1["scan"][str(keys[0])]["notes"] += note
|
||||
|
||||
dict1["scan"][keys[0]]["om"] = om
|
||||
dict1["scan"][keys[0]]["Counts"] = Counts
|
||||
dict1["scan"][keys[0]]["sigma"] = sigma
|
||||
dict1["scan"][keys[0]]["monitor"] = monitor
|
||||
print("merging done")
|
||||
return dict1
|
||||
|
||||
|
||||
def substract_measurement(dict1, dict2, keys, auto=True, monitor=100000):
|
||||
"""Substracts two scan (scan key2 from dict2 from measurent key1 in dict1), expects om to be same
|
||||
:arg dict1 : dictionary to which scan will be merged
|
||||
:arg dict2 : dictionary from which scan will be merged
|
||||
:arg keys : tuple with key to dict1 and dict2
|
||||
:arg auto : if true, when monitors are same, does not change it, if flase, takes monitor always
|
||||
:arg monitor : final monitor after merging
|
||||
:returns d : dict1 with substracted Counts from dict2 and sigma that comes from the substraction"""
|
||||
|
||||
if len(dict1["scan"][keys[0]]["om"]) != len(dict2["scan"][keys[1]]["om"]):
|
||||
raise ValueError("Omegas have different lengths, cannot be substracted")
|
||||
|
||||
if auto:
|
||||
if dict1["scan"][keys[0]]["monitor"] == dict2["scan"][keys[1]]["monitor"]:
|
||||
monitor = dict1["scan"][keys[0]]["monitor"]
|
||||
|
||||
cor_y1, y_err1 = normalize(dict1, keys[0], monitor=monitor)
|
||||
cor_y2, y_err2 = normalize(dict2, keys[1], monitor=monitor)
|
||||
|
||||
dict1_count_err = create_uncertanities(cor_y1, y_err1)
|
||||
dict2_count_err = create_uncertanities(cor_y2, y_err2)
|
||||
|
||||
res = np.subtract(dict1_count_err, dict2_count_err)
|
||||
|
||||
res_nom = []
|
||||
res_err = []
|
||||
for k in range(len(res)):
|
||||
res_nom = np.append(res_nom, res[k].n)
|
||||
res_err = np.append(res_err, res[k].s)
|
||||
|
||||
if len([num for num in res_nom if num < 0]) >= 0.3 * len(res_nom):
|
||||
print(
|
||||
f"Warning! percentage of negative numbers in scan subsracted {keys[0]} is "
|
||||
f"{len([num for num in res_nom if num < 0]) / len(res_nom)}"
|
||||
)
|
||||
|
||||
dict1["scan"][str(keys[0])]["Counts"] = res_nom
|
||||
dict1["scan"][str(keys[0])]["sigma"] = res_err
|
||||
dict1["scan"][str(keys[0])]["monitor"] = monitor
|
||||
note = (
|
||||
f'Scan {keys[1]} from file {dict2["meta"]["original_filename"]} '
|
||||
f"was substracted from this scan \n"
|
||||
)
|
||||
if "notes" not in dict1["scan"][str(keys[0])]:
|
||||
dict1["scan"][str(keys[0])]["notes"] = note
|
||||
else:
|
||||
dict1["scan"][str(keys[0])]["notes"] += note
|
||||
return dict1
|
||||
|
||||
|
||||
def compare_dict(dict1, dict2):
|
||||
"""takes two ccl dictionaries and compare different values for each key
|
||||
:arg dict1 : dictionary 1 (ccl)
|
||||
:arg dict2 : dictionary 2 (ccl)
|
||||
:returns warning : dictionary with keys from primary files (if they differ) with
|
||||
information of how many scan differ and which ones differ
|
||||
:returns report_string string comparing all different values respecively of measurements"""
|
||||
|
||||
if dict1["meta"]["data_type"] != dict2["meta"]["data_type"]:
|
||||
print("select two dicts")
|
||||
return
|
||||
S = []
|
||||
conflicts = {}
|
||||
warnings = {}
|
||||
|
||||
comp = compare_hkl(dict1, dict2)
|
||||
d1 = scan_dict(dict1)
|
||||
d2 = scan_dict(dict2)
|
||||
if not d1:
|
||||
S.append("There are no duplicates in %s (dict1) \n" % dict1["meta"]["original_filename"])
|
||||
else:
|
||||
S.append(
|
||||
"There are %d duplicates in %s (dict1) \n"
|
||||
% (len(d1), dict1["meta"]["original_filename"])
|
||||
)
|
||||
warnings["Duplicates in dict1"] = list()
|
||||
for keys in d1:
|
||||
S.append("Measurements %s with hkl %s \n" % (d1[keys], keys))
|
||||
warnings["Duplicates in dict1"].append(d1[keys])
|
||||
if not d2:
|
||||
S.append("There are no duplicates in %s (dict2) \n" % dict2["meta"]["original_filename"])
|
||||
else:
|
||||
S.append(
|
||||
"There are %d duplicates in %s (dict2) \n"
|
||||
% (len(d2), dict2["meta"]["original_filename"])
|
||||
)
|
||||
warnings["Duplicates in dict2"] = list()
|
||||
for keys in d2:
|
||||
S.append("Measurements %s with hkl %s \n" % (d2[keys], keys))
|
||||
warnings["Duplicates in dict2"].append(d2[keys])
|
||||
|
||||
# compare meta
|
||||
S.append("Different values in meta: \n")
|
||||
different_meta = {
|
||||
k: dict1["meta"][k]
|
||||
for k in dict1["meta"]
|
||||
if k in dict2["meta"] and dict1["meta"][k] != dict2["meta"][k]
|
||||
}
|
||||
exlude_meta_set = ["original_filename", "date", "title"]
|
||||
for keys in different_meta:
|
||||
if keys in exlude_meta_set:
|
||||
continue
|
||||
else:
|
||||
if keys not in conflicts:
|
||||
conflicts[keys] = 1
|
||||
else:
|
||||
conflicts[keys] = conflicts[keys] + 1
|
||||
|
||||
S.append(" Different values in %s \n" % str(keys))
|
||||
S.append(" dict1: %s \n" % str(dict1["meta"][str(keys)]))
|
||||
S.append(" dict2: %s \n" % str(dict2["meta"][str(keys)]))
|
||||
|
||||
# compare Measurements
|
||||
S.append(
|
||||
"Number of measurements in %s = %s \n"
|
||||
% (dict1["meta"]["original_filename"], len(dict1["scan"]))
|
||||
)
|
||||
S.append(
|
||||
"Number of measurements in %s = %s \n"
|
||||
% (dict2["meta"]["original_filename"], len(dict2["scan"]))
|
||||
)
|
||||
S.append("Different values in Measurements:\n")
|
||||
select_set = ["om", "Counts", "sigma"]
|
||||
exlude_set = ["time", "Counts", "date", "notes"]
|
||||
for keys1 in comp:
|
||||
for key2 in dict1["scan"][str(comp[str(keys1)][0])]:
|
||||
if key2 in exlude_set:
|
||||
continue
|
||||
if key2 not in select_set:
|
||||
try:
|
||||
if (
|
||||
dict1["scan"][comp[str(keys1)][0]][str(key2)]
|
||||
!= dict2["scan"][str(comp[str(keys1)][1])][str(key2)]
|
||||
):
|
||||
S.append(
|
||||
"Scan value "
|
||||
"%s"
|
||||
", with hkl %s differs in meausrements %s and %s \n"
|
||||
% (key2, keys1, comp[str(keys1)][0], comp[str(keys1)][1])
|
||||
)
|
||||
S.append(
|
||||
" dict1: %s \n"
|
||||
% str(dict1["scan"][comp[str(keys1)][0]][str(key2)])
|
||||
)
|
||||
S.append(
|
||||
" dict2: %s \n"
|
||||
% str(dict2["scan"][comp[str(keys1)][1]][str(key2)])
|
||||
)
|
||||
if key2 not in conflicts:
|
||||
conflicts[key2] = {}
|
||||
conflicts[key2]["amount"] = 1
|
||||
conflicts[key2]["scan"] = str(comp[str(keys1)])
|
||||
else:
|
||||
|
||||
conflicts[key2]["amount"] = conflicts[key2]["amount"] + 1
|
||||
conflicts[key2]["scan"] = (
|
||||
conflicts[key2]["scan"] + " " + (str(comp[str(keys1)]))
|
||||
)
|
||||
except KeyError as e:
|
||||
print("Missing keys, some files were probably merged or substracted")
|
||||
print(e.args)
|
||||
|
||||
else:
|
||||
try:
|
||||
comparison = list(dict1["scan"][comp[str(keys1)][0]][str(key2)]) == list(
|
||||
dict2["scan"][comp[str(keys1)][1]][str(key2)]
|
||||
)
|
||||
if len(list(dict1["scan"][comp[str(keys1)][0]][str(key2)])) != len(
|
||||
list(dict2["scan"][comp[str(keys1)][1]][str(key2)])
|
||||
):
|
||||
if str("different length of %s" % key2) not in warnings:
|
||||
warnings[str("different length of %s" % key2)] = list()
|
||||
warnings[str("different length of %s" % key2)].append(
|
||||
(str(comp[keys1][0]), str(comp[keys1][1]))
|
||||
)
|
||||
else:
|
||||
warnings[str("different length of %s" % key2)].append(
|
||||
(str(comp[keys1][0]), str(comp[keys1][1]))
|
||||
)
|
||||
if not comparison:
|
||||
S.append(
|
||||
"Scan value "
|
||||
"%s"
|
||||
" differs in scan %s and %s \n"
|
||||
% (key2, comp[str(keys1)][0], comp[str(keys1)][1])
|
||||
)
|
||||
S.append(
|
||||
" dict1: %s \n"
|
||||
% str(list(dict1["scan"][comp[str(keys1)][0]][str(key2)]))
|
||||
)
|
||||
S.append(
|
||||
" dict2: %s \n"
|
||||
% str(list(dict2["scan"][comp[str(keys1)][1]][str(key2)]))
|
||||
)
|
||||
if key2 not in conflicts:
|
||||
conflicts[key2] = {}
|
||||
conflicts[key2]["amount"] = 1
|
||||
conflicts[key2]["scan"] = str(comp[str(keys1)])
|
||||
else:
|
||||
conflicts[key2]["amount"] = conflicts[key2]["amount"] + 1
|
||||
conflicts[key2]["scan"] = (
|
||||
conflicts[key2]["scan"] + " " + (str(comp[str(keys1)]))
|
||||
)
|
||||
except KeyError as e:
|
||||
print("Missing keys, some files were probably merged or substracted")
|
||||
print(e.args)
|
||||
|
||||
for keys in conflicts:
|
||||
try:
|
||||
conflicts[str(keys)]["scan"] = conflicts[str(keys)]["scan"].split(" ")
|
||||
except:
|
||||
continue
|
||||
report_string = "".join(S)
|
||||
return warnings, conflicts, report_string
|
||||
|
||||
|
||||
def guess_next(dict1, dict2, comp):
|
||||
"""iterates thorough the scans and tries to decide if the scans should be
|
||||
substracted or merged"""
|
||||
threshold = 0.05
|
||||
for keys in comp:
|
||||
if (
|
||||
abs(
|
||||
(
|
||||
dict1["scan"][str(comp[keys][0])]["temperature"]
|
||||
- dict2["scan"][str(comp[keys][1])]["temperature"]
|
||||
)
|
||||
/ dict2["scan"][str(comp[keys][1])]["temperature"]
|
||||
)
|
||||
< threshold
|
||||
and abs(
|
||||
(
|
||||
dict1["scan"][str(comp[keys][0])]["mag_field"]
|
||||
- dict2["scan"][str(comp[keys][1])]["mag_field"]
|
||||
)
|
||||
/ dict2["scan"][str(comp[keys][1])]["mag_field"]
|
||||
)
|
||||
< threshold
|
||||
):
|
||||
comp[keys] = comp[keys] + tuple("m")
|
||||
else:
|
||||
comp[keys] = comp[keys] + tuple("s")
|
||||
|
||||
return comp
|
||||
|
||||
|
||||
def process_dict(dict1, dict2, comp):
|
||||
"""substracts or merges scans, guess_next function must run first """
|
||||
for keys in comp:
|
||||
if comp[keys][2] == "s":
|
||||
substract_measurement(dict1, dict2, comp[keys])
|
||||
elif comp[keys][2] == "m":
|
||||
merge(dict1, dict2, comp[keys])
|
||||
|
||||
return dict1
|
@ -1,75 +0,0 @@
|
||||
import numpy as np
|
||||
import scipy as sc
|
||||
from scipy.interpolate import interp1d
|
||||
from scipy.signal import savgol_filter
|
||||
|
||||
|
||||
def ccl_findpeaks(
|
||||
scan, int_threshold=0.8, prominence=50, smooth=False, window_size=7, poly_order=3
|
||||
):
|
||||
|
||||
"""function iterates through the dictionary created by load_cclv2 and locates peaks for each scan
|
||||
args: scan - a single scan,
|
||||
|
||||
int_threshold - fraction of threshold_intensity/max_intensity, must be positive num between 0 and 1
|
||||
i.e. will only detect peaks above 75% of max intensity
|
||||
|
||||
prominence - defines a drop of values that must be between two peaks, must be positive number
|
||||
i.e. if promimence is 20, it will detect two neigbouring peaks of 300 and 310 intesities,
|
||||
if none of the itermediate values are lower that 290
|
||||
|
||||
smooth - if true, smooths data by savitzky golay filter, if false - no smoothing
|
||||
|
||||
window_size - window size for savgol filter, must be odd positive integer
|
||||
|
||||
poly_order = order of the polynomial used in savgol filter, must be positive integer smaller than
|
||||
window_size returns: dictionary with following structure:
|
||||
D{M34{ 'num_of_peaks': 1, #num of peaks
|
||||
'peak_indexes': [20], # index of peaks in omega array
|
||||
'peak_heights': [90.], # height of the peaks (if data vere smoothed
|
||||
its the heigh of the peaks in smoothed data)
|
||||
"""
|
||||
if not 0 <= int_threshold <= 1:
|
||||
int_threshold = 0.8
|
||||
print(
|
||||
"Invalid value for int_threshold, select value between 0 and 1, new value set to:",
|
||||
int_threshold,
|
||||
)
|
||||
|
||||
if not isinstance(window_size, int) or (window_size % 2) == 0 or window_size <= 1:
|
||||
window_size = 7
|
||||
print(
|
||||
"Invalid value for window_size, select positive odd integer, new value set to!:",
|
||||
window_size,
|
||||
)
|
||||
|
||||
if not isinstance(poly_order, int) or window_size < poly_order:
|
||||
poly_order = 3
|
||||
print(
|
||||
"Invalid value for poly_order, select positive integer smaller than window_size, new value set to:",
|
||||
poly_order,
|
||||
)
|
||||
|
||||
if not isinstance(prominence, (int, float)) and prominence < 0:
|
||||
prominence = 50
|
||||
print("Invalid value for prominence, select positive number, new value set to:", prominence)
|
||||
|
||||
omega = scan["om"]
|
||||
counts = np.array(scan["Counts"])
|
||||
if smooth:
|
||||
itp = interp1d(omega, counts, kind="linear")
|
||||
absintensity = [abs(number) for number in counts]
|
||||
lowest_intensity = min(absintensity)
|
||||
counts[counts < 0] = lowest_intensity
|
||||
smooth_peaks = savgol_filter(itp(omega), window_size, poly_order)
|
||||
|
||||
else:
|
||||
smooth_peaks = counts
|
||||
|
||||
peaks, properties = sc.signal.find_peaks(
|
||||
smooth_peaks, height=int_threshold * max(smooth_peaks), prominence=prominence
|
||||
)
|
||||
scan["num_of_peaks"] = len(peaks)
|
||||
scan["peak_indexes"] = peaks
|
||||
scan["peak_heights"] = properties["peak_heights"]
|
||||
scan["smooth_peaks"] = smooth_peaks # smoothed curve
|
312
pyzebra/ccl_io.py
Normal file
312
pyzebra/ccl_io.py
Normal file
@ -0,0 +1,312 @@
|
||||
import os
|
||||
import re
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
META_VARS_STR = (
|
||||
"instrument",
|
||||
"title",
|
||||
"sample",
|
||||
"user",
|
||||
"ProposalID",
|
||||
"original_filename",
|
||||
"date",
|
||||
"zebra_mode",
|
||||
"proposal",
|
||||
"proposal_user",
|
||||
"proposal_title",
|
||||
"proposal_email",
|
||||
"detectorDistance",
|
||||
)
|
||||
|
||||
META_VARS_FLOAT = (
|
||||
"omega",
|
||||
"mf",
|
||||
"2-theta",
|
||||
"chi",
|
||||
"phi",
|
||||
"nu",
|
||||
"temp",
|
||||
"wavelenght",
|
||||
"a",
|
||||
"b",
|
||||
"c",
|
||||
"alpha",
|
||||
"beta",
|
||||
"gamma",
|
||||
"cex1",
|
||||
"cex2",
|
||||
"mexz",
|
||||
"moml",
|
||||
"mcvl",
|
||||
"momu",
|
||||
"mcvu",
|
||||
"snv",
|
||||
"snh",
|
||||
"snvm",
|
||||
"snhm",
|
||||
"s1vt",
|
||||
"s1vb",
|
||||
"s1hr",
|
||||
"s1hl",
|
||||
"s2vt",
|
||||
"s2vb",
|
||||
"s2hr",
|
||||
"s2hl",
|
||||
)
|
||||
|
||||
META_UB_MATRIX = ("ub1j", "ub2j", "ub3j")
|
||||
|
||||
CCL_FIRST_LINE = (("idx", int), ("h", float), ("k", float), ("l", float))
|
||||
|
||||
CCL_ANGLES = {
|
||||
"bi": (("twotheta", float), ("omega", float), ("chi", float), ("phi", float)),
|
||||
"nb": (("gamma", float), ("omega", float), ("nu", float), ("skip_angle", float)),
|
||||
}
|
||||
|
||||
CCL_SECOND_LINE = (
|
||||
("n_points", int),
|
||||
("angle_step", float),
|
||||
("monitor", float),
|
||||
("temp", float),
|
||||
("mf", float),
|
||||
("date", str),
|
||||
("time", str),
|
||||
("scan_motor", str),
|
||||
)
|
||||
|
||||
AREA_METHODS = ("fit_area", "int_area")
|
||||
|
||||
|
||||
def load_1D(filepath):
|
||||
"""
|
||||
Loads *.ccl or *.dat file (Distinguishes them based on last 3 chars in string of filepath
|
||||
to add more variables to read, extend the elif list
|
||||
the file must include '#data' and number of points in right place to work properly
|
||||
|
||||
:arg filepath
|
||||
:returns det_variables
|
||||
- dictionary of all detector/scan variables and dictinionary for every scan.
|
||||
Names of these dictionaries are M + scan number. They include HKL indeces, angles,
|
||||
monitors, stepsize and array of counts
|
||||
"""
|
||||
with open(filepath, "r") as infile:
|
||||
_, ext = os.path.splitext(filepath)
|
||||
det_variables = parse_1D(infile, data_type=ext)
|
||||
|
||||
return det_variables
|
||||
|
||||
|
||||
def parse_1D(fileobj, data_type):
|
||||
metadata = {"data_type": data_type}
|
||||
|
||||
# read metadata
|
||||
for line in fileobj:
|
||||
if "=" in line:
|
||||
variable, value = line.split("=", 1)
|
||||
variable = variable.strip()
|
||||
value = value.strip()
|
||||
|
||||
if variable in META_VARS_STR:
|
||||
metadata[variable] = value
|
||||
|
||||
elif variable in META_VARS_FLOAT:
|
||||
if variable == "2-theta": # fix that angle name not to be an expression
|
||||
variable = "twotheta"
|
||||
if variable in ("a", "b", "c", "alpha", "beta", "gamma"):
|
||||
variable += "_cell"
|
||||
metadata[variable] = float(value)
|
||||
|
||||
elif variable in META_UB_MATRIX:
|
||||
if "ub" not in metadata:
|
||||
metadata["ub"] = np.zeros((3, 3))
|
||||
row = int(variable[-2]) - 1
|
||||
metadata["ub"][row, :] = list(map(float, value.split()))
|
||||
|
||||
if "#data" in line:
|
||||
# this is the end of metadata and the start of data section
|
||||
break
|
||||
|
||||
# handle older files that don't contain "zebra_mode" metadata
|
||||
if "zebra_mode" not in metadata:
|
||||
metadata["zebra_mode"] = "nb"
|
||||
|
||||
# read data
|
||||
scan = []
|
||||
if data_type == ".ccl":
|
||||
ccl_first_line = CCL_FIRST_LINE + CCL_ANGLES[metadata["zebra_mode"]]
|
||||
ccl_second_line = CCL_SECOND_LINE
|
||||
|
||||
for line in fileobj:
|
||||
# skip empty/whitespace lines before start of any scan
|
||||
if not line or line.isspace():
|
||||
continue
|
||||
|
||||
s = {}
|
||||
|
||||
# first line
|
||||
for param, (param_name, param_type) in zip(line.split(), ccl_first_line):
|
||||
s[param_name] = param_type(param)
|
||||
|
||||
# second line
|
||||
next_line = next(fileobj)
|
||||
for param, (param_name, param_type) in zip(next_line.split(), ccl_second_line):
|
||||
s[param_name] = param_type(param)
|
||||
|
||||
if s["scan_motor"] != "om":
|
||||
raise Exception("Unsupported variable name in ccl file.")
|
||||
|
||||
# "om" -> "omega"
|
||||
s["scan_motor"] = "omega"
|
||||
# overwrite metadata, because it only refers to the scan center
|
||||
half_dist = (s["n_points"] - 1) / 2 * s["angle_step"]
|
||||
s["omega"] = np.linspace(s["omega"] - half_dist, s["omega"] + half_dist, s["n_points"])
|
||||
|
||||
# subsequent lines with counts
|
||||
counts = []
|
||||
while len(counts) < s["n_points"]:
|
||||
counts.extend(map(float, next(fileobj).split()))
|
||||
s["Counts"] = np.array(counts)
|
||||
|
||||
if s["h"].is_integer() and s["k"].is_integer() and s["l"].is_integer():
|
||||
s["h"], s["k"], s["l"] = map(int, (s["h"], s["k"], s["l"]))
|
||||
|
||||
scan.append({**metadata, **s})
|
||||
|
||||
elif data_type == ".dat":
|
||||
# TODO: this might need to be adapted in the future, when "gamma" will be added to dat files
|
||||
if metadata["zebra_mode"] == "nb":
|
||||
metadata["gamma"] = metadata["twotheta"]
|
||||
|
||||
s = defaultdict(list)
|
||||
|
||||
match = re.search("Scanning Variables: (.*), Steps: (.*)", next(fileobj))
|
||||
if match.group(1) == "h, k, l":
|
||||
steps = match.group(2).split()
|
||||
for step, ind in zip(steps, "hkl"):
|
||||
if float(step) != 0:
|
||||
scan_motor = ind
|
||||
break
|
||||
else:
|
||||
scan_motor = match.group(1)
|
||||
|
||||
s["scan_motor"] = scan_motor
|
||||
|
||||
match = re.search("(.*) Points, Mode: (.*), Preset (.*)", next(fileobj))
|
||||
if match.group(2) != "Monitor":
|
||||
raise Exception("Unknown mode in dat file.")
|
||||
s["monitor"] = float(match.group(3))
|
||||
|
||||
col_names = next(fileobj).split()
|
||||
|
||||
for line in fileobj:
|
||||
if "END-OF-DATA" in line:
|
||||
# this is the end of data
|
||||
break
|
||||
|
||||
for name, val in zip(col_names, line.split()):
|
||||
s[name].append(float(val))
|
||||
|
||||
for name in col_names:
|
||||
s[name] = np.array(s[name])
|
||||
|
||||
# "om" -> "omega"
|
||||
if s["scan_motor"] == "om":
|
||||
s["scan_motor"] = "omega"
|
||||
s["omega"] = s["om"]
|
||||
del s["om"]
|
||||
|
||||
# "tt" -> "temp"
|
||||
elif s["scan_motor"] == "tt":
|
||||
s["scan_motor"] = "temp"
|
||||
s["temp"] = s["tt"]
|
||||
del s["tt"]
|
||||
|
||||
# "mf" stays "mf"
|
||||
# "phi" stays "phi"
|
||||
|
||||
if "h" not in s:
|
||||
s["h"] = s["k"] = s["l"] = float("nan")
|
||||
|
||||
for param in ("mf", "temp"):
|
||||
if param not in metadata:
|
||||
s[param] = 0
|
||||
|
||||
s["idx"] = 1
|
||||
|
||||
scan.append({**metadata, **s})
|
||||
|
||||
else:
|
||||
print("Unknown file extention")
|
||||
|
||||
return scan
|
||||
|
||||
|
||||
def export_1D(data, path, area_method=AREA_METHODS[0], lorentz=False, hkl_precision=2):
|
||||
"""Exports data in the .comm/.incomm format
|
||||
|
||||
Scans with integer/real hkl values are saved in .comm/.incomm files correspondingly. If no scans
|
||||
are present for a particular output format, that file won't be created.
|
||||
"""
|
||||
zebra_mode = data[0]["zebra_mode"]
|
||||
file_content = {".comm": [], ".incomm": []}
|
||||
|
||||
for scan in data:
|
||||
if "fit" not in scan:
|
||||
continue
|
||||
|
||||
idx_str = f"{scan['idx']:6}"
|
||||
|
||||
h, k, l = scan["h"], scan["k"], scan["l"]
|
||||
hkl_are_integers = isinstance(h, int) # if True, other indices are of type 'int' too
|
||||
if hkl_are_integers:
|
||||
hkl_str = f"{h:4}{k:4}{l:4}"
|
||||
else:
|
||||
hkl_str = f"{h:8.{hkl_precision}f}{k:8.{hkl_precision}f}{l:8.{hkl_precision}f}"
|
||||
|
||||
for name, param in scan["fit"].params.items():
|
||||
if "amplitude" in name:
|
||||
if param.stderr is None:
|
||||
area_n = np.nan
|
||||
area_s = np.nan
|
||||
else:
|
||||
area_n = param.value
|
||||
area_s = param.stderr
|
||||
# TODO: take into account multiple peaks
|
||||
break
|
||||
else:
|
||||
# no peak functions in a fit model
|
||||
area_n = np.nan
|
||||
area_s = np.nan
|
||||
|
||||
# apply lorentz correction to area
|
||||
if lorentz:
|
||||
if zebra_mode == "bi":
|
||||
twotheta = np.deg2rad(scan["twotheta"])
|
||||
corr_factor = np.sin(twotheta)
|
||||
else: # zebra_mode == "nb":
|
||||
gamma = np.deg2rad(scan["gamma"])
|
||||
nu = np.deg2rad(scan["nu"])
|
||||
corr_factor = np.sin(gamma) * np.cos(nu)
|
||||
|
||||
area_n = np.abs(area_n * corr_factor)
|
||||
area_s = np.abs(area_s * corr_factor)
|
||||
|
||||
area_str = f"{area_n:10.2f}{area_s:10.2f}"
|
||||
|
||||
ang_str = ""
|
||||
for angle, _ in CCL_ANGLES[zebra_mode]:
|
||||
if angle == scan["scan_motor"]:
|
||||
angle_center = (np.min(scan[angle]) + np.max(scan[angle])) / 2
|
||||
else:
|
||||
angle_center = scan[angle]
|
||||
ang_str = ang_str + f"{angle_center:8g}"
|
||||
|
||||
ref = file_content[".comm"] if hkl_are_integers else file_content[".incomm"]
|
||||
ref.append(idx_str + hkl_str + area_str + ang_str + "\n")
|
||||
|
||||
for ext, content in file_content.items():
|
||||
if content:
|
||||
with open(path + ext, "w") as out_file:
|
||||
out_file.writelines(content)
|
150
pyzebra/ccl_process.py
Normal file
150
pyzebra/ccl_process.py
Normal file
@ -0,0 +1,150 @@
|
||||
import itertools
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from lmfit.models import GaussianModel, LinearModel, PseudoVoigtModel, VoigtModel
|
||||
|
||||
from .ccl_io import CCL_ANGLES
|
||||
|
||||
PARAM_PRECISIONS = {
|
||||
"twotheta": 0.1,
|
||||
"chi": 0.1,
|
||||
"nu": 0.1,
|
||||
"phi": 0.05,
|
||||
"omega": 0.05,
|
||||
"gamma": 0.05,
|
||||
"temp": 1,
|
||||
"mf": 0.001,
|
||||
"ub": 0.01,
|
||||
}
|
||||
|
||||
MAX_RANGE_GAP = {
|
||||
"omega": 0.5,
|
||||
}
|
||||
|
||||
|
||||
def normalize_dataset(dataset, monitor=100_000):
|
||||
for scan in dataset:
|
||||
monitor_ratio = monitor / scan["monitor"]
|
||||
scan["Counts"] *= monitor_ratio
|
||||
scan["monitor"] = monitor
|
||||
|
||||
|
||||
def merge_duplicates(dataset):
|
||||
for scan_i, scan_j in itertools.combinations(dataset, 2):
|
||||
if _parameters_match(scan_i, scan_j):
|
||||
merge_scans(scan_i, scan_j)
|
||||
|
||||
|
||||
def _parameters_match(scan1, scan2):
|
||||
zebra_mode = scan1["zebra_mode"]
|
||||
if zebra_mode != scan2["zebra_mode"]:
|
||||
return False
|
||||
|
||||
for param in ("ub", "temp", "mf", *(vars[0] for vars in CCL_ANGLES[zebra_mode])):
|
||||
if param.startswith("skip"):
|
||||
# ignore skip parameters, like the last angle in 'nb' zebra mode
|
||||
continue
|
||||
|
||||
if param == scan1["scan_motor"] == scan2["scan_motor"]:
|
||||
# check if ranges of variable parameter overlap
|
||||
range1 = scan1[param]
|
||||
range2 = scan2[param]
|
||||
# maximum gap between ranges of the scanning parameter (default 0)
|
||||
max_range_gap = MAX_RANGE_GAP.get(param, 0)
|
||||
if max(range1[0] - range2[-1], range2[0] - range1[-1]) > max_range_gap:
|
||||
return False
|
||||
|
||||
elif np.max(np.abs(scan1[param] - scan2[param])) > PARAM_PRECISIONS[param]:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def merge_datasets(dataset1, dataset2):
|
||||
for scan_j in dataset2:
|
||||
for scan_i in dataset1:
|
||||
if _parameters_match(scan_i, scan_j):
|
||||
merge_scans(scan_i, scan_j)
|
||||
break
|
||||
|
||||
dataset1.append(scan_j)
|
||||
|
||||
|
||||
def merge_scans(scan1, scan2):
|
||||
omega = np.concatenate((scan1["omega"], scan2["omega"]))
|
||||
counts = np.concatenate((scan1["Counts"], scan2["Counts"]))
|
||||
|
||||
index = np.argsort(omega)
|
||||
|
||||
scan1["omega"] = omega[index]
|
||||
scan1["Counts"] = counts[index]
|
||||
|
||||
scan2["active"] = False
|
||||
|
||||
fname1 = os.path.basename(scan1["original_filename"])
|
||||
fname2 = os.path.basename(scan2["original_filename"])
|
||||
print(f'Merging scans: {scan1["idx"]} ({fname1}) <-- {scan2["idx"]} ({fname2})')
|
||||
|
||||
|
||||
def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
|
||||
if fit_from is None:
|
||||
fit_from = -np.inf
|
||||
if fit_to is None:
|
||||
fit_to = np.inf
|
||||
|
||||
y_fit = scan["Counts"]
|
||||
x_fit = scan[scan["scan_motor"]]
|
||||
|
||||
# apply fitting range
|
||||
fit_ind = (fit_from <= x_fit) & (x_fit <= fit_to)
|
||||
y_fit = y_fit[fit_ind]
|
||||
x_fit = x_fit[fit_ind]
|
||||
|
||||
model = None
|
||||
for model_index, (model_name, model_param) in enumerate(model_dict.items()):
|
||||
model_name, _ = model_name.split("-")
|
||||
prefix = f"f{model_index}_"
|
||||
|
||||
if model_name == "linear":
|
||||
_model = LinearModel(prefix=prefix)
|
||||
elif model_name == "gaussian":
|
||||
_model = GaussianModel(prefix=prefix)
|
||||
elif model_name == "voigt":
|
||||
_model = VoigtModel(prefix=prefix)
|
||||
elif model_name == "pvoigt":
|
||||
_model = PseudoVoigtModel(prefix=prefix)
|
||||
else:
|
||||
raise ValueError(f"Unknown model name: '{model_name}'")
|
||||
|
||||
_init_guess = _model.guess(y_fit, x=x_fit)
|
||||
|
||||
for param_index, param_name in enumerate(model_param["param"]):
|
||||
param_hints = {}
|
||||
for hint_name in ("value", "vary", "min", "max"):
|
||||
tmp = model_param[hint_name][param_index]
|
||||
if tmp is None:
|
||||
param_hints[hint_name] = getattr(_init_guess[prefix + param_name], hint_name)
|
||||
else:
|
||||
param_hints[hint_name] = tmp
|
||||
|
||||
if "center" in param_name:
|
||||
if np.isneginf(param_hints["min"]):
|
||||
param_hints["min"] = np.min(x_fit)
|
||||
|
||||
if np.isposinf(param_hints["max"]):
|
||||
param_hints["max"] = np.max(x_fit)
|
||||
|
||||
if "sigma" in param_name:
|
||||
if np.isposinf(param_hints["max"]):
|
||||
param_hints["max"] = np.max(x_fit) - np.min(x_fit)
|
||||
|
||||
_model.set_param_hint(param_name, **param_hints)
|
||||
|
||||
if model is None:
|
||||
model = _model
|
||||
else:
|
||||
model += _model
|
||||
|
||||
weights = [1 / np.sqrt(val) if val != 0 else 1 for val in y_fit]
|
||||
scan["fit"] = model.fit(y_fit, x=x_fit, weights=weights)
|
@ -1,80 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def correction(value, lorentz=True, zebra_mode="--", ang1=0, ang2=0):
|
||||
if lorentz is False:
|
||||
return value
|
||||
else:
|
||||
if zebra_mode == "bi":
|
||||
corr_value = np.abs(value * np.sin(ang1))
|
||||
return corr_value
|
||||
elif zebra_mode == "nb":
|
||||
corr_value = np.abs(value * np.sin(ang1) * np.cos(ang2))
|
||||
return corr_value
|
||||
|
||||
|
||||
def export_comm(data, path, lorentz=False):
|
||||
"""exports data in the *.comm format
|
||||
:param lorentz: perform Lorentz correction
|
||||
:param path: path to file + name
|
||||
:arg data - data to export, is dict after peak fitting
|
||||
|
||||
"""
|
||||
zebra_mode = data["meta"]["zebra_mode"]
|
||||
align = ">"
|
||||
if data["meta"]["indices"] == "hkl":
|
||||
extension = ".comm"
|
||||
padding = [6, 4, 10, 8]
|
||||
elif data["meta"]["indices"] == "real":
|
||||
extension = ".incomm"
|
||||
padding = [4, 6, 10, 8]
|
||||
|
||||
with open(str(path + extension), "w") as out_file:
|
||||
for key, scan in data["scan"].items():
|
||||
if "fit" not in scan:
|
||||
print("Scan skipped - no fit value for:", key)
|
||||
continue
|
||||
scan_number_str = f"{key:{align}{padding[0]}}"
|
||||
h_str = f'{int(scan["h_index"]):{padding[1]}}'
|
||||
k_str = f'{int(scan["k_index"]):{padding[1]}}'
|
||||
l_str = f'{int(scan["l_index"]):{padding[1]}}'
|
||||
if data["meta"]["area_method"] == "fit":
|
||||
area = float(scan["fit"]["fit_area"].n)
|
||||
sigma_str = (
|
||||
f'{"{:8.2f}".format(float(scan["fit"]["fit_area"].s)):{align}{padding[2]}}'
|
||||
)
|
||||
elif data["meta"]["area_method"] == "integ":
|
||||
area = float(scan["fit"]["int_area"].n)
|
||||
sigma_str = (
|
||||
f'{"{:8.2f}".format(float(scan["fit"]["int_area"].s)):{align}{padding[2]}}'
|
||||
)
|
||||
|
||||
if zebra_mode == "bi":
|
||||
area = correction(area, lorentz, zebra_mode, scan["twotheta_angle"])
|
||||
int_str = f'{"{:8.2f}".format(area):{align}{padding[2]}}'
|
||||
angle_str1 = f'{scan["twotheta_angle"]:{padding[3]}}'
|
||||
angle_str2 = f'{scan["omega_angle"]:{padding[3]}}'
|
||||
angle_str3 = f'{scan["chi_angle"]:{padding[3]}}'
|
||||
angle_str4 = f'{scan["phi_angle"]:{padding[3]}}'
|
||||
elif zebra_mode == "nb":
|
||||
area = correction(area, lorentz, zebra_mode, scan["gamma_angle"], scan["nu_angle"])
|
||||
int_str = f'{"{:8.2f}".format(area):{align}{padding[2]}}'
|
||||
angle_str1 = f'{scan["gamma_angle"]:{padding[3]}}'
|
||||
angle_str2 = f'{scan["omega_angle"]:{padding[3]}}'
|
||||
angle_str3 = f'{scan["nu_angle"]:{padding[3]}}'
|
||||
angle_str4 = f'{scan["unkwn_angle"]:{padding[3]}}'
|
||||
|
||||
line = (
|
||||
scan_number_str
|
||||
+ h_str
|
||||
+ k_str
|
||||
+ l_str
|
||||
+ int_str
|
||||
+ sigma_str
|
||||
+ angle_str1
|
||||
+ angle_str2
|
||||
+ angle_str3
|
||||
+ angle_str4
|
||||
+ "\n"
|
||||
)
|
||||
out_file.write(line)
|
227
pyzebra/fit2.py
227
pyzebra/fit2.py
@ -1,227 +0,0 @@
|
||||
import numpy as np
|
||||
import uncertainties as u
|
||||
from lmfit import Model, Parameters
|
||||
from scipy.integrate import simps
|
||||
|
||||
|
||||
def bin_data(array, binsize):
|
||||
if isinstance(binsize, int) and 0 < binsize < len(array):
|
||||
return [
|
||||
np.mean(array[binsize * i : binsize * i + binsize])
|
||||
for i in range(int(np.ceil(len(array) / binsize)))
|
||||
]
|
||||
else:
|
||||
print("Binsize need to be positive integer smaller than lenght of array")
|
||||
return array
|
||||
|
||||
|
||||
def find_nearest(array, value):
|
||||
# find nearest value and return index
|
||||
array = np.asarray(array)
|
||||
idx = (np.abs(array - value)).argmin()
|
||||
return idx
|
||||
|
||||
|
||||
def create_uncertanities(y, y_err):
|
||||
# create array with uncertanities for error propagation
|
||||
combined = np.array([])
|
||||
for i in range(len(y)):
|
||||
part = u.ufloat(y[i], y_err[i])
|
||||
combined = np.append(combined, part)
|
||||
return combined
|
||||
|
||||
|
||||
def fitccl(
|
||||
scan,
|
||||
guess,
|
||||
vary,
|
||||
constraints_min,
|
||||
constraints_max,
|
||||
numfit_min=None,
|
||||
numfit_max=None,
|
||||
binning=None,
|
||||
):
|
||||
"""Made for fitting of ccl date where 1 peak is expected. Allows for combination of gaussian and linear model combination
|
||||
:param scan: scan in the data dict (i.e. M123)
|
||||
:param guess: initial guess for the fitting, if none, some values are added automatically in order (see below)
|
||||
:param vary: True if parameter can vary during fitting, False if it to be fixed
|
||||
:param numfit_min: minimal value on x axis for numerical integration - if none is centre of gaussian minus 3 sigma
|
||||
:param numfit_max: maximal value on x axis for numerical integration - if none is centre of gaussian plus 3 sigma
|
||||
:param constraints_min: min constranits value for fit
|
||||
:param constraints_max: max constranits value for fit
|
||||
:param binning : binning of the data
|
||||
:return data dict with additional values
|
||||
order for guess, vary, constraints_min, constraints_max:
|
||||
[Gaussian centre, Gaussian sigma, Gaussian amplitude, background slope, background intercept]
|
||||
examples:
|
||||
guess = [None, None, 100, 0, None]
|
||||
vary = [True, True, True, True, True]
|
||||
constraints_min = [23, None, 50, 0, 0]
|
||||
constraints_min = [80, None, 1000, 0, 100]
|
||||
"""
|
||||
if len(scan["peak_indexes"]) > 1:
|
||||
# return in case of more than 1 peaks
|
||||
print("More than 1 peak, scan skipped")
|
||||
return
|
||||
if binning is None or binning == 0 or binning == 1:
|
||||
x = list(scan["om"])
|
||||
y = list(scan["Counts"])
|
||||
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
|
||||
print(scan["peak_indexes"])
|
||||
if not scan["peak_indexes"]:
|
||||
centre = np.mean(x)
|
||||
else:
|
||||
centre = x[int(scan["peak_indexes"])]
|
||||
else:
|
||||
x = list(scan["om"])
|
||||
if not scan["peak_indexes"]:
|
||||
centre = np.mean(x)
|
||||
else:
|
||||
centre = x[int(scan["peak_indexes"])]
|
||||
x = bin_data(x, binning)
|
||||
y = list(scan["Counts"])
|
||||
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
|
||||
combined = bin_data(create_uncertanities(y, y_err), binning)
|
||||
y = [combined[i].n for i in range(len(combined))]
|
||||
y_err = [combined[i].s for i in range(len(combined))]
|
||||
|
||||
if len(scan["peak_indexes"]) == 0:
|
||||
# Case for no peak, gaussian in centre, sigma as 20% of range
|
||||
print("No peak")
|
||||
peak_index = find_nearest(x, np.mean(x))
|
||||
guess[0] = centre if guess[0] is None else guess[0]
|
||||
guess[1] = (x[-1] - x[0]) / 5 if guess[1] is None else guess[1]
|
||||
guess[2] = 50 if guess[2] is None else guess[2]
|
||||
guess[3] = 0 if guess[3] is None else guess[3]
|
||||
guess[4] = np.mean(y) if guess[4] is None else guess[4]
|
||||
constraints_min[2] = 0
|
||||
|
||||
elif len(scan["peak_indexes"]) == 1:
|
||||
# case for one peak, takse into account users guesses
|
||||
print("one peak")
|
||||
peak_height = scan["peak_heights"]
|
||||
guess[0] = centre if guess[0] is None else guess[0]
|
||||
guess[1] = 0.1 if guess[1] is None else guess[1]
|
||||
guess[2] = float(peak_height / 10) if guess[2] is None else float(guess[2])
|
||||
guess[3] = 0 if guess[3] is None else guess[3]
|
||||
guess[4] = np.median(x) if guess[4] is None else guess[4]
|
||||
constraints_min[0] = np.min(x) if constraints_min[0] is None else constraints_min[0]
|
||||
constraints_max[0] = np.max(x) if constraints_max[0] is None else constraints_max[0]
|
||||
|
||||
def gaussian(x, g_cen, g_width, g_amp):
|
||||
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
|
||||
return (g_amp / (np.sqrt(2 * np.pi) * g_width)) * np.exp(
|
||||
-((x - g_cen) ** 2) / (2 * g_width ** 2)
|
||||
)
|
||||
|
||||
def background(x, slope, intercept):
|
||||
"""background"""
|
||||
return slope * (x - centre) + intercept
|
||||
|
||||
mod = Model(gaussian) + Model(background)
|
||||
params = Parameters()
|
||||
params.add_many(
|
||||
("g_cen", guess[0], bool(vary[0]), np.min(x), np.max(x), None, None),
|
||||
("g_width", guess[1], bool(vary[1]), constraints_min[1], constraints_max[1], None, None),
|
||||
("g_amp", guess[2], bool(vary[2]), constraints_min[2], constraints_max[2], None, None),
|
||||
("slope", guess[3], bool(vary[3]), constraints_min[3], constraints_max[3], None, None),
|
||||
("intercept", guess[4], bool(vary[4]), constraints_min[4], constraints_max[4], None, None),
|
||||
)
|
||||
# the weighted fit
|
||||
try:
|
||||
result = mod.fit(
|
||||
y, params, weights=[np.abs(1 / val) for val in y_err], x=x, calc_covar=True,
|
||||
)
|
||||
except ValueError:
|
||||
return
|
||||
|
||||
if result.params["g_amp"].stderr is None:
|
||||
result.params["g_amp"].stderr = result.params["g_amp"].value
|
||||
elif result.params["g_amp"].stderr > result.params["g_amp"].value:
|
||||
result.params["g_amp"].stderr = result.params["g_amp"].value
|
||||
|
||||
# u.ufloat to work with uncertanities
|
||||
fit_area = u.ufloat(result.params["g_amp"].value, result.params["g_amp"].stderr)
|
||||
comps = result.eval_components()
|
||||
|
||||
if len(scan["peak_indexes"]) == 0:
|
||||
# for case of no peak, there is no reason to integrate, therefore fit and int are equal
|
||||
int_area = fit_area
|
||||
|
||||
elif len(scan["peak_indexes"]) == 1:
|
||||
gauss_3sigmamin = find_nearest(
|
||||
x, result.params["g_cen"].value - 3 * result.params["g_width"].value
|
||||
)
|
||||
gauss_3sigmamax = find_nearest(
|
||||
x, result.params["g_cen"].value + 3 * result.params["g_width"].value
|
||||
)
|
||||
numfit_min = gauss_3sigmamin if numfit_min is None else find_nearest(x, numfit_min)
|
||||
numfit_max = gauss_3sigmamax if numfit_max is None else find_nearest(x, numfit_max)
|
||||
|
||||
it = -1
|
||||
while abs(numfit_max - numfit_min) < 3:
|
||||
# in the case the peak is very thin and numerical integration would be on zero omega
|
||||
# difference, finds closes values
|
||||
it = it + 1
|
||||
numfit_min = find_nearest(
|
||||
x,
|
||||
result.params["g_cen"].value - 3 * (1 + it / 10) * result.params["g_width"].value,
|
||||
)
|
||||
numfit_max = find_nearest(
|
||||
x,
|
||||
result.params["g_cen"].value + 3 * (1 + it / 10) * result.params["g_width"].value,
|
||||
)
|
||||
|
||||
if x[numfit_min] < np.min(x):
|
||||
# makes sure that the values supplied by user lay in the omega range
|
||||
# can be ommited for users who know what they're doing
|
||||
numfit_min = gauss_3sigmamin
|
||||
print("Minimal integration value outside of x range")
|
||||
elif x[numfit_min] >= x[numfit_max]:
|
||||
numfit_min = gauss_3sigmamin
|
||||
print("Minimal integration value higher than maximal")
|
||||
else:
|
||||
pass
|
||||
if x[numfit_max] > np.max(x):
|
||||
numfit_max = gauss_3sigmamax
|
||||
print("Maximal integration value outside of x range")
|
||||
elif x[numfit_max] <= x[numfit_min]:
|
||||
numfit_max = gauss_3sigmamax
|
||||
print("Maximal integration value lower than minimal")
|
||||
else:
|
||||
pass
|
||||
|
||||
count_errors = create_uncertanities(y, y_err)
|
||||
# create error vector for numerical integration propagation
|
||||
num_int_area = simps(count_errors[numfit_min:numfit_max], x[numfit_min:numfit_max])
|
||||
slope_err = u.ufloat(result.params["slope"].value, result.params["slope"].stderr)
|
||||
# pulls the nominal and error values from fit (slope)
|
||||
intercept_err = u.ufloat(
|
||||
result.params["intercept"].value, result.params["intercept"].stderr
|
||||
)
|
||||
# pulls the nominal and error values from fit (intercept)
|
||||
|
||||
background_errors = np.array([])
|
||||
for j in range(len(x[numfit_min:numfit_max])):
|
||||
# creates nominal and error vector for numerical integration of background
|
||||
bg = slope_err * (x[j] - centre) + intercept_err
|
||||
background_errors = np.append(background_errors, bg)
|
||||
|
||||
num_int_background = simps(background_errors, x[numfit_min:numfit_max])
|
||||
int_area = num_int_area - num_int_background
|
||||
|
||||
d = {}
|
||||
for pars in result.params:
|
||||
d[str(pars)] = (result.params[str(pars)].value, result.params[str(pars)].vary)
|
||||
print(result.fit_report())
|
||||
|
||||
print((result.params["g_amp"].value - int_area.n) / result.params["g_amp"].value)
|
||||
|
||||
d["ratio"] = (result.params["g_amp"].value - int_area.n) / result.params["g_amp"].value
|
||||
d["int_area"] = int_area
|
||||
d["fit_area"] = u.ufloat(result.params["g_amp"].value, result.params["g_amp"].stderr)
|
||||
d["full_report"] = result.fit_report()
|
||||
d["result"] = result
|
||||
d["comps"] = comps
|
||||
d["numfit"] = [numfit_min, numfit_max]
|
||||
scan["fit"] = d
|
@ -1,167 +0,0 @@
|
||||
import numpy as np
|
||||
from lmfit import Model, Parameters
|
||||
from scipy.integrate import simps
|
||||
import matplotlib.pyplot as plt
|
||||
import uncertainties as u
|
||||
from lmfit.models import GaussianModel
|
||||
from lmfit.models import VoigtModel
|
||||
from lmfit.models import PseudoVoigtModel
|
||||
|
||||
|
||||
def bin_data(array, binsize):
|
||||
if isinstance(binsize, int) and 0 < binsize < len(array):
|
||||
return [
|
||||
np.mean(array[binsize * i : binsize * i + binsize])
|
||||
for i in range(int(np.ceil(len(array) / binsize)))
|
||||
]
|
||||
else:
|
||||
print("Binsize need to be positive integer smaller than lenght of array")
|
||||
return array
|
||||
|
||||
|
||||
def create_uncertanities(y, y_err):
|
||||
# create array with uncertanities for error propagation
|
||||
combined = np.array([])
|
||||
for i in range(len(y)):
|
||||
part = u.ufloat(y[i], y_err[i])
|
||||
combined = np.append(combined, part)
|
||||
return combined
|
||||
|
||||
|
||||
def find_nearest(array, value):
|
||||
# find nearest value and return index
|
||||
array = np.asarray(array)
|
||||
idx = (np.abs(array - value)).argmin()
|
||||
return idx
|
||||
|
||||
|
||||
# predefined peak positions
|
||||
# peaks = [6.2, 8.1, 9.9, 11.5]
|
||||
peaks = [23.5, 24.5]
|
||||
# peaks = [24]
|
||||
def fitccl(scan, variable="om", peak_type="gauss", binning=None):
|
||||
|
||||
x = list(scan[variable])
|
||||
y = list(scan["Counts"])
|
||||
peak_centre = np.mean(x)
|
||||
if binning is None or binning == 0 or binning == 1:
|
||||
x = list(scan["om"])
|
||||
y = list(scan["Counts"])
|
||||
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
|
||||
print(scan["peak_indexes"])
|
||||
if not scan["peak_indexes"]:
|
||||
peak_centre = np.mean(x)
|
||||
else:
|
||||
centre = x[int(scan["peak_indexes"])]
|
||||
else:
|
||||
x = list(scan["om"])
|
||||
if not scan["peak_indexes"]:
|
||||
peak_centre = np.mean(x)
|
||||
else:
|
||||
peak_centre = x[int(scan["peak_indexes"])]
|
||||
x = bin_data(x, binning)
|
||||
y = list(scan["Counts"])
|
||||
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
|
||||
combined = bin_data(create_uncertanities(y, y_err), binning)
|
||||
y = [combined[i].n for i in range(len(combined))]
|
||||
y_err = [combined[i].s for i in range(len(combined))]
|
||||
|
||||
def background(x, slope, intercept):
|
||||
"""background"""
|
||||
return slope * (x - peak_centre) + intercept
|
||||
|
||||
def gaussian(x, center, g_sigma, amplitude):
|
||||
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
|
||||
return (amplitude / (np.sqrt(2.0 * np.pi) * g_sigma)) * np.exp(
|
||||
-((x - center) ** 2) / (2 * g_sigma ** 2)
|
||||
)
|
||||
|
||||
def lorentzian(x, center, l_sigma, amplitude):
|
||||
"""1d lorentzian"""
|
||||
return (amplitude / (1 + ((1 * x - center) / l_sigma) ** 2)) / (np.pi * l_sigma)
|
||||
|
||||
def pseudoVoigt1(x, center, g_sigma, amplitude, l_sigma, fraction):
|
||||
"""PseudoVoight peak with different widths of lorenzian and gaussian"""
|
||||
return (1 - fraction) * gaussian(x, center, g_sigma, amplitude) + fraction * (
|
||||
lorentzian(x, center, l_sigma, amplitude)
|
||||
)
|
||||
|
||||
mod = Model(background)
|
||||
params = Parameters()
|
||||
params.add_many(
|
||||
("slope", 0, True, None, None, None, None), ("intercept", 0, False, None, None, None, None)
|
||||
)
|
||||
for i in range(len(peaks)):
|
||||
if peak_type == "gauss":
|
||||
mod = mod + GaussianModel(prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 5, None)
|
||||
elif peak_type == "voigt":
|
||||
mod = mod + VoigtModel(prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 3, None)
|
||||
params.add(str("p%d_" % (i + 1) + "gamma"), 0.2, True, 0, 5, None)
|
||||
elif peak_type == "pseudovoigt":
|
||||
mod = mod + PseudoVoigtModel(prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 5, None)
|
||||
params.add(str("p%d_" % (i + 1) + "fraction"), 0.5, True, -5, 5, None)
|
||||
elif peak_type == "pseudovoigt1":
|
||||
mod = mod + Model(pseudoVoigt1, prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "g_sigma"), 0.2, True, 0, 5, None)
|
||||
params.add(str("p%d_" % (i + 1) + "l_sigma"), 0.2, True, 0, 5, None)
|
||||
params.add(str("p%d_" % (i + 1) + "fraction"), 0.5, True, 0, 1, None)
|
||||
# add parameters
|
||||
|
||||
result = mod.fit(
|
||||
y, params, weights=[np.abs(1 / y_err[i]) for i in range(len(y_err))], x=x, calc_covar=True
|
||||
)
|
||||
|
||||
comps = result.eval_components()
|
||||
|
||||
reportstring = list()
|
||||
for keys in result.params:
|
||||
if result.params[keys].value is not None:
|
||||
str2 = np.around(result.params[keys].value, 3)
|
||||
else:
|
||||
str2 = 0
|
||||
if result.params[keys].stderr is not None:
|
||||
str3 = np.around(result.params[keys].stderr, 3)
|
||||
else:
|
||||
str3 = 0
|
||||
reportstring.append("%s = %2.3f +/- %2.3f" % (keys, str2, str3))
|
||||
|
||||
reportstring = "\n".join(reportstring)
|
||||
|
||||
plt.figure(figsize=(20, 10))
|
||||
plt.plot(x, result.best_fit, "k-", label="Best fit")
|
||||
|
||||
plt.plot(x, y, "b-", label="Original data")
|
||||
plt.plot(x, comps["background"], "g--", label="Line component")
|
||||
for i in range(len(peaks)):
|
||||
plt.plot(
|
||||
x,
|
||||
comps[str("p%d_" % (i + 1))],
|
||||
"r--",
|
||||
)
|
||||
plt.fill_between(x, comps[str("p%d_" % (i + 1))], alpha=0.4, label=str("p%d_" % (i + 1)))
|
||||
plt.legend()
|
||||
plt.text(
|
||||
np.min(x),
|
||||
np.max(y),
|
||||
reportstring,
|
||||
fontsize=9,
|
||||
verticalalignment="top",
|
||||
)
|
||||
plt.title(str(peak_type))
|
||||
|
||||
plt.xlabel("Omega [deg]")
|
||||
plt.ylabel("Counts [a.u.]")
|
||||
plt.show()
|
||||
|
||||
print(result.fit_report())
|
@ -41,7 +41,7 @@ def read_detector_data(filepath):
|
||||
filepath (str): File path of an h5 file.
|
||||
|
||||
Returns:
|
||||
ndarray: A 3D array of data, rot_angle, pol_angle, tilt_angle.
|
||||
ndarray: A 3D array of data, omega, gamma, nu.
|
||||
"""
|
||||
with h5py.File(filepath, "r") as h5f:
|
||||
data = h5f["/entry1/area_detector2/data"][:]
|
||||
@ -52,20 +52,37 @@ def read_detector_data(filepath):
|
||||
|
||||
det_data = {"data": data}
|
||||
|
||||
det_data["rot_angle"] = h5f["/entry1/area_detector2/rotation_angle"][:] # om, sometimes ph
|
||||
det_data["pol_angle"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:] # gammad
|
||||
det_data["tlt_angle"] = h5f["/entry1/ZEBRA/area_detector2/tilt_angle"][:] # nud
|
||||
if "/entry1/zebra_mode" in h5f:
|
||||
det_data["zebra_mode"] = h5f["/entry1/zebra_mode"][0].decode()
|
||||
else:
|
||||
det_data["zebra_mode"] = "nb"
|
||||
|
||||
# om, sometimes ph
|
||||
if det_data["zebra_mode"] == "nb":
|
||||
det_data["omega"] = h5f["/entry1/area_detector2/rotation_angle"][:]
|
||||
else: # bi
|
||||
det_data["omega"] = h5f["/entry1/sample/rotation_angle"][:]
|
||||
|
||||
det_data["gamma"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:] # gammad
|
||||
det_data["nu"] = h5f["/entry1/ZEBRA/area_detector2/tilt_angle"][:] # nud
|
||||
det_data["ddist"] = h5f["/entry1/ZEBRA/area_detector2/distance"][:]
|
||||
det_data["wave"] = h5f["/entry1/ZEBRA/monochromator/wavelength"][:]
|
||||
det_data["chi_angle"] = h5f["/entry1/sample/chi"][:] # ch
|
||||
det_data["phi_angle"] = h5f["/entry1/sample/phi"][:] # ph
|
||||
det_data["UB"] = h5f["/entry1/sample/UB"][:].reshape(3, 3)
|
||||
det_data["chi"] = h5f["/entry1/sample/chi"][:] # ch
|
||||
det_data["phi"] = h5f["/entry1/sample/phi"][:] # ph
|
||||
det_data["ub"] = h5f["/entry1/sample/UB"][:].reshape(3, 3)
|
||||
|
||||
for var in ("omega", "gamma", "nu", "chi", "phi"):
|
||||
if abs(det_data[var][0] - det_data[var][-1]) > 0.1:
|
||||
det_data["scan_motor"] = var
|
||||
break
|
||||
else:
|
||||
raise ValueError("No angles that vary")
|
||||
|
||||
# optional parameters
|
||||
if "/entry1/sample/magnetic_field" in h5f:
|
||||
det_data["magnetic_field"] = h5f["/entry1/sample/magnetic_field"][:]
|
||||
det_data["mf"] = h5f["/entry1/sample/magnetic_field"][:]
|
||||
|
||||
if "/entry1/sample/temperature" in h5f:
|
||||
det_data["temperature"] = h5f["/entry1/sample/temperature"][:]
|
||||
det_data["temp"] = h5f["/entry1/sample/temperature"][:]
|
||||
|
||||
return det_data
|
||||
|
@ -1,221 +0,0 @@
|
||||
import os
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from decimal import Decimal
|
||||
|
||||
import numpy as np
|
||||
|
||||
META_VARS_STR = (
|
||||
"instrument",
|
||||
"title",
|
||||
"sample",
|
||||
"user",
|
||||
"ProposalID",
|
||||
"original_filename",
|
||||
"date",
|
||||
"zebra_mode",
|
||||
"proposal",
|
||||
"proposal_user",
|
||||
"proposal_title",
|
||||
"proposal_email",
|
||||
"detectorDistance",
|
||||
)
|
||||
META_VARS_FLOAT = (
|
||||
"omega",
|
||||
"mf",
|
||||
"2-theta",
|
||||
"chi",
|
||||
"phi",
|
||||
"nu",
|
||||
"temp",
|
||||
"wavelenght",
|
||||
"a",
|
||||
"b",
|
||||
"c",
|
||||
"alpha",
|
||||
"beta",
|
||||
"gamma",
|
||||
"cex1",
|
||||
"cex2",
|
||||
"mexz",
|
||||
"moml",
|
||||
"mcvl",
|
||||
"momu",
|
||||
"mcvu",
|
||||
"snv",
|
||||
"snh",
|
||||
"snvm",
|
||||
"snhm",
|
||||
"s1vt",
|
||||
"s1vb",
|
||||
"s1hr",
|
||||
"s1hl",
|
||||
"s2vt",
|
||||
"s2vb",
|
||||
"s2hr",
|
||||
"s2hl",
|
||||
)
|
||||
META_UB_MATRIX = ("ub1j", "ub2j", "ub3j")
|
||||
|
||||
CCL_FIRST_LINE = (
|
||||
# the first element is `scan_number`, which we don't save to metadata
|
||||
("h_index", float),
|
||||
("k_index", float),
|
||||
("l_index", float),
|
||||
)
|
||||
|
||||
CCL_FIRST_LINE_BI = (
|
||||
*CCL_FIRST_LINE,
|
||||
("twotheta_angle", float),
|
||||
("omega_angle", float),
|
||||
("chi_angle", float),
|
||||
("phi_angle", float),
|
||||
)
|
||||
|
||||
CCL_FIRST_LINE_NB = (
|
||||
*CCL_FIRST_LINE,
|
||||
("gamma_angle", float),
|
||||
("omega_angle", float),
|
||||
("nu_angle", float),
|
||||
("unkwn_angle", float),
|
||||
)
|
||||
|
||||
CCL_SECOND_LINE = (
|
||||
("number_of_measurements", int),
|
||||
("angle_step", float),
|
||||
("monitor", float),
|
||||
("temperature", float),
|
||||
("mag_field", float),
|
||||
("date", str),
|
||||
("time", str),
|
||||
("scan_type", str),
|
||||
)
|
||||
|
||||
|
||||
def load_1D(filepath):
|
||||
"""
|
||||
Loads *.ccl or *.dat file (Distinguishes them based on last 3 chars in string of filepath
|
||||
to add more variables to read, extend the elif list
|
||||
the file must include '#data' and number of points in right place to work properly
|
||||
|
||||
:arg filepath
|
||||
:returns det_variables
|
||||
- dictionary of all detector/scan variables and dictinionary for every scan.
|
||||
Names of these dictionaries are M + scan number. They include HKL indeces, angles,
|
||||
monitors, stepsize and array of counts
|
||||
"""
|
||||
with open(filepath, "r") as infile:
|
||||
_, ext = os.path.splitext(filepath)
|
||||
det_variables = parse_1D(infile, data_type=ext)
|
||||
|
||||
return det_variables
|
||||
|
||||
|
||||
def parse_1D(fileobj, data_type):
|
||||
# read metadata
|
||||
metadata = {}
|
||||
for line in fileobj:
|
||||
if "=" in line:
|
||||
variable, value = line.split("=")
|
||||
variable = variable.strip()
|
||||
if variable in META_VARS_FLOAT:
|
||||
metadata[variable] = float(value)
|
||||
elif variable in META_VARS_STR:
|
||||
metadata[variable] = str(value)[:-1].strip()
|
||||
elif variable in META_UB_MATRIX:
|
||||
metadata[variable] = re.findall(r"[-+]?\d*\.\d+|\d+", str(value))
|
||||
|
||||
if "#data" in line:
|
||||
# this is the end of metadata and the start of data section
|
||||
break
|
||||
|
||||
# read data
|
||||
scan = {}
|
||||
if data_type == ".ccl":
|
||||
decimal = list()
|
||||
|
||||
if metadata["zebra_mode"] == "bi":
|
||||
ccl_first_line = CCL_FIRST_LINE_BI
|
||||
elif metadata["zebra_mode"] == "nb":
|
||||
ccl_first_line = CCL_FIRST_LINE_NB
|
||||
ccl_second_line = CCL_SECOND_LINE
|
||||
|
||||
for line in fileobj:
|
||||
d = {}
|
||||
|
||||
# first line
|
||||
scan_number, *params = line.split()
|
||||
for param, (param_name, param_type) in zip(params, ccl_first_line):
|
||||
d[param_name] = param_type(param)
|
||||
|
||||
decimal.append(bool(Decimal(d["h_index"]) % 1 == 0))
|
||||
decimal.append(bool(Decimal(d["k_index"]) % 1 == 0))
|
||||
decimal.append(bool(Decimal(d["l_index"]) % 1 == 0))
|
||||
|
||||
# second line
|
||||
next_line = next(fileobj)
|
||||
params = next_line.split()
|
||||
for param, (param_name, param_type) in zip(params, ccl_second_line):
|
||||
d[param_name] = param_type(param)
|
||||
|
||||
d["om"] = np.linspace(
|
||||
d["omega_angle"] - (d["number_of_measurements"] / 2) * d["angle_step"],
|
||||
d["omega_angle"] + (d["number_of_measurements"] / 2) * d["angle_step"],
|
||||
d["number_of_measurements"],
|
||||
)
|
||||
|
||||
# subsequent lines with counts
|
||||
counts = []
|
||||
while len(counts) < d["number_of_measurements"]:
|
||||
counts.extend(map(int, next(fileobj).split()))
|
||||
d["Counts"] = counts
|
||||
|
||||
scan[int(scan_number)] = d
|
||||
|
||||
if all(decimal):
|
||||
metadata["indices"] = "hkl"
|
||||
else:
|
||||
metadata["indices"] = "real"
|
||||
|
||||
elif data_type == ".dat":
|
||||
# skip the first 2 rows, the third row contans the column names
|
||||
next(fileobj)
|
||||
next(fileobj)
|
||||
col_names = next(fileobj).split()
|
||||
data_cols = defaultdict(list)
|
||||
|
||||
for line in fileobj:
|
||||
if "END-OF-DATA" in line:
|
||||
# this is the end of data
|
||||
break
|
||||
|
||||
for name, val in zip(col_names, line.split()):
|
||||
data_cols[name].append(float(val))
|
||||
|
||||
try:
|
||||
data_cols["h_index"] = float(metadata["title"].split()[-3])
|
||||
data_cols["k_index"] = float(metadata["title"].split()[-2])
|
||||
data_cols["l_index"] = float(metadata["title"].split()[-1])
|
||||
except (ValueError, IndexError):
|
||||
print("seems hkl is not in title")
|
||||
|
||||
data_cols["temperature"] = metadata["temp"]
|
||||
data_cols["mag_field"] = metadata["mf"]
|
||||
data_cols["omega_angle"] = metadata["omega"]
|
||||
data_cols["number_of_measurements"] = len(data_cols["om"])
|
||||
data_cols["monitor"] = data_cols["Monitor1"][0]
|
||||
data_cols["twotheta_angle"] = metadata["2-theta"]
|
||||
data_cols["chi_angle"] = metadata["chi"]
|
||||
data_cols["phi_angle"] = metadata["phi"]
|
||||
data_cols["nu_angle"] = metadata["nu"]
|
||||
|
||||
scan[1] = dict(data_cols)
|
||||
|
||||
else:
|
||||
print("Unknown file extention")
|
||||
|
||||
# utility information
|
||||
metadata["data_type"] = data_type
|
||||
metadata["area_method"] = "fit"
|
||||
|
||||
return {"meta": metadata, "scan": scan}
|
@ -1,383 +0,0 @@
|
||||
from load_1D import load_1D
|
||||
import pandas as pd
|
||||
from mpl_toolkits.mplot3d import Axes3D # dont delete, otherwise waterfall wont work
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib as mpl
|
||||
import numpy as np
|
||||
import pickle
|
||||
import scipy.io as sio
|
||||
import uncertainties as u
|
||||
|
||||
|
||||
def create_tuples(x, y, y_err):
|
||||
"""creates tuples for sorting and merginng of the data
|
||||
Counts need to be normalized to monitor before"""
|
||||
t = list()
|
||||
for i in range(len(x)):
|
||||
tup = (x[i], y[i], y_err[i])
|
||||
t.append(tup)
|
||||
return t
|
||||
|
||||
|
||||
def load_dats(filepath):
|
||||
"""reads the txt file, get headers and data
|
||||
:arg filepath to txt file or list of filepaths to the files
|
||||
:return ccl like dictionary"""
|
||||
if isinstance(filepath, str):
|
||||
data_type = "txt"
|
||||
file_list = list()
|
||||
with open(filepath, "r") as infile:
|
||||
col_names = next(infile).split(",")
|
||||
col_names = [col_names[i].rstrip() for i in range(len(col_names))]
|
||||
for line in infile:
|
||||
if "END" in line:
|
||||
break
|
||||
file_list.append(tuple(line.split(",")))
|
||||
elif isinstance(filepath, list):
|
||||
data_type = "list"
|
||||
file_list = filepath
|
||||
dict1 = {}
|
||||
for i in range(len(file_list)):
|
||||
if not dict1:
|
||||
if data_type == "txt":
|
||||
dict1 = load_1D(file_list[0][0])
|
||||
else:
|
||||
dict1 = load_1D(file_list[0])
|
||||
else:
|
||||
if data_type == "txt":
|
||||
dict1 = add_dict(dict1, load_1D(file_list[i][0]))
|
||||
else:
|
||||
dict1 = add_dict(dict1, load_1D(file_list[i]))
|
||||
dict1["scan"][i + 1]["params"] = {}
|
||||
if data_type == "txt":
|
||||
for x in range(len(col_names) - 1):
|
||||
dict1["scan"][i + 1]["params"][col_names[x + 1]] = file_list[i][x + 1]
|
||||
|
||||
return dict1
|
||||
|
||||
|
||||
def create_dataframe(dict1):
|
||||
"""Creates pandas dataframe from the dictionary
|
||||
:arg ccl like dictionary
|
||||
:return pandas dataframe"""
|
||||
# create dictionary to which we pull only wanted items before transforming it to pd.dataframe
|
||||
pull_dict = {}
|
||||
pull_dict["filenames"] = list()
|
||||
for key in dict1["scan"][1]["params"]:
|
||||
pull_dict[key] = list()
|
||||
pull_dict["temperature"] = list()
|
||||
pull_dict["mag_field"] = list()
|
||||
pull_dict["fit_area"] = list()
|
||||
pull_dict["int_area"] = list()
|
||||
pull_dict["om"] = list()
|
||||
pull_dict["Counts"] = list()
|
||||
|
||||
# populate the dict
|
||||
for keys in dict1["scan"]:
|
||||
if "file_of_origin" in dict1["scan"][keys]:
|
||||
pull_dict["filenames"].append(dict1["scan"][keys]["file_of_origin"].split("/")[-1])
|
||||
else:
|
||||
pull_dict["filenames"].append(dict1["meta"]["original_filename"].split("/")[-1])
|
||||
for key in dict1["scan"][keys]["params"]:
|
||||
pull_dict[str(key)].append(float(dict1["scan"][keys]["params"][key]))
|
||||
pull_dict["temperature"].append(dict1["scan"][keys]["temperature"])
|
||||
pull_dict["mag_field"].append(dict1["scan"][keys]["mag_field"])
|
||||
pull_dict["fit_area"].append(dict1["scan"][keys]["fit"]["fit_area"])
|
||||
pull_dict["int_area"].append(dict1["scan"][keys]["fit"]["int_area"])
|
||||
pull_dict["om"].append(dict1["scan"][keys]["om"])
|
||||
pull_dict["Counts"].append(dict1["scan"][keys]["Counts"])
|
||||
|
||||
return pd.DataFrame(data=pull_dict)
|
||||
|
||||
|
||||
def sort_dataframe(dataframe, sorting_parameter):
|
||||
"""sorts the data frame and resets index"""
|
||||
data = dataframe.sort_values(by=sorting_parameter)
|
||||
data = data.reset_index(drop=True)
|
||||
return data
|
||||
|
||||
|
||||
def make_graph(data, sorting_parameter, style):
|
||||
"""Makes the graph from the data based on style and sorting parameter
|
||||
:arg data : pandas dataframe with data after sorting
|
||||
:arg sorting_parameter to pull the correct variable and name
|
||||
:arg style of the graph - waterfall, scatter, heatmap
|
||||
:return matplotlib figure"""
|
||||
if style == "waterfall":
|
||||
mpl.rcParams["legend.fontsize"] = 10
|
||||
fig = plt.figure()
|
||||
ax = fig.gca(projection="3d")
|
||||
for i in range(len(data)):
|
||||
x = data["om"][i]
|
||||
z = data["Counts"][i]
|
||||
yy = [data[sorting_parameter][i]] * len(x)
|
||||
ax.plot(x, yy, z, label=str("%s = %f" % (sorting_parameter, yy[i])))
|
||||
|
||||
ax.legend()
|
||||
ax.set_xlabel("Omega")
|
||||
ax.set_ylabel(sorting_parameter)
|
||||
ax.set_zlabel("counts")
|
||||
|
||||
elif style == "scatter":
|
||||
fig = plt.figure()
|
||||
plt.errorbar(
|
||||
data[sorting_parameter],
|
||||
[data["fit_area"][i].n for i in range(len(data["fit_area"]))],
|
||||
[data["fit_area"][i].s for i in range(len(data["fit_area"]))],
|
||||
capsize=5,
|
||||
ecolor="green",
|
||||
)
|
||||
plt.xlabel(str(sorting_parameter))
|
||||
plt.ylabel("Intesity")
|
||||
|
||||
elif style == "heat":
|
||||
new_om = list()
|
||||
for i in range(len(data)):
|
||||
new_om = np.append(new_om, np.around(data["om"][i], 2), axis=0)
|
||||
unique_om = np.unique(new_om)
|
||||
color_matrix = np.zeros(shape=(len(data), len(unique_om)))
|
||||
for i in range(len(data)):
|
||||
for j in range(len(data["om"][i])):
|
||||
if np.around(data["om"][i][j], 2) in np.unique(new_om):
|
||||
color_matrix[i, j] = data["Counts"][i][j]
|
||||
else:
|
||||
continue
|
||||
|
||||
fig = plt.figure()
|
||||
plt.pcolormesh(unique_om, data[sorting_parameter], color_matrix, shading="gouraud")
|
||||
plt.xlabel("omega")
|
||||
plt.ylabel(sorting_parameter)
|
||||
plt.colorbar()
|
||||
plt.clim(color_matrix.mean(), color_matrix.max())
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def save_dict(obj, name):
|
||||
"""saves dictionary as pickle file in binary format
|
||||
:arg obj - object to save
|
||||
:arg name - name of the file
|
||||
NOTE: path should be added later"""
|
||||
with open(name + ".pkl", "wb") as f:
|
||||
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
def load_dict(name):
|
||||
"""load dictionary from picle file
|
||||
:arg name - name of the file to load
|
||||
NOTE: expect the file in the same folder, path should be added later
|
||||
:return dictionary"""
|
||||
with open(name + ".pkl", "rb") as f:
|
||||
return pickle.load(f)
|
||||
|
||||
|
||||
# pickle, mat, h5, txt, csv, json
|
||||
def save_table(data, filetype, name, path=None):
|
||||
print("Saving: ", filetype)
|
||||
path = "" if path is None else path
|
||||
if filetype == "pickle":
|
||||
# to work with uncertanities, see uncertanity module
|
||||
with open(path + name + ".pkl", "wb") as f:
|
||||
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
|
||||
if filetype == "mat":
|
||||
# matlab doesent allow some special character to be in var names, also cant start with
|
||||
# numbers, in need, add some to the romove_character list
|
||||
data["fit_area_nom"] = [data["fit_area"][i].n for i in range(len(data["fit_area"]))]
|
||||
data["fit_area_err"] = [data["fit_area"][i].s for i in range(len(data["fit_area"]))]
|
||||
data["int_area_nom"] = [data["int_area"][i].n for i in range(len(data["int_area"]))]
|
||||
data["int_area_err"] = [data["int_area"][i].s for i in range(len(data["int_area"]))]
|
||||
data = data.drop(columns=["fit_area", "int_area"])
|
||||
remove_characters = [" ", "[", "]", "{", "}", "(", ")"]
|
||||
for character in remove_characters:
|
||||
data.columns = [
|
||||
data.columns[i].replace(character, "") for i in range(len(data.columns))
|
||||
]
|
||||
sio.savemat((path + name + ".mat"), {name: col.values for name, col in data.items()})
|
||||
if filetype == "csv" or "txt":
|
||||
data["fit_area_nom"] = [data["fit_area"][i].n for i in range(len(data["fit_area"]))]
|
||||
data["fit_area_err"] = [data["fit_area"][i].s for i in range(len(data["fit_area"]))]
|
||||
data["int_area_nom"] = [data["int_area"][i].n for i in range(len(data["int_area"]))]
|
||||
data["int_area_err"] = [data["int_area"][i].s for i in range(len(data["int_area"]))]
|
||||
data = data.drop(columns=["fit_area", "int_area", "om", "Counts"])
|
||||
if filetype == "csv":
|
||||
data.to_csv(path + name + ".csv")
|
||||
if filetype == "txt":
|
||||
with open((path + name + ".txt"), "w") as outfile:
|
||||
data.to_string(outfile)
|
||||
if filetype == "h5":
|
||||
hdf = pd.HDFStore((path + name + ".h5"))
|
||||
hdf.put("data", data)
|
||||
hdf.close()
|
||||
if filetype == "json":
|
||||
data.to_json((path + name + ".json"))
|
||||
|
||||
def normalize(dict, key, monitor):
|
||||
"""Normalizes the measurement to monitor, checks if sigma exists, otherwise creates it
|
||||
:arg dict : dictionary to from which to tkae the scan
|
||||
:arg key : which scan to normalize from dict1
|
||||
:arg monitor : final monitor
|
||||
:return counts - normalized counts
|
||||
:return sigma - normalized sigma"""
|
||||
|
||||
counts = np.array(dict["scan"][key]["Counts"])
|
||||
sigma = np.sqrt(counts) if "sigma" not in dict["scan"][key] else dict["scan"][key]["sigma"]
|
||||
monitor_ratio = monitor / dict["scan"][key]["monitor"]
|
||||
scaled_counts = counts * monitor_ratio
|
||||
scaled_sigma = np.array(sigma) * monitor_ratio
|
||||
|
||||
return scaled_counts, scaled_sigma
|
||||
|
||||
def merge(dict1, dict2, scand_dict_result, keep=True, monitor=100000):
|
||||
"""merges the two tuples and sorts them, if om value is same, Counts value is average
|
||||
averaging is propagated into sigma if dict1 == dict2, key[1] is deleted after merging
|
||||
:arg dict1 : dictionary to which measurement will be merged
|
||||
:arg dict2 : dictionary from which measurement will be merged
|
||||
:arg scand_dict_result : result of scan_dict after auto function
|
||||
:arg keep : if true, when monitors are same, does not change it, if flase, takes monitor
|
||||
always
|
||||
:arg monitor : final monitor after merging
|
||||
note: dict1 and dict2 can be same dict
|
||||
:return dict1 with merged scan"""
|
||||
for keys in scand_dict_result:
|
||||
for j in range(len(scand_dict_result[keys])):
|
||||
first, second = scand_dict_result[keys][j][0], scand_dict_result[keys][j][1]
|
||||
print(first, second)
|
||||
if keep:
|
||||
if dict1["scan"][first]["monitor"] == dict2["scan"][second]["monitor"]:
|
||||
monitor = dict1["scan"][first]["monitor"]
|
||||
|
||||
# load om and Counts
|
||||
x1, x2 = dict1["scan"][first]["om"], dict2["scan"][second]["om"]
|
||||
cor_y1, y_err1 = normalize(dict1, first, monitor=monitor)
|
||||
cor_y2, y_err2 = normalize(dict2, second, monitor=monitor)
|
||||
# creates touples (om, Counts, sigma) for sorting and further processing
|
||||
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
|
||||
# Sort the list on om and add 0 0 0 tuple to the last position
|
||||
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
|
||||
sorted_t.append((0, 0, 0))
|
||||
om, Counts, sigma = [], [], []
|
||||
seen = list()
|
||||
for i in range(len(sorted_t) - 1):
|
||||
if sorted_t[i][0] not in seen:
|
||||
if sorted_t[i][0] != sorted_t[i + 1][0]:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
Counts = np.append(Counts, sorted_t[i][1])
|
||||
sigma = np.append(sigma, sorted_t[i][2])
|
||||
else:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
|
||||
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
|
||||
count_err1 = u.ufloat(counts1, sigma1)
|
||||
count_err2 = u.ufloat(counts2, sigma2)
|
||||
avg = (count_err1 + count_err2) / 2
|
||||
Counts = np.append(Counts, avg.n)
|
||||
sigma = np.append(sigma, avg.s)
|
||||
seen.append(sorted_t[i][0])
|
||||
else:
|
||||
continue
|
||||
|
||||
if dict1 == dict2:
|
||||
del dict1["scan"][second]
|
||||
|
||||
note = (
|
||||
f"This measurement was merged with measurement {second} from "
|
||||
f'file {dict2["meta"]["original_filename"]} \n'
|
||||
)
|
||||
if "notes" not in dict1["scan"][first]:
|
||||
dict1["scan"][first]["notes"] = note
|
||||
else:
|
||||
dict1["scan"][first]["notes"] += note
|
||||
|
||||
dict1["scan"][first]["om"] = om
|
||||
dict1["scan"][first]["Counts"] = Counts
|
||||
dict1["scan"][first]["sigma"] = sigma
|
||||
dict1["scan"][first]["monitor"] = monitor
|
||||
print("merging done")
|
||||
return dict1
|
||||
|
||||
|
||||
def add_dict(dict1, dict2):
|
||||
"""adds two dictionaries, meta of the new is saved as meata+original_filename and
|
||||
measurements are shifted to continue with numbering of first dict
|
||||
:arg dict1 : dictionarry to add to
|
||||
:arg dict2 : dictionarry from which to take the measurements
|
||||
:return dict1 : combined dictionary
|
||||
Note: dict1 must be made from ccl, otherwise we would have to change the structure of loaded
|
||||
dat file"""
|
||||
if dict1["meta"]["zebra_mode"] != dict2["meta"]["zebra_mode"]:
|
||||
print("You are trying to add scans measured with different zebra modes")
|
||||
return
|
||||
max_measurement_dict1 = max([keys for keys in dict1["scan"]])
|
||||
new_filenames = np.arange(
|
||||
max_measurement_dict1 + 1, max_measurement_dict1 + 1 + len(dict2["scan"])
|
||||
)
|
||||
new_meta_name = "meta" + str(dict2["meta"]["original_filename"])
|
||||
if new_meta_name not in dict1:
|
||||
for keys, name in zip(dict2["scan"], new_filenames):
|
||||
dict2["scan"][keys]["file_of_origin"] = str(dict2["meta"]["original_filename"])
|
||||
dict1["scan"][name] = dict2["scan"][keys]
|
||||
|
||||
dict1[new_meta_name] = dict2["meta"]
|
||||
else:
|
||||
raise KeyError(
|
||||
str(
|
||||
"The file %s has alredy been added to %s"
|
||||
% (dict2["meta"]["original_filename"], dict1["meta"]["original_filename"])
|
||||
)
|
||||
)
|
||||
return dict1
|
||||
|
||||
|
||||
def auto(dict):
|
||||
"""takes just unique tuples from all tuples in dictionary returend by scan_dict
|
||||
intendet for automatic merge if you doesent want to specify what scans to merge together
|
||||
args: dict - dictionary from scan_dict function
|
||||
:return dict - dict without repetitions"""
|
||||
for keys in dict:
|
||||
tuple_list = dict[keys]
|
||||
new = list()
|
||||
for i in range(len(tuple_list)):
|
||||
if tuple_list[0][0] == tuple_list[i][0]:
|
||||
new.append(tuple_list[i])
|
||||
dict[keys] = new
|
||||
return dict
|
||||
|
||||
|
||||
def scan_dict(dict, precision=0.5):
|
||||
"""scans dictionary for duplicate angles indexes
|
||||
:arg dict : dictionary to scan
|
||||
:arg precision : in deg, sometimes angles are zero so its easier this way, instead of
|
||||
checking zero division
|
||||
:return dictionary with matching scans, if there are none, the dict is empty
|
||||
note: can be checked by "not d", true if empty
|
||||
"""
|
||||
|
||||
if dict["meta"]["zebra_mode"] == "bi":
|
||||
angles = ["twotheta_angle", "omega_angle", "chi_angle", "phi_angle"]
|
||||
elif dict["meta"]["zebra_mode"] == "nb":
|
||||
angles = ["gamma_angle", "omega_angle", "nu_angle"]
|
||||
else:
|
||||
print("Unknown zebra mode")
|
||||
return
|
||||
|
||||
d = {}
|
||||
for i in dict["scan"]:
|
||||
for j in dict["scan"]:
|
||||
if dict["scan"][i] != dict["scan"][j]:
|
||||
itup = list()
|
||||
for k in angles:
|
||||
itup.append(abs(abs(dict["scan"][i][k]) - abs(dict["scan"][j][k])))
|
||||
|
||||
if all(i <= precision for i in itup):
|
||||
if str([np.around(dict["scan"][i][k], 1) for k in angles]) not in d:
|
||||
d[str([np.around(dict["scan"][i][k], 1) for k in angles])] = list()
|
||||
d[str([np.around(dict["scan"][i][k], 1) for k in angles])].append((i, j))
|
||||
else:
|
||||
d[str([np.around(dict["scan"][i][k], 1) for k in angles])].append((i, j))
|
||||
|
||||
else:
|
||||
pass
|
||||
|
||||
else:
|
||||
continue
|
||||
return d
|
@ -407,24 +407,24 @@ def box_int(file, box):
|
||||
|
||||
dat = pyzebra.read_detector_data(file)
|
||||
|
||||
sttC = dat["pol_angle"][0]
|
||||
om = dat["rot_angle"]
|
||||
nuC = dat["tlt_angle"][0]
|
||||
sttC = dat["gamma"][0]
|
||||
om = dat["omega"]
|
||||
nuC = dat["nu"][0]
|
||||
ddist = dat["ddist"]
|
||||
|
||||
# defining indices
|
||||
x0, xN, y0, yN, fr0, frN = box
|
||||
|
||||
# omega fit
|
||||
om = dat["rot_angle"][fr0:frN]
|
||||
om = dat["omega"][fr0:frN]
|
||||
cnts = np.sum(dat["data"][fr0:frN, y0:yN, x0:xN], axis=(1, 2))
|
||||
|
||||
p0 = [1.0, 0.0, 1.0]
|
||||
coeff, var_matrix = curve_fit(gauss, range(len(cnts)), cnts, p0=p0)
|
||||
|
||||
frC = fr0 + coeff[1]
|
||||
omF = dat["rot_angle"][math.floor(frC)]
|
||||
omC = dat["rot_angle"][math.ceil(frC)]
|
||||
omF = dat["omega"][math.floor(frC)]
|
||||
omC = dat["omega"][math.ceil(frC)]
|
||||
frStep = frC - math.floor(frC)
|
||||
omStep = omC - omF
|
||||
omP = omF + omStep * frStep
|
||||
|
4
scripts/pyzebra-start.sh
Normal file
4
scripts/pyzebra-start.sh
Normal file
@ -0,0 +1,4 @@
|
||||
source /home/pyzebra/miniconda3/etc/profile.d/conda.sh
|
||||
|
||||
conda activate prod
|
||||
pyzebra --port=80 --allow-websocket-origin=pyzebra.psi.ch:80
|
4
scripts/pyzebra-test-start.sh
Normal file
4
scripts/pyzebra-test-start.sh
Normal file
@ -0,0 +1,4 @@
|
||||
source /home/pyzebra/miniconda3/etc/profile.d/conda.sh
|
||||
|
||||
conda activate test
|
||||
python ~/pyzebra/pyzebra/app/cli.py --allow-websocket-origin=pyzebra.psi.ch:5006
|
11
scripts/pyzebra-test.service
Normal file
11
scripts/pyzebra-test.service
Normal file
@ -0,0 +1,11 @@
|
||||
[Unit]
|
||||
Description=pyzebra-test web server (runs on port 5006)
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
User=pyzebra
|
||||
ExecStart=/bin/bash /usr/local/sbin/pyzebra-test-start.sh
|
||||
Restart=always
|
||||
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
10
scripts/pyzebra.service
Normal file
10
scripts/pyzebra.service
Normal file
@ -0,0 +1,10 @@
|
||||
[Unit]
|
||||
Description=pyzebra web server
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
ExecStart=/bin/bash /usr/local/sbin/pyzebra-start.sh
|
||||
Restart=always
|
||||
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
Reference in New Issue
Block a user