Keep scans in a list instead of a dict
This commit is contained in:
@ -87,8 +87,8 @@ def create():
|
||||
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||
|
||||
def _init_datatable():
|
||||
scan_list = list(det_data["scan"].keys())
|
||||
hkl = [f'{m["h_index"]} {m["k_index"]} {m["l_index"]}' for m in det_data["scan"].values()]
|
||||
scan_list = list(range(len(det_data["scan"])))
|
||||
hkl = [f'{m["h_index"]} {m["k_index"]} {m["l_index"]}' for m in det_data["scan"]]
|
||||
scan_table_source.data.update(
|
||||
scan=scan_list,
|
||||
hkl=hkl,
|
||||
@ -159,8 +159,8 @@ def create():
|
||||
append_upload_button.on_change("value", append_upload_button_callback)
|
||||
|
||||
def _update_table():
|
||||
num_of_peaks = [len(scan.get("peak_indexes", [])) for scan in det_data["scan"].values()]
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"].values()]
|
||||
num_of_peaks = [len(scan.get("peak_indexes", [])) for scan in det_data["scan"]]
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"]]
|
||||
scan_table_source.data.update(peaks=num_of_peaks, fit=fit_ok)
|
||||
|
||||
def _update_plot(scan):
|
||||
@ -447,7 +447,7 @@ def create():
|
||||
|
||||
def peakfind_all_button_callback():
|
||||
peakfind_params = _get_peakfind_params()
|
||||
for scan in det_data["scan"].values():
|
||||
for scan in det_data["scan"]:
|
||||
pyzebra.ccl_findpeaks(scan, **peakfind_params)
|
||||
|
||||
_update_table()
|
||||
@ -479,7 +479,7 @@ def create():
|
||||
|
||||
def fit_all_button_callback():
|
||||
fit_params = _get_fit_params()
|
||||
for scan in det_data["scan"].values():
|
||||
for scan in det_data["scan"]:
|
||||
# fit_params are updated inplace within `fitccl`
|
||||
pyzebra.fitccl(scan, **deepcopy(fit_params))
|
||||
|
||||
@ -515,7 +515,8 @@ def create():
|
||||
export_data = deepcopy(det_data)
|
||||
for s, export in zip(scan_table_source.data["scan"], scan_table_source.data["export"]):
|
||||
if not export:
|
||||
del export_data["scan"][s]
|
||||
if "fit" in export_data["scan"][s]:
|
||||
del export_data["scan"][s]["fit"]
|
||||
|
||||
pyzebra.export_1D(
|
||||
export_data,
|
||||
|
@ -96,7 +96,7 @@ def create():
|
||||
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||
|
||||
def _init_datatable():
|
||||
scan_list = list(det_data["scan"].keys())
|
||||
scan_list = list(range(len(det_data["scan"])))
|
||||
file_list = []
|
||||
extra_meta = det_data.get("extra_meta", {})
|
||||
for scan_id in scan_list:
|
||||
@ -184,8 +184,8 @@ def create():
|
||||
append_upload_button.on_change("value", append_upload_button_callback)
|
||||
|
||||
def _update_table():
|
||||
num_of_peaks = [len(scan.get("peak_indexes", [])) for scan in det_data["scan"].values()]
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"].values()]
|
||||
num_of_peaks = [len(scan.get("peak_indexes", [])) for scan in det_data["scan"]]
|
||||
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"]]
|
||||
scan_table_source.data.update(peaks=num_of_peaks, fit=fit_ok)
|
||||
|
||||
def _update_plot():
|
||||
@ -554,7 +554,7 @@ def create():
|
||||
|
||||
def peakfind_all_button_callback():
|
||||
peakfind_params = _get_peakfind_params()
|
||||
for scan in det_data["scan"].values():
|
||||
for scan in det_data["scan"]:
|
||||
pyzebra.ccl_findpeaks(scan, **peakfind_params)
|
||||
|
||||
_update_table()
|
||||
@ -586,7 +586,7 @@ def create():
|
||||
|
||||
def fit_all_button_callback():
|
||||
fit_params = _get_fit_params()
|
||||
for scan in det_data["scan"].values():
|
||||
for scan in det_data["scan"]:
|
||||
# fit_params are updated inplace within `fitccl`
|
||||
pyzebra.fitccl(scan, **deepcopy(fit_params))
|
||||
|
||||
@ -649,7 +649,8 @@ def create():
|
||||
export_data = deepcopy(det_data)
|
||||
for s, export in zip(scan_table_source.data["scan"], scan_table_source.data["export"]):
|
||||
if not export:
|
||||
del export_data["scan"][s]
|
||||
if "fit" in export_data["scan"][s]:
|
||||
del export_data["scan"][s]["fit"]
|
||||
|
||||
pyzebra.export_1D(
|
||||
export_data,
|
||||
|
@ -133,7 +133,7 @@ def parse_1D(fileobj, data_type):
|
||||
break
|
||||
|
||||
# read data
|
||||
scan = {}
|
||||
scan = []
|
||||
if data_type == ".ccl":
|
||||
ccl_first_line = (*CCL_FIRST_LINE, *CCL_ANGLES[metadata["zebra_mode"]])
|
||||
ccl_second_line = CCL_SECOND_LINE
|
||||
@ -162,7 +162,7 @@ def parse_1D(fileobj, data_type):
|
||||
counts.extend(map(int, next(fileobj).split()))
|
||||
s["Counts"] = counts
|
||||
|
||||
scan[s["scan_number"]] = s
|
||||
scan.append(s)
|
||||
|
||||
elif data_type == ".dat":
|
||||
# skip the first 2 rows, the third row contans the column names
|
||||
@ -203,12 +203,12 @@ def parse_1D(fileobj, data_type):
|
||||
s["nu_angle"] = metadata["nu"]
|
||||
|
||||
s["scan_number"] = 1
|
||||
scan[s["scan_number"]] = dict(s)
|
||||
scan.append(dict(s))
|
||||
|
||||
else:
|
||||
print("Unknown file extention")
|
||||
|
||||
for s in scan.values():
|
||||
for s in scan:
|
||||
if s["h_index"].is_integer() and s["k_index"].is_integer() and s["l_index"].is_integer():
|
||||
s["h_index"] = int(s["h_index"])
|
||||
s["k_index"] = int(s["k_index"])
|
||||
@ -231,12 +231,11 @@ def export_1D(data, path, area_method=AREA_METHODS[0], lorentz=False, hkl_precis
|
||||
zebra_mode = data["meta"]["zebra_mode"]
|
||||
file_content = {".comm": [], ".incomm": []}
|
||||
|
||||
for key, scan in data["scan"].items():
|
||||
for ind, scan in enumerate(data["scan"]):
|
||||
if "fit" not in scan:
|
||||
print("Scan skipped - no fit value for:", key)
|
||||
continue
|
||||
|
||||
scan_str = f"{key:6}"
|
||||
ind_str = f"{ind:6}"
|
||||
|
||||
h, k, l = scan["h_index"], scan["k_index"], scan["l_index"]
|
||||
if scan["indices"] == "hkl":
|
||||
@ -267,7 +266,7 @@ def export_1D(data, path, area_method=AREA_METHODS[0], lorentz=False, hkl_precis
|
||||
ang_str = ang_str + f"{scan[angle]:8}"
|
||||
|
||||
ref = file_content[".comm"] if scan["indices"] == "hkl" else file_content[".incomm"]
|
||||
ref.append(scan_str + hkl_str + area_str + ang_str + "\n")
|
||||
ref.append(ind_str + hkl_str + area_str + ang_str + "\n")
|
||||
|
||||
for ext, content in file_content.items():
|
||||
if content:
|
||||
|
@ -13,8 +13,7 @@ def create_tuples(x, y, y_err):
|
||||
|
||||
|
||||
def normalize_all(dictionary, monitor=100000):
|
||||
for keys in dictionary["scan"]:
|
||||
scan = dictionary["scan"][keys]
|
||||
for scan in dictionary["scan"]:
|
||||
counts = np.array(scan["Counts"])
|
||||
sigma = np.sqrt(counts) if "sigma" not in scan else scan["sigma"]
|
||||
monitor_ratio = monitor / scan["monitor"]
|
||||
@ -161,8 +160,8 @@ def merge_dups(dictionary):
|
||||
"gamma_angle": 0.05,
|
||||
}
|
||||
|
||||
for i in list(dictionary["scan"]):
|
||||
for j in list(dictionary["scan"]):
|
||||
for i in range(len(dictionary["scan"])):
|
||||
for j in range(len(dictionary["scan"])):
|
||||
if i == j:
|
||||
continue
|
||||
else:
|
||||
@ -181,8 +180,8 @@ def merge_dups(dictionary):
|
||||
|
||||
|
||||
def add_scan(dict1, dict2, scan_to_add):
|
||||
max_scan = np.max(list(dict1["scan"]))
|
||||
dict1["scan"][max_scan + 1] = dict2["scan"][scan_to_add]
|
||||
max_scan = len(dict1["scan"])
|
||||
dict1["scan"].append(dict2["scan"][scan_to_add])
|
||||
if dict1.get("extra_meta") is None:
|
||||
dict1["extra_meta"] = {}
|
||||
dict1["extra_meta"][max_scan + 1] = dict2["meta"]
|
||||
@ -196,8 +195,8 @@ def process(dict1, dict2, angles, precision):
|
||||
# check UB matrixes
|
||||
if check_UB(dict1, dict2):
|
||||
# iterate over second dict and check for matches
|
||||
for i in list(dict2["scan"]):
|
||||
for j in list(dict1["scan"]):
|
||||
for i in range(len(dict2["scan"])):
|
||||
for j in range(len(dict1["scan"])):
|
||||
if check_angles(dict1["scan"][j], dict2["scan"][i], angles, precision):
|
||||
# angles good, see the mag and temp
|
||||
if check_temp_mag(dict1["scan"][j], dict2["scan"][i]):
|
||||
@ -276,7 +275,7 @@ def add_dict(dict1, dict2):
|
||||
# this is for the qscan case
|
||||
except KeyError:
|
||||
print("Zebra mode not specified")
|
||||
max_measurement_dict1 = max([keys for keys in dict1["scan"]])
|
||||
max_measurement_dict1 = len(dict1["scan"])
|
||||
new_filenames = np.arange(
|
||||
max_measurement_dict1 + 1, max_measurement_dict1 + 1 + len(dict2["scan"])
|
||||
)
|
||||
@ -286,9 +285,9 @@ def add_dict(dict1, dict2):
|
||||
|
||||
new_meta_name = "meta" + str(dict2["meta"]["original_filename"])
|
||||
if new_meta_name not in dict1:
|
||||
for keys, name in zip(dict2["scan"], new_filenames):
|
||||
for keys, name in zip(range(len(dict2["scan"])), new_filenames):
|
||||
dict2["scan"][keys]["file_of_origin"] = str(dict2["meta"]["original_filename"])
|
||||
dict1["scan"][name] = dict2["scan"][keys]
|
||||
dict1["scan"].append(dict2["scan"][keys])
|
||||
dict1["extra_meta"][name] = dict2["meta"]
|
||||
|
||||
dict1[new_meta_name] = dict2["meta"]
|
||||
|
@ -51,7 +51,7 @@ def load_dats(filepath):
|
||||
else:
|
||||
|
||||
dict1 = add_dict(dict1, load_1D(file_list[i]))
|
||||
dict1["scan"][i + 1]["params"] = {}
|
||||
dict1["scan"].append({})
|
||||
if data_type == "txt":
|
||||
for x in range(len(col_names) - 1):
|
||||
dict1["scan"][i + 1]["params"][col_names[x + 1]] = float(file_list[i][x + 1])
|
||||
@ -76,7 +76,7 @@ def create_dataframe(dict1, variables):
|
||||
print(keys)
|
||||
|
||||
# populate the dict
|
||||
for keys in dict1["scan"]:
|
||||
for keys in range(len(dict1["scan"])):
|
||||
if "file_of_origin" in dict1["scan"][keys]:
|
||||
pull_dict["filenames"].append(dict1["scan"][keys]["file_of_origin"].split("/")[-1])
|
||||
else:
|
||||
@ -298,7 +298,7 @@ def add_dict(dict1, dict2):
|
||||
# this is for the qscan case
|
||||
except KeyError:
|
||||
print("Zebra mode not specified")
|
||||
max_measurement_dict1 = max([keys for keys in dict1["scan"]])
|
||||
max_measurement_dict1 = len(dict1["scan"])
|
||||
new_filenames = np.arange(
|
||||
max_measurement_dict1 + 1, max_measurement_dict1 + 1 + len(dict2["scan"])
|
||||
)
|
||||
@ -352,8 +352,8 @@ def scan_dict(dict, precision=0.5):
|
||||
return
|
||||
|
||||
d = {}
|
||||
for i in dict["scan"]:
|
||||
for j in dict["scan"]:
|
||||
for i in range(len(dict["scan"])):
|
||||
for j in range(len(dict["scan"])):
|
||||
if dict["scan"][i] != dict["scan"][j]:
|
||||
itup = list()
|
||||
for k in angles:
|
||||
@ -399,7 +399,7 @@ def variables(dictionary):
|
||||
# find all variables that are in all scans
|
||||
stdev_precision = 0.05
|
||||
all_vars = list()
|
||||
for keys in dictionary["scan"]:
|
||||
for keys in range(len(dictionary["scan"])):
|
||||
all_vars.append([key for key in dictionary["scan"][keys] if key != "params"])
|
||||
if dictionary["scan"][keys]["params"]:
|
||||
all_vars.append(key for key in dictionary["scan"][keys]["params"])
|
||||
@ -432,7 +432,7 @@ def variables(dictionary):
|
||||
# check for primary variable, needs to be list, we dont suspect the
|
||||
# primary variable be as a parameter (be in scan[params])
|
||||
primary_candidates = list()
|
||||
for key in dictionary["scan"]:
|
||||
for key in range(len(dictionary["scan"])):
|
||||
for i in inall_red:
|
||||
if isinstance(_finditem(dictionary["scan"][key], i), list):
|
||||
if np.std(_finditem(dictionary["scan"][key], i)) > stdev_precision:
|
||||
@ -454,7 +454,7 @@ def variables(dictionary):
|
||||
# print("secondary candidates", secondary_candidates)
|
||||
# select arrays and floats and ints
|
||||
second_round_secondary_candidates = list()
|
||||
for key in dictionary["scan"]:
|
||||
for key in range(len(dictionary["scan"])):
|
||||
for i in secondary_candidates:
|
||||
if isinstance(_finditem(dictionary["scan"][key], i), float):
|
||||
second_round_secondary_candidates.append(i)
|
||||
@ -475,7 +475,7 @@ def variables(dictionary):
|
||||
third_round_sec_candidates = list()
|
||||
for i in second_round_secondary_candidates:
|
||||
check_array = list()
|
||||
for keys in dictionary["scan"]:
|
||||
for keys in range(len(dictionary["scan"])):
|
||||
check_array.append(np.average(_finditem(dictionary["scan"][keys], i)))
|
||||
# print(i, check_array, np.std(check_array))
|
||||
if np.std(check_array) > stdev_precision:
|
||||
|
Reference in New Issue
Block a user