Add 'param study' tab based on 'ccl integrate' tab

This commit is contained in:
usov_i 2020-11-18 09:48:50 +01:00
parent f7f016cf1c
commit b62573fa09
2 changed files with 578 additions and 1 deletions

View File

@ -9,6 +9,7 @@ from bokeh.models import Tabs, TextAreaInput
import panel_ccl_integrate
import panel_hdf_anatric
import panel_hdf_viewer
import panel_param_study
doc = curdoc()
@ -27,10 +28,11 @@ bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
tab_hdf_viewer = panel_hdf_viewer.create()
tab_hdf_anatric = panel_hdf_anatric.create()
tab_ccl_integrate = panel_ccl_integrate.create()
tab_param_study = panel_param_study.create()
doc.add_root(
column(
Tabs(tabs=[tab_hdf_viewer, tab_hdf_anatric, tab_ccl_integrate]),
Tabs(tabs=[tab_hdf_viewer, tab_hdf_anatric, tab_ccl_integrate, tab_param_study]),
row(stdout_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
)
)

View File

@ -0,0 +1,575 @@
import base64
import io
import os
import tempfile
import types
from copy import deepcopy
import numpy as np
from bokeh.layouts import column, row
from bokeh.models import (
Asterisk,
BasicTicker,
Button,
CheckboxEditor,
ColumnDataSource,
CustomJS,
DataRange1d,
DataTable,
Div,
Dropdown,
FileInput,
Grid,
Line,
LinearAxis,
MultiSelect,
NumberEditor,
Panel,
PanTool,
Plot,
RadioButtonGroup,
ResetTool,
Scatter,
Select,
Spacer,
Span,
Spinner,
TableColumn,
TextAreaInput,
TextInput,
Toggle,
WheelZoomTool,
Whisker,
)
import pyzebra
from pyzebra.ccl_io import AREA_METHODS
javaScript = """
setTimeout(function() {
const filename = 'output' + js_data.data['ext']
const blob = new Blob([js_data.data['cont']], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = filename;
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 500);
"""
PROPOSAL_PATH = "/afs/psi.ch/project/sinqdata/2020/zebra/"
def create():
det_data = {}
fit_params = {}
peak_pos_textinput_lock = False
js_data = ColumnDataSource(data=dict(cont=[], ext=[]))
def proposal_textinput_callback(_attr, _old, new):
ccl_path = os.path.join(PROPOSAL_PATH, new.strip())
ccl_file_list = []
for file in os.listdir(ccl_path):
if file.endswith(".ccl"):
ccl_file_list.append((os.path.join(ccl_path, file), file))
ccl_file_select.options = ccl_file_list
ccl_file_select.value = ccl_file_list[0][0]
proposal_textinput = TextInput(title="Enter proposal number:", default_size=145)
proposal_textinput.on_change("value", proposal_textinput_callback)
def _init_datatable():
scan_list = list(det_data["scan"].keys())
hkl = [
f'{int(m["h_index"])} {int(m["k_index"])} {int(m["l_index"])}'
for m in det_data["scan"].values()
]
scan_table_source.data.update(
scan=scan_list,
hkl=hkl,
peaks=[0] * len(scan_list),
fit=[0] * len(scan_list),
export=[True] * len(scan_list),
)
scan_table_source.selected.indices = []
scan_table_source.selected.indices = [0]
def ccl_file_select_callback(_attr, _old, new):
nonlocal det_data
with open(new) as file:
_, ext = os.path.splitext(new)
det_data = pyzebra.parse_1D(file, ext)
_init_datatable()
ccl_file_select = Select(title="Available .ccl files")
ccl_file_select.on_change("value", ccl_file_select_callback)
def upload_button_callback(_attr, _old, new):
nonlocal det_data
with io.StringIO(base64.b64decode(new).decode()) as file:
_, ext = os.path.splitext(upload_button.filename)
det_data = pyzebra.parse_1D(file, ext)
_init_datatable()
upload_button = FileInput(accept=".ccl")
upload_button.on_change("value", upload_button_callback)
def append_upload_button_callback(_attr, _old, new):
nonlocal det_data
with io.StringIO(base64.b64decode(new).decode()) as file:
_, ext = os.path.splitext(append_upload_button.filename)
append_data = pyzebra.parse_1D(file, ext)
added = pyzebra.add_dict(det_data, append_data)
scan_result = pyzebra.auto(pyzebra.scan_dict(added))
det_data = pyzebra.merge(added, added, scan_result)
_init_datatable()
append_upload_button = FileInput(accept=".ccl,.dat")
append_upload_button.on_change("value", append_upload_button_callback)
def _update_table():
num_of_peaks = [len(scan.get("peak_indexes", [])) for scan in det_data["scan"].values()]
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"].values()]
scan_table_source.data.update(peaks=num_of_peaks, fit=fit_ok)
def _update_plot(scan):
nonlocal peak_pos_textinput_lock
peak_pos_textinput_lock = True
y = scan["Counts"]
x = scan["om"]
plot_scatter_source.data.update(x=x, y=y, y_upper=y + np.sqrt(y), y_lower=y - np.sqrt(y))
num_of_peaks = len(scan.get("peak_indexes", []))
if num_of_peaks is not None and num_of_peaks > 0:
peak_indexes = scan["peak_indexes"]
if len(peak_indexes) == 1:
peak_pos_textinput.value = str(scan["om"][peak_indexes[0]])
else:
peak_pos_textinput.value = str([scan["om"][ind] for ind in peak_indexes])
plot_peak_source.data.update(x=scan["om"][peak_indexes], y=scan["peak_heights"])
plot_line_smooth_source.data.update(x=x, y=scan["smooth_peaks"])
else:
peak_pos_textinput.value = None
plot_peak_source.data.update(x=[], y=[])
plot_line_smooth_source.data.update(x=[], y=[])
peak_pos_textinput_lock = False
fit = scan.get("fit")
if fit is not None:
x = scan["fit"]["x_fit"]
plot_gauss_source.data.update(x=x, y=scan["fit"]["comps"]["gaussian"])
plot_bkg_source.data.update(x=x, y=scan["fit"]["comps"]["background"])
params = fit["result"].params
fit_output_textinput.value = (
"Gaussian: centre = %9.4f, sigma = %9.4f, area = %9.4f \n"
"background: slope = %9.4f, intercept = %9.4f \n"
"Int. area = %9.4f +/- %9.4f \n"
"fit area = %9.4f +/- %9.4f \n"
"ratio((fit-int)/fit) = %9.4f"
% (
params["g_cen"].value,
params["g_width"].value,
params["g_amp"].value,
params["slope"].value,
params["intercept"].value,
fit["int_area"].n,
fit["int_area"].s,
params["g_amp"].value,
params["g_amp"].stderr,
(params["g_amp"].value - fit["int_area"].n) / params["g_amp"].value,
)
)
numfit_min, numfit_max = fit["numfit"]
if numfit_min is None:
numfit_min_span.location = None
else:
numfit_min_span.location = x[numfit_min]
if numfit_max is None:
numfit_max_span.location = None
else:
numfit_max_span.location = x[numfit_max]
else:
plot_gauss_source.data.update(x=[], y=[])
plot_bkg_source.data.update(x=[], y=[])
fit_output_textinput.value = ""
numfit_min_span.location = None
numfit_max_span.location = None
# Main plot
plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
plot.add_layout(LinearAxis(axis_label="Omega"), place="below")
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot.add_glyph(plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue"))
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
plot_line_smooth_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.add_glyph(
plot_line_smooth_source, Line(x="x", y="y", line_color="steelblue", line_dash="dashed")
)
plot_gauss_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.add_glyph(plot_gauss_source, Line(x="x", y="y", line_color="red", line_dash="dashed"))
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.add_glyph(plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed"))
plot_peak_source = ColumnDataSource(dict(x=[], y=[]))
plot.add_glyph(plot_peak_source, Asterisk(x="x", y="y", size=10, line_color="red"))
numfit_min_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(numfit_min_span)
numfit_max_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(numfit_max_span)
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
plot.toolbar.logo = None
# Scan select
def scan_table_select_callback(_attr, old, new):
if not new:
# skip empty selections
return
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
scan_table_source.selected.indices = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
_update_plot(det_data["scan"][scan_table_source.data["scan"][new[0]]])
scan_table_source = ColumnDataSource(dict(scan=[], hkl=[], peaks=[], fit=[], export=[]))
scan_table = DataTable(
source=scan_table_source,
columns=[
TableColumn(field="scan", title="scan"),
TableColumn(field="hkl", title="hkl"),
TableColumn(field="peaks", title="Peaks"),
TableColumn(field="fit", title="Fit"),
TableColumn(field="export", title="Export", editor=CheckboxEditor()),
],
width=250,
index_position=None,
editable=True,
)
scan_table_source.selected.on_change("indices", scan_table_select_callback)
def _get_selected_scan():
selected_index = scan_table_source.selected.indices[0]
selected_scan_id = scan_table_source.data["scan"][selected_index]
return det_data["scan"][selected_scan_id]
def peak_pos_textinput_callback(_attr, _old, new):
if new is not None and not peak_pos_textinput_lock:
scan = _get_selected_scan()
peak_ind = (np.abs(scan["om"] - float(new))).argmin()
scan["peak_indexes"] = np.array([peak_ind], dtype=np.int64)
scan["peak_heights"] = np.array([scan["smooth_peaks"][peak_ind]])
_update_table()
_update_plot(scan)
peak_pos_textinput = TextInput(title="Peak position:", default_size=145)
peak_pos_textinput.on_change("value", peak_pos_textinput_callback)
peak_int_ratio_spinner = Spinner(
title="Peak intensity ratio:", value=0.8, step=0.01, low=0, high=1, default_size=145
)
peak_prominence_spinner = Spinner(title="Peak prominence:", value=50, low=0, default_size=145)
smooth_toggle = Toggle(label="Smooth curve", default_size=145)
window_size_spinner = Spinner(title="Window size:", value=7, step=2, low=1, default_size=145)
poly_order_spinner = Spinner(title="Poly order:", value=3, low=0, default_size=145)
integ_from = Spinner(title="Integrate from:", default_size=145)
integ_to = Spinner(title="to:", default_size=145)
def fitparam_reset_button_callback():
...
fitparam_reset_button = Button(label="Reset to defaults", default_size=145, disabled=True)
fitparam_reset_button.on_click(fitparam_reset_button_callback)
def fitparams_add_dropdown_callback(click):
new_tag = str(fitparams_select.tags[0]) # bokeh requires (str, str) for MultiSelect options
fitparams_select.options.append((new_tag, click.item))
fit_params[new_tag] = fitparams_factory(click.item)
fitparams_select.tags[0] += 1
fitparams_add_dropdown = Dropdown(
label="Add fit function",
menu=[
("Background", "background"),
("Gauss", "gauss"),
("Voigt", "voigt"),
("Pseudo Voigt", "pseudovoigt"),
("Pseudo Voigt1", "pseudovoigt1"),
],
default_size=145,
disabled=True,
)
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
def fitparams_select_callback(_attr, old, new):
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
fitparams_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
if new:
fitparams_table_source.data.update(fit_params[new[0]])
else:
fitparams_table_source.data.update(dict(param=[], guess=[], vary=[], min=[], max=[]))
fitparams_select = MultiSelect(options=[], height=120, default_size=145)
fitparams_select.tags = [0]
fitparams_select.on_change("value", fitparams_select_callback)
def fitparams_remove_button_callback():
if fitparams_select.value:
sel_tag = fitparams_select.value[0]
del fit_params[sel_tag]
for elem in fitparams_select.options:
if elem[0] == sel_tag:
fitparams_select.options.remove(elem)
break
fitparams_select.value = []
fitparams_remove_button = Button(label="Remove fit function", default_size=145, disabled=True)
fitparams_remove_button.on_click(fitparams_remove_button_callback)
def fitparams_factory(function):
if function == "background":
params = ["slope", "offset"]
elif function == "gauss":
params = ["center", "sigma", "amplitude"]
elif function == "voigt":
params = ["center", "sigma", "amplitude", "gamma"]
elif function == "pseudovoigt":
params = ["center", "sigma", "amplitude", "fraction"]
elif function == "pseudovoigt1":
params = ["center", "g_sigma", "l_sigma", "amplitude", "fraction"]
else:
raise ValueError("Unknown fit function")
n = len(params)
fitparams = dict(
param=params, guess=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
)
return fitparams
fitparams_table_source = ColumnDataSource(dict(param=[], guess=[], vary=[], min=[], max=[]))
fitparams_table = DataTable(
source=fitparams_table_source,
columns=[
TableColumn(field="param", title="Parameter"),
TableColumn(field="guess", title="Guess", editor=NumberEditor()),
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
TableColumn(field="min", title="Min", editor=NumberEditor()),
TableColumn(field="max", title="Max", editor=NumberEditor()),
],
height=200,
width=350,
index_position=None,
editable=True,
auto_edit=True,
)
# start with `background` and `gauss` fit functions added
fitparams_add_dropdown_callback(types.SimpleNamespace(item="background"))
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gauss"))
fit_output_textinput = TextAreaInput(title="Fit results:", width=450, height=400)
def _get_peakfind_params():
return dict(
int_threshold=peak_int_ratio_spinner.value,
prominence=peak_prominence_spinner.value,
smooth=smooth_toggle.active,
window_size=window_size_spinner.value,
poly_order=poly_order_spinner.value,
)
def peakfind_all_button_callback():
peakfind_params = _get_peakfind_params()
for scan in det_data["scan"].values():
pyzebra.ccl_findpeaks(scan, **peakfind_params)
_update_table()
_update_plot(_get_selected_scan())
peakfind_all_button = Button(label="Peak Find All", button_type="primary", default_size=145)
peakfind_all_button.on_click(peakfind_all_button_callback)
def peakfind_button_callback():
scan = _get_selected_scan()
pyzebra.ccl_findpeaks(scan, **_get_peakfind_params())
_update_table()
_update_plot(scan)
peakfind_button = Button(label="Peak Find Current", default_size=145)
peakfind_button.on_click(peakfind_button_callback)
def _get_fit_params():
return dict(
guess=fit_params["1"]["guess"] + fit_params["0"]["guess"],
vary=fit_params["1"]["vary"] + fit_params["0"]["vary"],
constraints_min=fit_params["1"]["min"] + fit_params["0"]["min"],
constraints_max=fit_params["1"]["max"] + fit_params["0"]["max"],
numfit_min=integ_from.value,
numfit_max=integ_to.value,
binning=bin_size_spinner.value,
)
def fit_all_button_callback():
fit_params = _get_fit_params()
for scan in det_data["scan"].values():
# fit_params are updated inplace within `fitccl`
pyzebra.fitccl(scan, **deepcopy(fit_params))
_update_plot(_get_selected_scan())
_update_table()
fit_all_button = Button(label="Fit All", button_type="primary", default_size=145)
fit_all_button.on_click(fit_all_button_callback)
def fit_button_callback():
scan = _get_selected_scan()
pyzebra.fitccl(scan, **_get_fit_params())
_update_plot(scan)
_update_table()
fit_button = Button(label="Fit Current", default_size=145)
fit_button.on_click(fit_button_callback)
def area_method_radiobutton_callback(_attr, _old, new):
det_data["meta"]["area_method"] = AREA_METHODS[new]
area_method_radiobutton = RadioButtonGroup(
labels=["Fit area", "Int area"], active=0, default_size=145
)
area_method_radiobutton.on_change("active", area_method_radiobutton_callback)
bin_size_spinner = Spinner(title="Bin size:", value=1, low=1, step=1, default_size=145)
lorentz_toggle = Toggle(label="Lorentz Correction", default_size=145)
preview_output_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
def preview_output_button_callback():
if det_data["meta"]["indices"] == "hkl":
ext = ".comm"
elif det_data["meta"]["indices"] == "real":
ext = ".incomm"
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/temp"
export_data = deepcopy(det_data)
for s, export in zip(scan_table_source.data["scan"], scan_table_source.data["export"]):
if not export:
del export_data["scan"][s]
pyzebra.export_comm(export_data, temp_file, lorentz=lorentz_toggle.active)
with open(f"{temp_file}{ext}") as f:
preview_output_textinput.value = f.read()
preview_output_button = Button(label="Preview file", default_size=220)
preview_output_button.on_click(preview_output_button_callback)
def export_results(det_data):
if det_data["meta"]["indices"] == "hkl":
ext = ".comm"
elif det_data["meta"]["indices"] == "real":
ext = ".incomm"
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/temp"
export_data = deepcopy(det_data)
for s, export in zip(scan_table_source.data["scan"], scan_table_source.data["export"]):
if not export:
del export_data["scan"][s]
pyzebra.export_comm(export_data, temp_file, lorentz=lorentz_toggle.active)
with open(f"{temp_file}{ext}") as f:
output_content = f.read()
return output_content, ext
def save_button_callback():
cont, ext = export_results(det_data)
js_data.data.update(cont=[cont], ext=[ext])
save_button = Button(label="Download file", button_type="success", default_size=220)
save_button.on_click(save_button_callback)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
findpeak_controls = column(
row(peak_pos_textinput, column(Spacer(height=19), smooth_toggle)),
row(peak_int_ratio_spinner, peak_prominence_spinner),
row(window_size_spinner, poly_order_spinner),
row(peakfind_button, peakfind_all_button),
)
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
Spacer(width=20),
column(
row(integ_from, integ_to),
row(bin_size_spinner, column(Spacer(height=19), lorentz_toggle)),
row(fitparam_reset_button, area_method_radiobutton),
row(fit_button, fit_all_button),
),
)
export_layout = column(preview_output_textinput, row(preview_output_button, save_button))
upload_div = Div(text="Or upload .ccl file:")
append_upload_div = Div(text="append extra .ccl/.dat files:")
tab_layout = column(
row(proposal_textinput, ccl_file_select),
row(
column(Spacer(height=5), upload_div),
upload_button,
column(Spacer(height=5), append_upload_div),
append_upload_button,
),
row(scan_table, plot, Spacer(width=30), fit_output_textinput, export_layout),
row(findpeak_controls, Spacer(width=30), fitpeak_controls),
)
return Panel(child=tab_layout, title="param study")