116 Commits

Author SHA1 Message Date
eb6862ff99 changed name of GainMap to InvertedGainMap
Some checks failed
Build on RHEL9 / build (push) Successful in 2m16s
Build on RHEL8 / build (push) Failing after 2m34s
2025-04-25 12:03:59 +02:00
f06e722dce changes from PR review 2025-04-25 11:38:56 +02:00
7b5e32a824 Api extra (#166)
Changes to be able to run the example notebooks: 

- Invert gain map on setting (multiplication is faster but user supplies
ADU/energy)
- Cast after applying gain map not to loose precision (Important for
int32 clusters)
- "factor" for ClusterFileSink 
- Cluster size available to be able to create the right file sink
2025-04-25 10:31:16 +02:00
86d343f5f5 merged with developer
Some checks failed
Build on RHEL9 / build (push) Successful in 2m9s
Build on RHEL8 / build (push) Failing after 2m32s
2025-04-23 11:45:04 +02:00
129e7e9f9d Merge branch 'developer' of github.com:slsdetectorgroup/aare into developer
All checks were successful
Build on RHEL9 / build (push) Successful in 1m59s
Build on RHEL8 / build (push) Successful in 2m29s
2025-04-22 16:24:32 +02:00
58c934d9cf added mpl to conda specs 2025-04-22 16:24:15 +02:00
4088b0889d Merge branch 'main' into developer 2025-04-22 16:18:48 +02:00
d5f8daf194 removed debug option in CMakelist
All checks were successful
Build on RHEL9 / buildh (push) Successful in 2m36s
2025-04-22 16:16:31 +02:00
c6e8e5f6a1 inverted gain map 2025-04-22 16:16:27 +02:00
b501c31e38 added missed commit 2025-04-22 15:22:47 +02:00
326941e2b4 Custom base for decoding ADC data (#163)
New function apply_custom_weights (can we find a better name) that takes
a uint16 and a NDView<double,1> of bases for the conversion. For each
supplied weight it is used as base (instead of 2) to convert from bits
to a double.

---------

Co-authored-by: siebsi <sieb.patr@gmail.com>
2025-04-22 15:20:46 +02:00
84aafa75f6 Building wheels and uploading to pypi (#160)
All checks were successful
Build on RHEL9 / build (push) Successful in 1m56s
Build on RHEL8 / build (push) Successful in 2m13s
Still to be resolved in another PR: 

- Consistent versioning across compiled code, conda and pypi
2025-04-22 08:36:34 +02:00
177459c98a added multithreaded cluster finder test
All checks were successful
Build on RHEL9 / buildh (push) Successful in 2m20s
2025-04-17 17:09:53 +02:00
c49a2fdf8e removed cluster_2x2 and cluster3x3 specializations
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m58s
2025-04-16 16:40:42 +02:00
14211047ff added function warpper around ClusterFinderMT and ClusterCollector to construct object 2025-04-16 14:22:44 +02:00
acd9d5d487 moved parts of ClusterFile implementation into declaration
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m55s
2025-04-15 15:15:34 +02:00
d4050ec557 enum is now enum class 2025-04-15 14:57:25 +02:00
fca9d5d2fa replaced extract template parameters 2025-04-15 14:40:09 +02:00
1174f7f434 fixed calculate eta 2025-04-15 13:18:25 +02:00
2bb7d360bf Adding more tests, fixing hitmap and reading with cuts (#161)
- Fix for hitmap
- Fix for reading clusters with cut
- Added more tests around eta
- Added factory function for creating the cluster finder
2025-04-15 12:25:01 +02:00
a90e532b21 removed extra sum after merge
Some checks failed
Build on RHEL9 / buildh (push) Failing after 1m57s
2025-04-15 08:08:59 +02:00
8d8182c632 qMerge branch 'testing_clusters' of github.com:slsdetectorgroup/aare into testing_clusters 2025-04-15 08:05:12 +02:00
5f34ab6df1 minor comment 2025-04-15 08:05:05 +02:00
5c8a5099fd Merge branch 'api_cluster_vector' into testing_clusters 2025-04-14 16:40:47 +02:00
7c93632605 tests and fix 2025-04-14 16:38:25 +02:00
54def26334 added ClusterFile tests fixed some bugs in ClusterFile
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m55s
2025-04-14 15:48:09 +02:00
a59e9656be Making RawSubFile usable from Python (#158)
All checks were successful
Build on RHEL8 / build (push) Successful in 1m55s
Build on RHEL9 / build (push) Successful in 1m44s
- Removed a printout left from debugging
- return also header when reading
- added read_n 
- check for error in ifstream
2025-04-11 16:54:21 +02:00
3f753ec900 Some fixes (need more testing later) (#159)
Some checks failed
Build on RHEL9 / buildh (push) Failing after 1m51s
- Change of pointer size caused out of bounds write
- UB to write to memory reserved by std::vector::reserver --> allocate
dummy clusters by using resize instead
   - but now we can't reserve like we want to, need a fix. 
- format string not working, fixed
2025-04-11 14:43:12 +02:00
15e52565a9 dont convert to byte 2025-04-11 14:35:20 +02:00
e71569b15e resize before read 2025-04-11 13:38:33 +02:00
92f5421481 np test 2025-04-10 16:58:47 +02:00
113f34cc98 fixes 2025-04-10 16:50:04 +02:00
53a90e197e added additional tests
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m52s
2025-04-10 10:41:58 +02:00
6e4db45b57 Activated RH8 build on PSI gitea (#155)
All checks were successful
Build on RHEL8 / build (push) Successful in 1m56s
Build on RHEL9 / build (push) Successful in 1m44s
2025-04-10 10:17:16 +02:00
76f050f69f solved merge conflict
Some checks failed
Build on RHEL9 / buildh (push) Failing after 1m22s
2025-04-10 09:21:50 +02:00
a13affa4d3 changed template arguments added tests 2025-04-10 09:13:58 +02:00
8b0eee1e66 fixed warnings and removed ambiguous read_frame (#154)
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m47s
Fixed warnings:
- unused variable in Interpolator
- Narrowing conversions uint64-->int64

Removed an ambiguous function from JungfrauDataFile
- NDarry read_frame(header&=nullptr)
- Frame read_frame()

NDArray and NDView size() is now signed
2025-04-09 17:54:55 +02:00
894065fe9c added utility plot
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m48s
2025-04-09 12:19:14 +02:00
f16273a566 Adding support for Jungfrau .dat files (#152)
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m48s
closes #150 

**Not addressed in this PR:** 

- pixels_per_frame, bytes_per_frame and tell should be made cost in
FileInterface
2025-04-08 15:31:04 +02:00
20d1d02fda function signature for push back (#153)
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 48s
This example now works:
```python
cl = Cluster3x3i(5,7,np.array((1,2,3,4,5,6,7,8,9), dtype = np.int32))
cv = ClusterVector_Cluster3x3i()
cv.push_back(cl)
```
2025-04-07 17:18:17 +02:00
10e4e10431 function signature for push back 2025-04-07 15:33:37 +02:00
017960d963 added push_back property
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 37s
2025-04-07 13:41:14 +02:00
a12e43b176 underlying container of ClusterVcetor is now a std::vector 2025-04-07 12:27:44 +02:00
9de84a7f87 added some python tests
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 41s
2025-04-04 17:19:15 +02:00
885309d97c fix build
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 43s
2025-04-03 17:14:28 +02:00
e24ed68416 fixed include 2025-04-03 16:50:02 +02:00
248d25486f refactored python files 2025-04-03 16:38:12 +02:00
7db1ae4d94 Dev/gitea ci (#151)
All checks were successful
Build on RHEL9 / buildh (push) Successful in 1m41s
Build and test on internal PSI gitea
2025-04-03 13:18:55 +02:00
a24bbd9cf9 started to do python refactoring
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 44s
2025-04-03 11:56:25 +02:00
d7ef9bb1d8 missed some refactoring of datatypes
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 49s
2025-04-03 11:36:15 +02:00
de9fc16e89 generalize is_selected 2025-04-03 09:28:54 +02:00
85a6b5b95e suppress compiler warnings 2025-04-03 09:28:02 +02:00
50eeba4005 restructured GainMap to have own class and generalized
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 40s
2025-04-02 17:58:26 +02:00
98d2d6098e refactored other cpp files 2025-04-02 16:00:46 +02:00
61af1105a1 templated eta and updated test 2025-04-02 14:42:38 +02:00
240960d3e7 generalized FindCluster to read in general cluster sizes - assuming that finding cluster center is equal for all clusters 2025-04-02 12:05:16 +02:00
04728929cb implemented sum_2x2() for general clusters, only one calculate_eta2 function for all clusters
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 37s
2025-04-01 18:29:08 +02:00
3083d51699 merge conflict 2025-04-01 17:50:11 +02:00
4240942cec solved merge conflict 2025-04-01 17:48:48 +02:00
745d09fbe9 changed push_back to take Cluster as input argument 2025-04-01 15:30:10 +02:00
e1533282f1 Cluster cuts (#146)
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 43s
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
Co-authored-by: Xiangyu Xie <45243914+xiangyuxie@users.noreply.github.com>
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
2025-04-01 15:15:54 +02:00
8cad7a50a6 fixed py
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 42s
2025-04-01 15:00:03 +02:00
9d8e803474 Merge branch 'main' into developer 2025-04-01 14:35:27 +02:00
a42c0d645b added roi, noise and gain (#143)
- Moved definitions of Cluster_2x2 and Cluster_3x3 to it's own file
- Added optional members for ROI, noise_map and gain_map in ClusterFile

**API:**

After creating the ClusterFile the user can set one or all of: roi,
noise_map, gain_map

```python
f = ClusterFile(fname)
f.set_roi(roi) #aare.ROI
f.set_noise_map(noise_map) #numpy array
f.set_gain_map(gain_map) #numpy array
```

**When reading clusters they are evaluated in the order:**

1. If ROI is enabled check that the cluster is within the ROI
1. If noise_map is enabled check that the cluster meets one of the
conditions
    - Center pixel above noise
    - Highest 2x2 sum above 2x noise
    - 3x3 sum above 3x noise
1. If gain_map is set apply the gain map before returning the clusters
(not used for noise cut)

**Open questions:**
1. Check for out of bounds access in noise and gain map?

closes #139 
closes #135 
closes #90
2025-04-01 14:31:25 +02:00
508adf5016 refactoring of remaining files
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 40s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-04-01 10:01:23 +02:00
e038bd1646 refactored and put calculate_eta function in seperate file 2025-03-31 17:35:39 +02:00
7e5f91c6ec added benchmark to time generalize calculate_eta - twice as long so will keep specific version for 2x2 and 3x3 clusters 2025-03-31 17:04:57 +02:00
ed9ef7c600 removed analyze_cluster function as not used anymore
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 52s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-03-31 12:26:29 +02:00
57bb6c71ae ClusterSize should be larger than 1
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 51s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-03-28 14:49:55 +01:00
f8f98b6ec3 Generalized calculate_eta2 function to work with general cluster types 2025-03-28 14:29:20 +01:00
0876b6891a cpp Cluster and ClusterVector and ClusterFile are templated now, they support generic cluster types 2025-03-25 21:42:50 +01:00
6ad76f63c1 Fixed reading clusters with ROI (#142)
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 9s
Fixed incorrect reading of clusters with ROI


closes #141
2025-03-24 14:28:10 +01:00
6e7e81b36b complete mess but need to install RedHat 9 2025-03-21 16:32:54 +01:00
5d8ad27b21 Developer (#138)
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m45s
- Fully functioning variable size cluster finder
- Added interpolation
- Bit reordering for ADC SAR 05

---------

Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
2025-03-20 12:52:04 +01:00
b529b6d33b Merge branch 'main' into developer
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m33s
2025-03-19 19:29:15 +01:00
602b04e49f bumped version number
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m35s
2025-03-18 17:47:05 +01:00
11cd2ec654 Interpolate (#137)
- added eta based interpolation
2025-03-18 17:45:38 +01:00
e59a361b51 removed workspace
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 48s
Build the package using cmake then documentation / deploy (push) Has been skipped
2025-03-17 15:23:55 +01:00
1ad362ccfc added action for gitea (#136)
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m30s
2025-03-17 15:21:59 +01:00
332bdeb02b modified algo 2025-03-14 11:07:09 +01:00
3a987319d4 WIP 2025-03-05 21:51:23 +01:00
5614cb4673 WIP 2025-03-05 17:40:08 +01:00
8ae6bb76f8 removed warnings added clang-tidy 2025-02-21 11:18:39 +01:00
1d2c38c1d4 Enable VarClusterFinder (#134)
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
2025-02-19 16:11:24 +01:00
b7a47576a1 Multi threaded fitting and returning chi2 (#132)
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
2025-02-19 07:19:59 +01:00
fc1c9f35d6 Merge branch 'main' into developer 2025-02-18 21:52:20 +01:00
5d2f25a6e9 bumped version number 2025-02-18 21:44:03 +01:00
6a83988485 Added chi2 to fit results (#131)
- fit_gaus and fit_pol1 now return a dict
- calculate chi2 after fit
- cleaned up code
2025-02-18 21:13:27 +01:00
8abfc68138 fixed linking to lmfit (#130)
using "$<BUILD_INTERFACE:lmfit>" to exclude the target lmfit from being
included in the installed aare target
2025-02-18 15:54:52 +01:00
8ff6f9f506 fixed linking to lmfit 2025-02-18 15:49:46 +01:00
dcb9a98faa bumped version 2025-02-12 16:49:30 +01:00
7309cff47c Added fitting with lmfit (#128)
- added stand alone fitting using:
https://jugit.fz-juelich.de/mlz/lmfit.git
- fit_gaus, fit_pol1 with and without errors
- multi threaded fitting

---------

Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
2025-02-12 16:35:48 +01:00
c0c5e07ad8 added decoding of adc_sar_04 (#127) 2025-02-12 16:17:32 +01:00
2faa317bdf removed debug line 2025-02-12 10:59:18 +01:00
f7031d7f87 Update CMakeLists.txt
Removed flto=auto which caused issues with gcc 8.5
2025-02-12 10:52:55 +01:00
d86cb533c8 Fix minor warnings (#126)
- Unused variables
- signed vs. unsigned
- added -flto=auto
2025-02-11 11:48:01 +01:00
4c750cc3be Fixing ROI read of RawFile (#125)
- Bugfixes
- New abstraction for detector geometry
- Tests for updating geo with ROI
2025-02-11 11:08:22 +01:00
e96fe31f11 removed main and token 2025-02-05 15:55:55 +01:00
cd5a738696 disable upload on dev 2025-02-05 15:44:45 +01:00
1ba43b69d3 fix 2025-02-05 15:16:16 +01:00
fff536782b disable auto upload 2025-02-05 15:13:53 +01:00
5a3ca2ae2d Decoding for ADC SAR 05 64->16bit (#124)
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
2025-02-05 14:40:26 +01:00
078e5d81ec docs 2025-01-15 16:40:34 +01:00
6cde968c60 summing 2x2 2025-01-15 16:12:06 +01:00
f6d736facd docs for ClusterFile 2025-01-15 09:15:41 +01:00
e1cc774d6c Multi threaded cluster finder (#117) 2025-01-14 21:36:25 +01:00
d0f435a7ab bounds checking on subfiles 2025-01-10 19:02:50 +01:00
7ce02006f2 clear pedestal 2025-01-10 17:26:23 +01:00
7550a2cb97 fixing read bug 2025-01-10 15:33:56 +01:00
caf7b4ecdb added docs for ClusterFinderMT 2025-01-10 10:22:04 +01:00
72d10b7735 Multi threaded cluster finder. (#115)
Added a prototype for the multi threaded cluster finder including python
bindings
2025-01-09 16:55:35 +01:00
cc95561eda MultiThreaded Cluster finder 2025-01-09 16:53:22 +01:00
dc9e10016d WIP 2025-01-08 16:45:24 +01:00
21ce7a3efa bumped version 2025-01-07 16:33:16 +01:00
acdce8454b moved pd to double 2025-01-07 15:01:43 +01:00
d07da42745 bitdepths 2025-01-07 12:27:01 +01:00
89 changed files with 5182 additions and 1647 deletions

42
.clang-tidy Normal file
View File

@ -0,0 +1,42 @@
---
Checks: '*,
-altera-*,
-android-cloexec-fopen,
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
-cppcoreguidelines-pro-bounds-pointer-arithmetic,
-fuchsia*,
-readability-else-after-return,
-readability-avoid-const-params-in-decls,
-readability-identifier-length,
-cppcoreguidelines-pro-bounds-constant-array-index,
-cppcoreguidelines-pro-type-reinterpret-cast,
-llvm-header-guard,
-modernize-use-nodiscard,
-misc-non-private-member-variables-in-classes,
-readability-static-accessed-through-instance,
-readability-braces-around-statements,
-readability-isolate-declaration,
-readability-implicit-bool-conversion,
-readability-identifier-length,
-readability-identifier-naming,
-hicpp-signed-bitwise,
-hicpp-no-array-decay,
-hicpp-braces-around-statements,
-google-runtime-references,
-google-readability-todo,
-google-readability-braces-around-statements,
-modernize-use-trailing-return-type,
-llvmlibc-*'
HeaderFilterRegex: \.hpp
FormatStyle: none
CheckOptions:
- { key: readability-identifier-naming.NamespaceCase, value: lower_case }
# - { key: readability-identifier-naming.FunctionCase, value: lower_case }
- { key: readability-identifier-naming.ClassCase, value: CamelCase }
# - { key: readability-identifier-naming.MethodCase, value: CamelCase }
# - { key: readability-identifier-naming.StructCase, value: CamelCase }
# - { key: readability-identifier-naming.VariableCase, value: lower_case }
- { key: readability-identifier-naming.GlobalConstantCase, value: UPPER_CASE }
...

View File

@ -0,0 +1,58 @@
name: Build the package using cmake then documentation
on:
workflow_dispatch:
permissions:
contents: read
pages: write
id-token: write
jobs:
build:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ]
python-version: ["3.12", ]
runs-on: ${{ matrix.platform }}
defaults:
run:
shell: "bash -l {0}"
steps:
- uses: actions/checkout@v4
- name: Setup dev env
run: |
sudo apt-get update
sudo apt-get -y install cmake gcc g++
- name: Get conda
uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
environment-file: etc/dev-env.yml
miniforge-version: latest
channels: conda-forge
conda-remove-defaults: "true"
- name: Build library
run: |
mkdir build
cd build
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
make -j 2
make docs

View File

@ -0,0 +1,36 @@
name: Build on RHEL8
on:
push:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: "ubuntu-latest"
container:
image: gitea.psi.ch/images/rhel8-developer-gitea-actions
steps:
# workaround until actions/checkout@v4 is available for RH8
# - uses: actions/checkout@v4
- name: Clone repository
run: |
echo Cloning ${{ github.ref_name }}
git clone https://${{secrets.GITHUB_TOKEN}}@gitea.psi.ch/${{ github.repository }}.git --branch=${{ github.ref_name }} .
- name: Install dependencies
run: |
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
- name: Build library
run: |
mkdir build && cd build
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON -DPython_FIND_VIRTUALENV=FIRST
make -j 2
- name: C++ unit tests
working-directory: ${{gitea.workspace}}/build
run: ctest

View File

@ -0,0 +1,31 @@
name: Build on RHEL9
on:
push:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: "ubuntu-latest"
container:
image: gitea.psi.ch/images/rhel9-developer-gitea-actions
steps:
- uses: actions/checkout@v4
- name: Install dependencies
run: |
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
- name: Build library
run: |
mkdir build && cd build
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON
make -j 2
- name: C++ unit tests
working-directory: ${{gitea.workspace}}/build
run: ctest

View File

@ -5,7 +5,6 @@ on:
push:
permissions:
contents: read
pages: write
@ -16,12 +15,11 @@ jobs:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ] # macos-12, windows-2019]
platform: [ubuntu-latest, ]
python-version: ["3.12",]
runs-on: ${{ matrix.platform }}
# The setup-miniconda action needs this to activate miniconda
defaults:
run:
shell: "bash -l {0}"
@ -30,13 +28,13 @@ jobs:
- uses: actions/checkout@v4
- name: Get conda
uses: conda-incubator/setup-miniconda@v3.0.4
uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
environment-file: etc/dev-env.yml
miniforge-version: latest
channels: conda-forge
- name: Prepare
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy
conda-remove-defaults: "true"
- name: Build library
run: |

64
.github/workflows/build_wheel.yml vendored Normal file
View File

@ -0,0 +1,64 @@
name: Build wheel
on:
workflow_dispatch:
pull_request:
push:
branches:
- main
release:
types:
- published
jobs:
build_wheels:
name: Build wheels on ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest,]
steps:
- uses: actions/checkout@v4
- name: Build wheels
run: pipx run cibuildwheel==2.23.0
- uses: actions/upload-artifact@v4
with:
name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }}
path: ./wheelhouse/*.whl
build_sdist:
name: Build source distribution
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build sdist
run: pipx run build --sdist
- uses: actions/upload-artifact@v4
with:
name: cibw-sdist
path: dist/*.tar.gz
upload_pypi:
needs: [build_wheels, build_sdist]
runs-on: ubuntu-latest
environment: pypi
permissions:
id-token: write
if: github.event_name == 'release' && github.event.action == 'published'
# or, alternatively, upload to PyPI on every tag starting with 'v' (remove on: release above to use this)
# if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
# unpacks all CIBW artifacts into dist/
pattern: cibw-*
path: dist
merge-multiple: true
- uses: pypa/gh-action-pypi-publish@release/v1

3
.gitignore vendored
View File

@ -17,7 +17,8 @@ Testing/
ctbDict.cpp
ctbDict.h
wheelhouse/
dist/
*.pyc
*/__pycache__/*

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.14)
cmake_minimum_required(VERSION 3.15)
project(aare
VERSION 1.0.0
@ -11,6 +11,14 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
execute_process(
COMMAND git log -1 --format=%h
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
OUTPUT_VARIABLE GIT_HASH
OUTPUT_STRIP_TRAILING_WHITESPACE
)
message(STATUS "Building from git hash: ${GIT_HASH}")
if (${CMAKE_VERSION} VERSION_GREATER "3.24")
cmake_policy(SET CMP0135 NEW) #Fetch content download timestamp
endif()
@ -31,7 +39,7 @@ set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
# General options
option(AARE_PYTHON_BINDINGS "Build python bindings" ON)
option(AARE_PYTHON_BINDINGS "Build python bindings" OFF)
option(AARE_TESTS "Build tests" OFF)
option(AARE_BENCHMARKS "Build benchmarks" OFF)
option(AARE_EXAMPLES "Build examples" OFF)
@ -60,6 +68,8 @@ if(AARE_SYSTEM_LIBRARIES)
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
# on conda-forge
endif()
if(AARE_VERBOSE)
@ -78,15 +88,31 @@ endif()
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if(AARE_FETCH_LMFIT)
set(lmfit_patch git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${lmfit_patch}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL
)
#TODO! Should we fetch lmfit from the web or inlcude a tar.gz in the repo?
set(LMFIT_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
# For cmake < 3.28 we can't supply EXCLUDE_FROM_ALL to FetchContent_Declare
# so we need this workaround
if (${CMAKE_VERSION} VERSION_LESS "3.28")
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
else()
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL 1
)
endif()
#Disable what we don't need from lmfit
set(BUILD_TESTING OFF CACHE BOOL "")
set(LMFIT_CPPTEST OFF CACHE BOOL "")
@ -94,12 +120,16 @@ if(AARE_FETCH_LMFIT)
set(LMFIT_CPPTEST OFF CACHE BOOL "")
set(BUILD_SHARED_LIBS OFF CACHE BOOL "")
if (${CMAKE_VERSION} VERSION_LESS "3.28")
if(NOT lmfit_POPULATED)
FetchContent_Populate(lmfit)
add_subdirectory(${lmfit_SOURCE_DIR} ${lmfit_BINARY_DIR} EXCLUDE_FROM_ALL)
endif()
else()
FetchContent_MakeAvailable(lmfit)
endif()
FetchContent_MakeAvailable(lmfit)
set_property(TARGET lmfit PROPERTY POSITION_INDEPENDENT_CODE ON)
target_include_directories (lmfit PUBLIC "${libzmq_SOURCE_DIR}/lib")
message(STATUS "lmfit include dir: ${lmfit_SOURCE_DIR}/lib")
else()
find_package(lmfit REQUIRED)
endif()
@ -111,10 +141,13 @@ if(AARE_FETCH_ZMQ)
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
cmake_policy(SET CMP0169 OLD)
endif()
set(ZMQ_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/libzmq_cmake_version.patch)
FetchContent_Declare(
libzmq
GIT_REPOSITORY https://github.com/zeromq/libzmq.git
GIT_TAG v4.3.4
PATCH_COMMAND ${ZMQ_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
# Disable unwanted options from libzmq
set(BUILD_TESTS OFF CACHE BOOL "Switch off libzmq test build")
@ -307,6 +340,8 @@ endif()
set(PUBLICHEADERS
include/aare/ArrayExpr.hpp
include/aare/CalculateEta.hpp
include/aare/Cluster.hpp
include/aare/ClusterFinder.hpp
include/aare/ClusterFile.hpp
include/aare/CtbRawFile.hpp
@ -317,8 +352,11 @@ set(PUBLICHEADERS
include/aare/File.hpp
include/aare/Fit.hpp
include/aare/FileInterface.hpp
include/aare/FilePtr.hpp
include/aare/Frame.hpp
include/aare/GainMap.hpp
include/aare/geo_helpers.hpp
include/aare/JungfrauDataFile.hpp
include/aare/NDArray.hpp
include/aare/NDView.hpp
include/aare/NumpyFile.hpp
@ -330,38 +368,38 @@ set(PUBLICHEADERS
include/aare/RawSubFile.hpp
include/aare/VarClusterFinder.hpp
include/aare/utils/task.hpp
)
set(SourceFiles
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/FilePtr.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/PixelMap.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
)
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/ifstream_helpers.cpp
)
add_library(aare_core STATIC ${SourceFiles})
target_include_directories(aare_core PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)
target_link_libraries(
aare_core
PUBLIC
@ -370,7 +408,8 @@ target_link_libraries(
${STD_FS_LIB} # from helpers.cmake
PRIVATE
aare_compiler_flags
lmfit
$<BUILD_INTERFACE:lmfit>
)
set_target_properties(aare_core PROPERTIES
@ -384,7 +423,9 @@ endif()
if(AARE_TESTS)
set(TestSources
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
@ -393,7 +434,12 @@ if(AARE_TESTS)
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Cluster.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/CalculateEta.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinderMT.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp

View File

@ -1,11 +1,27 @@
find_package(benchmark REQUIRED)
add_executable(ndarray_benchmark ndarray_benchmark.cpp)
include(FetchContent)
target_link_libraries(ndarray_benchmark benchmark::benchmark aare_core aare_compiler_flags)
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
set_target_properties(ndarray_benchmark PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
# OUTPUT_NAME run_tests
FetchContent_Declare(
benchmark
GIT_REPOSITORY https://github.com/google/benchmark.git
GIT_TAG v1.8.3 # Change to the latest version if needed
)
# Ensure Google Benchmark is built correctly
set(BENCHMARK_ENABLE_TESTING OFF CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(benchmark)
add_executable(benchmarks)
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp)
# Link Google Benchmark and other necessary libraries
target_link_libraries(benchmarks PRIVATE benchmark::benchmark aare_core aare_compiler_flags)
# Set output properties
set_target_properties(benchmarks PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
OUTPUT_NAME run_benchmarks
)

View File

@ -0,0 +1,70 @@
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
#include <benchmark/benchmark.h>
using namespace aare;
class ClusterFixture : public benchmark::Fixture {
public:
Cluster<int, 2, 2> cluster_2x2{};
Cluster<int, 3, 3> cluster_3x3{};
private:
using benchmark::Fixture::SetUp;
void SetUp([[maybe_unused]] const benchmark::State &state) override {
int temp_data[4] = {1, 2, 3, 1};
std::copy(std::begin(temp_data), std::end(temp_data),
std::begin(cluster_2x2.data));
cluster_2x2.x = 0;
cluster_2x2.y = 0;
int temp_data2[9] = {1, 2, 3, 1, 3, 4, 5, 1, 20};
std::copy(std::begin(temp_data2), std::end(temp_data2),
std::begin(cluster_3x3.data));
cluster_3x3.x = 0;
cluster_3x3.y = 0;
}
// void TearDown(::benchmark::State& state) {
// }
};
BENCHMARK_F(ClusterFixture, Calculate2x2Eta)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2(cluster_2x2);
benchmark::DoNotOptimize(eta);
}
}
// almost takes double the time
BENCHMARK_F(ClusterFixture,
CalculateGeneralEtaFor2x2Cluster)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2<int, 2, 2>(cluster_2x2);
benchmark::DoNotOptimize(eta);
}
}
BENCHMARK_F(ClusterFixture, Calculate3x3Eta)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2(cluster_3x3);
benchmark::DoNotOptimize(eta);
}
}
// almost takes double the time
BENCHMARK_F(ClusterFixture,
CalculateGeneralEtaFor3x3Cluster)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
Eta2 eta = calculate_eta2<int, 3, 3>(cluster_3x3);
benchmark::DoNotOptimize(eta);
}
}
// BENCHMARK_MAIN();

View File

@ -1,6 +1,10 @@
package:
name: aare
version: 2025.2.12 #TODO! how to not duplicate this?
version: 2025.4.22 #TODO! how to not duplicate this?
source:
@ -35,6 +39,7 @@ requirements:
run:
- python {{python}}
- numpy {{ numpy }}
- matplotlib
test:

View File

@ -0,0 +1,25 @@
JungfrauDataFile
==================
JungfrauDataFile is a class to read the .dat files that are produced by Aldo's receiver.
It is mostly used for calibration.
The structure of the file is:
* JungfrauDataHeader
* Binary data (256x256, 256x1024 or 512x1024)
* JungfrauDataHeader
* ...
There is no metadata indicating number of frames or the size of the image, but this
will be infered by this reader.
.. doxygenstruct:: aare::JungfrauDataHeader
:members:
:undoc-members:
:private-members:
.. doxygenclass:: aare::JungfrauDataFile
:members:
:undoc-members:
:private-members:

47
docs/src/Tests.rst Normal file
View File

@ -0,0 +1,47 @@
****************
Tests
****************
We test the code both from the C++ and Python API. By default only tests that does not require image data is run.
C++
~~~~~~~~~~~~~~~~~~
.. code-block:: bash
mkdir build
cd build
cmake .. -DAARE_TESTS=ON
make -j 4
export AARE_TEST_DATA=/path/to/test/data
./run_test [.files] #or using ctest, [.files] is the option to include tests needing data
Python
~~~~~~~~~~~~~~~~~~
.. code-block:: bash
#From the root dir of the library
python -m pytest python/tests --files # passing --files will run the tests needing data
Getting the test data
~~~~~~~~~~~~~~~~~~~~~~~~
.. attention ::
The tests needing the test data are not run by default. To make the data available, you need to set the environment variable
AARE_TEST_DATA to the path of the test data directory. Then pass either [.files] for the C++ tests or --files for Python
The image files needed for the test are large and are not included in the repository. They are stored
using GIT LFS in a separate repository. To get the test data, you need to clone the repository.
To do this, you need to have GIT LFS installed. You can find instructions on how to install it here: https://git-lfs.github.com/
Once you have GIT LFS installed, you can clone the repository like any normal repo using:
.. code-block:: bash
git clone https://gitea.psi.ch/detectors/aare-test-data.git

5
docs/src/algorithm.rst Normal file
View File

@ -0,0 +1,5 @@
algorithm
=============
.. doxygenfile:: algorithm.hpp

View File

@ -20,9 +20,6 @@ AARE
Requirements
Consume
.. toctree::
:caption: Python API
:maxdepth: 1
@ -31,6 +28,7 @@ AARE
pyCtbRawFile
pyClusterFile
pyClusterVector
pyJungfrauDataFile
pyRawFile
pyRawMasterFile
pyVarClusterFinder
@ -42,6 +40,7 @@ AARE
:caption: C++ API
:maxdepth: 1
algorithm
NDArray
NDView
Frame
@ -51,6 +50,7 @@ AARE
ClusterFinderMT
ClusterFile
ClusterVector
JungfrauDataFile
Pedestal
RawFile
RawSubFile
@ -59,4 +59,8 @@ AARE
.. toctree::
:caption: Developer
:maxdepth: 3
Tests

View File

@ -0,0 +1,10 @@
JungfrauDataFile
===================
.. py:currentmodule:: aare
.. autoclass:: JungfrauDataFile
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

15
etc/dev-env.yml Normal file
View File

@ -0,0 +1,15 @@
name: dev-environment
channels:
- conda-forge
dependencies:
- anaconda-client
- doxygen
- sphinx=7.1.2
- breathe
- pybind11
- sphinx_rtd_theme
- furo
- nlohmann_json
- zeromq
- fmt
- numpy

View File

@ -0,0 +1,170 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
namespace aare {
enum class corner : int {
cBottomLeft = 0,
cBottomRight = 1,
cTopLeft = 2,
cTopRight = 3
};
enum class pixel : int {
pBottomLeft = 0,
pBottom = 1,
pBottomRight = 2,
pLeft = 3,
pCenter = 4,
pRight = 5,
pTopLeft = 6,
pTop = 7,
pTopRight = 8
};
template <typename T> struct Eta2 {
double x;
double y;
int c;
T sum;
};
/**
* @brief Calculate the eta2 values for all clusters in a Clustervector
*/
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters[i]);
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
return eta2;
}
/**
* @brief Calculate the eta2 values for a generic sized cluster and return them
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
* subcluster.
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
Eta2<T>
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
Eta2<T> eta{};
auto max_sum = cl.max_sum_2x2();
eta.sum = max_sum.first;
auto c = max_sum.second;
size_t cluster_center_index =
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
size_t index_bottom_left_max_2x2_subcluster =
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
// check that cluster center is in max subcluster
if (cluster_center_index != index_bottom_left_max_2x2_subcluster &&
cluster_center_index != index_bottom_left_max_2x2_subcluster + 1 &&
cluster_center_index !=
index_bottom_left_max_2x2_subcluster + ClusterSizeX &&
cluster_center_index !=
index_bottom_left_max_2x2_subcluster + ClusterSizeX + 1)
throw std::runtime_error("Photon center is not in max 2x2_subcluster");
if ((cluster_center_index - index_bottom_left_max_2x2_subcluster) %
ClusterSizeX ==
0) {
if ((cl.data[cluster_center_index + 1] +
cl.data[cluster_center_index]) != 0)
eta.x = static_cast<double>(cl.data[cluster_center_index + 1]) /
static_cast<double>((cl.data[cluster_center_index + 1] +
cl.data[cluster_center_index]));
} else {
if ((cl.data[cluster_center_index] +
cl.data[cluster_center_index - 1]) != 0)
eta.x = static_cast<double>(cl.data[cluster_center_index]) /
static_cast<double>((cl.data[cluster_center_index - 1] +
cl.data[cluster_center_index]));
}
if ((cluster_center_index - index_bottom_left_max_2x2_subcluster) /
ClusterSizeX <
1) {
assert(cluster_center_index + ClusterSizeX <
ClusterSizeX * ClusterSizeY); // suppress warning
if ((cl.data[cluster_center_index] +
cl.data[cluster_center_index + ClusterSizeX]) != 0)
eta.y = static_cast<double>(
cl.data[cluster_center_index + ClusterSizeX]) /
static_cast<double>(
(cl.data[cluster_center_index] +
cl.data[cluster_center_index + ClusterSizeX]));
} else {
if ((cl.data[cluster_center_index] +
cl.data[cluster_center_index - ClusterSizeX]) != 0)
eta.y = static_cast<double>(cl.data[cluster_center_index]) /
static_cast<double>(
(cl.data[cluster_center_index] +
cl.data[cluster_center_index - ClusterSizeX]));
}
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
// underyling enum class
return eta;
}
// TODO! Look up eta2 calculation - photon center should be top right corner
template <typename T>
Eta2<T> calculate_eta2(const Cluster<T, 2, 2, int16_t> &cl) {
Eta2<T> eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.sum();
eta.c = static_cast<int>(corner::cBottomLeft); // TODO! This is not correct,
// but need to put something
return eta;
}
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
// TODO only supported for 3x3 Clusters
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
Eta2<T> eta{};
T sum = 0;
std::for_each(std::begin(cl.data), std::end(cl.data),
[&sum](T x) { sum += x; });
eta.sum = sum;
eta.c = corner::cBottomLeft;
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
(cl.data[3] + cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
(cl.data[1] + cl.data[4] + cl.data[7]);
return eta;
}
} // namespace aare

86
include/aare/Cluster.hpp Normal file
View File

@ -0,0 +1,86 @@
/************************************************
* @file Cluster.hpp
* @short definition of cluster, where CoordType (x,y) give
* the cluster center coordinates and data the actual cluster data
* cluster size is given as template parameters
***********************************************/
#pragma once
#include <algorithm>
#include <array>
#include <cstdint>
#include <numeric>
#include <type_traits>
namespace aare {
// requires clause c++20 maybe update
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
struct Cluster {
static_assert(std::is_arithmetic_v<T>, "T needs to be an arithmetic type");
static_assert(std::is_integral_v<CoordType>,
"CoordType needs to be an integral type");
static_assert(ClusterSizeX > 0 && ClusterSizeY > 0,
"Cluster sizes must be bigger than zero");
CoordType x;
CoordType y;
std::array<T, ClusterSizeX * ClusterSizeY> data;
static constexpr uint8_t cluster_size_x = ClusterSizeX;
static constexpr uint8_t cluster_size_y = ClusterSizeY;
using value_type = T;
using coord_type = CoordType;
T sum() const { return std::accumulate(data.begin(), data.end(), T{}); }
std::pair<T, int> max_sum_2x2() const {
if constexpr (cluster_size_x == 3 && cluster_size_y == 3) {
std::array<T, 4> sum_2x2_subclusters;
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
int index = std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subclusters.end()) -
sum_2x2_subclusters.begin();
return std::make_pair(sum_2x2_subclusters[index], index);
} else if constexpr (cluster_size_x == 2 && cluster_size_y == 2) {
return std::make_pair(data[0] + data[1] + data[2] + data[3], 0);
} else {
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
data[i * ClusterSizeX + j] +
data[i * ClusterSizeX + j + 1] +
data[(i + 1) * ClusterSizeX + j] +
data[(i + 1) * ClusterSizeX + j + 1];
}
int index = std::max_element(sum_2x2_subcluster.begin(),
sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
return std::make_pair(sum_2x2_subcluster[index], index);
}
}
};
// Type Traits for is_cluster_type
template <typename T>
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
} // namespace aare

View File

@ -2,29 +2,31 @@
#include <atomic>
#include <thread>
#include "aare/ProducerConsumerQueue.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ProducerConsumerQueue.hpp"
namespace aare {
class ClusterCollector{
ProducerConsumerQueue<ClusterVector<int>>* m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::vector<ClusterVector<int>> m_clusters;
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterCollector {
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::vector<ClusterVector<ClusterType>> m_clusters;
void process(){
void process() {
m_stopped = false;
fmt::print("ClusterCollector started\n");
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<int> *clusters = m_source->frontPtr();
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
clusters != nullptr) {
m_clusters.push_back(std::move(*clusters));
m_source->popFront();
}else{
} else {
std::this_thread::sleep_for(m_default_wait);
}
}
@ -32,21 +34,25 @@ class ClusterCollector{
m_stopped = true;
}
public:
ClusterCollector(ClusterFinderMT<uint16_t, double, int32_t>* source){
m_source = source->sink();
m_thread = std::thread(&ClusterCollector::process, this);
}
void stop(){
m_stop_requested = true;
m_thread.join();
}
std::vector<ClusterVector<int>> steal_clusters(){
if(!m_stopped){
throw std::runtime_error("ClusterCollector is still running");
}
return std::move(m_clusters);
public:
ClusterCollector(ClusterFinderMT<ClusterType, uint16_t, double> *source) {
m_source = source->sink();
m_thread =
std::thread(&ClusterCollector::process,
this); // only one process does that so why isnt it
// automatically written to m_cluster in collect
// - instead of writing first to m_sink?
}
void stop() {
m_stop_requested = true;
m_thread.join();
}
std::vector<ClusterVector<ClusterType>> steal_clusters() {
if (!m_stopped) {
throw std::runtime_error("ClusterCollector is still running");
}
return std::move(m_clusters);
}
};
} // namespace aare

View File

@ -1,51 +1,16 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/GainMap.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
#include <filesystem>
#include <fstream>
#include <optional>
namespace aare {
struct Cluster3x3 {
int16_t x;
int16_t y;
int32_t data[9];
};
typedef enum {
cBottomLeft = 0,
cBottomRight = 1,
cTopLeft = 2,
cTopRight = 3
} corner;
typedef enum {
pBottomLeft = 0,
pBottom = 1,
pBottomRight = 2,
pLeft = 3,
pCenter = 4,
pRight = 5,
pTopLeft = 6,
pTop = 7,
pTopRight = 8
} pixel;
struct Eta2 {
double x;
double y;
corner c;
};
struct ClusterAnalysis {
uint32_t c;
int32_t tot;
double etax;
double etay;
};
/*
Binary cluster file. Expects data to be layed out as:
int32_t frame_number
@ -56,6 +21,8 @@ uint32_t number_of_clusters
....
*/
// TODO: change to support any type of clusters, e.g. header line with
// clsuter_size_x, cluster_size_y,
/**
* @brief Class to read and write cluster files
* Expects data to be laid out as:
@ -63,16 +30,24 @@ uint32_t number_of_clusters
*
* int32_t frame_number
* uint32_t number_of_clusters
* int16_t x, int16_t y, int32_t data[9] x number_of_clusters
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
* int32_t frame_number
* uint32_t number_of_clusters
* etc.
*/
template <typename ClusterType,
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{};
size_t m_chunk_size{};
const std::string m_mode;
const std::string m_filename{};
uint32_t m_num_left{}; /*Number of photons left in frame*/
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
std::string m_mode; /*Mode to open the file in*/
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
std::optional<NDArray<int32_t, 2>>
m_noise_map; /*Noise map to cut photons, will be applied if set*/
std::optional<InvertedGainMap> m_gain_map; /*Gain map to apply to the
clusters, will be applied if set*/
public:
/**
@ -85,51 +60,390 @@ class ClusterFile {
* @throws std::runtime_error if the file could not be opened
*/
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
const std::string &mode = "r");
~ClusterFile();
const std::string &mode = "r")
: m_filename(fname.string()), m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(m_filename.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
m_filename);
}
} else if (mode == "w") {
fp = fopen(m_filename.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
m_filename);
}
} else if (mode == "a") {
fp = fopen(m_filename.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
m_filename);
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
~ClusterFile() { close(); }
/**
* @brief Read n_clusters clusters from the file discarding frame numbers.
* If EOF is reached the returned vector will have less than n_clusters
* clusters
* @brief Read n_clusters clusters from the file discarding
* frame numbers. If EOF is reached the returned vector will
* have less than n_clusters clusters
*/
ClusterVector<int32_t> read_clusters(size_t n_clusters);
ClusterVector<ClusterType> read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi) {
return read_clusters_with_cut(n_clusters);
} else {
return read_clusters_without_cut(n_clusters);
}
}
/**
* @brief Read a single frame from the file and return the clusters. The
* cluster vector will have the frame number set.
* @throws std::runtime_error if the file is not opened for reading or the file pointer not
* at the beginning of a frame
* @brief Read a single frame from the file and return the
* clusters. The cluster vector will have the frame number
* set.
* @throws std::runtime_error if the file is not opened for
* reading or the file pointer not at the beginning of a
* frame
*/
ClusterVector<int32_t> read_frame();
ClusterVector<ClusterType> read_frame() {
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi) {
return read_frame_with_cut();
} else {
return read_frame_without_cut();
}
}
void write_frame(const ClusterVector<ClusterType> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
void write_frame(const ClusterVector<int32_t> &clusters);
// Need to be migrated to support NDArray and return a ClusterVector
// std::vector<Cluster3x3>
// read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
int32_t frame_number = clusters.frame_number();
fwrite(&frame_number, sizeof(frame_number), 1, fp);
uint32_t n_clusters = clusters.size();
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
}
/**
* @brief Return the chunk size
*/
size_t chunk_size() const { return m_chunk_size; }
/**
* @brief Close the file. If not closed the file will be closed in the destructor
* @brief Set the region of interest to use when reading
* clusters. If set only clusters within the ROI will be
* read.
*/
void close();
void set_roi(ROI roi) { m_roi = roi; }
/**
* @brief Set the noise map to use when reading clusters. If
* set clusters below the noise level will be discarded.
* Selection criteria one of: Central pixel above noise,
* highest 2x2 sum above 2 * noise, total sum above 3 *
* noise.
*/
void set_noise_map(const NDView<int32_t, 2> noise_map) {
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
/**
* @brief Set the gain map to use when reading clusters. If set the gain map
* will be applied to the clusters that pass ROI and noise_map selection.
* The gain map is expected to be in ADU/energy.
*/
void set_gain_map(const NDView<double, 2> gain_map) {
m_gain_map = InvertedGainMap(gain_map);
}
void set_gain_map(const InvertedGainMap &gain_map) {
m_gain_map = gain_map;
}
void set_gain_map(const InvertedGainMap &&gain_map) {
m_gain_map = gain_map;
}
/**
* @brief Close the file. If not closed the file will be
* closed in the destructor
*/
void close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
/** @brief Open the file in specific mode
*
*/
void open(const std::string &mode) {
if (fp) {
close();
}
if (mode == "r") {
fp = fopen(m_filename.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
m_filename);
}
m_mode = "r";
} else if (mode == "w") {
fp = fopen(m_filename.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
m_filename);
}
m_mode = "w";
} else if (mode == "a") {
fp = fopen(m_filename.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
m_filename);
}
m_mode = "a";
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
private:
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
ClusterVector<ClusterType> read_frame_with_cut();
ClusterVector<ClusterType> read_frame_without_cut();
bool is_selected(ClusterType &cl);
ClusterType read_one_cluster();
};
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters);
Eta2 calculate_eta2(Cluster3x3 &cl);
ClusterVector<ClusterType> clusters(n_clusters);
clusters.resize(n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to
// read we read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((buf + nph_read), clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read +=
fread((buf + nph_read), clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number o f clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<ClusterType> clusters;
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
if (m_num_left) {
while (m_num_left && clusters.size() < n_clusters) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
}
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(
LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(
frame_number); // cluster vector will hold the last
// frame number
while (m_num_left && clusters.size() < n_clusters) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
ClusterType c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION +
"Could not read number of clusters");
}
ClusterVector<ClusterType> clusters(n_clusters);
clusters.set_frame_number(frame_number);
clusters.resize(n_clusters);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
ClusterVector<ClusterType>
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
ClusterVector<ClusterType> clusters;
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
while (m_num_left) {
ClusterType c = read_one_cluster();
if (is_selected(c)) {
clusters.push_back(c);
}
}
if (m_gain_map)
m_gain_map->apply_gain_map(clusters);
return clusters;
}
template <typename ClusterType, typename Enable>
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
// Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
size_t cluster_center_index =
(ClusterType::cluster_size_x / 2) +
(ClusterType::cluster_size_y / 2) * ClusterType::cluster_size_x;
if (m_noise_map) {
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
auto total_sum = cl.sum(); // sum of all pixels
auto noise =
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise ||
total_sum <= 3 * noise) {
return false;
}
}
// we passed all checks
return true;
}
} // namespace aare

View File

@ -3,35 +3,41 @@
#include <filesystem>
#include <thread>
#include "aare/ProducerConsumerQueue.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ProducerConsumerQueue.hpp"
namespace aare{
namespace aare {
class ClusterFileSink{
ProducerConsumerQueue<ClusterVector<int>>* m_source;
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterFileSink {
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_stopped{true};
std::chrono::milliseconds m_default_wait{1};
std::thread m_thread;
std::ofstream m_file;
void process(){
void process() {
m_stopped = false;
fmt::print("ClusterFileSink started\n");
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<int> *clusters = m_source->frontPtr();
while (!m_stop_requested || !m_source->isEmpty()) {
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
clusters != nullptr) {
// Write clusters to file
int32_t frame_number = clusters->frame_number(); //TODO! Should we store frame number already as int?
int32_t frame_number =
clusters->frame_number(); // TODO! Should we store frame
// number already as int?
uint32_t num_clusters = clusters->size();
m_file.write(reinterpret_cast<const char*>(&frame_number), sizeof(frame_number));
m_file.write(reinterpret_cast<const char*>(&num_clusters), sizeof(num_clusters));
m_file.write(reinterpret_cast<const char*>(clusters->data()), clusters->size() * clusters->item_size());
m_file.write(reinterpret_cast<const char *>(&frame_number),
sizeof(frame_number));
m_file.write(reinterpret_cast<const char *>(&num_clusters),
sizeof(num_clusters));
m_file.write(reinterpret_cast<const char *>(clusters->data()),
clusters->size() * clusters->item_size());
m_source->popFront();
}else{
} else {
std::this_thread::sleep_for(m_default_wait);
}
}
@ -39,18 +45,18 @@ class ClusterFileSink{
m_stopped = true;
}
public:
ClusterFileSink(ClusterFinderMT<uint16_t, double, int32_t>* source, const std::filesystem::path& fname){
m_source = source->sink();
m_thread = std::thread(&ClusterFileSink::process, this);
m_file.open(fname, std::ios::binary);
}
void stop(){
m_stop_requested = true;
m_thread.join();
m_file.close();
}
public:
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
const std::filesystem::path &fname) {
m_source = source->sink();
m_thread = std::thread(&ClusterFileSink::process, this);
m_file.open(fname, std::ios::binary);
}
void stop() {
m_stop_requested = true;
m_thread.join();
m_file.close();
}
};
} // namespace aare

View File

@ -1,148 +0,0 @@
#pragma once
#include "aare/core/defs.hpp"
#include <filesystem>
#include <string>
#include <fmt/format.h>
namespace aare {
struct ClusterHeader {
int32_t frame_number;
int32_t n_clusters;
std::string to_string() const {
return "frame_number: " + std::to_string(frame_number) + ", n_clusters: " + std::to_string(n_clusters);
}
};
struct ClusterV2_ {
int16_t x;
int16_t y;
std::array<int32_t, 9> data;
std::string to_string(bool detailed = false) const {
if (detailed) {
std::string data_str = "[";
for (auto &d : data) {
data_str += std::to_string(d) + ", ";
}
data_str += "]";
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) + ", data: " + data_str;
}
return "x: " + std::to_string(x) + ", y: " + std::to_string(y);
}
};
struct ClusterV2 {
ClusterV2_ cluster;
int32_t frame_number;
std::string to_string() const {
return "frame_number: " + std::to_string(frame_number) + ", " + cluster.to_string();
}
};
/**
* @brief
* important not: fp always points to the clusters header and does not point to individual clusters
*
*/
class ClusterFileV2 {
std::filesystem::path m_fpath;
std::string m_mode;
FILE *fp{nullptr};
void check_open(){
if (!fp)
throw std::runtime_error(fmt::format("File: {} not open", m_fpath.string()));
}
public:
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode): m_fpath(fpath), m_mode(mode) {
if (m_mode != "r" && m_mode != "w")
throw std::invalid_argument("mode must be 'r' or 'w'");
if (m_mode == "r" && !std::filesystem::exists(m_fpath))
throw std::invalid_argument("File does not exist");
if (mode == "r") {
fp = fopen(fpath.string().c_str(), "rb");
} else if (mode == "w") {
if (std::filesystem::exists(fpath)) {
fp = fopen(fpath.string().c_str(), "r+b");
} else {
fp = fopen(fpath.string().c_str(), "wb");
}
}
if (fp == nullptr) {
throw std::runtime_error("Failed to open file");
}
}
~ClusterFileV2() { close(); }
std::vector<ClusterV2> read() {
check_open();
ClusterHeader header;
fread(&header, sizeof(ClusterHeader), 1, fp);
std::vector<ClusterV2_> clusters_(header.n_clusters);
fread(clusters_.data(), sizeof(ClusterV2_), header.n_clusters, fp);
std::vector<ClusterV2> clusters;
for (auto &c : clusters_) {
ClusterV2 cluster;
cluster.cluster = std::move(c);
cluster.frame_number = header.frame_number;
clusters.push_back(cluster);
}
return clusters;
}
std::vector<std::vector<ClusterV2>> read(int n_frames) {
std::vector<std::vector<ClusterV2>> clusters;
for (int i = 0; i < n_frames; i++) {
clusters.push_back(read());
}
return clusters;
}
size_t write(std::vector<ClusterV2> const &clusters) {
check_open();
if (m_mode != "w")
throw std::runtime_error("File not opened in write mode");
if (clusters.empty())
return 0;
ClusterHeader header;
header.frame_number = clusters[0].frame_number;
header.n_clusters = clusters.size();
fwrite(&header, sizeof(ClusterHeader), 1, fp);
for (auto &c : clusters) {
fwrite(&c.cluster, sizeof(ClusterV2_), 1, fp);
}
return clusters.size();
}
size_t write(std::vector<std::vector<ClusterV2>> const &clusters) {
check_open();
if (m_mode != "w")
throw std::runtime_error("File not opened in write mode");
size_t n_clusters = 0;
for (auto &c : clusters) {
n_clusters += write(c);
}
return n_clusters;
}
int seek_to_begin() { return fseek(fp, 0, SEEK_SET); }
int seek_to_end() { return fseek(fp, 0, SEEK_END); }
int32_t frame_number() {
auto pos = ftell(fp);
ClusterHeader header;
fread(&header, sizeof(ClusterHeader), 1, fp);
fseek(fp, pos, SEEK_SET);
return header.frame_number;
}
void close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
};
} // namespace aare

View File

@ -10,17 +10,19 @@
namespace aare {
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
typename CT = int32_t>
template <typename ClusterType = Cluster<int32_t, 3, 3>,
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
class ClusterFinder {
Shape<2> m_image_size;
const int m_cluster_sizeX;
const int m_cluster_sizeY;
const PEDESTAL_TYPE m_nSigma;
const PEDESTAL_TYPE c2;
const PEDESTAL_TYPE c3;
Pedestal<PEDESTAL_TYPE> m_pedestal;
ClusterVector<CT> m_clusters;
ClusterVector<ClusterType> m_clusters;
static const uint8_t ClusterSizeX = ClusterType::cluster_size_x;
static const uint8_t ClusterSizeY = ClusterType::cluster_size_y;
using CT = typename ClusterType::value_type;
public:
/**
@ -31,15 +33,12 @@ class ClusterFinder {
* @param capacity initial capacity of the cluster vector
*
*/
ClusterFinder(Shape<2> image_size, Shape<2> cluster_size,
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 1000000)
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]),
m_cluster_sizeY(cluster_size[1]),
m_nSigma(nSigma),
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
m_pedestal(image_size[0], image_size[1]),
m_clusters(m_cluster_sizeX, m_cluster_sizeY, capacity) {};
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 1000000)
: m_image_size(image_size), m_nSigma(nSigma),
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
c3(sqrt(ClusterSizeX * ClusterSizeY)),
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {};
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
m_pedestal.push(frame);
@ -56,23 +55,28 @@ class ClusterFinder {
* same capacity as the old one
*
*/
ClusterVector<CT> steal_clusters(bool realloc_same_capacity = false) {
ClusterVector<CT> tmp = std::move(m_clusters);
ClusterVector<ClusterType>
steal_clusters(bool realloc_same_capacity = false) {
ClusterVector<ClusterType> tmp = std::move(m_clusters);
if (realloc_same_capacity)
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY,
tmp.capacity());
m_clusters = ClusterVector<ClusterType>(tmp.capacity());
else
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY);
m_clusters = ClusterVector<ClusterType>{};
return tmp;
}
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
// // TODO! deal with even size clusters
// // currently 3,3 -> +/- 1
// // 4,4 -> +/- 2
int dy = m_cluster_sizeY / 2;
int dx = m_cluster_sizeX / 2;
int dy = ClusterSizeY / 2;
int dx = ClusterSizeX / 2;
int has_center_pixel_x =
ClusterSizeX %
2; // for even sized clusters there is no proper cluster center and
// even amount of pixels around the center
int has_center_pixel_y = ClusterSizeY % 2;
m_clusters.set_frame_number(frame_number);
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
for (int iy = 0; iy < frame.shape(0); iy++) {
for (int ix = 0; ix < frame.shape(1); ix++) {
@ -87,8 +91,8 @@ class ClusterFinder {
continue; // NEGATIVE_PEDESTAL go to next pixel
// TODO! No pedestal update???
for (int ir = -dy; ir < dy + 1; ir++) {
for (int ic = -dx; ic < dx + 1; ic++) {
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
PEDESTAL_TYPE val =
@ -109,27 +113,33 @@ class ClusterFinder {
// pass
} else {
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
m_pedestal.push_fast(iy, ix, frame(iy, ix)); // Assume we have reached n_samples in the pedestal, slight performance improvement
continue; // It was a pedestal value nothing to store
m_pedestal.push_fast(
iy, ix,
frame(iy,
ix)); // Assume we have reached n_samples in the
// pedestal, slight performance improvement
continue; // It was a pedestal value nothing to store
}
// Store cluster
if (value == max) {
// Zero out the cluster data
std::fill(cluster_data.begin(), cluster_data.end(), 0);
ClusterType cluster{};
cluster.x = ix;
cluster.y = iy;
// Fill the cluster data since we have a photon to store
// It's worth redoing the look since most of the time we
// don't have a photon
int i = 0;
for (int ir = -dy; ir < dy + 1; ir++) {
for (int ic = -dx; ic < dx + 1; ic++) {
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
CT tmp =
static_cast<CT>(frame(iy + ir, ix + ic)) -
m_pedestal.mean(iy + ir, ix + ic);
cluster_data[i] =
static_cast<CT>(
m_pedestal.mean(iy + ir, ix + ic));
cluster.data[i] =
tmp; // Watch for out of bounds access
i++;
}
@ -137,9 +147,7 @@ class ClusterFinder {
}
// Add the cluster to the output ClusterVector
m_clusters.push_back(
ix, iy,
reinterpret_cast<std::byte *>(cluster_data.data()));
m_clusters.push_back(cluster);
}
}
}

View File

@ -30,14 +30,17 @@ struct FrameWrapper {
* @tparam PEDESTAL_TYPE type of the pedestal data
* @tparam CT type of the cluster data
*/
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
typename CT = int32_t>
template <typename ClusterType = Cluster<int32_t, 3, 3>,
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
class ClusterFinderMT {
protected:
using CT = typename ClusterType::value_type;
size_t m_current_thread{0};
size_t m_n_threads{0};
using Finder = ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>;
using Finder = ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>;
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
using OutputQueue = ProducerConsumerQueue<ClusterVector<int>>;
using OutputQueue = ProducerConsumerQueue<ClusterVector<ClusterType>>;
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
@ -48,6 +51,7 @@ class ClusterFinderMT {
std::thread m_collect_thread;
std::chrono::milliseconds m_default_wait{1};
private:
std::atomic<bool> m_stop_requested{false};
std::atomic<bool> m_processing_threads_stopped{true};
@ -66,7 +70,8 @@ class ClusterFinderMT {
switch (frame->type) {
case FrameType::DATA:
cf->find_clusters(frame->data.view(), frame->frame_number);
m_output_queues[thread_id]->write(cf->steal_clusters(realloc_same_capacity));
m_output_queues[thread_id]->write(
cf->steal_clusters(realloc_same_capacity));
break;
case FrameType::PEDESTAL:
@ -114,28 +119,32 @@ class ClusterFinderMT {
* expected number of clusters in a frame per frame.
* @param n_threads number of threads to use
*/
ClusterFinderMT(Shape<2> image_size, Shape<2> cluster_size,
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 2000,
size_t n_threads = 3)
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3)
: m_n_threads(n_threads) {
for (size_t i = 0; i < n_threads; i++) {
m_cluster_finders.push_back(
std::make_unique<ClusterFinder<FRAME_TYPE, PEDESTAL_TYPE, CT>>(
image_size, cluster_size, nSigma, capacity));
std::make_unique<
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
image_size, nSigma, capacity));
}
for (size_t i = 0; i < n_threads; i++) {
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
}
//TODO! Should we start automatically?
// TODO! Should we start automatically?
start();
}
/**
* @brief Return the sink queue where all the clusters are collected
* @warning You need to empty this queue otherwise the cluster finder will wait forever
* @warning You need to empty this queue otherwise the cluster finder will
* wait forever
*/
ProducerConsumerQueue<ClusterVector<int>> *sink() { return &m_sink; }
ProducerConsumerQueue<ClusterVector<ClusterType>> *sink() {
return &m_sink;
}
/**
* @brief Start all processing threads

View File

@ -1,4 +1,5 @@
#pragma once
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
#include <algorithm>
#include <array>
#include <cstddef>
@ -8,268 +9,162 @@
#include <fmt/core.h>
#include "aare/Cluster.hpp"
#include "aare/NDView.hpp"
namespace aare {
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
class ClusterVector; // Forward declaration
/**
* @brief ClusterVector is a container for clusters of various sizes. It uses a
* contiguous memory buffer to store the clusters. It is templated on the data
* type and the coordinate type of the clusters.
* @brief ClusterVector is a container for clusters of various sizes. It
* uses a contiguous memory buffer to store the clusters. It is templated on
* the data type and the coordinate type of the clusters.
* @note push_back can invalidate pointers to elements in the container
* @warning ClusterVector is currently move only to catch unintended copies, but
* this might change since there are probably use cases where copying is needed.
* @warning ClusterVector is currently move only to catch unintended copies,
* but this might change since there are probably use cases where copying is
* needed.
* @tparam T data type of the pixels in the cluster
* @tparam CoordType data type of the x and y coordinates of the cluster
* (normally int16_t)
*/
template <typename T, typename CoordType = int16_t> class ClusterVector {
using value_type = T;
size_t m_cluster_size_x;
size_t m_cluster_size_y;
std::byte *m_data{};
size_t m_size{0};
size_t m_capacity;
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
/*
Format string used in the python bindings to create a numpy
array from the buffer
= - native byte order
h - short
d - double
i - int
*/
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
int32_t m_frame_number{0}; // TODO! Check frame number size and type
public:
using value_type = T;
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
/**
* @brief Construct a new ClusterVector object
* @param cluster_size_x size of the cluster in x direction
* @param cluster_size_y size of the cluster in y direction
* @param capacity initial capacity of the buffer in number of clusters
* @param frame_number frame number of the clusters. Default is 0, which is
* also used to indicate that the clusters come from many frames
*/
ClusterVector(size_t cluster_size_x = 3, size_t cluster_size_y = 3,
size_t capacity = 1024, uint64_t frame_number = 0)
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
m_capacity(capacity), m_frame_number(frame_number) {
allocate_buffer(capacity);
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
: m_frame_number(frame_number) {
m_data.reserve(capacity);
}
~ClusterVector() { delete[] m_data; }
// Move constructor
ClusterVector(ClusterVector &&other) noexcept
: m_cluster_size_x(other.m_cluster_size_x),
m_cluster_size_y(other.m_cluster_size_y), m_data(other.m_data),
m_size(other.m_size), m_capacity(other.m_capacity),
m_frame_number(other.m_frame_number) {
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
: m_data(other.m_data), m_frame_number(other.m_frame_number) {
other.m_data.clear();
}
// Move assignment operator
ClusterVector &operator=(ClusterVector &&other) noexcept {
if (this != &other) {
delete[] m_data;
m_cluster_size_x = other.m_cluster_size_x;
m_cluster_size_y = other.m_cluster_size_y;
m_data = other.m_data;
m_size = other.m_size;
m_capacity = other.m_capacity;
m_frame_number = other.m_frame_number;
other.m_data = nullptr;
other.m_size = 0;
other.m_capacity = 0;
other.m_data.clear();
other.m_frame_number = 0;
}
return *this;
}
/**
* @brief Reserve space for at least capacity clusters
* @param capacity number of clusters to reserve space for
* @note If capacity is less than the current capacity, the function does
* nothing.
*/
void reserve(size_t capacity) {
if (capacity > m_capacity) {
allocate_buffer(capacity);
}
}
/**
* @brief Add a cluster to the vector
* @param x x-coordinate of the cluster
* @param y y-coordinate of the cluster
* @param data pointer to the data of the cluster
* @warning The data pointer must point to a buffer of size cluster_size_x *
* cluster_size_y * sizeof(T)
*/
void push_back(CoordType x, CoordType y, const std::byte *data) {
if (m_size == m_capacity) {
allocate_buffer(m_capacity * 2);
}
std::byte *ptr = element_ptr(m_size);
*reinterpret_cast<CoordType *>(ptr) = x;
ptr += sizeof(CoordType);
*reinterpret_cast<CoordType *>(ptr) = y;
ptr += sizeof(CoordType);
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
ptr);
m_size++;
}
ClusterVector &operator+=(const ClusterVector &other) {
if (m_size + other.m_size > m_capacity) {
allocate_buffer(m_capacity + other.m_size);
}
std::copy(other.m_data, other.m_data + other.m_size * item_size(),
m_data + m_size * item_size());
m_size += other.m_size;
return *this;
}
/**
* @brief Sum the pixels in each cluster
* @return std::vector<T> vector of sums for each cluster
*/
std::vector<T> sum() {
std::vector<T> sums(m_size);
const size_t stride = item_size();
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
std::vector<T> sums(m_data.size());
std::transform(
m_data.begin(), m_data.end(), sums.begin(),
[](const ClusterType &cluster) { return cluster.sum(); });
for (size_t i = 0; i < m_size; i++) {
sums[i] =
std::accumulate(reinterpret_cast<T *>(ptr),
reinterpret_cast<T *>(ptr) + n_pixels, T{});
ptr += stride;
}
return sums;
}
/**
* @brief Return the maximum sum of the 2x2 subclusters in each cluster
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
* each cluster
* @return std::vector<T> vector of sums for each cluster
* @throws std::runtime_error if the cluster size is not 3x3
* @warning Only 3x3 clusters are supported for the 2x2 sum.
*/
std::vector<T> sum_2x2() {
std::vector<T> sums(m_size);
const size_t stride = item_size();
std::vector<T> sums_2x2(m_data.size());
if (m_cluster_size_x != 3 || m_cluster_size_y != 3) {
throw std::runtime_error(
"Only 3x3 clusters are supported for the 2x2 sum.");
}
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
std::transform(m_data.begin(), m_data.end(), sums_2x2.begin(),
[](const ClusterType &cluster) {
return cluster.max_sum_2x2().first;
});
for (size_t i = 0; i < m_size; i++) {
std::array<T, 4> total;
auto T_ptr = reinterpret_cast<T *>(ptr);
total[0] = T_ptr[0] + T_ptr[1] + T_ptr[3] + T_ptr[4];
total[1] = T_ptr[1] + T_ptr[2] + T_ptr[4] + T_ptr[5];
total[2] = T_ptr[3] + T_ptr[4] + T_ptr[6] + T_ptr[7];
total[3] = T_ptr[4] + T_ptr[5] + T_ptr[7] + T_ptr[8];
return sums_2x2;
}
sums[i] = *std::max_element(total.begin(), total.end());
ptr += stride;
}
/**
* @brief Reserve space for at least capacity clusters
* @param capacity number of clusters to reserve space for
* @note If capacity is less than the current capacity, the function does
* nothing.
*/
void reserve(size_t capacity) { m_data.reserve(capacity); }
return sums;
void resize(size_t size) { m_data.resize(size); }
void push_back(const ClusterType &cluster) { m_data.push_back(cluster); }
ClusterVector &operator+=(const ClusterVector &other) {
m_data.insert(m_data.end(), other.begin(), other.end());
return *this;
}
/**
* @brief Return the number of clusters in the vector
*/
size_t size() const { return m_size; }
size_t size() const { return m_data.size(); }
uint8_t cluster_size_x() const { return ClusterSizeX; }
uint8_t cluster_size_y() const { return ClusterSizeY; }
/**
* @brief Return the capacity of the buffer in number of clusters. This is
* the number of clusters that can be stored in the current buffer without
* reallocation.
*/
size_t capacity() const { return m_capacity; }
size_t capacity() const { return m_data.capacity(); }
const auto begin() const { return m_data.begin(); }
const auto end() const { return m_data.end(); }
/**
* @brief Return the size in bytes of a single cluster
*/
size_t item_size() const {
return 2 * sizeof(CoordType) +
m_cluster_size_x * m_cluster_size_y * sizeof(T);
return sizeof(ClusterType); // 2 * sizeof(CoordType) + ClusterSizeX *
// ClusterSizeY * sizeof(T);
}
/**
* @brief Return the offset in bytes for the i-th cluster
*/
size_t element_offset(size_t i) const { return item_size() * i; }
/**
* @brief Return a pointer to the i-th cluster
*/
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
/**
* @brief Return a pointer to the i-th cluster
*/
const std::byte *element_ptr(size_t i) const {
return m_data + element_offset(i);
}
size_t cluster_size_x() const { return m_cluster_size_x; }
size_t cluster_size_y() const { return m_cluster_size_y; }
std::byte *data() { return m_data; }
std::byte const *data() const { return m_data; }
ClusterType *data() { return m_data.data(); }
ClusterType const *data() const { return m_data.data(); }
/**
* @brief Return a reference to the i-th cluster casted to type V
* @tparam V type of the cluster
*/
template <typename V> V &at(size_t i) {
return *reinterpret_cast<V *>(element_ptr(i));
}
ClusterType &operator[](size_t i) { return m_data[i]; }
const std::string_view fmt_base() const {
// TODO! how do we match on coord_t?
return m_fmt_base;
}
const ClusterType &operator[](size_t i) const { return m_data[i]; }
/**
* @brief Return the frame number of the clusters. 0 is used to indicate
* that the clusters come from many frames
*/
uint64_t frame_number() const { return m_frame_number; }
int32_t frame_number() const { return m_frame_number; }
void set_frame_number(uint64_t frame_number) {
void set_frame_number(int32_t frame_number) {
m_frame_number = frame_number;
}
/**
* @brief Resize the vector to contain new_size clusters. If new_size is
* greater than the current capacity, a new buffer is allocated. If the size
* is smaller no memory is freed, size is just updated.
* @param new_size new size of the vector
* @warning The additional clusters are not initialized
*/
void resize(size_t new_size) {
// TODO! Should we initialize the new clusters?
if (new_size > m_capacity) {
allocate_buffer(new_size);
}
m_size = new_size;
}
private:
void allocate_buffer(size_t new_capacity) {
size_t num_bytes = item_size() * new_capacity;
std::byte *new_data = new std::byte[num_bytes]{};
std::copy(m_data, m_data + item_size() * m_size, new_data);
delete[] m_data;
m_data = new_data;
m_capacity = new_capacity;
}
};
} // namespace aare

30
include/aare/FilePtr.hpp Normal file
View File

@ -0,0 +1,30 @@
#pragma once
#include <cstdio>
#include <filesystem>
namespace aare {
/**
* \brief RAII wrapper for FILE pointer
*/
class FilePtr {
FILE *fp_{nullptr};
public:
FilePtr() = default;
FilePtr(const std::filesystem::path& fname, const std::string& mode);
FilePtr(const FilePtr &) = delete; // we don't want a copy
FilePtr &operator=(const FilePtr &) = delete; // since we handle a resource
FilePtr(FilePtr &&other);
FilePtr &operator=(FilePtr &&other);
FILE *get();
int64_t tell();
void seek(int64_t offset, int whence = SEEK_SET) {
if (fseek(fp_, offset, whence) != 0)
throw std::runtime_error("Error seeking in file");
}
std::string error_msg();
~FilePtr();
};
} // namespace aare

View File

@ -17,6 +17,14 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
} // namespace func
/**
* @brief Estimate the initial parameters for a Gaussian fit
*/
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
static constexpr int DEFAULT_NUM_THREADS = 4;
/**
@ -33,7 +41,11 @@ NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
* @param y y vales, layout [row, col, values]
* @param n_threads number of threads to use
*/
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y, int n_threads = DEFAULT_NUM_THREADS);
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
/**
@ -45,10 +57,12 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y, int n_thre
* @param par_err_out output error parameters
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out);
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double& chi2);
/**
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout [row, col, values]
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
* [row, col, values]
* @param x x values
* @param y y vales, layout [row, col, values]
* @param y_err error in y, layout [row, col, values]
@ -57,20 +71,22 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
* @param n_threads number of threads to use
*/
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, int n_threads = DEFAULT_NUM_THREADS);
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS
);
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y, int n_threads = DEFAULT_NUM_THREADS);
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
int n_threads = DEFAULT_NUM_THREADS);
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y,
NDView<double, 1> y_err, NDView<double, 1> par_out,
NDView<double, 1> par_err_out);
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
// TODO! not sure we need to offer the different version in C++
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
int n_threads = DEFAULT_NUM_THREADS);
//TODO! not sure we need to offer the different version in C++
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
NDView<double, 3> y_err, NDView<double, 3> par_out,
NDView<double, 3> par_err_out, int n_threads = DEFAULT_NUM_THREADS);
} // namespace aare

68
include/aare/GainMap.hpp Normal file
View File

@ -0,0 +1,68 @@
/************************************************
* @file GainMap.hpp
* @short function to apply gain map of image size to a vector of clusters -
*note stored gainmap is inverted for efficient aaplication to images
***********************************************/
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include <memory>
namespace aare {
class InvertedGainMap {
public:
explicit InvertedGainMap(const NDArray<double, 2> &gain_map)
: m_gain_map(gain_map) {
for (auto &item : m_gain_map) {
item = 1.0 / item;
}
};
explicit InvertedGainMap(const NDView<double, 2> gain_map) {
m_gain_map = NDArray<double, 2>(gain_map);
for (auto &item : m_gain_map) {
item = 1.0 / item;
}
}
template <typename ClusterType,
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
void apply_gain_map(ClusterVector<ClusterType> &clustervec) {
// in principle we need to know the size of the image for this lookup
size_t ClusterSizeX = clustervec.cluster_size_x();
size_t ClusterSizeY = clustervec.cluster_size_y();
using T = typename ClusterVector<ClusterType>::value_type;
int64_t index_cluster_center_x = ClusterSizeX / 2;
int64_t index_cluster_center_y = ClusterSizeY / 2;
for (size_t i = 0; i < clustervec.size(); i++) {
auto &cl = clustervec[i];
if (cl.x > 0 && cl.y > 0 && cl.x < m_gain_map.shape(1) - 1 &&
cl.y < m_gain_map.shape(0) - 1) {
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
size_t x = cl.x + j % ClusterSizeX - index_cluster_center_x;
size_t y = cl.y + j / ClusterSizeX - index_cluster_center_y;
cl.data[j] = static_cast<T>(
static_cast<double>(cl.data[j]) *
m_gain_map(
y, x)); // cast after conversion to keep precision
}
} else {
// clear edge clusters
cl.data.fill(0);
}
}
}
private:
NDArray<double, 2> m_gain_map{};
};
} // end of namespace aare

View File

@ -0,0 +1,130 @@
#pragma once
#include "aare/CalculateEta.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp" //Cluster_3x3
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/algorithm.hpp"
namespace aare {
struct Photon {
double x;
double y;
double energy;
};
class Interpolator {
NDArray<double, 3> m_ietax;
NDArray<double, 3> m_ietay;
NDArray<double, 1> m_etabinsx;
NDArray<double, 1> m_etabinsy;
NDArray<double, 1> m_energy_bins;
public:
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins);
NDArray<double, 3> get_ietax() { return m_ietax; }
NDArray<double, 3> get_ietay() { return m_ietay; }
template <typename ClusterType,
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
};
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
// to only take Cluster2x2 and Cluster3x3
template <typename ClusterType, typename Enable>
std::vector<Photon>
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (const ClusterType &cluster : clusters) {
auto eta = calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
double dX, dY;
// cBottomLeft = 0,
// cBottomRight = 1,
// cTopLeft = 2,
// cTopRight = 3
switch (static_cast<corner>(eta.c)) {
case corner::cTopLeft:
dX = -1.;
dY = 0;
break;
case corner::cTopRight:;
dX = 0;
dY = 0;
break;
case corner::cBottomLeft:
dX = -1.;
dY = -1.;
break;
case corner::cBottomRight:
dX = 0.;
dY = -1.;
break;
}
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
photons.push_back(photon);
}
} else if (clusters.cluster_size_x() == 2 ||
clusters.cluster_size_y() == 2) {
for (const ClusterType &cluster : clusters) {
auto eta = calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
// Now do some actual interpolation.
// Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
photon.x += m_ietax(ix, iy, ie) *
2; // eta goes between 0 and 1 but we could move the hit
// anywhere in the 2x2
photon.y += m_ietay(ix, iy, ie) * 2;
photons.push_back(photon);
}
} else {
throw std::runtime_error(
"Only 3x3 and 2x2 clusters are supported for interpolation");
}
return photons;
}
} // namespace aare

View File

@ -0,0 +1,106 @@
#pragma once
#include <cstdint>
#include <filesystem>
#include <vector>
#include "aare/FilePtr.hpp"
#include "aare/defs.hpp"
#include "aare/NDArray.hpp"
#include "aare/FileInterface.hpp"
namespace aare {
struct JungfrauDataHeader{
uint64_t framenum;
uint64_t bunchid;
};
class JungfrauDataFile : public FileInterface {
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
size_t m_cols{}; //!< number of columns in the image, from find_frame_size();
size_t m_bytes_per_frame{}; //!< number of bytes per frame excluding header
size_t m_total_frames{}; //!< total number of frames in the series of files
size_t m_offset{}; //!< file index of the first file, allow starting at non zero file
size_t m_current_file_index{}; //!< The index of the open file
size_t m_current_frame_index{}; //!< The index of the current frame (with reference to all files)
std::vector<size_t> m_last_frame_in_file{}; //!< Used for seeking to the correct file
std::filesystem::path m_path; //!< path to the files
std::string m_base_name; //!< base name used for formatting file names
FilePtr m_fp; //!< RAII wrapper for a FILE*
using pixel_type = uint16_t;
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
static constexpr size_t n_digits_in_file_index = 6; //!< to format file names
public:
JungfrauDataFile(const std::filesystem::path &fname);
std::string base_name() const; //!< get the base name of the file (without path and extension)
size_t bytes_per_frame() override;
size_t pixels_per_frame() override;
size_t bytes_per_pixel() const;
size_t bitdepth() const override;
void seek(size_t frame_index) override; //!< seek to the given frame index (note not byte offset)
size_t tell() override; //!< get the frame index of the file pointer
size_t total_frames() const override;
size_t rows() const override;
size_t cols() const override;
std::array<ssize_t,2> shape() const;
size_t n_files() const; //!< get the number of files in the series.
// Extra functions needed for FileInterface
Frame read_frame() override;
Frame read_frame(size_t frame_number) override;
std::vector<Frame> read_n(size_t n_frames=0) override;
void read_into(std::byte *image_buf) override;
void read_into(std::byte *image_buf, size_t n_frames) override;
size_t frame_number(size_t frame_index) override;
DetectorType detector_type() const override;
/**
* @brief Read a single frame from the file into the given buffer.
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
*/
void read_into(std::byte *image_buf, JungfrauDataHeader *header = nullptr);
/**
* @brief Read a multiple frames from the file into the given buffer.
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
* @param n_frames number of frames to read
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
*/
void read_into(std::byte *image_buf, size_t n_frames, JungfrauDataHeader *header = nullptr);
/**
* @brief Read a single frame from the file into the given NDArray
* @param image NDArray to read the frame into.
*/
void read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header = nullptr);
JungfrauDataHeader read_header();
std::filesystem::path current_file() const { return fpath(m_current_file_index+m_offset); }
private:
/**
* @brief Find the size of the frame in the file. (256x256, 256x1024, 512x1024)
* @param fname path to the file
* @throws std::runtime_error if the file is empty or the size cannot be determined
*/
void find_frame_size(const std::filesystem::path &fname);
void parse_fname(const std::filesystem::path &fname);
void scan_files();
void open_file(size_t file_index);
std::filesystem::path fpath(size_t frame_index) const;
};
} // namespace aare

View File

@ -69,6 +69,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
std::copy(v.begin(), v.end(), begin());
}
template<size_t Size>
NDArray(const std::array<T, Size>& arr) : NDArray<T,1>({Size}) {
std::copy(arr.begin(), arr.end(), begin());
}
// Move constructor
NDArray(NDArray &&other) noexcept
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
@ -97,6 +102,9 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
auto begin() { return data_; }
auto end() { return data_ + size_; }
auto begin() const { return data_; }
auto end() const { return data_ + size_; }
using value_type = T;
NDArray &operator=(NDArray &&other) noexcept; // Move assign
@ -105,6 +113,20 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator-=(const NDArray &other);
NDArray &operator*=(const NDArray &other);
//Write directly to the data array, or create a new one
template<size_t Size>
NDArray<T,1>& operator=(const std::array<T,Size> &other){
if(Size != size_){
delete[] data_;
size_ = Size;
data_ = new T[size_];
}
for (size_t i = 0; i < Size; ++i) {
data_[i] = other[i];
}
return *this;
}
// NDArray& operator/=(const NDArray& other);
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
@ -135,6 +157,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
NDArray &operator&=(const T & /*mask*/);
void sqrt() {
for (int i = 0; i < size_; ++i) {
data_[i] = std::sqrt(data_[i]);
@ -167,7 +194,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
size_t size() const { return size_; }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
@ -318,6 +345,9 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
return *this;
}
template <typename T, int64_t Ndim>
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
NDArray result = *this;
@ -361,12 +391,12 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
result *= value;
return result;
}
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
if (shape_[0] < 20 && shape_[1] < 20)
Print_all();
else
Print_some();
}
// template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
// if (shape_[0] < 20 && shape_[1] < 20)
// Print_all();
// else
// Print_some();
// }
template <typename T, int64_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
@ -418,4 +448,6 @@ NDArray<T, Ndim> load(const std::string &pathname,
return img;
}
} // namespace aare

View File

@ -1,5 +1,5 @@
#pragma once
#include "aare/defs.hpp"
#include "aare/ArrayExpr.hpp"
#include <algorithm>
@ -71,7 +71,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
return buffer_[element_offset(strides_, index...)];
}
size_t size() const { return size_; }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
@ -99,6 +99,15 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
template<size_t Size>
NDView& operator=(const std::array<T, Size> &arr) {
if(size() != static_cast<ssize_t>(arr.size()))
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
std::copy(arr.begin(), arr.end(), begin());
return *this;
}
NDView &operator=(const T val) {
for (auto it = begin(); it != end(); ++it)
*it = val;
@ -175,4 +184,9 @@ std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
}
template <typename T>
NDView<T,1> make_view(std::vector<T>& vec){
return NDView<T,1>(vec.data(), {static_cast<int64_t>(vec.size())});
}
} // namespace aare

View File

@ -22,7 +22,7 @@ class RawSubFile {
size_t m_rows{};
size_t m_cols{};
size_t m_bytes_per_frame{};
size_t n_frames{};
size_t m_num_frames{};
uint32_t m_pos_row{};
uint32_t m_pos_col{};
@ -53,6 +53,7 @@ class RawSubFile {
size_t tell();
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header= nullptr);
void get_part(std::byte *buffer, size_t frame_index);
void read_header(DetectorHeader *header);
@ -64,7 +65,9 @@ class RawSubFile {
size_t bytes_per_frame() const { return m_bytes_per_frame; }
size_t pixels_per_frame() const { return m_rows * m_cols; }
size_t bytes_per_pixel() const { return m_bitdepth / 8; }
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
size_t frames_in_file() const { return m_num_frames; }
private:
template <typename T>

View File

@ -7,7 +7,7 @@
#include "aare/NDArray.hpp"
const int MAX_CLUSTER_SIZE = 200;
const int MAX_CLUSTER_SIZE = 50;
namespace aare {
template <typename T> class VarClusterFinder {
@ -226,7 +226,7 @@ template <typename T> void VarClusterFinder<T>::single_pass(NDView<T, 2> img) {
template <typename T> void VarClusterFinder<T>::first_pass() {
for (size_t i = 0; i < original_.size(); ++i) {
for (ssize_t i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
@ -250,7 +250,7 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
template <typename T> void VarClusterFinder<T>::second_pass() {
for (size_t i = 0; i != labeled_.size(); ++i) {
for (ssize_t i = 0; i != labeled_.size(); ++i) {
auto cl = labeled_(i);
if (cl != 0) {
auto it = child.find(cl);

111
include/aare/algorithm.hpp Normal file
View File

@ -0,0 +1,111 @@
#pragma once
#include <algorithm>
#include <array>
#include <vector>
#include <aare/NDArray.hpp>
namespace aare {
/**
* @brief Index of the last element that is smaller than val.
* Requires a sorted array. Uses >= for ordering. If all elements
* are smaller it returns the last element and if all elements are
* larger it returns the first element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the last element that is smaller than val
*
*/
template <typename T>
size_t last_smaller(const T* first, const T* last, T val) {
for (auto iter = first+1; iter != last; ++iter) {
if (*iter >= val) {
return std::distance(first, iter-1);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t last_smaller(const NDArray<T, 1>& arr, T val) {
return last_smaller(arr.begin(), arr.end(), val);
}
template <typename T>
size_t last_smaller(const std::vector<T>& vec, T val) {
return last_smaller(vec.data(), vec.data()+vec.size(), val);
}
/**
* @brief Index of the first element that is larger than val.
* Requires a sorted array. Uses > for ordering. If all elements
* are larger it returns the first element and if all elements are
* smaller it returns the last element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the first element that is larger than val
*/
template <typename T>
size_t first_larger(const T* first, const T* last, T val) {
for (auto iter = first; iter != last; ++iter) {
if (*iter > val) {
return std::distance(first, iter);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t first_larger(const NDArray<T, 1>& arr, T val) {
return first_larger(arr.begin(), arr.end(), val);
}
template <typename T>
size_t first_larger(const std::vector<T>& vec, T val) {
return first_larger(vec.data(), vec.data()+vec.size(), val);
}
/**
* @brief Index of the nearest element to val.
* Requires a sorted array. If there is no difference it takes the first element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the nearest element
*/
template <typename T>
size_t nearest_index(const T* first, const T* last, T val) {
auto iter = std::min_element(first, last,
[val](T a, T b) {
return std::abs(a - val) < std::abs(b - val);
});
return std::distance(first, iter);
}
template <typename T>
size_t nearest_index(const NDArray<T, 1>& arr, T val) {
return nearest_index(arr.begin(), arr.end(), val);
}
template <typename T>
size_t nearest_index(const std::vector<T>& vec, T val) {
return nearest_index(vec.data(), vec.data()+vec.size(), val);
}
template <typename T, size_t N>
size_t nearest_index(const std::array<T,N>& arr, T val) {
return nearest_index(arr.data(), arr.data()+arr.size(), val);
}
template <typename T>
std::vector<T> cumsum(const std::vector<T>& vec) {
std::vector<T> result(vec.size());
std::partial_sum(vec.begin(), vec.end(), result.begin());
return result;
}
} // namespace aare

View File

@ -1,6 +1,7 @@
#pragma once
#include <cstdint>
#include <vector>
#include <aare/NDView.hpp>
namespace aare {
@ -10,4 +11,16 @@ uint16_t adc_sar_04_decode64to16(uint64_t input);
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
} // namespace aare
/**
* @brief Apply custom weights to a 16-bit input value. Will sum up weights[i]**i
* for each bit i that is set in the input value.
* @throws std::out_of_range if weights.size() < 16
* @param input 16-bit input value
* @param weights vector of weights, size must be less than or equal to 16
*/
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights);
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double, 1> weights);
} // namespace aare

View File

@ -1,11 +1,9 @@
#pragma once
#include "aare/Dtype.hpp"
// #include "aare/utils/logger.hpp"
#include <array>
#include <stdexcept>
#include <cassert>
#include <cstdint>
#include <cstring>
@ -38,9 +36,12 @@
namespace aare {
inline constexpr size_t bits_per_byte = 8;
void assert_failed(const std::string &msg);
class DynamicCluster {
public:
int cluster_sizeX;
@ -213,6 +214,9 @@ struct ROI{
int64_t height() const { return ymax - ymin; }
int64_t width() const { return xmax - xmin; }
bool contains(int64_t x, int64_t y) const {
return x >= xmin && x < xmax && y >= ymin && y < ymax;
}
};

View File

@ -0,0 +1,12 @@
#pragma once
#include <fstream>
#include <string>
namespace aare {
/**
* @brief Get the error message from an ifstream object
*/
std::string ifstream_error_msg(std::ifstream &ifs);
} // namespace aare

View File

@ -0,0 +1,18 @@
#include <thread>
#include <vector>
#include <utility>
namespace aare {
template<typename F>
void RunInParallel(F func, const std::vector<std::pair<int, int>>& tasks) {
// auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(func, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
}
} // namespace aare

View File

@ -0,0 +1,18 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index dd3d8eb9..c0187747 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,11 +1,8 @@
# CMake build script for ZeroMQ
project(ZeroMQ)
-if(${CMAKE_SYSTEM_NAME} STREQUAL Darwin)
- cmake_minimum_required(VERSION 3.0.2)
-else()
- cmake_minimum_required(VERSION 2.8.12)
-endif()
+cmake_minimum_required(VERSION 3.15)
+message(STATUS "Patched cmake version")
include(CheckIncludeFiles)
include(CheckCCompilerFlag)

View File

@ -4,12 +4,32 @@ build-backend = "scikit_build_core.build"
[project]
name = "aare"
version = "2025.2.12"
version = "2025.4.22"
requires-python = ">=3.11"
dependencies = [
"numpy",
"matplotlib",
]
[tool.cibuildwheel]
build = "cp{311,312,313}-manylinux_x86_64"
[tool.scikit-build]
cmake.verbose = true
build.verbose = true
cmake.build-type = "Release"
install.components = ["python"]
[tool.scikit-build.cmake.define]
AARE_PYTHON_BINDINGS = "ON"
AARE_SYSTEM_LIBRARIES = "ON"
AARE_INSTALL_PYTHONEXT = "ON"
AARE_INSTALL_PYTHONEXT = "ON"
[tool.pytest.ini_options]
markers = [
"files: marks tests that need additional data (deselect with '-m \"not files\"')",
]

View File

@ -1,12 +1,13 @@
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
find_package (Python 3.10 COMPONENTS Interpreter Development.Module REQUIRED)
set(PYBIND11_FINDPYTHON ON) # Needed for RH8
# Download or find pybind11 depending on configuration
if(AARE_FETCH_PYBIND11)
FetchContent_Declare(
pybind11
GIT_REPOSITORY https://github.com/pybind/pybind11
GIT_TAG v2.13.0
GIT_TAG v2.13.6
)
FetchContent_MakeAvailable(pybind11)
else()
@ -28,6 +29,9 @@ target_link_libraries(_aare PRIVATE aare_core aare_compiler_flags)
set( PYTHON_FILES
aare/__init__.py
aare/CtbRawFile.py
aare/ClusterFinder.py
aare/ClusterVector.py
aare/func.py
aare/RawFile.py
aare/transform.py
@ -35,6 +39,7 @@ set( PYTHON_FILES
aare/utils.py
)
# Copy the python files to the build directory
foreach(FILE ${PYTHON_FILES})
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
@ -50,18 +55,24 @@ set(PYTHON_EXAMPLES
)
# Copy the python examples to the build directory
foreach(FILE ${PYTHON_EXAMPLES})
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
endforeach(FILE ${PYTHON_EXAMPLES})
if(AARE_INSTALL_PYTHONEXT)
install(TARGETS _aare
install(
TARGETS _aare
EXPORT "${TARGETS_EXPORT_NAME}"
LIBRARY DESTINATION aare
COMPONENT python
)
install(FILES ${PYTHON_FILES} DESTINATION aare)
install(
FILES ${PYTHON_FILES}
DESTINATION aare
COMPONENT python
)
endif()

View File

@ -0,0 +1,67 @@
from ._aare import ClusterFinder_Cluster3x3i, ClusterFinder_Cluster2x2i, ClusterFinderMT_Cluster3x3i, ClusterFinderMT_Cluster2x2i, ClusterCollector_Cluster3x3i, ClusterCollector_Cluster2x2i
from ._aare import ClusterFileSink_Cluster3x3i, ClusterFileSink_Cluster2x2i
import numpy as np
def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
"""
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
the templated ClusterFinder in C++.
"""
if dtype == np.int32 and cluster_size == (3,3):
return ClusterFinder_Cluster3x3i(image_size, n_sigma = n_sigma, capacity=capacity)
elif dtype == np.int32 and cluster_size == (2,2):
return ClusterFinder_Cluster2x2i(image_size, n_sigma = n_sigma, capacity=capacity)
else:
#TODO! add the other formats
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
"""
Factory function to create a ClusterFinderMT object. Provides a cleaner syntax for
the templated ClusterFinderMT in C++.
"""
if dtype == np.int32 and cluster_size == (3,3):
return ClusterFinderMT_Cluster3x3i(image_size, n_sigma = n_sigma,
capacity = capacity, n_threads = n_threads)
elif dtype == np.int32 and cluster_size == (2,2):
return ClusterFinderMT_Cluster2x2i(image_size, n_sigma = n_sigma,
capacity = capacity, n_threads = n_threads)
else:
#TODO! add the other formats
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
"""
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
the templated ClusterCollector in C++.
"""
if dtype == np.int32 and cluster_size == (3,3):
return ClusterCollector_Cluster3x3i(clusterfindermt)
elif dtype == np.int32 and cluster_size == (2,2):
return ClusterCollector_Cluster2x2i(clusterfindermt)
else:
#TODO! add the other formats
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):
"""
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
the templated ClusterCollector in C++.
"""
if dtype == np.int32 and clusterfindermt.cluster_size == (3,3):
return ClusterFileSink_Cluster3x3i(clusterfindermt, cluster_file)
elif dtype == np.int32 and clusterfindermt.cluster_size == (2,2):
return ClusterFileSink_Cluster2x2i(clusterfindermt, cluster_file)
else:
#TODO! add the other formats
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")

View File

@ -0,0 +1,11 @@
from ._aare import ClusterVector_Cluster3x3i
import numpy as np
def ClusterVector(cluster_size, dtype = np.int32):
if dtype == np.int32 and cluster_size == (3,3):
return ClusterVector_Cluster3x3i()
else:
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")

View File

@ -2,21 +2,31 @@
from . import _aare
from ._aare import File, RawMasterFile, RawSubFile
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarClusterFinder
from ._aare import DetectorType
from ._aare import ClusterFile
from ._aare import ClusterFile_Cluster3x3i as ClusterFile
from ._aare import hitmap
from ._aare import ROI
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, ClusterFileSink
from .ClusterVector import ClusterVector
from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
from ._aare import fit_gaus, fit_pol1
from ._aare import Interpolator
from ._aare import calculate_eta2
from ._aare import apply_custom_weights
from .CtbRawFile import CtbRawFile
from .RawFile import RawFile
from .ScanParameters import ScanParameters
from .utils import random_pixels, random_pixel, flat_list
from .utils import random_pixels, random_pixel, flat_list, add_colorbar
#make functions available in the top level API

View File

@ -1,4 +1,6 @@
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
"""Return a list of random pixels.
@ -24,4 +26,11 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
def flat_list(xss):
"""Flatten a list of lists."""
return [x for xs in xss for x in xs]
return [x for xs in xss for x in xs]
def add_colorbar(ax, im, size="5%", pad=0.05):
"""Add a colorbar with the same height as the image."""
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size=size, pad=pad)
plt.colorbar(im, cax=cax)
return ax, im, cax

View File

@ -1,68 +1,79 @@
import sys
sys.path.append('/home/l_msdetect/erik/aare/build')
#Our normal python imports
from pathlib import Path
import matplotlib.pyplot as plt
from aare._aare import ClusterVector_i, Interpolator
import pickle
import numpy as np
import matplotlib.pyplot as plt
import boost_histogram as bh
import torch
import math
import time
<<<<<<< HEAD
from aare import File, ClusterFinder, VarClusterFinder, ClusterFile, CtbRawFile
from aare import gaus, fit_gaus
base = Path('/mnt/sls_det_storage/moench_data/Julian/MOENCH05/20250113_first_xrays_redo/raw_files/')
cluster_file = Path('/home/l_msdetect/erik/tmp/Cu.clust')
t0 = time.perf_counter()
offset= -0.5
hist3d = bh.Histogram(
bh.axis.Regular(160, 0+offset, 160+offset), #x
bh.axis.Regular(150, 0+offset, 150+offset), #y
bh.axis.Regular(200, 0, 6000), #ADU
)
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
"""
Generate a 2D gaussian as position mx, my, with sigma=sigma.
The gaussian is placed on a 2x2 pixel matrix with resolution
res in one dimesion.
"""
x = torch.linspace(0, pixel_size*grid_size, res)
x,y = torch.meshgrid(x,x, indexing="ij")
return 1 / (2*math.pi*sigma**2) * \
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
total_clusters = 0
with ClusterFile(cluster_file, chunk_size = 1000) as f:
for i, clusters in enumerate(f):
arr = np.array(clusters)
total_clusters += clusters.size
hist3d.fill(arr['y'],arr['x'], clusters.sum_2x2()) #python talks [row, col] cluster finder [x,y]
=======
from aare import RawFile
scale = 1000 #Scale factor when converting to integer
pixel_size = 25 #um
grid = 2
resolution = 100
sigma_um = 10
xa = np.linspace(0,grid*pixel_size,resolution)
ticks = [0, 25, 50]
f = RawFile('/mnt/sls_det_storage/jungfrau_data1/vadym_tests/jf12_M431/laser_scan/laserScan_pedestal_G0_master_0.json')
hit = np.array((20,20))
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
print(f'{f.frame_number(1)}')
local_resolution = 99
grid_size = 3
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
pixels = pixels.numpy()
pixels = (pixels*scale).astype(np.int32)
v = ClusterVector_i(3,3)
v.push_back(1,1, pixels)
for i in range(10):
header, img = f.read_frame()
print(header['frameNumber'], img.shape)
>>>>>>> developer
with open(etahist_fname, "rb") as f:
hist = pickle.load(f)
eta = hist.view().copy()
etabinsx = np.array(hist.axes.edges.T[0].flat)
etabinsy = np.array(hist.axes.edges.T[1].flat)
ebins = np.array(hist.axes.edges.T[2].flat)
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
t_elapsed = time.perf_counter()-t0
print(f'Histogram filling took: {t_elapsed:.3f}s {total_clusters/t_elapsed/1e6:.3f}M clusters/s')
histogram_data = hist3d.counts()
x = hist3d.axes[2].edges[:-1]
y = histogram_data[100,100,:]
xx = np.linspace(x[0], x[-1])
# fig, ax = plt.subplots()
# ax.step(x, y, where = 'post')
y_err = np.sqrt(y)
y_err = np.zeros(y.size)
y_err += 1
#Generate the hit
# par = fit_gaus2(y,x, y_err)
# ax.plot(xx, gaus(xx,par))
# print(par)
res = fit_gaus(y,x)
res2 = fit_gaus(y,x, y_err)
print(res)
print(res2)
tmp = p.interpolate(v)
print(f'tmp:{tmp}')
pos = np.array((tmp['x'], tmp['y']))*25
print(pixels)
fig, ax = plt.subplots(figsize = (7,7))
ax.pcolormesh(xaxis, xaxis, t)
ax.plot(*pos, 'o')
ax.set_xticks([0,25,50,75])
ax.set_yticks([0,25,50,75])
ax.set_xlim(0,75)
ax.set_ylim(0,75)
ax.grid()
print(f'{hit=}')
print(f'{pos=}')

View File

@ -0,0 +1,104 @@
#include "aare/ClusterCollector.hpp"
#include "aare/ClusterFileSink.hpp"
#include "aare/ClusterFinder.hpp"
#include "aare/ClusterFinderMT.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDView.hpp"
#include "aare/Pedestal.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
namespace py = pybind11;
using pd_type = double;
using namespace aare;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_ClusterVector(py::module &m, const std::string &typestr) {
using ClusterType = Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>;
auto class_name = fmt::format("ClusterVector_{}", typestr);
py::class_<ClusterVector<
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>, void>>(
m, class_name.c_str(),
py::buffer_protocol())
.def(py::init()) // TODO change!!!
.def("push_back",
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
self.push_back(cluster);
})
.def("sum",
[](ClusterVector<ClusterType> &self) {
auto *vec = new std::vector<Type>(self.sum());
return return_vector(vec);
})
.def("sum_2x2", [](ClusterVector<ClusterType> &self){
auto *vec = new std::vector<Type>(self.sum_2x2());
return return_vector(vec);
})
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
.def("item_size", &ClusterVector<ClusterType>::item_size)
.def_property_readonly("fmt",
[typestr](ClusterVector<ClusterType> &self) {
return fmt_format<ClusterType>;
})
.def_property_readonly("cluster_size_x",
&ClusterVector<ClusterType>::cluster_size_x)
.def_property_readonly("cluster_size_y",
&ClusterVector<ClusterType>::cluster_size_y)
.def_property_readonly("capacity",
&ClusterVector<ClusterType>::capacity)
.def_property("frame_number", &ClusterVector<ClusterType>::frame_number,
&ClusterVector<ClusterType>::set_frame_number)
.def_buffer(
[typestr](ClusterVector<ClusterType> &self) -> py::buffer_info {
return py::buffer_info(
self.data(), /* Pointer to buffer */
self.item_size(), /* Size of one scalar */
fmt_format<ClusterType>, /* Format descriptor */
1, /* Number of dimensions */
{self.size()}, /* Buffer dimensions */
{self.item_size()} /* Strides (in bytes) for each index */
);
});
// Free functions using ClusterVector
m.def("hitmap",
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
// Create a numpy array to hold the hitmap
// The shape of the array is (image_size[0], image_size[1])
// note that the python array is passed as [row, col] which
// is the opposite of the clusters [x,y]
py::array_t<int32_t> hitmap(image_size);
auto r = hitmap.mutable_unchecked<2>();
// Initialize hitmap to 0
for (py::ssize_t i = 0; i < r.shape(0); i++)
for (py::ssize_t j = 0; j < r.shape(1); j++)
r(i, j) = 0;
// Loop over the clusters and increment the hitmap
// Skip out of bound clusters
for (const auto &cluster : cv) {
auto x = cluster.x;
auto y = cluster.y;
if (x < image_size[1] && y < image_size[0])
r(cluster.y, cluster.x) += 1;
}
return hitmap;
});
}

View File

@ -16,186 +16,196 @@
namespace py = pybind11;
using pd_type = double;
template <typename T>
void define_cluster_vector(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("ClusterVector_{}", typestr);
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
.def(py::init<int, int>())
.def_property_readonly("size", &ClusterVector<T>::size)
.def("item_size", &ClusterVector<T>::item_size)
.def_property_readonly("fmt",
[typestr](ClusterVector<T> &self) {
return fmt::format(
self.fmt_base(), self.cluster_size_x(),
self.cluster_size_y(), typestr);
})
.def("sum",
[](ClusterVector<T> &self) {
auto *vec = new std::vector<T>(self.sum());
return return_vector(vec);
})
.def("sum_2x2", [](ClusterVector<T> &self) {
auto *vec = new std::vector<T>(self.sum_2x2());
return return_vector(vec);
})
.def_property_readonly("capacity", &ClusterVector<T>::capacity)
.def_property("frame_number", &ClusterVector<T>::frame_number,
&ClusterVector<T>::set_frame_number)
.def_buffer([typestr](ClusterVector<T> &self) -> py::buffer_info {
return py::buffer_info(
self.data(), /* Pointer to buffer */
self.item_size(), /* Size of one scalar */
fmt::format(self.fmt_base(), self.cluster_size_x(),
self.cluster_size_y(),
typestr), /* Format descriptor */
1, /* Number of dimensions */
{self.size()}, /* Buffer dimensions */
{self.item_size()} /* Strides (in bytes) for each index */
);
using namespace aare;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
void define_cluster(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("Cluster{}", typestr);
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
m, class_name.c_str(), py::buffer_protocol())
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
py::buffer_info buf_info = data.request();
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
cluster.x = x;
cluster.y = y;
auto r = data.template unchecked<1>(); // no bounds checks
for (py::ssize_t i = 0; i < data.size(); ++i) {
cluster.data[i] = r(i);
}
return cluster;
}));
/*
.def_property(
"data",
[](ClusterType &c) -> py::array {
return py::array(py::buffer_info(
c.data, sizeof(Type),
py::format_descriptor<Type>::format(), // Type
// format
1, // Number of dimensions
{static_cast<ssize_t>(ClusterSizeX *
ClusterSizeY)}, // Shape (flattened)
{sizeof(Type)} // Stride (step size between elements)
));
},
[](ClusterType &c, py::array_t<Type> arr) {
py::buffer_info buf_info = arr.request();
Type *ptr = static_cast<Type *>(buf_info.ptr);
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
c.data); // TODO dont iterate over centers!!!
});
*/
}
void define_cluster_finder_mt_bindings(py::module &m) {
py::class_<ClusterFinderMT<uint16_t, pd_type>>(m, "ClusterFinderMT")
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t, size_t>(),
py::arg("image_size"), py::arg("cluster_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 2048,
py::arg("n_threads") = 3)
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_cluster_finder_mt_bindings(py::module &m,
const std::string &typestr) {
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
py::arg("image_size"), py::arg("n_sigma") = 5.0,
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
.def("push_pedestal_frame",
[](ClusterFinderMT<uint16_t, pd_type> &self,
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
self.push_pedestal_frame(view);
})
.def(
"find_clusters",
[](ClusterFinderMT<uint16_t, pd_type> &self,
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame, uint64_t frame_number) {
auto view = make_view_2d(frame);
self.find_clusters(view, frame_number);
return;
},
py::arg(), py::arg("frame_number") = 0)
.def("clear_pedestal", &ClusterFinderMT<uint16_t, pd_type>::clear_pedestal)
.def("sync", &ClusterFinderMT<uint16_t, pd_type>::sync)
.def("stop", &ClusterFinderMT<uint16_t, pd_type>::stop)
.def("start", &ClusterFinderMT<uint16_t, pd_type>::start)
.def("pedestal",
[](ClusterFinderMT<uint16_t, pd_type> &self, size_t thread_index) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal(thread_index);
return return_image_data(pd);
},py::arg("thread_index") = 0)
.def("noise",
[](ClusterFinderMT<uint16_t, pd_type> &self, size_t thread_index) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise(thread_index);
return return_image_data(arr);
},py::arg("thread_index") = 0);
.def_property_readonly("cluster_size", [](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self){
return py::make_tuple(ClusterSizeX, ClusterSizeY);
})
.def("clear_pedestal",
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
.def(
"pedestal",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
size_t thread_index) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal(thread_index);
return return_image_data(pd);
},
py::arg("thread_index") = 0)
.def(
"noise",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
size_t thread_index) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise(thread_index);
return return_image_data(arr);
},
py::arg("thread_index") = 0);
}
void define_cluster_collector_bindings(py::module &m) {
py::class_<ClusterCollector>(m, "ClusterCollector")
.def(py::init<ClusterFinderMT<uint16_t, double, int32_t> *>())
.def("stop", &ClusterCollector::stop)
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_cluster_collector_bindings(py::module &m,
const std::string &typestr) {
auto class_name = fmt::format("ClusterCollector_{}", typestr);
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
.def("stop", &ClusterCollector<ClusterType>::stop)
.def(
"steal_clusters",
[](ClusterCollector &self) {
auto v =
new std::vector<ClusterVector<int>>(self.steal_clusters());
return v;
[](ClusterCollector<ClusterType> &self) {
auto v = new std::vector<ClusterVector<ClusterType>>(
self.steal_clusters());
return v; // TODO change!!!
},
py::return_value_policy::take_ownership);
}
void define_cluster_file_sink_bindings(py::module &m) {
py::class_<ClusterFileSink>(m, "ClusterFileSink")
.def(py::init<ClusterFinderMT<uint16_t, double, int32_t> *,
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_cluster_file_sink_bindings(py::module &m,
const std::string &typestr) {
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
const std::filesystem::path &>())
.def("stop", &ClusterFileSink::stop);
.def("stop", &ClusterFileSink<ClusterType>::stop);
}
void define_cluster_finder_bindings(py::module &m) {
py::class_<ClusterFinder<uint16_t, pd_type>>(m, "ClusterFinder")
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t>(),
py::arg("image_size"), py::arg("cluster_size"),
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("ClusterFinder_{}", typestr);
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
.def("push_pedestal_frame",
[](ClusterFinder<uint16_t, pd_type> &self,
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {
auto view = make_view_2d(frame);
self.push_pedestal_frame(view);
})
.def("clear_pedestal", &ClusterFinder<uint16_t, pd_type>::clear_pedestal)
.def_property_readonly("pedestal",
[](ClusterFinder<uint16_t, pd_type> &self) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal();
return return_image_data(pd);
})
.def_property_readonly("noise",
[](ClusterFinder<uint16_t, pd_type> &self) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise();
return return_image_data(arr);
})
.def("clear_pedestal",
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
.def_property_readonly(
"pedestal",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
auto pd = new NDArray<pd_type, 2>{};
*pd = self.pedestal();
return return_image_data(pd);
})
.def_property_readonly(
"noise",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
auto arr = new NDArray<pd_type, 2>{};
*arr = self.noise();
return return_image_data(arr);
})
.def(
"steal_clusters",
[](ClusterFinder<uint16_t, pd_type> &self,
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
bool realloc_same_capacity) {
auto v = new ClusterVector<int>(
self.steal_clusters(realloc_same_capacity));
return v;
ClusterVector<ClusterType> clusters =
self.steal_clusters(realloc_same_capacity);
return clusters;
},
py::arg("realloc_same_capacity") = false)
.def(
"find_clusters",
[](ClusterFinder<uint16_t, pd_type> &self,
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame, uint64_t frame_number) {
auto view = make_view_2d(frame);
self.find_clusters(view, frame_number);
return;
},
py::arg(), py::arg("frame_number") = 0);
m.def("hitmap",
[](std::array<size_t, 2> image_size, ClusterVector<int32_t> &cv) {
py::array_t<int32_t> hitmap(image_size);
auto r = hitmap.mutable_unchecked<2>();
// Initialize hitmap to 0
for (py::ssize_t i = 0; i < r.shape(0); i++)
for (py::ssize_t j = 0; j < r.shape(1); j++)
r(i, j) = 0;
size_t stride = cv.item_size();
auto ptr = cv.data();
for (size_t i = 0; i < cv.size(); i++) {
auto x = *reinterpret_cast<int16_t *>(ptr);
auto y = *reinterpret_cast<int16_t *>(ptr + sizeof(int16_t));
r(y, x) += 1;
ptr += stride;
}
return hitmap;
});
define_cluster_vector<int>(m, "i");
define_cluster_vector<double>(m, "d");
define_cluster_vector<float>(m, "f");
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
.def(py::init<int, int, Dtype>())
.def("size", &DynamicCluster::size)
.def("begin", &DynamicCluster::begin)
.def("end", &DynamicCluster::end)
.def_readwrite("x", &DynamicCluster::x)
.def_readwrite("y", &DynamicCluster::y)
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
1, {c.size()}, {c.dt.bytes()});
})
.def("__repr__", [](const DynamicCluster &a) {
return "<DynamicCluster: x: " + std::to_string(a.x) +
", y: " + std::to_string(a.y) + ">";
});
}
}
#pragma GCC diagnostic pop

View File

@ -1,3 +1,4 @@
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
#include "aare/defs.hpp"
@ -10,63 +11,84 @@
#include <pybind11/stl/filesystem.h>
#include <string>
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
// Disable warnings for unused parameters, as we ignore some
// in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
namespace py = pybind11;
using namespace ::aare;
void define_cluster_file_io_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(Cluster3x3, x, y, data);
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
typename CoordType = uint16_t>
void define_cluster_file_io_bindings(py::module &m,
const std::string &typestr) {
py::class_<ClusterFile>(m, "ClusterFile")
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
auto class_name = fmt::format("ClusterFile_{}", typestr);
py::class_<ClusterFile<ClusterType>>(m, class_name.c_str())
.def(py::init<const std::filesystem::path &, size_t,
const std::string &>(),
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
.def("read_clusters",
[](ClusterFile &self, size_t n_clusters) {
auto v = new ClusterVector<int32_t>(self.read_clusters(n_clusters));
.def(
"read_clusters",
[](ClusterFile<ClusterType> &self, size_t n_clusters) {
auto v = new ClusterVector<ClusterType>(
self.read_clusters(n_clusters));
return v;
},py::return_value_policy::take_ownership)
},
py::return_value_policy::take_ownership)
.def("read_frame",
[](ClusterFile &self) {
auto v = new ClusterVector<int32_t>(self.read_frame());
return v;
[](ClusterFile<ClusterType> &self) {
auto v = new ClusterVector<ClusterType>(self.read_frame());
return v;
})
.def("write_frame", &ClusterFile::write_frame)
// .def("read_cluster_with_cut",
// [](ClusterFile &self, size_t n_clusters,
// py::array_t<double> noise_map, int nx, int ny) {
// auto view = make_view_2d(noise_map);
// auto *vec =
// new std::vector<Cluster3x3>(self.read_cluster_with_cut(
// n_clusters, view.data(), nx, ny));
// return return_vector(vec);
// })
.def("__enter__", [](ClusterFile &self) { return &self; })
.def("set_roi", &ClusterFile<ClusterType>::set_roi)
.def(
"set_noise_map",
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
auto view = make_view_2d(noise_map);
self.set_noise_map(view);
})
.def("set_gain_map",
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
auto view = make_view_2d(gain_map);
self.set_gain_map(view);
})
.def("close", &ClusterFile<ClusterType>::close)
.def("write_frame", &ClusterFile<ClusterType>::write_frame)
.def("__enter__", [](ClusterFile<ClusterType> &self) { return &self; })
.def("__exit__",
[](ClusterFile &self,
[](ClusterFile<ClusterType> &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
self.close();
})
.def("__iter__", [](ClusterFile &self) { return &self; })
.def("__next__", [](ClusterFile &self) {
auto v = new ClusterVector<int32_t>(self.read_clusters(self.chunk_size()));
.def("__iter__", [](ClusterFile<ClusterType> &self) { return &self; })
.def("__next__", [](ClusterFile<ClusterType> &self) {
auto v = new ClusterVector<ClusterType>(
self.read_clusters(self.chunk_size()));
if (v->size() == 0) {
throw py::stop_iteration();
}
return v;
});
}
m.def("calculate_eta2", []( aare::ClusterVector<int32_t> &clusters) {
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
return return_image_data(eta2);
});
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
typename CoordType = uint16_t>
void register_calculate_eta(py::module &m) {
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
m.def("calculate_eta2",
[](const aare::ClusterVector<ClusterType> &clusters) {
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
return return_image_data(eta2);
});
}
#pragma GCC diagnostic pop

View File

@ -10,6 +10,8 @@
#include "aare/decode.hpp"
// #include "aare/fClusterFileV2.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
@ -32,7 +34,7 @@ m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/8};
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
@ -53,7 +55,7 @@ m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/8};
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
@ -65,35 +67,54 @@ m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
m.def(
"apply_custom_weights",
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
py::array_t<double, py::array::c_style | py::array::forcecast>
&weights) {
py::array_t<DetectorHeader> header(1);
// Create new array with same shape as the input array (uninitialized values)
py::buffer_info buf = input.request();
py::array_t<double> output(buf.shape);
// always read bytes
image = py::array_t<uint8_t>(shape);
// Use NDViews to call into the C++ library
auto weights_view = make_view_1d(weights);
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
apply_custom_weights(input_view, output_view, weights_view);
return output;
});
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
py::array_t<DetectorHeader> header(1);
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
// always read bytes
image = py::array_t<uint8_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
}

View File

@ -20,6 +20,9 @@
namespace py = pybind11;
using namespace ::aare;
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
@ -195,6 +198,8 @@ void define_file_io_bindings(py::module &m) {
py::class_<ROI>(m, "ROI")
.def(py::init<>())
.def(py::init<int64_t, int64_t, int64_t, int64_t>(), py::arg("xmin"),
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
.def_readwrite("xmin", &ROI::xmin)
.def_readwrite("xmax", &ROI::xmax)
.def_readwrite("ymin", &ROI::ymin)
@ -212,36 +217,9 @@ void define_file_io_bindings(py::module &m) {
py::class_<RawSubFile>(m, "RawSubFile")
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
size_t, size_t>())
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&RawSubFile::pixels_per_frame)
.def("seek", &RawSubFile::seek)
.def("tell", &RawSubFile::tell)
.def_property_readonly("rows", &RawSubFile::rows)
.def_property_readonly("cols", &RawSubFile::cols)
.def("read_frame",
[](RawSubFile &self) {
const uint8_t item_size = self.bytes_per_pixel();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(self.rows());
shape.push_back(self.cols());
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
fmt::print("item_size: {} rows: {} cols: {}\n", item_size, self.rows(), self.cols());
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()));
return image;
});
#pragma GCC diagnostic pop
// py::class_<ClusterHeader>(m, "ClusterHeader")

View File

@ -7,6 +7,8 @@
#include "aare/Fit.hpp"
namespace py = pybind11;
using namespace pybind11::literals;
void define_fit_bindings(py::module &m) {
@ -29,7 +31,8 @@ void define_fit_bindings(py::module &m) {
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)", py::arg("x"), py::arg("par"));
)",
py::arg("x"), py::arg("par"));
m.def(
"pol1",
@ -49,7 +52,9 @@ void define_fit_bindings(py::module &m) {
The points at which to evaluate the polynomial function.
par : array_like
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
)", py::arg("x"), py::arg("par"));
)",
py::arg("x"), py::arg("par"));
m.def(
"fit_gaus",
@ -72,7 +77,8 @@ void define_fit_bindings(py::module &m) {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
R"(
Fit a 1D Gaussian to data.
Parameters
@ -90,8 +96,9 @@ n_threads : int, optional
"fit_gaus",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast>
y_err, int n_threads) {
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
@ -99,15 +106,20 @@ n_threads : int, optional
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
// Make views of the numpy arrays
auto y_view = make_view_3d(y);
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view(), n_threads);
// return return_image_data(par);
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 3);
} else if (y.ndim() == 1) {
// Allocate memory for the output
// Need to have pointers to allow python to manage
@ -120,15 +132,21 @@ n_threads : int, optional
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
par_err->view());
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
R"(
Fit a 1D Gaussian to data with error estimates.
Parameters
@ -172,11 +190,11 @@ n_threads : int, optional
"fit_pol1",
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
py::array_t<double, py::array::c_style | py::array::forcecast> y,
py::array_t<double, py::array::c_style | py::array::forcecast>
y_err, int n_threads) {
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
int n_threads) {
if (y.ndim() == 3) {
auto par =
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
auto par_err =
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
@ -184,10 +202,15 @@ n_threads : int, optional
auto y_view_err = make_view_3d(y_err);
auto x_view = make_view_1d(x);
aare::fit_pol1(x_view, y_view,y_view_err, par->view(),
par_err->view(), n_threads);
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view(), chi2->view(), n_threads);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = return_image_data(chi2),
"Ndf"_a = y.shape(2) - 2);
} else if (y.ndim() == 1) {
auto par = new NDArray<double, 1>({2});
@ -197,15 +220,19 @@ n_threads : int, optional
auto y_view_err = make_view_1d(y_err);
auto x_view = make_view_1d(x);
double chi2 = 0;
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
par_err->view());
return py::make_tuple(return_image_data(par),
return_image_data(par_err));
par_err->view(), chi2);
return py::dict("par"_a = return_image_data(par),
"par_err"_a = return_image_data(par_err),
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
} else {
throw std::runtime_error("Data must be 1D or 3D");
}
},
R"(
R"(
Fit a 1D polynomial to data with error estimates.
Parameters

View File

@ -0,0 +1,82 @@
#include "aare/Interpolator.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
typename CoordType = uint16_t>
void register_interpolate(py::class_<aare::Interpolator> &interpolator) {
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
interpolator.def("interpolate",
[](aare::Interpolator &self,
const ClusterVector<ClusterType> &clusters) {
auto photons = self.interpolate<ClusterType>(clusters);
auto *ptr = new std::vector<Photon>{photons};
return return_vector(ptr);
});
}
void define_interpolation_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
auto interpolator =
py::class_<aare::Interpolator>(m, "Interpolator")
.def(py::init([](py::array_t<double, py::array::c_style |
py::array::forcecast>
etacube,
py::array_t<double> xbins,
py::array_t<double> ybins,
py::array_t<double> ebins) {
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
make_view_1d(ybins), make_view_1d(ebins));
}))
.def("get_ietax",
[](Interpolator &self) {
auto *ptr = new NDArray<double, 3>{};
*ptr = self.get_ietax();
return return_image_data(ptr);
})
.def("get_ietay", [](Interpolator &self) {
auto *ptr = new NDArray<double, 3>{};
*ptr = self.get_ietay();
return return_image_data(ptr);
});
register_interpolate<int, 3, 3, uint16_t>(interpolator);
register_interpolate<float, 3, 3, uint16_t>(interpolator);
register_interpolate<double, 3, 3, uint16_t>(interpolator);
register_interpolate<int, 2, 2, uint16_t>(interpolator);
register_interpolate<float, 2, 2, uint16_t>(interpolator);
register_interpolate<double, 2, 2, uint16_t>(interpolator);
// TODO! Evaluate without converting to double
m.def(
"hej",
[]() {
// auto boost_histogram = py::module_::import("boost_histogram");
// py::object axis =
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
// py::object histogram = boost_histogram.attr("Histogram")(axis);
// return histogram;
// return h;
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)");
}

View File

@ -0,0 +1,116 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/defs.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
// Disable warnings for unused parameters, as we ignore some
// in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
auto read_dat_frame(JungfrauDataFile &self) {
py::array_t<JungfrauDataHeader> header(1);
py::array_t<uint16_t> image({
self.rows(),
self.cols()
});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
}
auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
// adjust for actual frames left in the file
n_frames = std::min(n_frames, self.total_frames() - self.tell());
if (n_frames == 0) {
throw std::runtime_error("No frames left in file");
}
py::array_t<JungfrauDataHeader> header(n_frames);
py::array_t<uint16_t> image({
n_frames, self.rows(),
self.cols()});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames, header.mutable_data());
return py::make_tuple(header, image);
}
void define_jungfrau_data_file_io_bindings(py::module &m) {
// Make the JungfrauDataHeader usable from numpy
PYBIND11_NUMPY_DTYPE(JungfrauDataHeader, framenum, bunchid);
py::class_<JungfrauDataFile>(m, "JungfrauDataFile")
.def(py::init<const std::filesystem::path &>())
.def("seek", &JungfrauDataFile::seek,
R"(
Seek to the given frame index.
)")
.def("tell", &JungfrauDataFile::tell,
R"(
Get the current frame index.
)")
.def_property_readonly("rows", &JungfrauDataFile::rows)
.def_property_readonly("cols", &JungfrauDataFile::cols)
.def_property_readonly("base_name", &JungfrauDataFile::base_name)
.def_property_readonly("bytes_per_frame",
&JungfrauDataFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&JungfrauDataFile::pixels_per_frame)
.def_property_readonly("bytes_per_pixel",
&JungfrauDataFile::bytes_per_pixel)
.def_property_readonly("bitdepth", &JungfrauDataFile::bitdepth)
.def_property_readonly("current_file", &JungfrauDataFile::current_file)
.def_property_readonly("total_frames", &JungfrauDataFile::total_frames)
.def_property_readonly("n_files", &JungfrauDataFile::n_files)
.def("read_frame", &read_dat_frame,
R"(
Read a single frame from the file.
)")
.def("read_n", &read_n_dat_frames,
R"(
Read maximum n_frames frames from the file.
)")
.def(
"read",
[](JungfrauDataFile &self) {
self.seek(0);
auto n_frames = self.total_frames();
return read_n_dat_frames(self, n_frames);
},
R"(
Read all frames from the file. Seeks to the beginning before reading.
)")
.def("__enter__", [](JungfrauDataFile &self) { return &self; })
.def("__exit__",
[](JungfrauDataFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
// self.close();
})
.def("__iter__", [](JungfrauDataFile &self) { return &self; })
.def("__next__", [](JungfrauDataFile &self) {
try {
return read_dat_frame(self);
} catch (std::runtime_error &e) {
throw py::stop_iteration();
}
});
}
#pragma GCC diagnostic pop

View File

@ -1,16 +1,24 @@
//Files with bindings to the different classes
#include "file.hpp"
#include "raw_file.hpp"
#include "ctb_raw_file.hpp"
#include "raw_master_file.hpp"
#include "var_cluster.hpp"
#include "pixel_map.hpp"
#include "pedestal.hpp"
// Files with bindings to the different classes
//New style file naming
#include "bind_ClusterVector.hpp"
//TODO! migrate the other names
#include "cluster.hpp"
#include "cluster_file.hpp"
#include "ctb_raw_file.hpp"
#include "file.hpp"
#include "fit.hpp"
#include "interpolation.hpp"
#include "raw_sub_file.hpp"
#include "raw_master_file.hpp"
#include "raw_file.hpp"
#include "pixel_map.hpp"
#include "var_cluster.hpp"
#include "pedestal.hpp"
#include "jungfrau_data_file.hpp"
//Pybind stuff
// Pybind stuff
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
@ -19,17 +27,70 @@ namespace py = pybind11;
PYBIND11_MODULE(_aare, m) {
define_file_io_bindings(m);
define_raw_file_io_bindings(m);
define_raw_sub_file_io_bindings(m);
define_ctb_raw_file_io_bindings(m);
define_raw_master_file_bindings(m);
define_var_cluster_finder_bindings(m);
define_pixel_map_bindings(m);
define_pedestal_bindings<double>(m, "Pedestal_d");
define_pedestal_bindings<float>(m, "Pedestal_f");
define_cluster_finder_bindings(m);
define_cluster_finder_mt_bindings(m);
define_cluster_file_io_bindings(m);
define_cluster_collector_bindings(m);
define_cluster_file_sink_bindings(m);
define_fit_bindings(m);
define_interpolation_bindings(m);
define_jungfrau_data_file_io_bindings(m);
}
define_cluster_file_io_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_cluster_file_io_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
define_cluster_file_io_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
define_cluster_file_io_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_cluster_file_io_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_file_io_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
define_ClusterVector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_ClusterVector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
define_ClusterVector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
define_ClusterVector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_ClusterVector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
define_ClusterVector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_finder_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_cluster_finder_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
define_cluster_finder_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
define_cluster_finder_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_cluster_finder_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
define_cluster_finder_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_finder_mt_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_cluster_finder_mt_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
define_cluster_finder_mt_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
define_cluster_finder_mt_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_cluster_finder_mt_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
define_cluster_finder_mt_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_file_sink_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_cluster_file_sink_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
define_cluster_file_sink_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
define_cluster_file_sink_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_cluster_file_sink_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
define_cluster_file_sink_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_collector_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
define_cluster_collector_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3f");
define_cluster_collector_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3d");
define_cluster_collector_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
define_cluster_collector_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2f");
define_cluster_collector_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2d");
define_cluster<int, 3, 3, uint16_t>(m, "3x3i");
define_cluster<float, 3, 3, uint16_t>(m, "3x3f");
define_cluster<double, 3, 3, uint16_t>(m, "3x3d");
define_cluster<int, 2, 2, uint16_t>(m, "2x2i");
define_cluster<float, 2, 2, uint16_t>(m, "2x2f");
define_cluster<double, 2, 2, uint16_t>(m, "2x2d");
register_calculate_eta<int, 3, 3, uint16_t>(m);
register_calculate_eta<float, 3, 3, uint16_t>(m);
register_calculate_eta<double, 3, 3, uint16_t>(m);
register_calculate_eta<int, 2, 2, uint16_t>(m);
register_calculate_eta<float, 2, 2, uint16_t>(m);
register_calculate_eta<double, 2, 2, uint16_t>(m);
}

View File

@ -10,6 +10,7 @@
#include "aare/NDView.hpp"
namespace py = pybind11;
using namespace aare;
// Pass image data back to python as a numpy array
template <typename T, int64_t Ndim>
@ -40,25 +41,46 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
}
// todo rewrite generic
template <class T, int Flags> auto get_shape_3d(py::array_t<T, Flags> arr) {
template <class T, int Flags>
auto get_shape_3d(const py::array_t<T, Flags> &arr) {
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
}
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> &arr) {
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
}
template <class T, int Flags> auto get_shape_2d(py::array_t<T, Flags> arr) {
template <class T, int Flags>
auto get_shape_2d(const py::array_t<T, Flags> &arr) {
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
}
template <class T, int Flags> auto get_shape_1d(py::array_t<T, Flags> arr) {
template <class T, int Flags>
auto get_shape_1d(const py::array_t<T, Flags> &arr) {
return aare::Shape<1>{arr.shape(0)};
}
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> &arr) {
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
}
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> &arr) {
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
}
}
template <typename ClusterType> struct fmt_format_trait; // forward declaration
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
struct fmt_format_trait<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
static std::string value() {
return fmt::format("T{{{}:x:{}:y:{}:data:}}",
py::format_descriptor<CoordType>::format(),
py::format_descriptor<CoordType>::format(),
fmt::format("({},{}){}", ClusterSizeX, ClusterSizeY,
py::format_descriptor<T>::format()));
}
};
template <typename ClusterType>
auto fmt_format = fmt_format_trait<ClusterType>::value();

110
python/src/raw_sub_file.hpp Normal file
View File

@ -0,0 +1,110 @@
#include "aare/CtbRawFile.hpp"
#include "aare/File.hpp"
#include "aare/Frame.hpp"
#include "aare/RawFile.hpp"
#include "aare/RawMasterFile.hpp"
#include "aare/RawSubFile.hpp"
#include "aare/defs.hpp"
// #include "aare/fClusterFileV2.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
auto read_frame_from_RawSubFile(RawSubFile &self) {
py::array_t<DetectorHeader> header(1);
const uint8_t item_size = self.bytes_per_pixel();
std::vector<ssize_t> shape{static_cast<ssize_t>(self.rows()),
static_cast<ssize_t>(self.cols())};
py::array image;
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
}
auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
py::array_t<DetectorHeader> header(n_frames);
const uint8_t item_size = self.bytes_per_pixel();
std::vector<ssize_t> shape{
static_cast<ssize_t>(n_frames),
static_cast<ssize_t>(self.rows()),
static_cast<ssize_t>(self.cols())
};
py::array image;
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames,
header.mutable_data());
return py::make_tuple(header, image);
}
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
void define_raw_sub_file_io_bindings(py::module &m) {
py::class_<RawSubFile>(m, "RawSubFile")
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
size_t, size_t>())
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&RawSubFile::pixels_per_frame)
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
.def("seek", &RawSubFile::seek)
.def("tell", &RawSubFile::tell)
.def_property_readonly("rows", &RawSubFile::rows)
.def_property_readonly("cols", &RawSubFile::cols)
.def_property_readonly("frames_in_file", &RawSubFile::frames_in_file)
.def("read_frame", &read_frame_from_RawSubFile)
.def("read_n", &read_n_frames_from_RawSubFile)
.def("read", [](RawSubFile &self){
self.seek(0);
auto n_frames = self.frames_in_file();
return read_n_frames_from_RawSubFile(self, n_frames);
})
.def("__enter__", [](RawSubFile &self) { return &self; })
.def("__exit__",
[](RawSubFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
})
.def("__iter__", [](RawSubFile &self) { return &self; })
.def("__next__", [](RawSubFile &self) {
try {
return read_frame_from_RawSubFile(self);
} catch (std::runtime_error &e) {
throw py::stop_iteration();
}
});
}
#pragma GCC diagnostic pop

View File

@ -19,15 +19,24 @@ using namespace::aare;
void define_var_cluster_finder_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
reserved, energy, max);
reserved, energy, max, rows, cols, enes);
py::class_<VarClusterFinder<double>>(m, "VarClusterFinder")
.def(py::init<Shape<2>, double>())
.def("labeled",
[](VarClusterFinder<double> &self) {
auto ptr = new NDArray<int, 2>(self.labeled());
auto *ptr = new NDArray<int, 2>(self.labeled());
return return_image_data(ptr);
})
.def("set_noiseMap",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
noise_map) {
auto noise_map_span = make_view_2d(noise_map);
self.set_noiseMap(noise_map_span);
})
.def("set_peripheralThresholdFactor",
&VarClusterFinder<double>::set_peripheralThresholdFactor)
.def("find_clusters",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
@ -35,6 +44,30 @@ void define_var_cluster_finder_bindings(py::module &m) {
auto view = make_view_2d(img);
self.find_clusters(view);
})
.def("find_clusters_X",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.find_clusters_X(img_span);
})
.def("single_pass",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.single_pass(img_span);
})
.def("hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
self.steal_hits());
return return_vector(ptr);
})
.def("clear_hits",
[](VarClusterFinder<double> &self) {
self.clear_hits();
})
.def("steal_hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(

34
python/tests/conftest.py Normal file
View File

@ -0,0 +1,34 @@
import os
from pathlib import Path
import pytest
def pytest_addoption(parser):
parser.addoption(
"--files", action="store_true", default=False, help="run slow tests"
)
def pytest_configure(config):
config.addinivalue_line("markers", "files: mark test as needing image files to run")
def pytest_collection_modifyitems(config, items):
if config.getoption("--files"):
return
skip = pytest.mark.skip(reason="need --files option to run")
for item in items:
if "files" in item.keywords:
item.add_marker(skip)
@pytest.fixture
def test_data_path():
env_value = os.environ.get("AARE_TEST_DATA")
if not env_value:
raise RuntimeError("Environment variable AARE_TEST_DATA is not set or is empty")
return Path(env_value)

View File

@ -0,0 +1,110 @@
import pytest
import numpy as np
from aare import _aare #import the C++ module
from conftest import test_data_path
def test_cluster_vector_can_be_converted_to_numpy():
cv = _aare.ClusterVector_Cluster3x3i()
arr = np.array(cv, copy=False)
assert arr.shape == (0,) # 4 for x, y, size, energy and 9 for the cluster data
def test_ClusterVector():
"""Test ClusterVector"""
clustervector = _aare.ClusterVector_Cluster3x3i()
assert clustervector.cluster_size_x == 3
assert clustervector.cluster_size_y == 3
assert clustervector.item_size() == 4+9*4
assert clustervector.frame_number == 0
assert clustervector.size == 0
cluster = _aare.Cluster3x3i(0,0,np.ones(9, dtype=np.int32))
clustervector.push_back(cluster)
assert clustervector.size == 1
with pytest.raises(TypeError): # Or use the appropriate exception type
clustervector.push_back(_aare.Cluster2x2i(0,0,np.ones(4, dtype=np.int32)))
with pytest.raises(TypeError):
clustervector.push_back(_aare.Cluster3x3f(0,0,np.ones(9, dtype=np.float32)))
def test_Interpolator():
"""Test Interpolator"""
ebins = np.linspace(0,10, 20, dtype=np.float64)
xbins = np.linspace(0, 5, 30, dtype=np.float64)
ybins = np.linspace(0, 5, 30, dtype=np.float64)
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
interpolator = _aare.Interpolator(etacube, xbins, ybins, ebins)
assert interpolator.get_ietax().shape == (30,30,20)
assert interpolator.get_ietay().shape == (30,30,20)
clustervector = _aare.ClusterVector_Cluster3x3i()
cluster = _aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
clustervector.push_back(cluster)
interpolated_photons = interpolator.interpolate(clustervector)
assert interpolated_photons.size == 1
assert interpolated_photons[0]["x"] == -1
assert interpolated_photons[0]["y"] == -1
assert interpolated_photons[0]["energy"] == 4 #eta_sum = 4, dx, dy = -1,-1 m_ietax = 0, m_ietay = 0
clustervector = _aare.ClusterVector_Cluster2x2i()
cluster = _aare.Cluster2x2i(0,0, np.ones(4, dtype=np.int32))
clustervector.push_back(cluster)
interpolated_photons = interpolator.interpolate(clustervector)
assert interpolated_photons.size == 1
assert interpolated_photons[0]["x"] == 0
assert interpolated_photons[0]["y"] == 0
assert interpolated_photons[0]["energy"] == 4
def test_calculate_eta():
"""Calculate Eta"""
clusters = _aare.ClusterVector_Cluster3x3i()
clusters.push_back(_aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32)))
clusters.push_back(_aare.Cluster3x3i(0,0, np.array([1,1,1,2,2,2,3,3,3])))
eta2 = _aare.calculate_eta2(clusters)
assert eta2.shape == (2,2)
assert eta2[0,0] == 0.5
assert eta2[0,1] == 0.5
assert eta2[1,0] == 0.5
assert eta2[1,1] == 0.6 #1/5
def test_cluster_finder():
"""Test ClusterFinder"""
clusterfinder = _aare.ClusterFinder_Cluster3x3i([100,100])
#frame = np.random.rand(100,100)
frame = np.zeros(shape=[100,100])
clusterfinder.find_clusters(frame)
clusters = clusterfinder.steal_clusters(False) #conversion does not work
assert clusters.size == 0

View File

@ -0,0 +1,64 @@
import pytest
import numpy as np
import boost_histogram as bh
import time
from pathlib import Path
import pickle
from aare import ClusterFile
from conftest import test_data_path
@pytest.mark.files
def test_cluster_file(test_data_path):
"""Test ClusterFile"""
f = ClusterFile(test_data_path / "clust/single_frame_97_clustrers.clust")
cv = f.read_clusters(10) #conversion does not work
assert cv.frame_number == 135
assert cv.size == 10
#Known data
#frame_number, num_clusters [135] 97
#[ 1 200] [0 1 2 3 4 5 6 7 8]
#[ 2 201] [ 9 10 11 12 13 14 15 16 17]
#[ 3 202] [18 19 20 21 22 23 24 25 26]
#[ 4 203] [27 28 29 30 31 32 33 34 35]
#[ 5 204] [36 37 38 39 40 41 42 43 44]
#[ 6 205] [45 46 47 48 49 50 51 52 53]
#[ 7 206] [54 55 56 57 58 59 60 61 62]
#[ 8 207] [63 64 65 66 67 68 69 70 71]
#[ 9 208] [72 73 74 75 76 77 78 79 80]
#[ 10 209] [81 82 83 84 85 86 87 88 89]
#conversion to numpy array
arr = np.array(cv, copy = False)
assert arr.size == 10
for i in range(10):
assert arr[i]['x'] == i+1
@pytest.mark.files
def test_read_clusters_and_fill_histogram(test_data_path):
# Create the histogram
n_bins = 100
xmin = -100
xmax = 1e4
hist_aare = bh.Histogram(bh.axis.Regular(n_bins, xmin, xmax))
fname = test_data_path / "clust/beam_En700eV_-40deg_300V_10us_d0_f0_100.clust"
#Read clusters and fill the histogram with pixel values
with ClusterFile(fname, chunk_size = 10000) as f:
for clusters in f:
arr = np.array(clusters, copy = False)
hist_aare.fill(arr['data'].flat)
#Load the histogram from the pickle file
with open(fname.with_suffix('.pkl'), 'rb') as f:
hist_py = pickle.load(f)
#Compare the two histograms
assert hist_aare == hist_py

View File

@ -0,0 +1,54 @@
import pytest
import numpy as np
import boost_histogram as bh
import time
from pathlib import Path
import pickle
from aare import ClusterFile
from aare import _aare
from conftest import test_data_path
def test_create_cluster_vector():
cv = _aare.ClusterVector_Cluster3x3i()
assert cv.cluster_size_x == 3
assert cv.cluster_size_y == 3
assert cv.size == 0
def test_push_back_on_cluster_vector():
cv = _aare.ClusterVector_Cluster2x2i()
assert cv.cluster_size_x == 2
assert cv.cluster_size_y == 2
assert cv.size == 0
cluster = _aare.Cluster2x2i(19, 22, np.ones(4, dtype=np.int32))
cv.push_back(cluster)
assert cv.size == 1
arr = np.array(cv, copy=False)
assert arr[0]['x'] == 19
assert arr[0]['y'] == 22
def test_make_a_hitmap_from_cluster_vector():
cv = _aare.ClusterVector_Cluster3x3i()
# Push back 4 clusters with different positions
cv.push_back(_aare.Cluster3x3i(0, 0, np.ones(9, dtype=np.int32)))
cv.push_back(_aare.Cluster3x3i(1, 1, np.ones(9, dtype=np.int32)))
cv.push_back(_aare.Cluster3x3i(1, 1, np.ones(9, dtype=np.int32)))
cv.push_back(_aare.Cluster3x3i(2, 2, np.ones(9, dtype=np.int32)))
ref = np.zeros((5, 5), dtype=np.int32)
ref[0,0] = 1
ref[1,1] = 2
ref[2,2] = 1
img = _aare.hitmap((5,5), cv)
# print(img)
# print(ref)
assert (img == ref).all()

View File

@ -0,0 +1,36 @@
import pytest
import numpy as np
from aare import RawSubFile, DetectorType
@pytest.mark.files
def test_read_a_jungfrau_RawSubFile(test_data_path):
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
assert f.frames_in_file == 3
headers, frames = f.read()
assert headers.size == 3
assert frames.shape == (3, 512, 1024)
# Frame numbers in this file should be 4, 5, 6
for i,h in zip(range(4,7,1), headers):
assert h["frameNumber"] == i
# Compare to canned data using numpy
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
assert np.all(data[3:6] == frames)
@pytest.mark.files
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
i = 0
for header, frame in f:
assert header["frameNumber"] == i+1
assert np.all(frame == data[i])
i += 1
assert i == 3
assert header["frameNumber"] == 3

View File

@ -0,0 +1,92 @@
import pytest
import numpy as np
from aare import JungfrauDataFile
@pytest.mark.files
def test_jfungfrau_dat_read_number_of_frames(test_data_path):
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
assert dat_file.total_frames == 24
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
assert dat_file.total_frames == 53
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
assert dat_file.total_frames == 113
@pytest.mark.files
def test_jfungfrau_dat_read_number_of_file(test_data_path):
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
assert dat_file.n_files == 4
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
assert dat_file.n_files == 7
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
assert dat_file.n_files == 7
@pytest.mark.files
def test_read_module(test_data_path):
"""
Read all frames from the series of .dat files. Compare to canned data in npz format.
"""
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as f:
header, data = f.read()
#Sanity check
n_frames = 24
assert header.size == n_frames
assert data.shape == (n_frames, 512, 1024)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF500k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)
@pytest.mark.files
def test_read_half_module(test_data_path):
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as f:
header, data = f.read()
n_frames = 53
assert header.size == n_frames
assert data.shape == (n_frames, 256, 1024)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF250k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)
@pytest.mark.files
def test_read_single_chip(test_data_path):
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as f:
header, data = f.read()
n_frames = 113
assert header.size == n_frames
assert data.shape == (n_frames, 256, 256)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF65k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)

127
src/CalculateEta.test.cpp Normal file
View File

@ -0,0 +1,127 @@
/************************************************
* @file CalculateEta.test.cpp
* @short test case to calculate_eta2
***********************************************/
#include "aare/CalculateEta.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
using ClusterTypes =
std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>, Cluster<int, 5, 5>,
Cluster<int, 4, 2>, Cluster<int, 2, 3>>;
auto get_test_parameters() {
return GENERATE(
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
Eta2<int>{2. / 3, 3. / 4,
static_cast<int>(corner::cBottomLeft), 7}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
Eta2<int>{6. / 11, 2. / 7, static_cast<int>(corner::cTopRight),
20}),
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 2, 8, 9, 8,
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
Eta2<int>{8. / 17, 7. / 15, 9, 30}),
std::make_tuple(
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
Eta2<int>{4. / 10, 4. / 11, 1, 21}),
std::make_tuple(
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
Eta2<int>{3. / 5, 2. / 5, 1, 11}));
}
TEST_CASE("compute_largest_2x2_subcluster", "[eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto [sum, index] = std::visit(
[](const auto &clustertype) { return clustertype.max_sum_2x2(); },
cluster);
CHECK(expected_eta.c == index);
CHECK(expected_eta.sum == sum);
}
TEST_CASE("calculate_eta2", "[eta_calculation]") {
auto [cluster, expected_eta] = get_test_parameters();
auto eta = std::visit(
[](const auto &clustertype) { return calculate_eta2(clustertype); },
cluster);
CHECK(eta.x == expected_eta.x);
CHECK(eta.y == expected_eta.y);
CHECK(eta.c == expected_eta.c);
CHECK(eta.sum == expected_eta.sum);
}
// 3x3 cluster layout (rotated to match the cBottomLeft enum):
// 6, 7, 8
// 3, 4, 5
// 0, 1, 2
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
"the bottom left",
"[eta_calculation]") {
// Create a 3x3 cluster
Cluster<int32_t, 3, 3> cl;
cl.x = 0;
cl.y = 0;
cl.data[0] = 30;
cl.data[1] = 23;
cl.data[2] = 5;
cl.data[3] = 20;
cl.data[4] = 50;
cl.data[5] = 3;
cl.data[6] = 8;
cl.data[7] = 2;
cl.data[8] = 3;
// 8, 2, 3
// 20, 50, 3
// 30, 23, 5
auto eta = calculate_eta2(cl);
CHECK(eta.c == static_cast<int>(corner::cBottomLeft));
CHECK(eta.x == 50.0 / (20 + 50)); // 4/(3+4)
CHECK(eta.y == 50.0 / (23 + 50)); // 4/(1+4)
CHECK(eta.sum == 30 + 23 + 20 + 50);
}
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
"the top left",
"[eta_calculation]") {
// Create a 3x3 cluster
Cluster<int32_t, 3, 3> cl;
cl.x = 0;
cl.y = 0;
cl.data[0] = 8;
cl.data[1] = 12;
cl.data[2] = 5;
cl.data[3] = 77;
cl.data[4] = 80;
cl.data[5] = 3;
cl.data[6] = 82;
cl.data[7] = 91;
cl.data[8] = 3;
// 82, 91, 3
// 77, 80, 3
// 8, 12, 5
auto eta = calculate_eta2(cl);
CHECK(eta.c == static_cast<int>(corner::cTopLeft));
CHECK(eta.x == 80. / (77 + 80)); // 4/(3+4)
CHECK(eta.y == 91.0 / (91 + 80)); // 7/(7+4)
CHECK(eta.sum == 77 + 80 + 82 + 91);
}

21
src/Cluster.test.cpp Normal file
View File

@ -0,0 +1,21 @@
/************************************************
* @file test-Cluster.cpp
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
***********************************************/
#include "aare/Cluster.hpp"
#include "aare/CalculateEta.hpp"
#include "aare/ClusterFile.hpp"
// #include "catch.hpp"
#include <array>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
using namespace aare;
TEST_CASE("Test sum of Cluster", "[.cluster]") {
Cluster<int, 2, 2> cluster{0, 0, {1, 2, 3, 4}};
CHECK(cluster.sum() == 10);
}

View File

@ -1,442 +0,0 @@
#include "aare/ClusterFile.hpp"
#include <algorithm>
namespace aare {
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
const std::string &mode)
: m_chunk_size(chunk_size), m_mode(mode) {
if (mode == "r") {
fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("Could not open file for reading: " +
fname.string());
}
} else if (mode == "w") {
fp = fopen(fname.c_str(), "wb");
if (!fp) {
throw std::runtime_error("Could not open file for writing: " +
fname.string());
}
} else if (mode == "a") {
fp = fopen(fname.c_str(), "ab");
if (!fp) {
throw std::runtime_error("Could not open file for appending: " +
fname.string());
}
} else {
throw std::runtime_error("Unsupported mode: " + mode);
}
}
ClusterFile::~ClusterFile() { close(); }
void ClusterFile::close() {
if (fp) {
fclose(fp);
fp = nullptr;
}
}
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
if (m_mode != "w" && m_mode != "a") {
throw std::runtime_error("File not opened for writing");
}
if (!(clusters.cluster_size_x() == 3) &&
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
int32_t frame_number = clusters.frame_number();
fwrite(&frame_number, sizeof(frame_number), 1, fp);
uint32_t n_clusters = clusters.size();
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
ClusterVector<int32_t> clusters(3,3, n_clusters);
int32_t iframe = 0; // frame number needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = m_num_left;
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
auto buf = clusters.data();
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read += fread((buf + nph_read*clusters.item_size()),
clusters.item_size(), nn, fp);
m_num_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error("Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
// std::vector<Cluster3x3> clusters(n_clusters);
ClusterVector<int32_t> clusters(3, 3, n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
}
clusters.resize(n_clusters);
return clusters;
}
// std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
// double *noise_map,
// int nx, int ny) {
// if (m_mode != "r") {
// throw std::runtime_error("File not opened for reading");
// }
// std::vector<Cluster3x3> clusters(n_clusters);
// // size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
// // uint32_t *n_left, double *noise_map, int
// // nx, int ny) {
// int iframe = 0;
// // uint32_t nph = *n_left;
// uint32_t nph = m_num_left;
// // uint32_t nn = *n_left;
// uint32_t nn = m_num_left;
// size_t nph_read = 0;
// int32_t t2max, tot1;
// int32_t tot3;
// // Cluster *ptr = buf;
// Cluster3x3 *ptr = clusters.data();
// int good = 1;
// double noise;
// // read photons left from previous frame
// if (noise_map)
// printf("Using noise map\n");
// if (nph) {
// if (nph > n_clusters) {
// // if we have more photons left in the frame then photons to
// // read we read directly the requested number
// nn = n_clusters;
// } else {
// nn = nph;
// }
// for (size_t iph = 0; iph < nn; iph++) {
// // read photons 1 by 1
// size_t n_read =
// fread(reinterpret_cast<void *>(ptr), sizeof(Cluster3x3), 1, fp);
// if (n_read != 1) {
// clusters.resize(nph_read);
// return clusters;
// }
// // TODO! error handling on read
// good = 1;
// if (noise_map) {
// if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
// tot1 = ptr->data[4];
// analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
// NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
// if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
// ;
// } else {
// good = 0;
// printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
// tot1, t2max, tot3);
// }
// } else {
// printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
// good = 0;
// }
// }
// if (good) {
// ptr++;
// nph_read++;
// }
// (m_num_left)--;
// if (nph_read >= n_clusters)
// break;
// }
// }
// if (nph_read < n_clusters) {
// // // keep on reading frames and photons until reaching
// // n_clusters
// while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // // printf("%d\n",nph_read);
// if (fread(&nph, sizeof(nph), 1, fp)) {
// // // printf("** %d\n",nph);
// m_num_left = nph;
// for (size_t iph = 0; iph < nph; iph++) {
// // // read photons 1 by 1
// size_t n_read = fread(reinterpret_cast<void *>(ptr),
// sizeof(Cluster3x3), 1, fp);
// if (n_read != 1) {
// clusters.resize(nph_read);
// return clusters;
// // return nph_read;
// }
// good = 1;
// if (noise_map) {
// if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
// ptr->y < ny) {
// tot1 = ptr->data[4];
// analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
// NULL, NULL, NULL);
// // noise = noise_map[ptr->y * nx + ptr->x];
// noise = noise_map[ptr->y + ny * ptr->x];
// if (tot1 > noise || t2max > 2 * noise ||
// tot3 > 3 * noise) {
// ;
// } else
// good = 0;
// } else {
// printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
// good = 0;
// }
// }
// if (good) {
// ptr++;
// nph_read++;
// }
// (m_num_left)--;
// if (nph_read >= n_clusters)
// break;
// }
// }
// if (nph_read >= n_clusters)
// break;
// }
// }
// // printf("%d\n",nph_read);
// clusters.resize(nph_read);
// return clusters;
// }
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
//TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
return eta2;
}
/**
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2 struct
* containing etay, etax and the corner of the cluster.
*/
Eta2 calculate_eta2(Cluster3x3 &cl) {
Eta2 eta{};
std::array<int32_t, 4> tot2;
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomLeft;
break;
case cBottomRight:
if ((cl.data[2] + cl.data[5]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
if ((cl.data[1] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
eta.c = cBottomRight;
break;
case cTopLeft:
if ((cl.data[7] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopLeft;
break;
case cTopRight:
if ((cl.data[5] + cl.data[4]) != 0)
eta.x =
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
if ((cl.data[7] + cl.data[4]) != 0)
eta.y =
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
eta.c = cTopRight;
break;
// no default to allow compiler to warn about missing cases
}
return eta;
}
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
}
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
// printf("*** %d %d %d %d --
// %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = static_cast<double>(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = static_cast<double>(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = static_cast<double>(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = static_cast<double>(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return ok;
}
} // namespace aare

351
src/ClusterFile.test.cpp Normal file
View File

@ -0,0 +1,351 @@
#include "aare/ClusterFile.hpp"
#include "test_config.hpp"
#include "aare/defs.hpp"
#include <algorithm>
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
using aare::Cluster;
using aare::ClusterFile;
using aare::ClusterVector;
TEST_CASE("Read one frame from a cluster file", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
CHECK(clusters.size() == 97);
CHECK(clusters.frame_number() == 135);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read one frame using ROI", "[.files]") {
// We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 49);
REQUIRE(clusters.frame_number() == 135);
// Check that all clusters are within the ROI
for (size_t i = 0; i < clusters.size(); i++) {
auto c = clusters[i];
REQUIRE(c.x >= roi.xmin);
REQUIRE(c.x <= roi.xmax);
REQUIRE(c.y >= roi.ymin);
REQUIRE(c.y <= roi.ymax);
}
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read clusters from single frame file", "[.files]") {
// frame_number, num_clusters [135] 97
// [ 1 200] [0 1 2 3 4 5 6 7 8]
// [ 2 201] [ 9 10 11 12 13 14 15 16 17]
// [ 3 202] [18 19 20 21 22 23 24 25 26]
// [ 4 203] [27 28 29 30 31 32 33 34 35]
// [ 5 204] [36 37 38 39 40 41 42 43 44]
// [ 6 205] [45 46 47 48 49 50 51 52 53]
// [ 7 206] [54 55 56 57 58 59 60 61 62]
// [ 8 207] [63 64 65 66 67 68 69 70 71]
// [ 9 208] [72 73 74 75 76 77 78 79 80]
// [ 10 209] [81 82 83 84 85 86 87 88 89]
// [ 11 210] [90 91 92 93 94 95 96 97 98]
// [ 12 211] [ 99 100 101 102 103 104 105 106 107]
// [ 13 212] [108 109 110 111 112 113 114 115 116]
// [ 14 213] [117 118 119 120 121 122 123 124 125]
// [ 15 214] [126 127 128 129 130 131 132 133 134]
// [ 16 215] [135 136 137 138 139 140 141 142 143]
// [ 17 216] [144 145 146 147 148 149 150 151 152]
// [ 18 217] [153 154 155 156 157 158 159 160 161]
// [ 19 218] [162 163 164 165 166 167 168 169 170]
// [ 20 219] [171 172 173 174 175 176 177 178 179]
// [ 21 220] [180 181 182 183 184 185 186 187 188]
// [ 22 221] [189 190 191 192 193 194 195 196 197]
// [ 23 222] [198 199 200 201 202 203 204 205 206]
// [ 24 223] [207 208 209 210 211 212 213 214 215]
// [ 25 224] [216 217 218 219 220 221 222 223 224]
// [ 26 225] [225 226 227 228 229 230 231 232 233]
// [ 27 226] [234 235 236 237 238 239 240 241 242]
// [ 28 227] [243 244 245 246 247 248 249 250 251]
// [ 29 228] [252 253 254 255 256 257 258 259 260]
// [ 30 229] [261 262 263 264 265 266 267 268 269]
// [ 31 230] [270 271 272 273 274 275 276 277 278]
// [ 32 231] [279 280 281 282 283 284 285 286 287]
// [ 33 232] [288 289 290 291 292 293 294 295 296]
// [ 34 233] [297 298 299 300 301 302 303 304 305]
// [ 35 234] [306 307 308 309 310 311 312 313 314]
// [ 36 235] [315 316 317 318 319 320 321 322 323]
// [ 37 236] [324 325 326 327 328 329 330 331 332]
// [ 38 237] [333 334 335 336 337 338 339 340 341]
// [ 39 238] [342 343 344 345 346 347 348 349 350]
// [ 40 239] [351 352 353 354 355 356 357 358 359]
// [ 41 240] [360 361 362 363 364 365 366 367 368]
// [ 42 241] [369 370 371 372 373 374 375 376 377]
// [ 43 242] [378 379 380 381 382 383 384 385 386]
// [ 44 243] [387 388 389 390 391 392 393 394 395]
// [ 45 244] [396 397 398 399 400 401 402 403 404]
// [ 46 245] [405 406 407 408 409 410 411 412 413]
// [ 47 246] [414 415 416 417 418 419 420 421 422]
// [ 48 247] [423 424 425 426 427 428 429 430 431]
// [ 49 248] [432 433 434 435 436 437 438 439 440]
// [ 50 249] [441 442 443 444 445 446 447 448 449]
// [ 51 250] [450 451 452 453 454 455 456 457 458]
// [ 52 251] [459 460 461 462 463 464 465 466 467]
// [ 53 252] [468 469 470 471 472 473 474 475 476]
// [ 54 253] [477 478 479 480 481 482 483 484 485]
// [ 55 254] [486 487 488 489 490 491 492 493 494]
// [ 56 255] [495 496 497 498 499 500 501 502 503]
// [ 57 256] [504 505 506 507 508 509 510 511 512]
// [ 58 257] [513 514 515 516 517 518 519 520 521]
// [ 59 258] [522 523 524 525 526 527 528 529 530]
// [ 60 259] [531 532 533 534 535 536 537 538 539]
// [ 61 260] [540 541 542 543 544 545 546 547 548]
// [ 62 261] [549 550 551 552 553 554 555 556 557]
// [ 63 262] [558 559 560 561 562 563 564 565 566]
// [ 64 263] [567 568 569 570 571 572 573 574 575]
// [ 65 264] [576 577 578 579 580 581 582 583 584]
// [ 66 265] [585 586 587 588 589 590 591 592 593]
// [ 67 266] [594 595 596 597 598 599 600 601 602]
// [ 68 267] [603 604 605 606 607 608 609 610 611]
// [ 69 268] [612 613 614 615 616 617 618 619 620]
// [ 70 269] [621 622 623 624 625 626 627 628 629]
// [ 71 270] [630 631 632 633 634 635 636 637 638]
// [ 72 271] [639 640 641 642 643 644 645 646 647]
// [ 73 272] [648 649 650 651 652 653 654 655 656]
// [ 74 273] [657 658 659 660 661 662 663 664 665]
// [ 75 274] [666 667 668 669 670 671 672 673 674]
// [ 76 275] [675 676 677 678 679 680 681 682 683]
// [ 77 276] [684 685 686 687 688 689 690 691 692]
// [ 78 277] [693 694 695 696 697 698 699 700 701]
// [ 79 278] [702 703 704 705 706 707 708 709 710]
// [ 80 279] [711 712 713 714 715 716 717 718 719]
// [ 81 280] [720 721 722 723 724 725 726 727 728]
// [ 82 281] [729 730 731 732 733 734 735 736 737]
// [ 83 282] [738 739 740 741 742 743 744 745 746]
// [ 84 283] [747 748 749 750 751 752 753 754 755]
// [ 85 284] [756 757 758 759 760 761 762 763 764]
// [ 86 285] [765 766 767 768 769 770 771 772 773]
// [ 87 286] [774 775 776 777 778 779 780 781 782]
// [ 88 287] [783 784 785 786 787 788 789 790 791]
// [ 89 288] [792 793 794 795 796 797 798 799 800]
// [ 90 289] [801 802 803 804 805 806 807 808 809]
// [ 91 290] [810 811 812 813 814 815 816 817 818]
// [ 92 291] [819 820 821 822 823 824 825 826 827]
// [ 93 292] [828 829 830 831 832 833 834 835 836]
// [ 94 293] [837 838 839 840 841 842 843 844 845]
// [ 95 294] [846 847 848 849 850 851 852 853 854]
// [ 96 295] [855 856 857 858 859 860 861 862 863]
// [ 97 296] [864 865 866 867 868 869 870 871 872]
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
SECTION("Read fewer clusters than available") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(50);
REQUIRE(clusters.size() == 50);
REQUIRE(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
SECTION("Read more clusters than available") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
// 100 is the maximum number of clusters read
auto clusters = f.read_clusters(100);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
SECTION("Read all clusters") {
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_clusters(97);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
REQUIRE(clusters[0].x == 1);
REQUIRE(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data),
std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
}
TEST_CASE("Read clusters from single frame file with ROI", "[.files]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_clusters(10);
CHECK(clusters.size() == 10);
CHECK(clusters.frame_number() == 135);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}
TEST_CASE("Read cluster from multiple frame file", "[.files]") {
using ClusterType = Cluster<double, 2, 2>;
auto fpath =
test_data_path() / "clust" / "Two_frames_2x2double_test_clusters.clust";
REQUIRE(std::filesystem::exists(fpath));
// Two_frames_2x2double_test_clusters.clust
// frame number, num_clusters 0, 4
//[10, 20], {0. ,0., 0., 0.}
//[11, 30], {1., 1., 1., 1.}
//[12, 40], {2., 2., 2., 2.}
//[13, 50], {3., 3., 3., 3.}
// 1,4
//[10, 20], {4., 4., 4., 4.}
//[11, 30], {5., 5., 5., 5.}
//[12, 40], {6., 6., 6., 6.}
//[13, 50], {7., 7., 7., 7.}
SECTION("Read clusters from both frames") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(2);
REQUIRE(clusters.size() == 2);
REQUIRE(clusters.frame_number() == 0);
auto clusters1 = f.read_clusters(3);
REQUIRE(clusters1.size() == 3);
REQUIRE(clusters1.frame_number() == 1);
}
SECTION("Read all clusters") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(8);
REQUIRE(clusters.size() == 8);
REQUIRE(clusters.frame_number() == 1);
}
SECTION("Read clusters from one frame") {
ClusterFile<ClusterType> f(fpath);
auto clusters = f.read_clusters(2);
REQUIRE(clusters.size() == 2);
REQUIRE(clusters.frame_number() == 0);
auto clusters1 = f.read_clusters(1);
REQUIRE(clusters1.size() == 1);
REQUIRE(clusters1.frame_number() == 0);
}
}
TEST_CASE("Write cluster with potential padding", "[.files][.ClusterFile]") {
using ClusterType = Cluster<double, 3, 3>;
REQUIRE(std::filesystem::exists(test_data_path() / "clust"));
auto fpath = test_data_path() / "clust" / "single_frame_2_clusters.clust";
ClusterFile<ClusterType> file(fpath, 1000, "w");
ClusterVector<ClusterType> clustervec(2);
int16_t coordinate = 5;
clustervec.push_back(ClusterType{
coordinate, coordinate, {0., 0., 0., 0., 0., 0., 0., 0., 0.}});
clustervec.push_back(ClusterType{
coordinate, coordinate, {0., 0., 0., 0., 0., 0., 0., 0., 0.}});
file.write_frame(clustervec);
file.close();
file.open("r");
auto read_cluster_vector = file.read_frame();
CHECK(read_cluster_vector.size() == 2);
CHECK(read_cluster_vector.frame_number() == 0);
CHECK(read_cluster_vector[0].x == clustervec[0].x);
CHECK(read_cluster_vector[0].y == clustervec[0].y);
CHECK(std::equal(
clustervec[0].data.begin(), clustervec[0].data.end(),
read_cluster_vector[0].data.begin(), [](double a, double b) {
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
}));
CHECK(read_cluster_vector[1].x == clustervec[1].x);
CHECK(read_cluster_vector[1].y == clustervec[1].y);
CHECK(std::equal(
clustervec[1].data.begin(), clustervec[1].data.end(),
read_cluster_vector[1].data.begin(), [](double a, double b) {
return std::abs(a - b) < std::numeric_limits<double>::epsilon();
}));
}
TEST_CASE("Read frame and modify cluster data", "[.files][.ClusterFile]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
auto clusters = f.read_frame();
CHECK(clusters.size() == 97);
CHECK(clusters.frame_number() == 135);
int32_t expected_cluster_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
clusters.push_back(
Cluster<int32_t, 3, 3>{0, 0, {0, 1, 2, 3, 4, 5, 6, 7, 8}});
CHECK(clusters.size() == 98);
CHECK(clusters[0].x == 1);
CHECK(clusters[0].y == 200);
CHECK(std::equal(std::begin(clusters[0].data), std::end(clusters[0].data),
std::begin(expected_cluster_data)));
}

View File

@ -1,19 +1,18 @@
#include "aare/ClusterFinder.hpp"
#include "aare/Pedestal.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <chrono>
#include <random>
using namespace aare;
//TODO! Find a way to test the cluster finder
// TODO! Find a way to test the cluster finder
// class ClusterFinderUnitTest : public ClusterFinder {
// public:
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
// = 5.0, double threshold = 0.0)
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
// double get_c2() { return c2; }
// double get_c3() { return c3; }
@ -37,8 +36,8 @@ using namespace aare;
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
// }
TEST_CASE("Construct a cluster finder"){
ClusterFinder clusterFinder({400,400}, {3,3});
TEST_CASE("Construct a cluster finder") {
ClusterFinder clusterFinder({400, 400});
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
// REQUIRE(clusterFinder.get_threshold() == 1);
@ -49,16 +48,17 @@ TEST_CASE("Construct a cluster finder"){
// aare::Pedestal pedestal(10, 10, 5);
// NDArray<double, 2> frame({10, 10});
// frame = 0;
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
// threshold
// auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// auto clusters =
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 0);
// frame(5, 5) = 10;
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
// REQUIRE(clusters.size() == 1);
// REQUIRE(clusters[0].x == 5);
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
// REQUIRE(clusters[0].y == 5);
// for (int i = 0; i < 3; i++) {
// for (int j = 0; j < 3; j++) {

View File

@ -0,0 +1,99 @@
#include "aare/ClusterFinderMT.hpp"
#include "aare/Cluster.hpp"
#include "aare/ClusterCollector.hpp"
#include "aare/File.hpp"
#include "test_config.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
#include <memory>
using namespace aare;
// wrapper function to access private member variables for testing
template <typename ClusterType, typename FRAME_TYPE = uint16_t,
typename PEDESTAL_TYPE = double>
class ClusterFinderMTWrapper
: public ClusterFinderMT<ClusterType, FRAME_TYPE, PEDESTAL_TYPE> {
public:
ClusterFinderMTWrapper(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3)
: ClusterFinderMT<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>(
image_size, nSigma, capacity, n_threads) {}
size_t get_m_input_queues_size() const {
return this->m_input_queues.size();
}
size_t get_m_output_queues_size() const {
return this->m_output_queues.size();
}
size_t get_m_cluster_finders_size() const {
return this->m_cluster_finders.size();
}
bool m_output_queues_are_empty() const {
for (auto &queue : this->m_output_queues) {
if (!queue->isEmpty())
return false;
}
return true;
}
bool m_input_queues_are_empty() const {
for (auto &queue : this->m_input_queues) {
if (!queue->isEmpty())
return false;
}
return true;
}
bool m_sink_is_empty() const { return this->m_sink.isEmpty(); }
size_t m_sink_size() const { return this->m_sink.sizeGuess(); }
};
TEST_CASE("multithreaded cluster finder", "[.files][.ClusterFinder]") {
auto fpath = "/mnt/sls_det_storage/matterhorn_data/aare_test_data/"
"Moench03new/cu_half_speed_master_4.json";
File file(fpath);
size_t n_threads = 2;
size_t n_frames_pd = 10;
using ClusterType = Cluster<int32_t, 3, 3>;
ClusterFinderMTWrapper<ClusterType> cf(
{static_cast<int64_t>(file.rows()), static_cast<int64_t>(file.cols())},
5, 2000, n_threads); // no idea what frame type is!!! default uint16_t
CHECK(cf.get_m_input_queues_size() == n_threads);
CHECK(cf.get_m_output_queues_size() == n_threads);
CHECK(cf.get_m_cluster_finders_size() == n_threads);
CHECK(cf.m_output_queues_are_empty() == true);
CHECK(cf.m_input_queues_are_empty() == true);
for (size_t i = 0; i < n_frames_pd; ++i) {
cf.find_clusters(file.read_frame().view<uint16_t>());
}
cf.stop();
CHECK(cf.m_output_queues_are_empty() == true);
CHECK(cf.m_input_queues_are_empty() == true);
CHECK(cf.m_sink_size() == n_frames_pd);
ClusterCollector<ClusterType> clustercollector(&cf);
clustercollector.stop();
CHECK(cf.m_sink_size() == 0);
auto clustervec = clustercollector.steal_clusters();
// CHECK(clustervec.size() == ) //dont know how many clusters to expect
}

View File

@ -1,21 +1,52 @@
#include <cstdint>
#include "aare/ClusterVector.hpp"
#include <cstdint>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_all.hpp>
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
using aare::Cluster;
using aare::ClusterVector;
struct Cluster_i2x2 {
int16_t x;
int16_t y;
int32_t data[4];
};
TEST_CASE("item_size return the size of the cluster stored") {
using C1 = Cluster<int32_t, 2, 2>;
ClusterVector<C1> cv(4);
CHECK(cv.item_size() == sizeof(C1));
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
// Sanity check
// 2*2*4 = 16 bytes of data for the cluster
// 2*2 = 4 bytes for the x and y coordinates
REQUIRE(cv.item_size() == 20);
ClusterVector<int32_t> cv(2, 2, 4);
using C2 = Cluster<int32_t, 3, 3>;
ClusterVector<C2> cv2(4);
CHECK(cv2.item_size() == sizeof(C2));
using C3 = Cluster<double, 2, 3>;
ClusterVector<C3> cv3(4);
CHECK(cv3.item_size() == sizeof(C3));
using C4 = Cluster<char, 10, 5>;
ClusterVector<C4> cv4(4);
CHECK(cv4.item_size() == sizeof(C4));
using C5 = Cluster<int32_t, 2, 3>;
ClusterVector<C5> cv5(4);
CHECK(cv5.item_size() == sizeof(C5));
using C6 = Cluster<double, 5, 5>;
ClusterVector<C6> cv6(4);
CHECK(cv6.item_size() == sizeof(C6));
using C7 = Cluster<double, 3, 3>;
ClusterVector<C7> cv7(4);
CHECK(cv7.item_size() == sizeof(C7));
}
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(4);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
@ -23,112 +54,102 @@ TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
// int16_t, int16_t, 2x2 int32_t = 20 bytes
REQUIRE(cv.item_size() == 20);
//Create a cluster and push back into the vector
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
// Create a cluster and push back into the vector
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 4);
//Read the cluster back out using copy. TODO! Can we improve the API?
Cluster_i2x2 c2;
std::byte *ptr = cv.element_ptr(0);
std::copy(ptr, ptr + cv.item_size(), reinterpret_cast<std::byte*>(&c2));
auto c2 = cv[0];
//Check that the data is the same
// Check that the data is the same
REQUIRE(c1.x == c2.x);
REQUIRE(c1.y == c2.y);
for(size_t i = 0; i < 4; i++) {
for (size_t i = 0; i < 4; i++) {
REQUIRE(c1.data[i] == c2.data[i]);
}
}
TEST_CASE("Summing 3x1 clusters of int64"){
struct Cluster_l3x1{
int16_t x;
int16_t y;
int32_t data[3];
};
ClusterVector<int32_t> cv(3, 1, 2);
TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 3, 1>> cv(2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 3);
REQUIRE(cv.cluster_size_y() == 1);
//Create a cluster and push back into the vector
Cluster_l3x1 c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
// Create a cluster and push back into the vector
Cluster<int32_t, 3, 1> c1 = {1, 2, {3, 4, 5}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 1);
Cluster_l3x1 c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
Cluster<int32_t, 3, 1> c2 = {6, 7, {8, 9, 10}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 2);
REQUIRE(cv.size() == 2);
Cluster_l3x1 c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster<int32_t, 3, 1> c3 = {11, 12, {13, 14, 15}};
cv.push_back(c3);
REQUIRE(cv.capacity() == 4);
REQUIRE(cv.size() == 3);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 3);
REQUIRE(sums[0] == 12);
REQUIRE(sums[1] == 27);
REQUIRE(sums[2] == 42);
*/
}
TEST_CASE("Storing floats"){
struct Cluster_f4x2{
int16_t x;
int16_t y;
float data[8];
};
ClusterVector<float> cv(2, 4, 10);
TEST_CASE("Storing floats", "[.ClusterVector]") {
ClusterVector<Cluster<float, 2, 4>> cv(10);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 0);
REQUIRE(cv.cluster_size_x() == 2);
REQUIRE(cv.cluster_size_y() == 4);
//Create a cluster and push back into the vector
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
// Create a cluster and push back into the vector
Cluster<float, 2, 4> c1 = {1, 2, {3.0, 4.0, 5.0, 6.0, 3.0, 4.0, 5.0, 6.0}};
cv.push_back(c1);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 1);
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
Cluster<float, 2, 4> c2 = {
6, 7, {8.0, 9.0, 10.0, 11.0, 8.0, 9.0, 10.0, 11.0}};
cv.push_back(c2);
REQUIRE(cv.capacity() == 10);
REQUIRE(cv.size() == 2);
/*
auto sums = cv.sum();
REQUIRE(sums.size() == 2);
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
*/
}
TEST_CASE("Push back more than initial capacity"){
ClusterVector<int32_t> cv(2, 2, 2);
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv(2);
auto initial_data = cv.data();
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv.push_back(c1);
REQUIRE(cv.size() == 1);
REQUIRE(cv.capacity() == 2);
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv.push_back(c2);
REQUIRE(cv.size() == 2);
REQUIRE(cv.capacity() == 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
REQUIRE(cv.size() == 3);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv.push_back(c3);
REQUIRE(cv.size() == 3);
REQUIRE(cv.capacity() == 4);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv.data());
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
@ -136,29 +157,31 @@ TEST_CASE("Push back more than initial capacity"){
REQUIRE(ptr[2].x == 11);
REQUIRE(ptr[2].y == 12);
//We should have allocated a new buffer, since we outgrew the initial capacity
// We should have allocated a new buffer, since we outgrew the initial
// capacity
REQUIRE(initial_data != cv.data());
}
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity"){
ClusterVector<int32_t> cv1(2, 2, 12);
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(12);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<int32_t> cv2(2, 2, 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 12);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
@ -169,24 +192,26 @@ TEST_CASE("Concatenate two cluster vectors where the first has enough capacity")
REQUIRE(ptr[3].y == 17);
}
TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
ClusterVector<int32_t> cv1(2, 2, 2);
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
Cluster_i2x2 c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
TEST_CASE("Concatenate two cluster vectors where we need to allocate",
"[.ClusterVector]") {
ClusterVector<Cluster<int32_t, 2, 2>> cv1(2);
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
cv1.push_back(c1);
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
cv1.push_back(c2);
ClusterVector<int32_t> cv2(2, 2, 2);
Cluster_i2x2 c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
Cluster_i2x2 c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4.x, c4.y, reinterpret_cast<std::byte*>(&c4.data[0]));
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
cv2.push_back(c3);
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
cv2.push_back(c4);
cv1 += cv2;
REQUIRE(cv1.size() == 4);
REQUIRE(cv1.capacity() == 4);
Cluster_i2x2* ptr = reinterpret_cast<Cluster_i2x2*>(cv1.data());
Cluster<int32_t, 2, 2> *ptr =
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
REQUIRE(ptr[0].x == 1);
REQUIRE(ptr[0].y == 2);
REQUIRE(ptr[1].x == 6);
@ -195,4 +220,49 @@ TEST_CASE("Concatenate two cluster vectors where we need to allocate"){
REQUIRE(ptr[2].y == 12);
REQUIRE(ptr[3].x == 16);
REQUIRE(ptr[3].y == 17);
}
struct ClusterTestData {
uint8_t ClusterSizeX;
uint8_t ClusterSizeY;
std::vector<int64_t> index_map_x;
std::vector<int64_t> index_map_y;
};
TEST_CASE("Gain Map Calculation Index Map", "[.ClusterVector][.gain_map]") {
auto clustertestdata = GENERATE(
ClusterTestData{3,
3,
{-1, 0, 1, -1, 0, 1, -1, 0, 1},
{-1, -1, -1, 0, 0, 0, 1, 1, 1}},
ClusterTestData{
4,
4,
{-2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1},
{-2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1}},
ClusterTestData{2, 2, {-1, 0, -1, 0}, {-1, -1, 0, 0}},
ClusterTestData{5,
5,
{-2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0,
1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2},
{-2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}});
uint8_t ClusterSizeX = clustertestdata.ClusterSizeX;
uint8_t ClusterSizeY = clustertestdata.ClusterSizeY;
std::vector<int64_t> index_map_x(ClusterSizeX * ClusterSizeY);
std::vector<int64_t> index_map_y(ClusterSizeX * ClusterSizeY);
int64_t index_cluster_center_x = ClusterSizeX / 2;
int64_t index_cluster_center_y = ClusterSizeY / 2;
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
index_map_x[j] = j % ClusterSizeX - index_cluster_center_x;
index_map_y[j] = j / ClusterSizeX - index_cluster_center_y;
}
CHECK(index_map_x == clustertestdata.index_map_x);
CHECK(index_map_y == clustertestdata.index_map_y);
}

View File

@ -70,7 +70,7 @@ uint8_t Dtype::bitdepth() const {
/**
* @brief Get the number of bytes of the data type
*/
size_t Dtype::bytes() const { return bitdepth() / 8; }
size_t Dtype::bytes() const { return bitdepth() / bits_per_byte; }
/**
* @brief Construct a DType object from a TypeIndex

View File

@ -1,4 +1,5 @@
#include "aare/File.hpp"
#include "aare/JungfrauDataFile.hpp"
#include "aare/NumpyFile.hpp"
#include "aare/RawFile.hpp"
@ -27,6 +28,8 @@ File::File(const std::filesystem::path &fname, const std::string &mode,
else if (fname.extension() == ".npy") {
// file_impl = new NumpyFile(fname, mode, cfg);
file_impl = std::make_unique<NumpyFile>(fname, mode, cfg);
}else if(fname.extension() == ".dat"){
file_impl = std::make_unique<JungfrauDataFile>(fname);
} else {
throw std::runtime_error("Unsupported file type");
}
@ -73,7 +76,7 @@ size_t File::tell() const { return file_impl->tell(); }
size_t File::rows() const { return file_impl->rows(); }
size_t File::cols() const { return file_impl->cols(); }
size_t File::bitdepth() const { return file_impl->bitdepth(); }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / 8; }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
DetectorType File::detector_type() const { return file_impl->detector_type(); }

44
src/FilePtr.cpp Normal file
View File

@ -0,0 +1,44 @@
#include "aare/FilePtr.hpp"
#include <fmt/format.h>
#include <stdexcept>
#include <utility>
namespace aare {
FilePtr::FilePtr(const std::filesystem::path& fname, const std::string& mode = "rb") {
fp_ = fopen(fname.c_str(), mode.c_str());
if (!fp_)
throw std::runtime_error(fmt::format("Could not open: {}", fname.c_str()));
}
FilePtr::FilePtr(FilePtr &&other) { std::swap(fp_, other.fp_); }
FilePtr &FilePtr::operator=(FilePtr &&other) {
std::swap(fp_, other.fp_);
return *this;
}
FILE *FilePtr::get() { return fp_; }
int64_t FilePtr::tell() {
auto pos = ftell(fp_);
if (pos == -1)
throw std::runtime_error(fmt::format("Error getting file position: {}", error_msg()));
return pos;
}
FilePtr::~FilePtr() {
if (fp_)
fclose(fp_); // check?
}
std::string FilePtr::error_msg(){
if (feof(fp_)) {
return "End of file reached";
}
if (ferror(fp_)) {
return fmt::format("Error reading file: {}", std::strerror(errno));
}
return "";
}
} // namespace aare

View File

@ -1,11 +1,13 @@
#include "aare/Fit.hpp"
#include "aare/utils/task.hpp"
#include "aare/utils/par.hpp"
#include <lmcurve2.h>
#include <lmfit.hpp>
#include <thread>
#include <array>
namespace aare {
namespace func {
@ -16,7 +18,7 @@ double gaus(const double x, const double *par) {
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape(0)}, 0);
for (size_t i = 0; i < x.size(); i++) {
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = gaus(x(i), par.data());
}
return y;
@ -26,7 +28,7 @@ double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (size_t i = 0; i < x.size(); i++) {
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = pol1(x(i), par.data());
}
return y;
@ -35,33 +37,11 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
} // namespace func
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
NDArray<double, 1> result({3}, 0);
lm_control_struct control = lm_control_double;
NDArray<double, 1> result = gaus_init_par(x, y);
lm_status_struct status;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
// For sigma we estimate the fwhm and divide by 2.35
// assuming equally spaced x values
auto delta = x[1] - x[0];
start_par[2] =
std::count_if(y.begin(), y.end(),
[e, delta](double val) { return val > *e / 2; }) *
delta / 2.35;
lmfit::result_t res(start_par);
lmcurve(res.par.size(), res.par.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &control, &res.status);
result(0) = res.par[0];
result(1) = res.par[1];
result(2) = res.par[2];
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
aare::func::gaus, &lm_control_double, &status);
return result;
}
@ -81,65 +61,17 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
return result;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view);
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 3");
}
lm_control_struct control = lm_control_double;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0, 0};
std::vector<double> start_par_err{0, 0, 0};
std::vector<double> start_cov{0, 0, 0, 0, 0, 0, 0, 0, 0};
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
std::array<double, 3> start_par{0, 0, 0};
auto e = std::max_element(y.begin(), y.end());
auto idx = std::distance(y.begin(), e);
start_par[0] = *e; // For amplitude we use the maximum value
start_par[1] =
x[idx]; // For the mean we use the x value of the maximum value
@ -152,66 +84,83 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
[e, delta](double val) { return val > *e / 2; }) *
delta / 2.35;
lmfit::result_t res(start_par);
lmfit::result_t res_err(start_par_err);
lmfit::result_t cov(start_cov);
// TODO can we make lmcurve write the result directly where is should be?
lmcurve2(res.par.size(), res.par.data(), res_err.par.data(), cov.par.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&control, &res.status);
par_out(0) = res.par[0];
par_out(1) = res.par[1];
par_out(2) = res.par[2];
par_err_out(0) = res_err.par[0];
par_err_out(1) = res_err.par[1];
par_err_out(2) = res_err.par[2];
return start_par;
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out) {
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
// Estimate the initial parameters for the fit
std::array<double, 2> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
return start_par;
}
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
double &chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
par_out.size() != 3 || par_err_out.size() != 3) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
"and par_out, par_err_out must have size 3");
}
lm_control_struct control = lm_control_double;
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0};
std::vector<double> start_par_err{0, 0};
std::vector<double> start_cov{0, 0, 0, 0};
// /* Collection of output parameters for status info. */
// typedef struct {
// double fnorm; /* norm of the residue vector fvec. */
// int nfev; /* actual number of iterations. */
// int outcome; /* Status indicator. Nonnegative values are used as
// index
// for the message text lm_infmsg, set in lmmin.c. */
// int userbreak; /* Set when function evaluation requests termination.
// */
// } lm_status_struct;
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] =
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
start_par[1] =
*y1 - ((*y2 - *y1) / (x2 - x1)) *
x1; // For the mean we use the x value of the maximum value
lm_status_struct status;
par_out = gaus_init_par(x, y);
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
lmfit::result_t res(start_par);
lmfit::result_t res_err(start_par_err);
lmfit::result_t cov(start_cov);
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
// n_par - Number of free variables. Length of parameter vector par.
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
// dy - Array of length m_dat. Contains the standard deviations of the values y.
// f - A user-supplied parametric function f(ti;par).
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
lmcurve2(res.par.size(), res.par.data(), res_err.par.data(), cov.par.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&control, &res.status);
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
&lm_control_double, &status);
par_out(0) = res.par[0];
par_out(1) = res.par[1];
par_err_out(0) = res_err.par[0];
par_err_out(1) = res_err.par[1];
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
@ -224,21 +173,69 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view);
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
RunInParallel(process, tasks);
}
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
// Check that we have the correct sizes
if (y.size() != x.size() || y.size() != y_err.size() ||
par_out.size() != 2 || par_err_out.size() != 2) {
throw std::runtime_error("Data, x, data_err must have the same size "
"and par_out, par_err_out must have size 2");
}
for (auto &thread : threads) {
thread.join();
lm_status_struct status;
par_out = pol1_init_par(x, y);
std::array<double, 4> cov{0, 0, 0, 0};
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
&lm_control_double, &status);
// Calculate chi2
chi2 = 0;
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
int n_threads) {
auto process = [&](ssize_t first_row, ssize_t last_row) {
for (ssize_t row = first_row; row < last_row; row++) {
for (ssize_t col = 0; col < y.shape(1); col++) {
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
NDView<double, 1> y_err_view(&y_err(row, col, 0),
{y_err.shape(2)});
NDView<double, 1> par_out_view(&par_out(row, col, 0),
{par_out.shape(2)});
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
{par_err_out.shape(2)});
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
}
}
};
auto tasks = split_task(0, y.shape(0), n_threads);
RunInParallel(process, tasks);
}
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// // Check that we have the correct sizes
// if (y.size() != x.size() || y.size() != y_err.size() ||
@ -246,28 +243,12 @@ NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
// throw std::runtime_error("Data, x, data_err must have the same size "
// "and par_out, par_err_out must have size 2");
// }
NDArray<double, 1> par({2}, 0);
NDArray<double, 1> par = pol1_init_par(x, y);
lm_control_struct control = lm_control_double;
lm_status_struct status;
lmcurve(par.size(), par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &lm_control_double, &status);
// Estimate the initial parameters for the fit
std::vector<double> start_par{0, 0};
auto y2 = std::max_element(y.begin(), y.end());
auto x2 = x[std::distance(y.begin(), y2)];
auto y1 = std::min_element(y.begin(), y.end());
auto x1 = x[std::distance(y.begin(), y1)];
start_par[0] = (*y2 - *y1) / (x2 - x1);
start_par[1] = *y1 - ((*y2 - *y1) / (x2 - x1)) * x1;
lmfit::result_t res(start_par);
lmcurve(res.par.size(), res.par.data(), x.size(), x.data(), y.data(),
aare::func::pol1, &control, &res.status);
par(0) = res.par[0];
par(1) = res.par[1];
return par;
}
@ -287,13 +268,8 @@ NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
};
auto tasks = split_task(0, y.shape(0), n_threads);
std::vector<std::thread> threads;
for (auto &task : tasks) {
threads.push_back(std::thread(process, task.first, task.second));
}
for (auto &thread : threads) {
thread.join();
}
RunInParallel(process, tasks);
return result;
}

56
src/Interpolator.cpp Normal file
View File

@ -0,0 +1,56 @@
#include "aare/Interpolator.hpp"
namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
"The shape of the etacube does not match the shape of the bins");
}
// Cumulative sum in the x direction
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
}
}
}
// Normalize by the highest row, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
double norm = val < 1 ? 1 : val;
m_ietax(i, j, k) /= norm;
}
}
}
// Cumulative sum in the y direction
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
}
}
}
// Normalize by the highest column, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
double norm = val < 1 ? 1 : val;
m_ietay(i, j, k) /= norm;
}
}
}
}
} // namespace aare

238
src/JungfrauDataFile.cpp Normal file
View File

@ -0,0 +1,238 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/algorithm.hpp"
#include "aare/defs.hpp"
#include <cerrno>
#include <fmt/format.h>
namespace aare {
JungfrauDataFile::JungfrauDataFile(const std::filesystem::path &fname) {
if (!std::filesystem::exists(fname)) {
throw std::runtime_error(LOCATION +
"File does not exist: " + fname.string());
}
find_frame_size(fname);
parse_fname(fname);
scan_files();
open_file(m_current_file_index);
}
// FileInterface
Frame JungfrauDataFile::read_frame(){
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
Frame JungfrauDataFile::read_frame(size_t frame_number){
seek(frame_number);
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
std::vector<Frame> JungfrauDataFile::read_n(size_t n_frames) {
std::vector<Frame> frames;
for(size_t i = 0; i < n_frames; ++i){
frames.push_back(read_frame());
}
return frames;
}
void JungfrauDataFile::read_into(std::byte *image_buf) {
read_into(image_buf, nullptr);
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames) {
read_into(image_buf, n_frames, nullptr);
}
size_t JungfrauDataFile::frame_number(size_t frame_index) {
seek(frame_index);
return read_header().framenum;
}
std::array<ssize_t, 2> JungfrauDataFile::shape() const {
return {static_cast<ssize_t>(rows()), static_cast<ssize_t>(cols())};
}
DetectorType JungfrauDataFile::detector_type() const { return DetectorType::Jungfrau; }
std::string JungfrauDataFile::base_name() const { return m_base_name; }
size_t JungfrauDataFile::bytes_per_frame() { return m_bytes_per_frame; }
size_t JungfrauDataFile::pixels_per_frame() { return m_rows * m_cols; }
size_t JungfrauDataFile::bytes_per_pixel() const { return sizeof(pixel_type); }
size_t JungfrauDataFile::bitdepth() const {
return bytes_per_pixel() * bits_per_byte;
}
void JungfrauDataFile::seek(size_t frame_index) {
if (frame_index >= m_total_frames) {
throw std::runtime_error(LOCATION + "Frame index out of range: " +
std::to_string(frame_index));
}
m_current_frame_index = frame_index;
auto file_index = first_larger(m_last_frame_in_file, frame_index);
if (file_index != m_current_file_index)
open_file(file_index);
auto frame_offset = (file_index)
? frame_index - m_last_frame_in_file[file_index - 1]
: frame_index;
auto byte_offset = frame_offset * (m_bytes_per_frame + header_size);
m_fp.seek(byte_offset);
};
size_t JungfrauDataFile::tell() { return m_current_frame_index; }
size_t JungfrauDataFile::total_frames() const { return m_total_frames; }
size_t JungfrauDataFile::rows() const { return m_rows; }
size_t JungfrauDataFile::cols() const { return m_cols; }
size_t JungfrauDataFile::n_files() const { return m_last_frame_in_file.size(); }
void JungfrauDataFile::find_frame_size(const std::filesystem::path &fname) {
static constexpr size_t module_data_size =
header_size + sizeof(pixel_type) * 512 * 1024;
static constexpr size_t half_data_size =
header_size + sizeof(pixel_type) * 256 * 1024;
static constexpr size_t chip_data_size =
header_size + sizeof(pixel_type) * 256 * 256;
auto file_size = std::filesystem::file_size(fname);
if (file_size == 0) {
throw std::runtime_error(LOCATION +
"Cannot guess frame size: file is empty");
}
if (file_size % module_data_size == 0) {
m_rows = 512;
m_cols = 1024;
m_bytes_per_frame = module_data_size - header_size;
} else if (file_size % half_data_size == 0) {
m_rows = 256;
m_cols = 1024;
m_bytes_per_frame = half_data_size - header_size;
} else if (file_size % chip_data_size == 0) {
m_rows = 256;
m_cols = 256;
m_bytes_per_frame = chip_data_size - header_size;
} else {
throw std::runtime_error(LOCATION +
"Cannot find frame size: file size is not a "
"multiple of any known frame size");
}
}
void JungfrauDataFile::parse_fname(const std::filesystem::path &fname) {
m_path = fname.parent_path();
m_base_name = fname.stem();
// find file index, then remove if from the base name
if (auto pos = m_base_name.find_last_of('_'); pos != std::string::npos) {
m_offset = std::stoul(m_base_name.substr(pos + 1));
m_base_name.erase(pos);
}
}
void JungfrauDataFile::scan_files() {
// find how many files we have and the number of frames in each file
m_last_frame_in_file.clear();
size_t file_index = m_offset;
while (std::filesystem::exists(fpath(file_index))) {
auto n_frames = std::filesystem::file_size(fpath(file_index)) /
(m_bytes_per_frame + header_size);
m_last_frame_in_file.push_back(n_frames);
++file_index;
}
// find where we need to open the next file and total number of frames
m_last_frame_in_file = cumsum(m_last_frame_in_file);
m_total_frames = m_last_frame_in_file.back();
}
void JungfrauDataFile::read_into(std::byte *image_buf,
JungfrauDataHeader *header) {
// read header if not passed nullptr
if (header) {
if (auto rc = fread(header, sizeof(JungfrauDataHeader), 1, m_fp.get());
rc != 1) {
throw std::runtime_error(
LOCATION +
"Could not read header from file:" + m_fp.error_msg());
}
} else {
m_fp.seek(header_size, SEEK_CUR);
}
// read data
if (auto rc = fread(image_buf, 1, m_bytes_per_frame, m_fp.get());
rc != m_bytes_per_frame) {
throw std::runtime_error(LOCATION + "Could not read image from file" +
m_fp.error_msg());
}
// prepare for next read
// if we are at the end of the file, open the next file
++m_current_frame_index;
if (m_current_frame_index >= m_last_frame_in_file[m_current_file_index] &&
(m_current_frame_index < m_total_frames)) {
++m_current_file_index;
open_file(m_current_file_index);
}
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames,
JungfrauDataHeader *header) {
if (header) {
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, header + i);
}else{
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, nullptr);
}
}
void JungfrauDataFile::read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header) {
if(image->shape()!=shape()){
throw std::runtime_error(LOCATION +
"Image shape does not match file size: " + std::to_string(rows()) + "x" + std::to_string(cols()));
}
read_into(reinterpret_cast<std::byte *>(image->data()), header);
}
JungfrauDataHeader JungfrauDataFile::read_header() {
JungfrauDataHeader header;
if (auto rc = fread(&header, 1, sizeof(header), m_fp.get());
rc != sizeof(header)) {
throw std::runtime_error(LOCATION + "Could not read header from file" +
m_fp.error_msg());
}
m_fp.seek(-header_size, SEEK_CUR);
return header;
}
void JungfrauDataFile::open_file(size_t file_index) {
// fmt::print(stderr, "Opening file: {}\n",
// fpath(file_index+m_offset).string());
m_fp = FilePtr(fpath(file_index + m_offset), "rb");
m_current_file_index = file_index;
}
std::filesystem::path JungfrauDataFile::fpath(size_t file_index) const {
auto fname = fmt::format("{}_{:0{}}.dat", m_base_name, file_index,
n_digits_in_file_index);
return m_path / fname;
}
} // namespace aare

View File

@ -0,0 +1,114 @@
#include "aare/JungfrauDataFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include "test_config.hpp"
using aare::JungfrauDataFile;
using aare::JungfrauDataHeader;
TEST_CASE("Open a Jungfrau data file", "[.files]") {
//we know we have 4 files with 7, 7, 7, and 3 frames
//firs frame number if 1 and the bunch id is frame_number**2
//so we can check the header
auto fpath = test_data_path() / "dat" / "AldoJF500k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
REQUIRE(f.rows() == 512);
REQUIRE(f.cols() == 1024);
REQUIRE(f.bytes_per_frame() == 1048576);
REQUIRE(f.pixels_per_frame() == 524288);
REQUIRE(f.bytes_per_pixel() == 2);
REQUIRE(f.bitdepth() == 16);
REQUIRE(f.base_name() == "AldoJF500k");
REQUIRE(f.n_files() == 4);
REQUIRE(f.tell() == 0);
REQUIRE(f.total_frames() == 24);
REQUIRE(f.current_file() == fpath);
//Check that the frame number and buch id is read correctly
for (size_t i = 0; i < 24; ++i) {
JungfrauDataHeader header;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &header);
REQUIRE(header.framenum == i + 1);
REQUIRE(header.bunchid == (i + 1) * (i + 1));
REQUIRE(image.shape(0) == 512);
REQUIRE(image.shape(1) == 1024);
}
}
TEST_CASE("Seek in a JungfrauDataFile", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//The file should have 113 frames
f.seek(19);
REQUIRE(f.tell() == 19);
auto h = f.read_header();
REQUIRE(h.framenum == 19+1);
//Reading again does not change the file pointer
auto h2 = f.read_header();
REQUIRE(h2.framenum == 19+1);
f.seek(59);
REQUIRE(f.tell() == 59);
auto h3 = f.read_header();
REQUIRE(h3.framenum == 59+1);
JungfrauDataHeader h4;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &h4);
REQUIRE(h4.framenum == 59+1);
//now we should be on the next frame
REQUIRE(f.tell() == 60);
REQUIRE(f.read_header().framenum == 60+1);
REQUIRE_THROWS(f.seek(86356)); //out of range
}
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000003.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//18 files per data file, opening the 3rd file we ignore the first 3
REQUIRE(f.total_frames() == 113-18*3);
REQUIRE(f.tell() == 0);
//Frame numbers start at 1 in the first file
REQUIRE(f.read_header().framenum == 18*3+1);
// moving relative to the third file
f.seek(5);
REQUIRE(f.read_header().framenum == 18*3+1+5);
// ignoring the first 3 files
REQUIRE(f.n_files() == 4);
REQUIRE(f.current_file().stem() == "AldoJF65k_000003");
}
TEST_CASE("Read into throws if size doesn't match", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
aare::NDArray<uint16_t> image({39, 85});
JungfrauDataHeader header;
REQUIRE_THROWS(f.read_into(&image, &header));
REQUIRE_THROWS(f.read_into(&image, nullptr));
REQUIRE_THROWS(f.read_into(&image));
REQUIRE(f.tell() == 0);
}

View File

@ -2,6 +2,7 @@
#include <array>
#include <catch2/benchmark/catch_benchmark.hpp>
#include <catch2/catch_test_macros.hpp>
#include <numeric>
using aare::NDArray;
using aare::NDView;
@ -34,6 +35,24 @@ TEST_CASE("Construct from an NDView") {
}
}
TEST_CASE("3D NDArray from NDView"){
std::vector<int> data(27);
std::iota(data.begin(), data.end(), 0);
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
NDArray<int, 3> image(view);
REQUIRE(image.shape() == view.shape());
REQUIRE(image.size() == view.size());
REQUIRE(image.data() != view.data());
for(int64_t i=0; i<image.shape(0); i++){
for(int64_t j=0; j<image.shape(1); j++){
for(int64_t k=0; k<image.shape(2); k++){
REQUIRE(image(i, j, k) == view(i, j, k));
}
}
}
}
TEST_CASE("1D image") {
std::array<int64_t, 1> shape{{20}};
NDArray<short, 1> img(shape, 3);
@ -164,14 +183,14 @@ TEST_CASE("Size and shape matches") {
int64_t h = 75;
std::array<int64_t, 2> shape{w, h};
NDArray<double> a{shape};
REQUIRE(a.size() == static_cast<uint64_t>(w * h));
REQUIRE(a.size() == w * h);
REQUIRE(a.shape() == shape);
}
TEST_CASE("Initial value matches for all elements") {
double v = 4.35;
NDArray<double> a{{5, 5}, v};
for (uint32_t i = 0; i < a.size(); ++i) {
for (int i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == v);
}
}
@ -379,4 +398,32 @@ TEST_CASE("Elementwise operations on images") {
REQUIRE(A(i) == a_val);
}
}
}
TEST_CASE("Assign an std::array to a 1D NDArray") {
NDArray<int, 1> a{{5}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Assign an std::array to a 1D NDArray of a different size") {
NDArray<int, 1> a{{3}, 0};
std::array<int, 5> b{1, 2, 3, 4, 5};
a = b;
REQUIRE(a.size() == 5);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}
TEST_CASE("Construct an NDArray from an std::array") {
std::array<int, 5> b{1, 2, 3, 4, 5};
NDArray<int, 1> a(b);
for (uint32_t i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == b[i]);
}
}

View File

@ -3,6 +3,7 @@
#include <iostream>
#include <vector>
#include <numeric>
using aare::NDView;
using aare::Shape;
@ -21,10 +22,8 @@ TEST_CASE("Element reference 1D") {
}
TEST_CASE("Element reference 2D") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(vec.size() == static_cast<size_t>(data.size()));
@ -58,10 +57,8 @@ TEST_CASE("Element reference 3D") {
}
TEST_CASE("Plus and miuns with single value") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
data += 5;
int i = 0;
@ -116,10 +113,8 @@ TEST_CASE("elementwise assign") {
}
TEST_CASE("iterators") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 1> data(vec.data(), Shape<1>{12});
int i = 0;
for (const auto item : data) {
@ -167,27 +162,31 @@ TEST_CASE("divide with another span") {
}
TEST_CASE("Retrieve shape") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(data.shape()[0] == 3);
REQUIRE(data.shape()[1] == 4);
}
TEST_CASE("compare two views") {
std::vector<int> vec1;
for (int i = 0; i != 12; ++i) {
vec1.push_back(i);
}
std::vector<int> vec1(12);
std::iota(vec1.begin(), vec1.end(), 0);
NDView<int, 2> view1(vec1.data(), Shape<2>{3, 4});
std::vector<int> vec2;
for (int i = 0; i != 12; ++i) {
vec2.push_back(i);
}
std::vector<int> vec2(12);
std::iota(vec2.begin(), vec2.end(), 0);
NDView<int, 2> view2(vec2.data(), Shape<2>{3, 4});
REQUIRE((view1 == view2));
}
TEST_CASE("Create a view over a vector"){
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
auto v = aare::make_view(vec);
REQUIRE(v.shape()[0] == 12);
REQUIRE(v[0] == 0);
REQUIRE(v[11] == 11);
}

View File

@ -76,8 +76,7 @@ size_t RawFile::n_mod() const { return n_subfile_parts; }
size_t RawFile::bytes_per_frame() {
// return m_rows * m_cols * m_master.bitdepth() / 8;
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / 8;
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / bits_per_byte;
}
size_t RawFile::pixels_per_frame() {
// return m_rows * m_cols;

View File

@ -1,9 +1,12 @@
#include "aare/RawSubFile.hpp"
#include "aare/PixelMap.hpp"
#include "aare/utils/ifstream_helpers.hpp"
#include <cstring> // memcpy
#include <fmt/core.h>
#include <iostream>
namespace aare {
RawSubFile::RawSubFile(const std::filesystem::path &fname,
@ -20,7 +23,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
if (std::filesystem::exists(fname)) {
n_frames = std::filesystem::file_size(fname) /
m_num_frames = std::filesystem::file_size(fname) /
(sizeof(DetectorHeader) + rows * cols * bitdepth / 8);
} else {
throw std::runtime_error(
@ -35,7 +38,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
#ifdef AARE_VERBOSE
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), n_frames);
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), m_num_frames);
fmt::print("m_rows: {}, m_cols: {}, m_bitdepth: {}\n", m_rows, m_cols,
m_bitdepth);
fmt::print("file size: {}\n", std::filesystem::file_size(fname));
@ -43,8 +46,8 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
void RawSubFile::seek(size_t frame_index) {
if (frame_index >= n_frames) {
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, n_frames));
if (frame_index >= m_num_frames) {
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, m_num_frames));
}
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
}
@ -60,6 +63,10 @@ void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
// TODO! expand support for different bitdepths
if (m_pixel_map) {
// read into a temporary buffer and then copy the data to the buffer
@ -79,8 +86,24 @@ void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
// read directly into the buffer
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
}
void RawSubFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header) {
for (size_t i = 0; i < n_frames; i++) {
read_into(image_buf, header);
image_buf += bytes_per_frame();
if (header) {
++header;
}
}
}
template <typename T>
void RawSubFile::read_with_map(std::byte *image_buf) {
auto part_buffer = new std::byte[bytes_per_frame()];

162
src/algorithm.test.cpp Normal file
View File

@ -0,0 +1,162 @@
#include <aare/algorithm.hpp>
#include <catch2/catch_test_macros.hpp>
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2.3) == 2);
REQUIRE(aare::nearest_index(arr, 2.6) == 3);
REQUIRE(aare::nearest_index(arr, 45.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
}
TEST_CASE("Passing integers to nearest_index works", "[algorithm]") {
aare::NDArray<int, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2) == 2);
REQUIRE(aare::nearest_index(arr, 3) == 3);
REQUIRE(aare::nearest_index(arr, 45) == 4);
REQUIRE(aare::nearest_index(arr, 0) == 0);
REQUIRE(aare::nearest_index(arr, -1) == 0);
}
TEST_CASE("nearest_index works with std::vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
REQUIRE(aare::nearest_index(vec, 4555555.0) == 4);
REQUIRE(aare::nearest_index(vec, 0.0) == 0);
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
}
TEST_CASE("nearest index works with std::array", "[algorithm]") {
std::array<double, 5> arr = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
REQUIRE(aare::nearest_index(arr, 4555555.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 5) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element "
"also when all smaller",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 10) == 0);
}
TEST_CASE("last smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -10.0) == 0);
REQUIRE(aare::last_smaller(arr, 0.0) == 0);
REQUIRE(aare::last_smaller(arr, 2.3) == 2);
REQUIRE(aare::last_smaller(arr, 253.) == 4);
}
TEST_CASE("returns last bin strictly smaller", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 2.0) == 1);
}
TEST_CASE("last_smaller with all elements smaller returns last element",
"[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 50.) == 4);
}
TEST_CASE("last_smaller with all elements bigger returns first element",
"[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -50.) == 0);
}
TEST_CASE("last smaller with all elements equal returns the first element",
"[algorithm]") {
std::vector<int> vec = {5, 5, 5, 5, 5, 5, 5};
REQUIRE(aare::last_smaller(vec, 5) == 0);
}
TEST_CASE("first_lager with vector", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 2.5) == 3);
}
TEST_CASE("first_lager with all elements smaller returns last element",
"[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 50.) == 4);
}
TEST_CASE("first_lager with all elements bigger returns first element",
"[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, -50.) == 0);
}
TEST_CASE("first_lager with all elements the same as the check returns last",
"[algorithm]") {
std::vector<int> vec = {14, 14, 14, 14, 14};
REQUIRE(aare::first_larger(vec, 14) == 4);
}
TEST_CASE("first larger with the same element", "[algorithm]") {
std::vector<int> vec = {7, 8, 9, 10, 11};
REQUIRE(aare::first_larger(vec, 9) == 3);
}
TEST_CASE("cumsum works", "[algorithm]") {
std::vector<double> vec = {0, 1, 2, 3, 4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == 1);
REQUIRE(result[2] == 3);
REQUIRE(result[3] == 6);
REQUIRE(result[4] == 10);
}
TEST_CASE("cumsum works with empty vector", "[algorithm]") {
std::vector<double> vec = {};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == 0);
}
TEST_CASE("cumsum works with negative numbers", "[algorithm]") {
std::vector<double> vec = {0, -1, -2, -3, -4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == -1);
REQUIRE(result[2] == -3);
REQUIRE(result[3] == -6);
REQUIRE(result[4] == -10);
}

View File

@ -1,5 +1,5 @@
#include "aare/decode.hpp"
#include <cmath>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input){
@ -22,6 +22,10 @@ uint16_t adc_sar_05_decode64to16(uint64_t input){
}
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_05_decode64to16(input(i,j));
@ -49,6 +53,9 @@ uint16_t adc_sar_04_decode64to16(uint64_t input){
}
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_04_decode64to16(input(i,j));
@ -56,6 +63,40 @@ void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> outpu
}
}
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights) {
if(weights.size() > 16){
throw std::invalid_argument("weights size must be less than or equal to 16");
}
double result = 0.0;
for (ssize_t i = 0; i < weights.size(); ++i) {
result += ((input >> i) & 1) * std::pow(weights[i], i);
}
return result;
}
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double,1> weights) {
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
//Calculate weights to avoid repeatedly calling std::pow
std::vector<double> weights_powers(weights.size());
for (ssize_t i = 0; i < weights.size(); ++i) {
weights_powers[i] = std::pow(weights[i], i);
}
// Apply custom weights to each element in the input array
for (ssize_t i = 0; i < input.shape(0); i++) {
double result = 0.0;
for (size_t bit_index = 0; bit_index < weights_powers.size(); ++bit_index) {
result += ((input(i) >> bit_index) & 1) * weights_powers[bit_index];
}
output(i) = result;
}
}
} // namespace aare

80
src/decode.test.cpp Normal file
View File

@ -0,0 +1,80 @@
#include "aare/decode.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include "aare/NDArray.hpp"
using Catch::Matchers::WithinAbs;
#include <vector>
TEST_CASE("test_adc_sar_05_decode64to16"){
uint64_t input = 0;
uint16_t output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 0);
// bit 29 on th input is bit 0 on the output
input = 1UL << 29;
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1);
// test all bits by iteratting through the bitlist
std::vector<int> bitlist = {29, 19, 28, 18, 31, 21, 27, 20, 24, 23, 25, 22};
for (size_t i = 0; i < bitlist.size(); i++) {
input = 1UL << bitlist[i];
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == (1 << i));
}
// test a few "random" values
input = 0;
input |= (1UL << 29);
input |= (1UL << 19);
input |= (1UL << 28);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 7UL);
input = 0;
input |= (1UL << 18);
input |= (1UL << 27);
input |= (1UL << 25);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1096UL);
input = 0;
input |= (1UL << 25);
input |= (1UL << 22);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 3072UL);
}
TEST_CASE("test_apply_custom_weights") {
uint16_t input = 1;
aare::NDArray<double, 1> weights_data({3}, 0.0);
weights_data(0) = 1.7;
weights_data(1) = 2.1;
weights_data(2) = 1.8;
auto weights = weights_data.view();
double output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(1.0, 0.001));
input = 1 << 1;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(2.1, 0.001));
input = 1 << 2;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(3.24, 0.001));
input = 0b111;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(6.34, 0.001));
}

View File

@ -0,0 +1,18 @@
#include "aare/utils/ifstream_helpers.hpp"
namespace aare {
std::string ifstream_error_msg(std::ifstream &ifs) {
std::ios_base::iostate state = ifs.rdstate();
if (state & std::ios_base::eofbit) {
return " End of file reached";
} else if (state & std::ios_base::badbit) {
return " Bad file stream";
} else if (state & std::ios_base::failbit) {
return " File read failed";
}else{
return " Unknown/no error";
}
}
} // namespace aare

View File

@ -7,6 +7,6 @@ inline auto test_data_path(){
if(const char* env_p = std::getenv("AARE_TEST_DATA")){
return std::filesystem::path(env_p);
}else{
throw std::runtime_error("AARE_TEST_DATA_PATH not set");
throw std::runtime_error("Path to test data: $AARE_TEST_DATA not set");
}
}