mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-13 15:57:14 +02:00
Compare commits
72 Commits
2024.12.16
...
push_back
Author | SHA1 | Date | |
---|---|---|---|
10e4e10431 | |||
017960d963 | |||
a12e43b176 | |||
9de84a7f87 | |||
885309d97c | |||
e24ed68416 | |||
248d25486f | |||
a24bbd9cf9 | |||
d7ef9bb1d8 | |||
de9fc16e89 | |||
85a6b5b95e | |||
50eeba4005 | |||
98d2d6098e | |||
61af1105a1 | |||
240960d3e7 | |||
04728929cb | |||
3083d51699 | |||
4240942cec | |||
745d09fbe9 | |||
a42c0d645b | |||
508adf5016 | |||
e038bd1646 | |||
7e5f91c6ec | |||
ed9ef7c600 | |||
57bb6c71ae | |||
f8f98b6ec3 | |||
0876b6891a | |||
6ad76f63c1 | |||
6e7e81b36b | |||
b529b6d33b | |||
602b04e49f | |||
11cd2ec654 | |||
e59a361b51 | |||
1ad362ccfc | |||
332bdeb02b | |||
3a987319d4 | |||
5614cb4673 | |||
8ae6bb76f8 | |||
1d2c38c1d4 | |||
b7a47576a1 | |||
fc1c9f35d6 | |||
5d2f25a6e9 | |||
6a83988485 | |||
8abfc68138 | |||
8ff6f9f506 | |||
dadf5f4869 | |||
dcb9a98faa | |||
7309cff47c | |||
c0c5e07ad8 | |||
2faa317bdf | |||
f7031d7f87 | |||
d86cb533c8 | |||
4c750cc3be | |||
e96fe31f11 | |||
cd5a738696 | |||
1ba43b69d3 | |||
fff536782b | |||
5a3ca2ae2d | |||
078e5d81ec | |||
6cde968c60 | |||
f6d736facd | |||
e1cc774d6c | |||
d0f435a7ab | |||
7ce02006f2 | |||
7550a2cb97 | |||
caf7b4ecdb | |||
72d10b7735 | |||
cc95561eda | |||
dc9e10016d | |||
21ce7a3efa | |||
acdce8454b | |||
d07da42745 |
42
.clang-tidy
Normal file
42
.clang-tidy
Normal file
@ -0,0 +1,42 @@
|
||||
|
||||
---
|
||||
Checks: '*,
|
||||
-altera-*,
|
||||
-android-cloexec-fopen,
|
||||
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
|
||||
-cppcoreguidelines-pro-bounds-pointer-arithmetic,
|
||||
-fuchsia*,
|
||||
-readability-else-after-return,
|
||||
-readability-avoid-const-params-in-decls,
|
||||
-readability-identifier-length,
|
||||
-cppcoreguidelines-pro-bounds-constant-array-index,
|
||||
-cppcoreguidelines-pro-type-reinterpret-cast,
|
||||
-llvm-header-guard,
|
||||
-modernize-use-nodiscard,
|
||||
-misc-non-private-member-variables-in-classes,
|
||||
-readability-static-accessed-through-instance,
|
||||
-readability-braces-around-statements,
|
||||
-readability-isolate-declaration,
|
||||
-readability-implicit-bool-conversion,
|
||||
-readability-identifier-length,
|
||||
-readability-identifier-naming,
|
||||
-hicpp-signed-bitwise,
|
||||
-hicpp-no-array-decay,
|
||||
-hicpp-braces-around-statements,
|
||||
-google-runtime-references,
|
||||
-google-readability-todo,
|
||||
-google-readability-braces-around-statements,
|
||||
-modernize-use-trailing-return-type,
|
||||
-llvmlibc-*'
|
||||
|
||||
HeaderFilterRegex: \.hpp
|
||||
FormatStyle: none
|
||||
CheckOptions:
|
||||
- { key: readability-identifier-naming.NamespaceCase, value: lower_case }
|
||||
# - { key: readability-identifier-naming.FunctionCase, value: lower_case }
|
||||
- { key: readability-identifier-naming.ClassCase, value: CamelCase }
|
||||
# - { key: readability-identifier-naming.MethodCase, value: CamelCase }
|
||||
# - { key: readability-identifier-naming.StructCase, value: CamelCase }
|
||||
# - { key: readability-identifier-naming.VariableCase, value: lower_case }
|
||||
- { key: readability-identifier-naming.GlobalConstantCase, value: UPPER_CASE }
|
||||
...
|
58
.gitea/workflows/cmake_build.yml
Normal file
58
.gitea/workflows/cmake_build.yml
Normal file
@ -0,0 +1,58 @@
|
||||
name: Build the package using cmake then documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
|
||||
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pages: write
|
||||
id-token: write
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ] # macos-12, windows-2019]
|
||||
python-version: ["3.12",]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
# The setup-miniconda action needs this to activate miniconda
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup dev env
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install cmake gcc g++
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3.0.4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
channels: conda-forge
|
||||
|
||||
- name: Prepare
|
||||
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy
|
||||
|
||||
- name: Build library
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
|
||||
make -j 2
|
||||
make docs
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -4,7 +4,6 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- developer
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@ -34,7 +33,6 @@ jobs:
|
||||
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
|
||||
|
||||
- name: Enable upload
|
||||
if: github.ref == 'refs/heads/main'
|
||||
run: conda config --set anaconda_upload yes
|
||||
|
||||
- name: Build
|
40
.github/workflows/build_conda.yml
vendored
Normal file
40
.github/workflows/build_conda.yml
vendored
Normal file
@ -0,0 +1,40 @@
|
||||
name: Build pkgs and deploy if on main
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- developer
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ubuntu-latest, ] # macos-12, windows-2019]
|
||||
python-version: ["3.12",]
|
||||
|
||||
runs-on: ${{ matrix.platform }}
|
||||
|
||||
# The setup-miniconda action needs this to activate miniconda
|
||||
defaults:
|
||||
run:
|
||||
shell: "bash -l {0}"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Get conda
|
||||
uses: conda-incubator/setup-miniconda@v3.0.4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
channels: conda-forge
|
||||
|
||||
- name: Prepare
|
||||
run: conda install conda-build=24.9 conda-verify pytest anaconda-client
|
||||
|
||||
- name: Disable upload
|
||||
run: conda config --set anaconda_upload no
|
||||
|
||||
- name: Build
|
||||
run: conda build conda-recipe
|
||||
|
@ -31,7 +31,7 @@ set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
|
||||
|
||||
|
||||
# General options
|
||||
option(AARE_PYTHON_BINDINGS "Build python bindings" ON)
|
||||
option(AARE_PYTHON_BINDINGS "Build python bindings" OFF)
|
||||
option(AARE_TESTS "Build tests" OFF)
|
||||
option(AARE_BENCHMARKS "Build benchmarks" OFF)
|
||||
option(AARE_EXAMPLES "Build examples" OFF)
|
||||
@ -48,6 +48,7 @@ option(AARE_FETCH_PYBIND11 "Use FetchContent to download pybind11" ON)
|
||||
option(AARE_FETCH_CATCH "Use FetchContent to download catch2" ON)
|
||||
option(AARE_FETCH_JSON "Use FetchContent to download nlohmann::json" ON)
|
||||
option(AARE_FETCH_ZMQ "Use FetchContent to download libzmq" ON)
|
||||
option(AARE_FETCH_LMFIT "Use FetchContent to download lmfit" ON)
|
||||
|
||||
|
||||
#Convenience option to use system libraries only (no FetchContent)
|
||||
@ -59,6 +60,8 @@ if(AARE_SYSTEM_LIBRARIES)
|
||||
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
|
||||
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
|
||||
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
|
||||
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
|
||||
# on conda-forge
|
||||
endif()
|
||||
|
||||
if(AARE_VERBOSE)
|
||||
@ -76,16 +79,66 @@ endif()
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
if(AARE_FETCH_LMFIT)
|
||||
#TODO! Should we fetch lmfit from the web or inlcude a tar.gz in the repo?
|
||||
set(LMFIT_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
|
||||
|
||||
# For cmake < 3.28 we can't supply EXCLUDE_FROM_ALL to FetchContent_Declare
|
||||
# so we need this workaround
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.28")
|
||||
FetchContent_Declare(
|
||||
lmfit
|
||||
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
|
||||
GIT_TAG main
|
||||
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
|
||||
UPDATE_DISCONNECTED 1
|
||||
)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
lmfit
|
||||
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
|
||||
GIT_TAG main
|
||||
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
|
||||
UPDATE_DISCONNECTED 1
|
||||
EXCLUDE_FROM_ALL 1
|
||||
)
|
||||
endif()
|
||||
|
||||
#Disable what we don't need from lmfit
|
||||
set(BUILD_TESTING OFF CACHE BOOL "")
|
||||
set(LMFIT_CPPTEST OFF CACHE BOOL "")
|
||||
set(LIB_MAN OFF CACHE BOOL "")
|
||||
set(LMFIT_CPPTEST OFF CACHE BOOL "")
|
||||
set(BUILD_SHARED_LIBS OFF CACHE BOOL "")
|
||||
|
||||
if (${CMAKE_VERSION} VERSION_LESS "3.28")
|
||||
if(NOT lmfit_POPULATED)
|
||||
FetchContent_Populate(lmfit)
|
||||
add_subdirectory(${lmfit_SOURCE_DIR} ${lmfit_BINARY_DIR} EXCLUDE_FROM_ALL)
|
||||
endif()
|
||||
else()
|
||||
FetchContent_MakeAvailable(lmfit)
|
||||
endif()
|
||||
|
||||
set_property(TARGET lmfit PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
else()
|
||||
find_package(lmfit REQUIRED)
|
||||
endif()
|
||||
|
||||
|
||||
if(AARE_FETCH_ZMQ)
|
||||
# Fetchcontent_Declare is deprecated need to find a way to update this
|
||||
# for now setting the policy to old is enough
|
||||
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
|
||||
cmake_policy(SET CMP0169 OLD)
|
||||
endif()
|
||||
set(ZMQ_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/libzmq_cmake_version.patch)
|
||||
FetchContent_Declare(
|
||||
libzmq
|
||||
GIT_REPOSITORY https://github.com/zeromq/libzmq.git
|
||||
GIT_TAG v4.3.4
|
||||
PATCH_COMMAND ${ZMQ_PATCH_COMMAND}
|
||||
UPDATE_DISCONNECTED 1
|
||||
)
|
||||
# Disable unwanted options from libzmq
|
||||
set(BUILD_TESTS OFF CACHE BOOL "Switch off libzmq test build")
|
||||
@ -127,8 +180,8 @@ if (AARE_FETCH_FMT)
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
else()
|
||||
find_package(fmt 6 REQUIRED)
|
||||
endif()
|
||||
@ -146,7 +199,6 @@ if (AARE_FETCH_JSON)
|
||||
install(
|
||||
TARGETS nlohmann_json
|
||||
EXPORT "${TARGETS_EXPORT_NAME}"
|
||||
|
||||
)
|
||||
message(STATUS "target: ${NLOHMANN_JSON_TARGET_NAME}")
|
||||
else()
|
||||
@ -279,15 +331,21 @@ endif()
|
||||
|
||||
set(PUBLICHEADERS
|
||||
include/aare/ArrayExpr.hpp
|
||||
include/aare/CalculateEta.hpp
|
||||
include/aare/Cluster.hpp
|
||||
include/aare/ClusterFinder.hpp
|
||||
include/aare/ClusterFile.hpp
|
||||
include/aare/CtbRawFile.hpp
|
||||
include/aare/ClusterVector.hpp
|
||||
include/aare/decode.hpp
|
||||
include/aare/defs.hpp
|
||||
include/aare/Dtype.hpp
|
||||
include/aare/File.hpp
|
||||
include/aare/Fit.hpp
|
||||
include/aare/FileInterface.hpp
|
||||
include/aare/Frame.hpp
|
||||
include/aare/GainMap.hpp
|
||||
include/aare/geo_helpers.hpp
|
||||
include/aare/NDArray.hpp
|
||||
include/aare/NDView.hpp
|
||||
include/aare/NumpyFile.hpp
|
||||
@ -298,34 +356,36 @@ set(PUBLICHEADERS
|
||||
include/aare/RawMasterFile.hpp
|
||||
include/aare/RawSubFile.hpp
|
||||
include/aare/VarClusterFinder.hpp
|
||||
|
||||
include/aare/utils/task.hpp
|
||||
)
|
||||
|
||||
|
||||
set(SourceFiles
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/PixelMap.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
|
||||
)
|
||||
|
||||
|
||||
add_library(aare_core STATIC ${SourceFiles})
|
||||
target_include_directories(aare_core PUBLIC
|
||||
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
|
||||
)
|
||||
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
aare_core
|
||||
PUBLIC
|
||||
@ -334,6 +394,8 @@ target_link_libraries(
|
||||
${STD_FS_LIB} # from helpers.cmake
|
||||
PRIVATE
|
||||
aare_compiler_flags
|
||||
$<BUILD_INTERFACE:lmfit>
|
||||
|
||||
)
|
||||
|
||||
set_target_properties(aare_core PROPERTIES
|
||||
@ -347,18 +409,24 @@ endif()
|
||||
|
||||
if(AARE_TESTS)
|
||||
set(TestSources
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Cluster.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CalculateEta.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.test.cpp
|
||||
|
||||
)
|
||||
target_sources(tests PRIVATE ${TestSources} )
|
||||
@ -436,4 +504,4 @@ if(AARE_MASTER_PROJECT)
|
||||
set(CMAKE_INSTALL_DIR "share/cmake/${PROJECT_NAME}")
|
||||
set(PROJECT_LIBRARIES aare-core aare-compiler-flags )
|
||||
include(cmake/package_config.cmake)
|
||||
endif()
|
||||
endif()
|
||||
|
@ -1,11 +1,27 @@
|
||||
find_package(benchmark REQUIRED)
|
||||
|
||||
add_executable(ndarray_benchmark ndarray_benchmark.cpp)
|
||||
include(FetchContent)
|
||||
|
||||
target_link_libraries(ndarray_benchmark benchmark::benchmark aare_core aare_compiler_flags)
|
||||
# target_link_libraries(tests PRIVATE aare_core aare_compiler_flags)
|
||||
|
||||
set_target_properties(ndarray_benchmark PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
# OUTPUT_NAME run_tests
|
||||
FetchContent_Declare(
|
||||
benchmark
|
||||
GIT_REPOSITORY https://github.com/google/benchmark.git
|
||||
GIT_TAG v1.8.3 # Change to the latest version if needed
|
||||
)
|
||||
|
||||
# Ensure Google Benchmark is built correctly
|
||||
set(BENCHMARK_ENABLE_TESTING OFF CACHE BOOL "" FORCE)
|
||||
|
||||
FetchContent_MakeAvailable(benchmark)
|
||||
|
||||
add_executable(benchmarks)
|
||||
|
||||
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp)
|
||||
|
||||
# Link Google Benchmark and other necessary libraries
|
||||
target_link_libraries(benchmarks PRIVATE benchmark::benchmark aare_core aare_compiler_flags)
|
||||
|
||||
# Set output properties
|
||||
set_target_properties(benchmarks PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}
|
||||
OUTPUT_NAME run_benchmarks
|
||||
)
|
70
benchmarks/calculateeta_benchmark.cpp
Normal file
70
benchmarks/calculateeta_benchmark.cpp
Normal file
@ -0,0 +1,70 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include <benchmark/benchmark.h>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
class ClusterFixture : public benchmark::Fixture {
|
||||
public:
|
||||
Cluster<int, 2, 2> cluster_2x2{};
|
||||
Cluster<int, 3, 3> cluster_3x3{};
|
||||
|
||||
private:
|
||||
using benchmark::Fixture::SetUp;
|
||||
|
||||
void SetUp([[maybe_unused]] const benchmark::State &state) override {
|
||||
int temp_data[4] = {1, 2, 3, 1};
|
||||
std::copy(std::begin(temp_data), std::end(temp_data),
|
||||
std::begin(cluster_2x2.data));
|
||||
|
||||
cluster_2x2.x = 0;
|
||||
cluster_2x2.y = 0;
|
||||
|
||||
int temp_data2[9] = {1, 2, 3, 1, 3, 4, 5, 1, 20};
|
||||
std::copy(std::begin(temp_data2), std::end(temp_data2),
|
||||
std::begin(cluster_3x3.data));
|
||||
|
||||
cluster_3x3.x = 0;
|
||||
cluster_3x3.y = 0;
|
||||
}
|
||||
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
};
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate2x2Eta)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_2x2);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture,
|
||||
CalculateGeneralEtaFor2x2Cluster)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 2, 2>(cluster_2x2);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate3x3Eta)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture,
|
||||
CalculateGeneralEtaFor3x3Cluster)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 3, 3>(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
// BENCHMARK_MAIN();
|
@ -1,6 +1,8 @@
|
||||
package:
|
||||
name: aare
|
||||
version: 2024.12.16.dev0 #TODO! how to not duplicate this?
|
||||
version: 2025.4.1 #TODO! how to not duplicate this?
|
||||
|
||||
|
||||
|
||||
|
||||
source:
|
||||
|
@ -12,28 +12,7 @@ set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
|
||||
file(GLOB SPHINX_SOURCE_FILES CONFIGURE_DEPENDS "src/*.rst")
|
||||
# set(SPHINX_SOURCE_FILES
|
||||
# src/index.rst
|
||||
# src/Installation.rst
|
||||
# src/Requirements.rst
|
||||
# src/NDArray.rst
|
||||
# src/NDView.rst
|
||||
# src/File.rst
|
||||
# src/Frame.rst
|
||||
# src/Dtype.rst
|
||||
# src/ClusterFinder.rst
|
||||
# src/ClusterFile.rst
|
||||
# src/Pedestal.rst
|
||||
# src/RawFile.rst
|
||||
# src/RawSubFile.rst
|
||||
# src/RawMasterFile.rst
|
||||
# src/VarClusterFinder.rst
|
||||
# src/pyVarClusterFinder.rst
|
||||
# src/pyFile.rst
|
||||
# src/pyCtbRawFile.rst
|
||||
# src/pyRawFile.rst
|
||||
# src/pyRawMasterFile.rst
|
||||
# )
|
||||
|
||||
|
||||
|
||||
foreach(filename ${SPHINX_SOURCE_FILES})
|
||||
|
7
docs/src/ClusterFinderMT.rst
Normal file
7
docs/src/ClusterFinderMT.rst
Normal file
@ -0,0 +1,7 @@
|
||||
ClusterFinderMT
|
||||
==================
|
||||
|
||||
|
||||
.. doxygenclass:: aare::ClusterFinderMT
|
||||
:members:
|
||||
:undoc-members:
|
@ -30,10 +30,13 @@ AARE
|
||||
pyFile
|
||||
pyCtbRawFile
|
||||
pyClusterFile
|
||||
pyClusterVector
|
||||
pyRawFile
|
||||
pyRawMasterFile
|
||||
pyVarClusterFinder
|
||||
|
||||
pyFit
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: C++ API
|
||||
@ -45,6 +48,7 @@ AARE
|
||||
File
|
||||
Dtype
|
||||
ClusterFinder
|
||||
ClusterFinderMT
|
||||
ClusterFile
|
||||
ClusterVector
|
||||
Pedestal
|
||||
|
33
docs/src/pyClusterVector.rst
Normal file
33
docs/src/pyClusterVector.rst
Normal file
@ -0,0 +1,33 @@
|
||||
ClusterVector
|
||||
================
|
||||
|
||||
The ClusterVector, holds clusters from the ClusterFinder. Since it is templated
|
||||
in C++ we use a suffix indicating the data type in python. The suffix is
|
||||
``_i`` for integer, ``_f`` for float, and ``_d`` for double.
|
||||
|
||||
At the moment the functionality from python is limited and it is not supported
|
||||
to push_back clusters to the vector. The intended use case is to pass it to
|
||||
C++ functions that support the ClusterVector or to view it as a numpy array.
|
||||
|
||||
**View ClusterVector as numpy array**
|
||||
|
||||
.. code:: python
|
||||
|
||||
from aare import ClusterFile
|
||||
with ClusterFile("path/to/file") as f:
|
||||
cluster_vector = f.read_frame()
|
||||
|
||||
# Create a copy of the cluster data in a numpy array
|
||||
clusters = np.array(cluster_vector)
|
||||
|
||||
# Avoid copying the data by passing copy=False
|
||||
clusters = np.array(cluster_vector, copy = False)
|
||||
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: ClusterVector_i
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
:inherited-members:
|
19
docs/src/pyFit.rst
Normal file
19
docs/src/pyFit.rst
Normal file
@ -0,0 +1,19 @@
|
||||
|
||||
Fit
|
||||
========
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
|
||||
**Functions**
|
||||
|
||||
.. autofunction:: gaus
|
||||
|
||||
.. autofunction:: pol1
|
||||
|
||||
|
||||
**Fitting**
|
||||
|
||||
.. autofunction:: fit_gaus
|
||||
|
||||
.. autofunction:: fit_pol1
|
122
include/aare/CalculateEta.hpp
Normal file
122
include/aare/CalculateEta.hpp
Normal file
@ -0,0 +1,122 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
typedef enum {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
} corner;
|
||||
|
||||
typedef enum {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
} pixel;
|
||||
|
||||
template <typename T> struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
int c;
|
||||
T sum;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for all clusters in a Clsutervector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters.at(i));
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a generic sized cluster and return them
|
||||
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
|
||||
* subcluster.
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
Eta2<T>
|
||||
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
auto max_sum = cl.max_sum_2x2();
|
||||
eta.sum = max_sum.first;
|
||||
auto c = max_sum.second;
|
||||
|
||||
size_t index_bottom_left_max_2x2_subcluster =
|
||||
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
|
||||
|
||||
if ((cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + 1]) != 0)
|
||||
eta.x = static_cast<double>(
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + 1]) /
|
||||
static_cast<double>(
|
||||
(cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + 1]));
|
||||
|
||||
if ((cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]) != 0)
|
||||
eta.y =
|
||||
static_cast<double>(
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]) /
|
||||
static_cast<double>(
|
||||
(cl.data[index_bottom_left_max_2x2_subcluster] +
|
||||
cl.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX]));
|
||||
|
||||
eta.c = c; // TODO only supported for 2x2 and 3x3 clusters -> at least no
|
||||
// underyling enum class
|
||||
return eta;
|
||||
}
|
||||
|
||||
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
|
||||
// TODO only supported for 3x3 Clusters
|
||||
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
T sum = 0;
|
||||
|
||||
std::for_each(std::begin(cl.data), std::end(cl.data),
|
||||
[&sum](T x) { sum += x; });
|
||||
|
||||
eta.sum = sum;
|
||||
|
||||
eta.c = corner::cBottomLeft;
|
||||
|
||||
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
|
||||
|
||||
(cl.data[3] + cl.data[4] + cl.data[5]);
|
||||
|
||||
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
|
||||
|
||||
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
|
||||
|
||||
(cl.data[1] + cl.data[4] + cl.data[7]);
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
} // namespace aare
|
97
include/aare/CircularFifo.hpp
Normal file
97
include/aare/CircularFifo.hpp
Normal file
@ -0,0 +1,97 @@
|
||||
#pragma once
|
||||
|
||||
#include <chrono>
|
||||
#include <fmt/color.h>
|
||||
#include <fmt/format.h>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <class ItemType> class CircularFifo {
|
||||
uint32_t fifo_size;
|
||||
aare::ProducerConsumerQueue<ItemType> free_slots;
|
||||
aare::ProducerConsumerQueue<ItemType> filled_slots;
|
||||
|
||||
public:
|
||||
CircularFifo() : CircularFifo(100){};
|
||||
CircularFifo(uint32_t size) : fifo_size(size), free_slots(size + 1), filled_slots(size + 1) {
|
||||
|
||||
// TODO! how do we deal with alignment for writing? alignas???
|
||||
// Do we give the user a chance to provide memory locations?
|
||||
// Templated allocator?
|
||||
for (size_t i = 0; i < fifo_size; ++i) {
|
||||
free_slots.write(ItemType{});
|
||||
}
|
||||
}
|
||||
|
||||
bool next() {
|
||||
// TODO! avoid default constructing ItemType
|
||||
ItemType it;
|
||||
if (!filled_slots.read(it))
|
||||
return false;
|
||||
if (!free_slots.write(std::move(it)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
~CircularFifo() {}
|
||||
|
||||
using value_type = ItemType;
|
||||
|
||||
auto numFilledSlots() const noexcept { return filled_slots.sizeGuess(); }
|
||||
auto numFreeSlots() const noexcept { return free_slots.sizeGuess(); }
|
||||
auto isFull() const noexcept { return filled_slots.isFull(); }
|
||||
|
||||
ItemType pop_free() {
|
||||
ItemType v;
|
||||
while (!free_slots.read(v))
|
||||
;
|
||||
return std::move(v);
|
||||
// return v;
|
||||
}
|
||||
|
||||
bool try_pop_free(ItemType &v) { return free_slots.read(v); }
|
||||
|
||||
ItemType pop_value(std::chrono::nanoseconds wait, std::atomic<bool> &stopped) {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v) && !stopped) {
|
||||
std::this_thread::sleep_for(wait);
|
||||
}
|
||||
return std::move(v);
|
||||
}
|
||||
|
||||
ItemType pop_value() {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v))
|
||||
;
|
||||
return std::move(v);
|
||||
}
|
||||
|
||||
ItemType *frontPtr() { return filled_slots.frontPtr(); }
|
||||
|
||||
// TODO! Add function to move item from filled to free to be used
|
||||
// with the frontPtr function
|
||||
|
||||
template <class... Args> void push_value(Args &&...recordArgs) {
|
||||
while (!filled_slots.write(std::forward<Args>(recordArgs)...))
|
||||
;
|
||||
}
|
||||
|
||||
template <class... Args> bool try_push_value(Args &&...recordArgs) {
|
||||
return filled_slots.write(std::forward<Args>(recordArgs)...);
|
||||
}
|
||||
|
||||
template <class... Args> void push_free(Args &&...recordArgs) {
|
||||
while (!free_slots.write(std::forward<Args>(recordArgs)...))
|
||||
;
|
||||
}
|
||||
|
||||
template <class... Args> bool try_push_free(Args &&...recordArgs) {
|
||||
return free_slots.write(std::forward<Args>(recordArgs)...);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
121
include/aare/Cluster.hpp
Normal file
121
include/aare/Cluster.hpp
Normal file
@ -0,0 +1,121 @@
|
||||
|
||||
/************************************************
|
||||
* @file Cluster.hpp
|
||||
* @short definition of cluster, where CoordType (x,y) give
|
||||
* the cluster center coordinates and data the actual cluster data
|
||||
* cluster size is given as template parameters
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
#include <type_traits>
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
constexpr bool is_valid_cluster =
|
||||
std::is_arithmetic_v<T> && std::is_integral_v<CoordType> &&
|
||||
(ClusterSizeX > 0) && (ClusterSizeY > 0);
|
||||
|
||||
// requires clause c++20 maybe update
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t,
|
||||
typename Enable = std::enable_if_t<
|
||||
is_valid_cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>>
|
||||
struct Cluster {
|
||||
CoordType x;
|
||||
CoordType y;
|
||||
T data[ClusterSizeX * ClusterSizeY];
|
||||
|
||||
T sum() const {
|
||||
return std::accumulate(data, data + ClusterSizeX * ClusterSizeY, 0);
|
||||
}
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
|
||||
constexpr size_t num_2x2_subclusters =
|
||||
(ClusterSizeX - 1) * (ClusterSizeY - 1);
|
||||
|
||||
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
|
||||
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
|
||||
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
|
||||
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
|
||||
data[i * ClusterSizeX + j] +
|
||||
data[i * ClusterSizeX + j + 1] +
|
||||
data[(i + 1) * ClusterSizeX + j] +
|
||||
data[(i + 1) * ClusterSizeX + j + 1];
|
||||
}
|
||||
|
||||
int index = std::max_element(sum_2x2_subcluster.begin(),
|
||||
sum_2x2_subcluster.end()) -
|
||||
sum_2x2_subcluster.begin();
|
||||
return std::make_pair(sum_2x2_subcluster[index], index);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for 2x2 clusters (only one sum exists)
|
||||
template <typename T> struct Cluster<T, 2, 2, int16_t> {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
T data[4];
|
||||
|
||||
T sum() const { return std::accumulate(data, data + 4, 0); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3],
|
||||
0); // Only one possible 2x2 sum
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for 3x3 clusters
|
||||
template <typename T> struct Cluster<T, 3, 3, int16_t> {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
T data[9];
|
||||
|
||||
T sum() const { return std::accumulate(data, data + 9, 0); }
|
||||
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
|
||||
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
|
||||
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
|
||||
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
}
|
||||
};
|
||||
|
||||
// Type Traits for is_cluster_type
|
||||
template <typename T>
|
||||
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
|
||||
|
||||
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
|
||||
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
|
||||
|
||||
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
struct extract_template_arguments; // Forward declaration
|
||||
|
||||
// helper struct to extract template argument
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
struct extract_template_arguments<
|
||||
Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
using value_type = T;
|
||||
static constexpr int cluster_size_x = ClusterSizeX;
|
||||
static constexpr int cluster_size_y = ClusterSizeY;
|
||||
using coordtype = CoordType;
|
||||
};
|
||||
|
||||
} // namespace aare
|
54
include/aare/ClusterCollector.hpp
Normal file
54
include/aare/ClusterCollector.hpp
Normal file
@ -0,0 +1,54 @@
|
||||
#pragma once
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterCollector {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::vector<ClusterVector<ClusterType>> m_clusters;
|
||||
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterCollector started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
m_clusters.push_back(std::move(*clusters));
|
||||
m_source->popFront();
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
fmt::print("ClusterCollector stopped\n");
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterCollector(ClusterFinderMT<ClusterType, uint16_t, double> *source) {
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterCollector::process, this);
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
}
|
||||
std::vector<ClusterVector<ClusterType>> steal_clusters() {
|
||||
if (!m_stopped) {
|
||||
throw std::runtime_error("ClusterCollector is still running");
|
||||
}
|
||||
return std::move(m_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,45 +1,16 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/GainMap.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <optional>
|
||||
|
||||
namespace aare {
|
||||
|
||||
struct Cluster3x3 {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[9];
|
||||
};
|
||||
|
||||
typedef enum {
|
||||
cBottomLeft = 0,
|
||||
cBottomRight = 1,
|
||||
cTopLeft = 2,
|
||||
cTopRight = 3
|
||||
} corner;
|
||||
|
||||
typedef enum {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
pBottomRight = 2,
|
||||
pLeft = 3,
|
||||
pCenter = 4,
|
||||
pRight = 5,
|
||||
pTopLeft = 6,
|
||||
pTop = 7,
|
||||
pTopRight = 8
|
||||
} pixel;
|
||||
|
||||
struct ClusterAnalysis {
|
||||
uint32_t c;
|
||||
int32_t tot;
|
||||
double etax;
|
||||
double etay;
|
||||
};
|
||||
|
||||
/*
|
||||
Binary cluster file. Expects data to be layed out as:
|
||||
int32_t frame_number
|
||||
@ -49,33 +20,436 @@ int32_t frame_number
|
||||
uint32_t number_of_clusters
|
||||
....
|
||||
*/
|
||||
|
||||
// TODO: change to support any type of clusters, e.g. header line with
|
||||
// clsuter_size_x, cluster_size_y,
|
||||
/**
|
||||
* @brief Class to read and write cluster files
|
||||
* Expects data to be laid out as:
|
||||
*
|
||||
*
|
||||
* int32_t frame_number
|
||||
* uint32_t number_of_clusters
|
||||
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
|
||||
* int32_t frame_number
|
||||
* uint32_t number_of_clusters
|
||||
* etc.
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename Enable = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFile {
|
||||
FILE *fp{};
|
||||
uint32_t m_num_left{};
|
||||
size_t m_chunk_size{};
|
||||
const std::string m_mode;
|
||||
uint32_t m_num_left{}; /*Number of photons left in frame*/
|
||||
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
|
||||
const std::string m_mode; /*Mode to open the file in*/
|
||||
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
|
||||
std::optional<NDArray<int32_t, 2>>
|
||||
m_noise_map; /*Noise map to cut photons, will be applied if set*/
|
||||
std::optional<GainMap> m_gain_map; /*Gain map to apply to the clusters, will
|
||||
be applied if set*/
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new Cluster File object
|
||||
* @param fname path to the file
|
||||
* @param chunk_size number of clusters to read at a time when iterating
|
||||
* over the file
|
||||
* @param mode mode to open the file in. "r" for reading, "w" for writing,
|
||||
* "a" for appending
|
||||
* @throws std::runtime_error if the file could not be opened
|
||||
*/
|
||||
ClusterFile(const std::filesystem::path &fname, size_t chunk_size = 1000,
|
||||
const std::string &mode = "r");
|
||||
~ClusterFile();
|
||||
std::vector<Cluster3x3> read_clusters(size_t n_clusters);
|
||||
std::vector<Cluster3x3> read_frame(int32_t &out_fnum);
|
||||
void write_frame(int32_t frame_number,
|
||||
const ClusterVector<int32_t> &clusters);
|
||||
std::vector<Cluster3x3>
|
||||
read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
|
||||
|
||||
~ClusterFile();
|
||||
|
||||
/**
|
||||
* @brief Read n_clusters clusters from the file discarding frame numbers.
|
||||
* If EOF is reached the returned vector will have less than n_clusters
|
||||
* clusters
|
||||
*/
|
||||
ClusterVector<ClusterType> read_clusters(size_t n_clusters);
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file and return the clusters. The
|
||||
* cluster vector will have the frame number set.
|
||||
* @throws std::runtime_error if the file is not opened for reading or the
|
||||
* file pointer not at the beginning of a frame
|
||||
*/
|
||||
ClusterVector<ClusterType> read_frame();
|
||||
|
||||
void write_frame(const ClusterVector<ClusterType> &clusters);
|
||||
|
||||
/**
|
||||
* @brief Return the chunk size
|
||||
*/
|
||||
size_t chunk_size() const { return m_chunk_size; }
|
||||
|
||||
/**
|
||||
* @brief Set the region of interest to use when reading clusters. If set
|
||||
* only clusters within the ROI will be read.
|
||||
*/
|
||||
void set_roi(ROI roi);
|
||||
|
||||
/**
|
||||
* @brief Set the noise map to use when reading clusters. If set clusters
|
||||
* below the noise level will be discarded. Selection criteria one of:
|
||||
* Central pixel above noise, highest 2x2 sum above 2 * noise, total sum
|
||||
* above 3 * noise.
|
||||
*/
|
||||
void set_noise_map(const NDView<int32_t, 2> noise_map);
|
||||
|
||||
/**
|
||||
* @brief Set the gain map to use when reading clusters. If set the gain map
|
||||
* will be applied to the clusters that pass ROI and noise_map selection.
|
||||
*/
|
||||
void set_gain_map(const NDView<double, 2> gain_map);
|
||||
|
||||
void set_gain_map(const GainMap &gain_map);
|
||||
|
||||
void set_gain_map(const GainMap &&gain_map);
|
||||
|
||||
/**
|
||||
* @brief Close the file. If not closed the file will be closed in the
|
||||
* destructor
|
||||
*/
|
||||
void close();
|
||||
|
||||
private:
|
||||
ClusterVector<ClusterType> read_clusters_with_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_clusters_without_cut(size_t n_clusters);
|
||||
ClusterVector<ClusterType> read_frame_with_cut();
|
||||
ClusterVector<ClusterType> read_frame_without_cut();
|
||||
bool is_selected(ClusterType &cl);
|
||||
ClusterType read_one_cluster();
|
||||
};
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
int analyze_cluster(Cluster3x3& cl, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterFile<ClusterType, Enable>::ClusterFile(
|
||||
const std::filesystem::path &fname, size_t chunk_size,
|
||||
const std::string &mode)
|
||||
: m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
NDArray<double, 2> calculate_eta2( ClusterVector<int>& clusters);
|
||||
std::array<double,2> calculate_eta2( Cluster3x3& cl);
|
||||
if (mode == "r") {
|
||||
fp = fopen(fname.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(fname.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(fname.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
fname.string());
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterFile<ClusterType, Enable>::~ClusterFile() {
|
||||
close();
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_roi(ROI roi) {
|
||||
m_roi = roi;
|
||||
}
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_noise_map(
|
||||
const NDView<int32_t, 2> noise_map) {
|
||||
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||
}
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_gain_map(
|
||||
const NDView<double, 2> gain_map) {
|
||||
m_gain_map = GainMap(gain_map);
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_gain_map(const GainMap &gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::set_gain_map(const GainMap &&gain_map) {
|
||||
m_gain_map = gain_map;
|
||||
}
|
||||
|
||||
// TODO generally supported for all clsuter types
|
||||
template <typename ClusterType, typename Enable>
|
||||
void ClusterFile<ClusterType, Enable>::write_frame(
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
if (m_mode != "w" && m_mode != "a") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
if (!(clusters.cluster_size_x() == 3) &&
|
||||
!(clusters.cluster_size_y() == 3)) {
|
||||
throw std::runtime_error("Only 3x3 clusters are supported");
|
||||
}
|
||||
int32_t frame_number = clusters.frame_number();
|
||||
fwrite(&frame_number, sizeof(frame_number), 1, fp);
|
||||
uint32_t n_clusters = clusters.size();
|
||||
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
|
||||
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_clusters_with_cut(n_clusters);
|
||||
} else {
|
||||
return read_clusters_without_cut(n_clusters);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_without_cut(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
|
||||
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
|
||||
auto buf = clusters.data();
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to read we
|
||||
// read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread((buf + nph_read * clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
clusters.set_frame_number(iframe);
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read += fread((buf + nph_read * clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the vector to the number of clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_clusters_with_cut(size_t n_clusters) {
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(n_clusters);
|
||||
|
||||
// if there are photons left from previous frame read them first
|
||||
if (m_num_left) {
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we did not have enough clusters left in the previous frame
|
||||
// keep on reading frames until reaching n_clusters
|
||||
if (clusters.size() < n_clusters) {
|
||||
// sanity check
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
LOCATION + "Entered second loop with clusters left\n");
|
||||
}
|
||||
|
||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||
clusters.set_frame_number(
|
||||
frame_number); // cluster vector will hold the last frame
|
||||
// number
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we have enough clusters, break out of the outer while loop
|
||||
if (clusters.size() >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterType ClusterFile<ClusterType, Enable>::read_one_cluster() {
|
||||
ClusterType c;
|
||||
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||
}
|
||||
--m_num_left;
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType> ClusterFile<ClusterType, Enable>::read_frame() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error(LOCATION + "File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_frame_with_cut();
|
||||
} else {
|
||||
return read_frame_without_cut();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read clusters");
|
||||
}
|
||||
clusters.resize(n_clusters);
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
ClusterVector<ClusterType>
|
||||
ClusterFile<ClusterType, Enable>::read_frame_with_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<ClusterType> clusters;
|
||||
clusters.reserve(m_num_left);
|
||||
clusters.set_frame_number(frame_number);
|
||||
while (m_num_left) {
|
||||
ClusterType c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c);
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
m_gain_map->apply_gain_map(clusters);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
template <typename ClusterType, typename Enable>
|
||||
bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
|
||||
// Should fail fast
|
||||
if (m_roi) {
|
||||
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
auto cluster_size_x = extract_template_arguments<
|
||||
std::remove_reference_t<decltype(cl)>>::cluster_size_x;
|
||||
auto cluster_size_y = extract_template_arguments<
|
||||
std::remove_reference_t<decltype(cl)>>::cluster_size_y;
|
||||
|
||||
size_t cluster_center_index =
|
||||
(cluster_size_x / 2) + (cluster_size_y / 2) * cluster_size_x;
|
||||
|
||||
if (m_noise_map) {
|
||||
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
|
||||
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
|
||||
auto total_sum = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise =
|
||||
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
|
||||
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise ||
|
||||
total_sum <= 3 * noise) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// we passed all checks
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
|
62
include/aare/ClusterFileSink.hpp
Normal file
62
include/aare/ClusterFileSink.hpp
Normal file
@ -0,0 +1,62 @@
|
||||
#pragma once
|
||||
#include <atomic>
|
||||
#include <filesystem>
|
||||
#include <thread>
|
||||
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterFileSink {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_stopped{true};
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
std::thread m_thread;
|
||||
std::ofstream m_file;
|
||||
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
fmt::print("ClusterFileSink started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
// Write clusters to file
|
||||
int32_t frame_number =
|
||||
clusters->frame_number(); // TODO! Should we store frame
|
||||
// number already as int?
|
||||
uint32_t num_clusters = clusters->size();
|
||||
m_file.write(reinterpret_cast<const char *>(&frame_number),
|
||||
sizeof(frame_number));
|
||||
m_file.write(reinterpret_cast<const char *>(&num_clusters),
|
||||
sizeof(num_clusters));
|
||||
m_file.write(reinterpret_cast<const char *>(clusters->data()),
|
||||
clusters->size() * clusters->item_size());
|
||||
m_source->popFront();
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
fmt::print("ClusterFileSink stopped\n");
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
|
||||
const std::filesystem::path &fname) {
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
}
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
m_thread.join();
|
||||
m_file.close();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,15 +1,16 @@
|
||||
#pragma once
|
||||
#include "aare/core/defs.hpp"
|
||||
#include <filesystem>
|
||||
#include <string>
|
||||
#include <fmt/format.h>
|
||||
#include <string>
|
||||
|
||||
namespace aare {
|
||||
struct ClusterHeader {
|
||||
int32_t frame_number;
|
||||
int32_t n_clusters;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", n_clusters: " + std::to_string(n_clusters);
|
||||
return "frame_number: " + std::to_string(frame_number) +
|
||||
", n_clusters: " + std::to_string(n_clusters);
|
||||
}
|
||||
};
|
||||
|
||||
@ -24,7 +25,8 @@ struct ClusterV2_ {
|
||||
data_str += std::to_string(d) + ", ";
|
||||
}
|
||||
data_str += "]";
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) + ", data: " + data_str;
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y) +
|
||||
", data: " + data_str;
|
||||
}
|
||||
return "x: " + std::to_string(x) + ", y: " + std::to_string(y);
|
||||
}
|
||||
@ -34,27 +36,31 @@ struct ClusterV2 {
|
||||
ClusterV2_ cluster;
|
||||
int32_t frame_number;
|
||||
std::string to_string() const {
|
||||
return "frame_number: " + std::to_string(frame_number) + ", " + cluster.to_string();
|
||||
return "frame_number: " + std::to_string(frame_number) + ", " +
|
||||
cluster.to_string();
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief
|
||||
* important not: fp always points to the clusters header and does not point to individual clusters
|
||||
* important not: fp always points to the clusters header and does not point to
|
||||
* individual clusters
|
||||
*
|
||||
*/
|
||||
class ClusterFileV2 {
|
||||
std::filesystem::path m_fpath;
|
||||
std::filesystem::path m_fpath;
|
||||
std::string m_mode;
|
||||
FILE *fp{nullptr};
|
||||
|
||||
void check_open(){
|
||||
void check_open() {
|
||||
if (!fp)
|
||||
throw std::runtime_error(fmt::format("File: {} not open", m_fpath.string()));
|
||||
throw std::runtime_error(
|
||||
fmt::format("File: {} not open", m_fpath.string()));
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode): m_fpath(fpath), m_mode(mode) {
|
||||
ClusterFileV2(std::filesystem::path const &fpath, std::string const &mode)
|
||||
: m_fpath(fpath), m_mode(mode) {
|
||||
if (m_mode != "r" && m_mode != "w")
|
||||
throw std::invalid_argument("mode must be 'r' or 'w'");
|
||||
if (m_mode == "r" && !std::filesystem::exists(m_fpath))
|
||||
@ -77,7 +83,7 @@ class ClusterFileV2 {
|
||||
check_open();
|
||||
|
||||
ClusterHeader header;
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
fread(&header, sizeof(ClusterHeader), 1, fp);
|
||||
std::vector<ClusterV2_> clusters_(header.n_clusters);
|
||||
fread(clusters_.data(), sizeof(ClusterV2_), header.n_clusters, fp);
|
||||
std::vector<ClusterV2> clusters;
|
||||
@ -117,7 +123,7 @@ class ClusterFileV2 {
|
||||
|
||||
size_t write(std::vector<std::vector<ClusterV2>> const &clusters) {
|
||||
check_open();
|
||||
if (m_mode != "w")
|
||||
if (m_mode != "w")
|
||||
throw std::runtime_error("File not opened in write mode");
|
||||
|
||||
size_t n_clusters = 0;
|
||||
|
@ -10,31 +10,21 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
/** enum to define the event types */
|
||||
enum class eventType {
|
||||
PEDESTAL, /** pedestal */
|
||||
NEIGHBOUR, /** neighbour i.e. below threshold, but in the cluster of a
|
||||
photon */
|
||||
PHOTON, /** photon i.e. above threshold */
|
||||
PHOTON_MAX, /** maximum of a cluster satisfying the photon conditions */
|
||||
NEGATIVE_PEDESTAL, /** negative value, will not be accounted for as pedestal
|
||||
in order to avoid drift of the pedestal towards
|
||||
negative values */
|
||||
UNDEFINED_EVENT = -1 /** undefined */
|
||||
};
|
||||
|
||||
template <typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename CT = int32_t>
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinder {
|
||||
Shape<2> m_image_size;
|
||||
const int m_cluster_sizeX;
|
||||
const int m_cluster_sizeY;
|
||||
// const PEDESTAL_TYPE m_threshold;
|
||||
const PEDESTAL_TYPE m_nSigma;
|
||||
const PEDESTAL_TYPE c2;
|
||||
const PEDESTAL_TYPE c3;
|
||||
Pedestal<PEDESTAL_TYPE> m_pedestal;
|
||||
ClusterVector<CT> m_clusters;
|
||||
ClusterVector<ClusterType> m_clusters;
|
||||
|
||||
static const uint8_t ClusterSizeX =
|
||||
extract_template_arguments<ClusterType>::cluster_size_x;
|
||||
static const uint8_t ClusterSizeY =
|
||||
extract_template_arguments<ClusterType>::cluster_size_x;
|
||||
using CT = typename extract_template_arguments<ClusterType>::value_type;
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -45,15 +35,12 @@ class ClusterFinder {
|
||||
* @param capacity initial capacity of the cluster vector
|
||||
*
|
||||
*/
|
||||
ClusterFinder(Shape<2> image_size, Shape<2> cluster_size,
|
||||
PEDESTAL_TYPE nSigma = 5.0, size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_cluster_sizeX(cluster_size[0]),
|
||||
m_cluster_sizeY(cluster_size[1]),
|
||||
m_nSigma(nSigma),
|
||||
c2(sqrt((m_cluster_sizeY + 1) / 2 * (m_cluster_sizeX + 1) / 2)),
|
||||
c3(sqrt(m_cluster_sizeX * m_cluster_sizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]),
|
||||
m_clusters(m_cluster_sizeX, m_cluster_sizeY, capacity) {};
|
||||
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 1000000)
|
||||
: m_image_size(image_size), m_nSigma(nSigma),
|
||||
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
|
||||
c3(sqrt(ClusterSizeX * ClusterSizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {};
|
||||
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
m_pedestal.push(frame);
|
||||
@ -61,6 +48,7 @@ class ClusterFinder {
|
||||
|
||||
NDArray<PEDESTAL_TYPE, 2> pedestal() { return m_pedestal.mean(); }
|
||||
NDArray<PEDESTAL_TYPE, 2> noise() { return m_pedestal.std(); }
|
||||
void clear_pedestal() { m_pedestal.clear(); }
|
||||
|
||||
/**
|
||||
* @brief Move the clusters from the ClusterVector in the ClusterFinder to a
|
||||
@ -69,23 +57,29 @@ class ClusterFinder {
|
||||
* same capacity as the old one
|
||||
*
|
||||
*/
|
||||
ClusterVector<CT> steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<CT> tmp = std::move(m_clusters);
|
||||
ClusterVector<ClusterType>
|
||||
steal_clusters(bool realloc_same_capacity = false) {
|
||||
ClusterVector<ClusterType> tmp = std::move(m_clusters);
|
||||
if (realloc_same_capacity)
|
||||
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY,
|
||||
tmp.capacity());
|
||||
m_clusters = ClusterVector<ClusterType>(tmp.capacity());
|
||||
else
|
||||
m_clusters = ClusterVector<CT>(m_cluster_sizeX, m_cluster_sizeY);
|
||||
m_clusters = ClusterVector<ClusterType>{};
|
||||
return tmp;
|
||||
}
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame) {
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
// // TODO! deal with even size clusters
|
||||
// // currently 3,3 -> +/- 1
|
||||
// // 4,4 -> +/- 2
|
||||
int dy = m_cluster_sizeY / 2;
|
||||
int dx = m_cluster_sizeX / 2;
|
||||
int dy = ClusterSizeY / 2;
|
||||
int dx = ClusterSizeX / 2;
|
||||
int has_center_pixel_x =
|
||||
ClusterSizeX %
|
||||
2; // for even sized clusters there is no proper cluster center and
|
||||
// even amount of pixels around the center
|
||||
int has_center_pixel_y = ClusterSizeY % 2;
|
||||
|
||||
std::vector<CT> cluster_data(m_cluster_sizeX * m_cluster_sizeY);
|
||||
m_clusters.set_frame_number(frame_number);
|
||||
std::vector<CT> cluster_data(ClusterSizeX * ClusterSizeY);
|
||||
for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
|
||||
@ -100,8 +94,8 @@ class ClusterFinder {
|
||||
continue; // NEGATIVE_PEDESTAL go to next pixel
|
||||
// TODO! No pedestal update???
|
||||
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
PEDESTAL_TYPE val =
|
||||
@ -121,9 +115,13 @@ class ClusterFinder {
|
||||
} else if (total > c3 * m_nSigma * rms) {
|
||||
// pass
|
||||
} else {
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix));
|
||||
m_pedestal.push_fast(iy, ix, frame(iy, ix));
|
||||
continue; // It was a pedestal value nothing to store
|
||||
// m_pedestal.push(iy, ix, frame(iy, ix)); // Safe option
|
||||
m_pedestal.push_fast(
|
||||
iy, ix,
|
||||
frame(iy,
|
||||
ix)); // Assume we have reached n_samples in the
|
||||
// pedestal, slight performance improvement
|
||||
continue; // It was a pedestal value nothing to store
|
||||
}
|
||||
|
||||
// Store cluster
|
||||
@ -135,13 +133,14 @@ class ClusterFinder {
|
||||
// It's worth redoing the look since most of the time we
|
||||
// don't have a photon
|
||||
int i = 0;
|
||||
for (int ir = -dy; ir < dy + 1; ir++) {
|
||||
for (int ic = -dx; ic < dx + 1; ic++) {
|
||||
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
|
||||
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
|
||||
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
CT tmp =
|
||||
static_cast<CT>(frame(iy + ir, ix + ic)) -
|
||||
m_pedestal.mean(iy + ir, ix + ic);
|
||||
static_cast<CT>(
|
||||
m_pedestal.mean(iy + ir, ix + ic));
|
||||
cluster_data[i] =
|
||||
tmp; // Watch for out of bounds access
|
||||
i++;
|
||||
@ -149,122 +148,17 @@ class ClusterFinder {
|
||||
}
|
||||
}
|
||||
|
||||
ClusterType new_cluster{};
|
||||
new_cluster.x = ix;
|
||||
new_cluster.y = iy;
|
||||
std::copy(cluster_data.begin(), cluster_data.end(),
|
||||
new_cluster.data);
|
||||
// Add the cluster to the output ClusterVector
|
||||
m_clusters.push_back(
|
||||
ix, iy,
|
||||
reinterpret_cast<std::byte *>(cluster_data.data()));
|
||||
m_clusters.push_back(new_cluster);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// // template <typename FRAME_TYPE, typename PEDESTAL_TYPE>
|
||||
// std::vector<DynamicCluster>
|
||||
// find_clusters_with_threshold(NDView<FRAME_TYPE, 2> frame,
|
||||
// Pedestal<PEDESTAL_TYPE> &pedestal) {
|
||||
// assert(m_threshold > 0);
|
||||
// std::vector<DynamicCluster> clusters;
|
||||
// std::vector<std::vector<eventType>> eventMask;
|
||||
// for (int i = 0; i < frame.shape(0); i++) {
|
||||
// eventMask.push_back(std::vector<eventType>(frame.shape(1)));
|
||||
// }
|
||||
// double tthr, tthr1, tthr2;
|
||||
|
||||
// NDArray<FRAME_TYPE, 2> rest({frame.shape(0), frame.shape(1)});
|
||||
// NDArray<int, 2> nph({frame.shape(0), frame.shape(1)});
|
||||
// // convert to n photons
|
||||
// // nph = (frame-pedestal.mean()+0.5*m_threshold)/m_threshold; // can
|
||||
// be
|
||||
// // optimized with expression templates?
|
||||
// for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
// for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
// auto val = frame(iy, ix) - pedestal.mean(iy, ix);
|
||||
// nph(iy, ix) = (val + 0.5 * m_threshold) / m_threshold;
|
||||
// nph(iy, ix) = nph(iy, ix) < 0 ? 0 : nph(iy, ix);
|
||||
// rest(iy, ix) = val - nph(iy, ix) * m_threshold;
|
||||
// }
|
||||
// }
|
||||
// // iterate over frame pixels
|
||||
// for (int iy = 0; iy < frame.shape(0); iy++) {
|
||||
// for (int ix = 0; ix < frame.shape(1); ix++) {
|
||||
// eventMask[iy][ix] = eventType::PEDESTAL;
|
||||
// // initialize max and total
|
||||
// FRAME_TYPE max = std::numeric_limits<FRAME_TYPE>::min();
|
||||
// long double total = 0;
|
||||
// if (rest(iy, ix) <= 0.25 * m_threshold) {
|
||||
// pedestal.push(iy, ix, frame(iy, ix));
|
||||
// continue;
|
||||
// }
|
||||
// eventMask[iy][ix] = eventType::NEIGHBOUR;
|
||||
// // iterate over cluster pixels around the current pixel
|
||||
// (ix,iy) for (short ir = -(m_cluster_sizeY / 2);
|
||||
// ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
// for (short ic = -(m_cluster_sizeX / 2);
|
||||
// ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
// if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
// iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
// auto val = frame(iy + ir, ix + ic) -
|
||||
// pedestal.mean(iy + ir, ix + ic);
|
||||
// total += val;
|
||||
// if (val > max) {
|
||||
// max = val;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// auto rms = pedestal.std(iy, ix);
|
||||
// if (m_nSigma == 0) {
|
||||
// tthr = m_threshold;
|
||||
// tthr1 = m_threshold;
|
||||
// tthr2 = m_threshold;
|
||||
// } else {
|
||||
// tthr = m_nSigma * rms;
|
||||
// tthr1 = m_nSigma * rms * c3;
|
||||
// tthr2 = m_nSigma * rms * c2;
|
||||
|
||||
// if (m_threshold > 2 * tthr)
|
||||
// tthr = m_threshold - tthr;
|
||||
// if (m_threshold > 2 * tthr1)
|
||||
// tthr1 = tthr - tthr1;
|
||||
// if (m_threshold > 2 * tthr2)
|
||||
// tthr2 = tthr - tthr2;
|
||||
// }
|
||||
// if (total > tthr1 || max > tthr) {
|
||||
// eventMask[iy][ix] = eventType::PHOTON;
|
||||
// nph(iy, ix) += 1;
|
||||
// rest(iy, ix) -= m_threshold;
|
||||
// } else {
|
||||
// pedestal.push(iy, ix, frame(iy, ix));
|
||||
// continue;
|
||||
// }
|
||||
// if (eventMask[iy][ix] == eventType::PHOTON &&
|
||||
// frame(iy, ix) - pedestal.mean(iy, ix) >= max) {
|
||||
// eventMask[iy][ix] = eventType::PHOTON_MAX;
|
||||
// DynamicCluster cluster(m_cluster_sizeX, m_cluster_sizeY,
|
||||
// Dtype(typeid(FRAME_TYPE)));
|
||||
// cluster.x = ix;
|
||||
// cluster.y = iy;
|
||||
// short i = 0;
|
||||
// for (short ir = -(m_cluster_sizeY / 2);
|
||||
// ir < (m_cluster_sizeY / 2) + 1; ir++) {
|
||||
// for (short ic = -(m_cluster_sizeX / 2);
|
||||
// ic < (m_cluster_sizeX / 2) + 1; ic++) {
|
||||
// if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
|
||||
// iy + ir >= 0 && iy + ir < frame.shape(0)) {
|
||||
// auto tmp = frame(iy + ir, ix + ic) -
|
||||
// pedestal.mean(iy + ir, ix + ic);
|
||||
// cluster.set<FRAME_TYPE>(i, tmp);
|
||||
// i++;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// clusters.push_back(cluster);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// return clusters;
|
||||
// }
|
||||
};
|
||||
|
||||
} // namespace aare
|
274
include/aare/ClusterFinderMT.hpp
Normal file
274
include/aare/ClusterFinderMT.hpp
Normal file
@ -0,0 +1,274 @@
|
||||
#pragma once
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
enum class FrameType {
|
||||
DATA,
|
||||
PEDESTAL,
|
||||
};
|
||||
|
||||
struct FrameWrapper {
|
||||
FrameType type;
|
||||
uint64_t frame_number;
|
||||
NDArray<uint16_t, 2> data;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief ClusterFinderMT is a multi-threaded version of ClusterFinder. It uses
|
||||
* a producer-consumer queue to distribute the frames to the threads. The
|
||||
* clusters are collected in a single output queue.
|
||||
* @tparam FRAME_TYPE type of the frame data
|
||||
* @tparam PEDESTAL_TYPE type of the pedestal data
|
||||
* @tparam CT type of the cluster data
|
||||
*/
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
class ClusterFinderMT {
|
||||
|
||||
using CT = typename extract_template_arguments<ClusterType>::value_type;
|
||||
size_t m_current_thread{0};
|
||||
size_t m_n_threads{0};
|
||||
using Finder = ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>;
|
||||
using InputQueue = ProducerConsumerQueue<FrameWrapper>;
|
||||
using OutputQueue = ProducerConsumerQueue<ClusterVector<ClusterType>>;
|
||||
std::vector<std::unique_ptr<InputQueue>> m_input_queues;
|
||||
std::vector<std::unique_ptr<OutputQueue>> m_output_queues;
|
||||
|
||||
OutputQueue m_sink{1000}; // All clusters go into this queue
|
||||
|
||||
std::vector<std::unique_ptr<Finder>> m_cluster_finders;
|
||||
std::vector<std::thread> m_threads;
|
||||
std::thread m_collect_thread;
|
||||
std::chrono::milliseconds m_default_wait{1};
|
||||
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
std::atomic<bool> m_processing_threads_stopped{true};
|
||||
|
||||
/**
|
||||
* @brief Function called by the processing threads. It reads the frames
|
||||
* from the input queue and processes them.
|
||||
*/
|
||||
void process(int thread_id) {
|
||||
auto cf = m_cluster_finders[thread_id].get();
|
||||
auto q = m_input_queues[thread_id].get();
|
||||
bool realloc_same_capacity = true;
|
||||
|
||||
while (!m_stop_requested || !q->isEmpty()) {
|
||||
if (FrameWrapper *frame = q->frontPtr(); frame != nullptr) {
|
||||
|
||||
switch (frame->type) {
|
||||
case FrameType::DATA:
|
||||
cf->find_clusters(frame->data.view(), frame->frame_number);
|
||||
m_output_queues[thread_id]->write(
|
||||
cf->steal_clusters(realloc_same_capacity));
|
||||
break;
|
||||
|
||||
case FrameType::PEDESTAL:
|
||||
m_cluster_finders[thread_id]->push_pedestal_frame(
|
||||
frame->data.view());
|
||||
break;
|
||||
}
|
||||
|
||||
// frame is processed now discard it
|
||||
m_input_queues[thread_id]->popFront();
|
||||
} else {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Collect all the clusters from the output queues and write them to
|
||||
* the sink
|
||||
*/
|
||||
void collect() {
|
||||
bool empty = true;
|
||||
while (!m_stop_requested || !empty || !m_processing_threads_stopped) {
|
||||
empty = true;
|
||||
for (auto &queue : m_output_queues) {
|
||||
if (!queue->isEmpty()) {
|
||||
|
||||
while (!m_sink.write(std::move(*queue->frontPtr()))) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
queue->popFront();
|
||||
empty = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new ClusterFinderMT object
|
||||
* @param image_size size of the image
|
||||
* @param cluster_size size of the cluster
|
||||
* @param nSigma number of sigma above the pedestal to consider a photon
|
||||
* @param capacity initial capacity of the cluster vector. Should match
|
||||
* expected number of clusters in a frame per frame.
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
|
||||
size_t capacity = 2000, size_t n_threads = 3)
|
||||
: m_n_threads(n_threads) {
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_cluster_finders.push_back(
|
||||
std::make_unique<
|
||||
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
|
||||
image_size, nSigma, capacity));
|
||||
}
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));
|
||||
m_output_queues.emplace_back(std::make_unique<OutputQueue>(200));
|
||||
}
|
||||
// TODO! Should we start automatically?
|
||||
start();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the sink queue where all the clusters are collected
|
||||
* @warning You need to empty this queue otherwise the cluster finder will
|
||||
* wait forever
|
||||
*/
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *sink() {
|
||||
return &m_sink;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start all processing threads
|
||||
*/
|
||||
void start() {
|
||||
m_processing_threads_stopped = false;
|
||||
m_stop_requested = false;
|
||||
|
||||
for (size_t i = 0; i < m_n_threads; i++) {
|
||||
m_threads.push_back(
|
||||
std::thread(&ClusterFinderMT::process, this, i));
|
||||
}
|
||||
|
||||
m_collect_thread = std::thread(&ClusterFinderMT::collect, this);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stop all processing threads
|
||||
*/
|
||||
void stop() {
|
||||
m_stop_requested = true;
|
||||
|
||||
for (auto &thread : m_threads) {
|
||||
thread.join();
|
||||
}
|
||||
m_threads.clear();
|
||||
|
||||
m_processing_threads_stopped = true;
|
||||
m_collect_thread.join();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Wait for all the queues to be empty. Mostly used for timing tests.
|
||||
*/
|
||||
void sync() {
|
||||
for (auto &q : m_input_queues) {
|
||||
while (!q->isEmpty()) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
for (auto &q : m_output_queues) {
|
||||
while (!q->isEmpty()) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
while (!m_sink.isEmpty()) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Push a pedestal frame to all the cluster finders. The frames is
|
||||
* expected to be dark. No photon finding is done. Just pedestal update.
|
||||
*/
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
FrameWrapper fw{FrameType::PEDESTAL, 0,
|
||||
NDArray(frame)}; // TODO! copies the data!
|
||||
|
||||
for (auto &queue : m_input_queues) {
|
||||
while (!queue->write(fw)) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Push the frame to the queue of the next available thread. Function
|
||||
* returns once the frame is in a queue.
|
||||
* @note Spin locks with a default wait if the queue is full.
|
||||
*/
|
||||
void find_clusters(NDView<FRAME_TYPE, 2> frame, uint64_t frame_number = 0) {
|
||||
FrameWrapper fw{FrameType::DATA, frame_number,
|
||||
NDArray(frame)}; // TODO! copies the data!
|
||||
while (!m_input_queues[m_current_thread % m_n_threads]->write(fw)) {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
m_current_thread++;
|
||||
}
|
||||
|
||||
void clear_pedestal() {
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
for (auto &cf : m_cluster_finders) {
|
||||
cf->clear_pedestal();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pedestal currently used by the cluster finder
|
||||
* @param thread_index index of the thread
|
||||
*/
|
||||
auto pedestal(size_t thread_index = 0) {
|
||||
if (m_cluster_finders.empty()) {
|
||||
throw std::runtime_error("No cluster finders available");
|
||||
}
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
if (thread_index >= m_cluster_finders.size()) {
|
||||
throw std::runtime_error("Thread index out of range");
|
||||
}
|
||||
return m_cluster_finders[thread_index]->pedestal();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the noise currently used by the cluster finder
|
||||
* @param thread_index index of the thread
|
||||
*/
|
||||
auto noise(size_t thread_index = 0) {
|
||||
if (m_cluster_finders.empty()) {
|
||||
throw std::runtime_error("No cluster finders available");
|
||||
}
|
||||
if (!m_processing_threads_stopped) {
|
||||
throw std::runtime_error("ClusterFinderMT is still running");
|
||||
}
|
||||
if (thread_index >= m_cluster_finders.size()) {
|
||||
throw std::runtime_error("Thread index out of range");
|
||||
}
|
||||
return m_cluster_finders[thread_index]->noise();
|
||||
}
|
||||
|
||||
// void push(FrameWrapper&& frame) {
|
||||
// //TODO! need to loop until we are successful
|
||||
// auto rc = m_input_queue.write(std::move(frame));
|
||||
// fmt::print("pushed frame {}\n", rc);
|
||||
// }
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,4 +1,7 @@
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp" //TODO maybe store in seperate file !!!
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
@ -6,23 +9,36 @@
|
||||
|
||||
#include <fmt/core.h>
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
class ClusterVector; // Forward declaration
|
||||
|
||||
/**
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It uses a
|
||||
* contiguous memory buffer to store the clusters.
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It uses a
|
||||
* contiguous memory buffer to store the clusters. It is templated on the data
|
||||
* type and the coordinate type of the clusters.
|
||||
* @note push_back can invalidate pointers to elements in the container
|
||||
* @warning ClusterVector is currently move only to catch unintended copies, but
|
||||
* this might change since there are probably use cases where copying is needed.
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster (normally int16_t)
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
*/
|
||||
template <typename T, typename CoordType=int16_t> class ClusterVector {
|
||||
using value_type = T;
|
||||
size_t m_cluster_size_x;
|
||||
size_t m_cluster_size_y;
|
||||
#if 0
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
std::byte *m_data{};
|
||||
size_t m_size{0};
|
||||
size_t m_capacity;
|
||||
/*
|
||||
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
/**
|
||||
Format string used in the python bindings to create a numpy
|
||||
array from the buffer
|
||||
= - native byte order
|
||||
@ -30,48 +46,46 @@ template <typename T, typename CoordType=int16_t> class ClusterVector {
|
||||
d - double
|
||||
i - int
|
||||
*/
|
||||
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:" ;
|
||||
constexpr static char m_fmt_base[] = "=h:x:\nh:y:\n({},{}){}:data:";
|
||||
|
||||
public:
|
||||
using value_type = T;
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new ClusterVector object
|
||||
* @param cluster_size_x size of the cluster in x direction
|
||||
* @param cluster_size_y size of the cluster in y direction
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
* @param frame_number frame number of the clusters. Default is 0, which is
|
||||
* also used to indicate that the clusters come from many frames
|
||||
*/
|
||||
ClusterVector(size_t cluster_size_x, size_t cluster_size_y,
|
||||
size_t capacity = 1024)
|
||||
: m_cluster_size_x(cluster_size_x), m_cluster_size_y(cluster_size_y),
|
||||
m_capacity(capacity) {
|
||||
allocate_buffer(capacity);
|
||||
}
|
||||
~ClusterVector() {
|
||||
delete[] m_data;
|
||||
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_capacity(capacity), m_frame_number(frame_number) {
|
||||
allocate_buffer(m_capacity);
|
||||
}
|
||||
|
||||
|
||||
//Move constructor
|
||||
~ClusterVector() { delete[] m_data; }
|
||||
|
||||
// Move constructor
|
||||
ClusterVector(ClusterVector &&other) noexcept
|
||||
: m_cluster_size_x(other.m_cluster_size_x),
|
||||
m_cluster_size_y(other.m_cluster_size_y), m_data(other.m_data),
|
||||
m_size(other.m_size), m_capacity(other.m_capacity) {
|
||||
: m_data(other.m_data), m_size(other.m_size),
|
||||
m_capacity(other.m_capacity), m_frame_number(other.m_frame_number) {
|
||||
other.m_data = nullptr;
|
||||
other.m_size = 0;
|
||||
other.m_capacity = 0;
|
||||
}
|
||||
|
||||
//Move assignment operator
|
||||
ClusterVector& operator=(ClusterVector &&other) noexcept {
|
||||
// Move assignment operator
|
||||
ClusterVector &operator=(ClusterVector &&other) noexcept {
|
||||
if (this != &other) {
|
||||
delete[] m_data;
|
||||
m_cluster_size_x = other.m_cluster_size_x;
|
||||
m_cluster_size_y = other.m_cluster_size_y;
|
||||
m_data = other.m_data;
|
||||
m_size = other.m_size;
|
||||
m_capacity = other.m_capacity;
|
||||
m_frame_number = other.m_frame_number;
|
||||
other.m_data = nullptr;
|
||||
other.m_size = 0;
|
||||
other.m_capacity = 0;
|
||||
other.m_frame_number = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
@ -79,7 +93,8 @@ template <typename T, typename CoordType=int16_t> class ClusterVector {
|
||||
/**
|
||||
* @brief Reserve space for at least capacity clusters
|
||||
* @param capacity number of clusters to reserve space for
|
||||
* @note If capacity is less than the current capacity, the function does nothing.
|
||||
* @note If capacity is less than the current capacity, the function does
|
||||
* nothing.
|
||||
*/
|
||||
void reserve(size_t capacity) {
|
||||
if (capacity > m_capacity) {
|
||||
@ -89,35 +104,41 @@ template <typename T, typename CoordType=int16_t> class ClusterVector {
|
||||
|
||||
/**
|
||||
* @brief Add a cluster to the vector
|
||||
* @param x x-coordinate of the cluster
|
||||
* @param y y-coordinate of the cluster
|
||||
* @param data pointer to the data of the cluster
|
||||
* @warning The data pointer must point to a buffer of size cluster_size_x * cluster_size_y * sizeof(T)
|
||||
*/
|
||||
void push_back(CoordType x, CoordType y, const std::byte *data) {
|
||||
void push_back(const ClusterType &cluster) {
|
||||
if (m_size == m_capacity) {
|
||||
allocate_buffer(m_capacity * 2);
|
||||
}
|
||||
std::byte *ptr = element_ptr(m_size);
|
||||
*reinterpret_cast<CoordType *>(ptr) = x;
|
||||
*reinterpret_cast<CoordType *>(ptr) = cluster.x;
|
||||
ptr += sizeof(CoordType);
|
||||
*reinterpret_cast<CoordType *>(ptr) = y;
|
||||
*reinterpret_cast<CoordType *>(ptr) = cluster.y;
|
||||
ptr += sizeof(CoordType);
|
||||
|
||||
std::copy(data, data + m_cluster_size_x * m_cluster_size_y * sizeof(T),
|
||||
ptr);
|
||||
std::memcpy(ptr, cluster.data, ClusterSizeX * ClusterSizeY * sizeof(T));
|
||||
|
||||
m_size++;
|
||||
}
|
||||
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
if (m_size + other.m_size > m_capacity) {
|
||||
allocate_buffer(m_capacity + other.m_size);
|
||||
}
|
||||
std::copy(other.m_data, other.m_data + other.m_size * item_size(),
|
||||
m_data + m_size * item_size());
|
||||
m_size += other.m_size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sum the pixels in each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/
|
||||
/*
|
||||
std::vector<T> sum() {
|
||||
std::vector<T> sums(m_size);
|
||||
const size_t stride = element_offset();
|
||||
const size_t n_pixels = m_cluster_size_x * m_cluster_size_y;
|
||||
const size_t stride = item_size();
|
||||
const size_t n_pixels = ClusterSizeX * ClusterSizeY;
|
||||
std::byte *ptr = m_data + 2 * sizeof(CoordType); // skip x and y
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
@ -128,53 +149,241 @@ template <typename T, typename CoordType=int16_t> class ClusterVector {
|
||||
}
|
||||
return sums;
|
||||
}
|
||||
*/
|
||||
|
||||
size_t size() const { return m_size; }
|
||||
size_t capacity() const { return m_capacity; }
|
||||
|
||||
/**
|
||||
* @brief Return the offset in bytes for a single cluster
|
||||
*/
|
||||
size_t element_offset() const {
|
||||
return 2*sizeof(CoordType) +
|
||||
m_cluster_size_x * m_cluster_size_y * sizeof(T);
|
||||
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
|
||||
* each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
*/ //TODO if underlying container is a vector use std::for_each
|
||||
/*
|
||||
std::vector<T> sum_2x2() {
|
||||
std::vector<T> sums_2x2(m_size);
|
||||
|
||||
for (size_t i = 0; i < m_size; i++) {
|
||||
sums_2x2[i] = at(i).max_sum_2x2;
|
||||
}
|
||||
return sums_2x2;
|
||||
}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
*/
|
||||
size_t size() const { return m_size; }
|
||||
|
||||
uint8_t cluster_size_x() const { return ClusterSizeX; }
|
||||
|
||||
uint8_t cluster_size_y() const { return ClusterSizeY; }
|
||||
|
||||
/**
|
||||
* @brief Return the capacity of the buffer in number of clusters. This is
|
||||
* the number of clusters that can be stored in the current buffer without
|
||||
* reallocation.
|
||||
*/
|
||||
size_t capacity() const { return m_capacity; }
|
||||
|
||||
/**
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
*/
|
||||
size_t item_size() const {
|
||||
return 2 * sizeof(CoordType) + ClusterSizeX * ClusterSizeY * sizeof(T);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the offset in bytes for the i-th cluster
|
||||
*/
|
||||
size_t element_offset(size_t i) const { return element_offset() * i; }
|
||||
size_t element_offset(size_t i) const { return item_size() * i; }
|
||||
|
||||
/**
|
||||
* @brief Return a pointer to the i-th cluster
|
||||
*/
|
||||
std::byte *element_ptr(size_t i) { return m_data + element_offset(i); }
|
||||
const std::byte * element_ptr(size_t i) const { return m_data + element_offset(i); }
|
||||
|
||||
size_t cluster_size_x() const { return m_cluster_size_x; }
|
||||
size_t cluster_size_y() const { return m_cluster_size_y; }
|
||||
/**
|
||||
* @brief Return a pointer to the i-th cluster
|
||||
*/
|
||||
const std::byte *element_ptr(size_t i) const {
|
||||
return m_data + element_offset(i);
|
||||
}
|
||||
|
||||
std::byte *data() { return m_data; }
|
||||
std::byte const *data() const { return m_data; }
|
||||
|
||||
template<typename V>
|
||||
V& at(size_t i) {
|
||||
return *reinterpret_cast<V*>(element_ptr(i));
|
||||
/**
|
||||
* @brief Return a reference to the i-th cluster casted to type V
|
||||
* @tparam V type of the cluster
|
||||
*/
|
||||
ClusterType &at(size_t i) {
|
||||
return *reinterpret_cast<ClusterType *>(element_ptr(i));
|
||||
}
|
||||
|
||||
const ClusterType &at(size_t i) const {
|
||||
return *reinterpret_cast<const ClusterType *>(element_ptr(i));
|
||||
}
|
||||
|
||||
template <typename V> const V &at(size_t i) const {
|
||||
return *reinterpret_cast<const V *>(element_ptr(i));
|
||||
}
|
||||
|
||||
const std::string_view fmt_base() const {
|
||||
//TODO! how do we match on coord_t?
|
||||
// TODO! how do we match on coord_t?
|
||||
return m_fmt_base;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the frame number of the clusters. 0 is used to indicate
|
||||
* that the clusters come from many frames
|
||||
*/
|
||||
uint64_t frame_number() const { return m_frame_number; }
|
||||
|
||||
void set_frame_number(uint64_t frame_number) {
|
||||
m_frame_number = frame_number;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resize the vector to contain new_size clusters. If new_size is
|
||||
* greater than the current capacity, a new buffer is allocated. If the size
|
||||
* is smaller no memory is freed, size is just updated.
|
||||
* @param new_size new size of the vector
|
||||
* @warning The additional clusters are not initialized
|
||||
*/
|
||||
void resize(size_t new_size) {
|
||||
// TODO! Should we initialize the new clusters?
|
||||
if (new_size > m_capacity) {
|
||||
allocate_buffer(new_size);
|
||||
}
|
||||
m_size = new_size;
|
||||
}
|
||||
|
||||
private:
|
||||
void allocate_buffer(size_t new_capacity) {
|
||||
size_t num_bytes = element_offset() * new_capacity;
|
||||
size_t num_bytes = item_size() * new_capacity;
|
||||
std::byte *new_data = new std::byte[num_bytes]{};
|
||||
std::copy(m_data, m_data + element_offset() * m_size, new_data);
|
||||
std::copy(m_data, m_data + item_size() * m_size, new_data);
|
||||
delete[] m_data;
|
||||
m_data = new_data;
|
||||
m_capacity = new_capacity;
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief ClusterVector is a container for clusters of various sizes. It
|
||||
* uses a contiguous memory buffer to store the clusters. It is templated on
|
||||
* the data type and the coordinate type of the clusters.
|
||||
* @note push_back can invalidate pointers to elements in the container
|
||||
* @warning ClusterVector is currently move only to catch unintended copies,
|
||||
* but this might change since there are probably use cases where copying is
|
||||
* needed.
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
|
||||
uint64_t m_frame_number{0}; // TODO! Check frame number size and type
|
||||
|
||||
public:
|
||||
using value_type = T;
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new ClusterVector object
|
||||
* @param capacity initial capacity of the buffer in number of clusters
|
||||
* @param frame_number frame number of the clusters. Default is 0, which is
|
||||
* also used to indicate that the clusters come from many frames
|
||||
*/
|
||||
ClusterVector(size_t capacity = 1024, uint64_t frame_number = 0)
|
||||
: m_frame_number(frame_number) {
|
||||
m_data.reserve(capacity);
|
||||
}
|
||||
|
||||
// Move constructor
|
||||
ClusterVector(ClusterVector &&other) noexcept
|
||||
: m_data(other.m_data), m_frame_number(other.m_frame_number) {
|
||||
other.m_data.clear();
|
||||
}
|
||||
|
||||
// Move assignment operator
|
||||
ClusterVector &operator=(ClusterVector &&other) noexcept {
|
||||
if (this != &other) {
|
||||
m_data = other.m_data;
|
||||
m_frame_number = other.m_frame_number;
|
||||
other.m_data.clear();
|
||||
other.m_frame_number = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reserve space for at least capacity clusters
|
||||
* @param capacity number of clusters to reserve space for
|
||||
* @note If capacity is less than the current capacity, the function does
|
||||
* nothing.
|
||||
*/
|
||||
void reserve(size_t capacity) { m_data.reserve(capacity); }
|
||||
|
||||
void resize(size_t size) { m_data.resize(size); }
|
||||
|
||||
void push_back(const ClusterType &cluster) { m_data.push_back(cluster); }
|
||||
|
||||
ClusterVector &operator+=(const ClusterVector &other) {
|
||||
m_data.insert(m_data.end(), other.begin(), other.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of clusters in the vector
|
||||
*/
|
||||
size_t size() const { return m_data.size(); }
|
||||
|
||||
uint8_t cluster_size_x() const { return ClusterSizeX; }
|
||||
|
||||
uint8_t cluster_size_y() const { return ClusterSizeY; }
|
||||
|
||||
/**
|
||||
* @brief Return the capacity of the buffer in number of clusters. This is
|
||||
* the number of clusters that can be stored in the current buffer without
|
||||
* reallocation.
|
||||
*/
|
||||
size_t capacity() const { return m_data.capacity(); }
|
||||
|
||||
const auto begin() const { return m_data.begin(); }
|
||||
|
||||
const auto end() const { return m_data.end(); }
|
||||
|
||||
/**
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
*/
|
||||
size_t item_size() const {
|
||||
return 2 * sizeof(CoordType) + ClusterSizeX * ClusterSizeY * sizeof(T);
|
||||
}
|
||||
|
||||
ClusterType *data() { return m_data.data(); }
|
||||
ClusterType const *data() const { return m_data.data(); }
|
||||
|
||||
/**
|
||||
* @brief Return a reference to the i-th cluster casted to type V
|
||||
* @tparam V type of the cluster
|
||||
*/
|
||||
ClusterType &at(size_t i) { return m_data[i]; }
|
||||
|
||||
const ClusterType &at(size_t i) const { return m_data[i]; }
|
||||
|
||||
/**
|
||||
* @brief Return the frame number of the clusters. 0 is used to indicate
|
||||
* that the clusters come from many frames
|
||||
*/
|
||||
uint64_t frame_number() const { return m_frame_number; }
|
||||
|
||||
void set_frame_number(uint64_t frame_number) {
|
||||
m_frame_number = frame_number;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -36,6 +36,8 @@ class File {
|
||||
File(File &&other) noexcept;
|
||||
File& operator=(File &&other) noexcept;
|
||||
~File() = default;
|
||||
|
||||
// void close(); //!< close the file
|
||||
|
||||
Frame read_frame(); //!< read one frame from the file at the current position
|
||||
Frame read_frame(size_t frame_index); //!< read one frame at the position given by frame number
|
||||
|
92
include/aare/Fit.hpp
Normal file
92
include/aare/Fit.hpp
Normal file
@ -0,0 +1,92 @@
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <fmt/core.h>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
namespace func {
|
||||
double gaus(const double x, const double *par);
|
||||
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
double pol1(const double x, const double *par);
|
||||
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
} // namespace func
|
||||
|
||||
|
||||
/**
|
||||
* @brief Estimate the initial parameters for a Gaussian fit
|
||||
*/
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
static constexpr int DEFAULT_NUM_THREADS = 4;
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to data.
|
||||
* @param data data to fit
|
||||
* @param x x values
|
||||
*/
|
||||
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
|
||||
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian with error estimates
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters
|
||||
* @param par_err_out output error parameters
|
||||
*/
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double& chi2);
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
|
||||
* [row, col, values]
|
||||
* @param x x values
|
||||
* @param y y vales, layout [row, col, values]
|
||||
* @param y_err error in y, layout [row, col, values]
|
||||
* @param par_out output parameters, layout [row, col, values]
|
||||
* @param par_err_out output parameter errors, layout [row, col, values]
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads = DEFAULT_NUM_THREADS
|
||||
);
|
||||
|
||||
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
|
||||
|
||||
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
|
||||
// TODO! not sure we need to offer the different version in C++
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
|
||||
} // namespace aare
|
58
include/aare/GainMap.hpp
Normal file
58
include/aare/GainMap.hpp
Normal file
@ -0,0 +1,58 @@
|
||||
/************************************************
|
||||
* @file ApplyGainMap.hpp
|
||||
* @short function to apply gain map of image size to a vector of clusters
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include <memory>
|
||||
|
||||
namespace aare {
|
||||
|
||||
class GainMap {
|
||||
|
||||
public:
|
||||
explicit GainMap(const NDArray<double, 2> &gain_map)
|
||||
: m_gain_map(gain_map) {};
|
||||
|
||||
explicit GainMap(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = NDArray<double, 2>(gain_map);
|
||||
}
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
void apply_gain_map(ClusterVector<ClusterType> &clustervec) {
|
||||
// in principle we need to know the size of the image for this lookup
|
||||
size_t ClusterSizeX = clustervec.cluster_size_x();
|
||||
size_t ClusterSizeY = clustervec.cluster_size_y();
|
||||
|
||||
using T = typename ClusterVector<ClusterType>::value_type;
|
||||
|
||||
int64_t index_cluster_center_x = ClusterSizeX / 2;
|
||||
int64_t index_cluster_center_y = ClusterSizeY / 2;
|
||||
for (size_t i = 0; i < clustervec.size(); i++) {
|
||||
auto &cl = clustervec.at(i);
|
||||
|
||||
if (cl.x > 0 && cl.y > 0 && cl.x < m_gain_map.shape(1) - 1 &&
|
||||
cl.y < m_gain_map.shape(0) - 1) {
|
||||
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
|
||||
size_t x = cl.x + j % ClusterSizeX - index_cluster_center_x;
|
||||
size_t y = cl.y + j / ClusterSizeX - index_cluster_center_y;
|
||||
cl.data[j] = cl.data[j] * static_cast<T>(m_gain_map(y, x));
|
||||
}
|
||||
} else {
|
||||
memset(cl.data, 0,
|
||||
ClusterSizeX * ClusterSizeY *
|
||||
sizeof(T)); // clear edge clusters
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
NDArray<double, 2> m_gain_map{};
|
||||
};
|
||||
|
||||
} // end of namespace aare
|
132
include/aare/Interpolator.hpp
Normal file
132
include/aare/Interpolator.hpp
Normal file
@ -0,0 +1,132 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp" //Cluster_3x3
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/algorithm.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
struct Photon {
|
||||
double x;
|
||||
double y;
|
||||
double energy;
|
||||
};
|
||||
|
||||
class Interpolator {
|
||||
NDArray<double, 3> m_ietax;
|
||||
NDArray<double, 3> m_ietay;
|
||||
|
||||
NDArray<double, 1> m_etabinsx;
|
||||
NDArray<double, 1> m_etabinsy;
|
||||
NDArray<double, 1> m_energy_bins;
|
||||
|
||||
public:
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
NDArray<double, 3> get_ietax() { return m_ietax; }
|
||||
NDArray<double, 3> get_ietay() { return m_ietay; }
|
||||
|
||||
template <typename ClusterType,
|
||||
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
|
||||
};
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType, typename Enable>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
|
||||
double dX, dY;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
switch (eta.c) {
|
||||
case cTopLeft:
|
||||
dX = -1.;
|
||||
dY = 0;
|
||||
break;
|
||||
case cTopRight:;
|
||||
dX = 0;
|
||||
dY = 0;
|
||||
break;
|
||||
case cBottomLeft:
|
||||
dX = -1.;
|
||||
dY = -1.;
|
||||
break;
|
||||
case cBottomRight:
|
||||
dX = 0.;
|
||||
dY = -1.;
|
||||
break;
|
||||
}
|
||||
photon.x += m_ietax(ix, iy, ie) * 2 + dX;
|
||||
photon.y += m_ietay(ix, iy, ie) * 2 + dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto cluster = clusters.at(i);
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
photon.x += m_ietax(ix, iy, ie) *
|
||||
2; // eta goes between 0 and 1 but we could move the hit
|
||||
// anywhere in the 2x2
|
||||
photon.y += m_ietay(ix, iy, ie) * 2;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -69,6 +69,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
std::copy(v.begin(), v.end(), begin());
|
||||
}
|
||||
|
||||
template<size_t Size>
|
||||
NDArray(const std::array<T, Size>& arr) : NDArray<T,1>({Size}) {
|
||||
std::copy(arr.begin(), arr.end(), begin());
|
||||
}
|
||||
|
||||
// Move constructor
|
||||
NDArray(NDArray &&other) noexcept
|
||||
: shape_(other.shape_), strides_(c_strides<Ndim>(shape_)),
|
||||
@ -97,6 +102,9 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
auto begin() { return data_; }
|
||||
auto end() { return data_ + size_; }
|
||||
|
||||
auto begin() const { return data_; }
|
||||
auto end() const { return data_ + size_; }
|
||||
|
||||
using value_type = T;
|
||||
|
||||
NDArray &operator=(NDArray &&other) noexcept; // Move assign
|
||||
@ -105,6 +113,20 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
NDArray &operator-=(const NDArray &other);
|
||||
NDArray &operator*=(const NDArray &other);
|
||||
|
||||
//Write directly to the data array, or create a new one
|
||||
template<size_t Size>
|
||||
NDArray<T,1>& operator=(const std::array<T,Size> &other){
|
||||
if(Size != size_){
|
||||
delete[] data_;
|
||||
size_ = Size;
|
||||
data_ = new T[size_];
|
||||
}
|
||||
for (size_t i = 0; i < Size; ++i) {
|
||||
data_[i] = other[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// NDArray& operator/=(const NDArray& other);
|
||||
|
||||
template <typename V> NDArray &operator/=(const NDArray<V, Ndim> &other) {
|
||||
@ -135,6 +157,11 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
|
||||
NDArray &operator&=(const T & /*mask*/);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void sqrt() {
|
||||
for (int i = 0; i < size_; ++i) {
|
||||
data_[i] = std::sqrt(data_[i]);
|
||||
@ -318,6 +345,9 @@ NDArray<T, Ndim> &NDArray<T, Ndim>::operator+=(const T &value) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
NDArray<T, Ndim> NDArray<T, Ndim>::operator+(const T &value) {
|
||||
NDArray result = *this;
|
||||
@ -361,12 +391,12 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
|
||||
result *= value;
|
||||
return result;
|
||||
}
|
||||
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
if (shape_[0] < 20 && shape_[1] < 20)
|
||||
Print_all();
|
||||
else
|
||||
Print_some();
|
||||
}
|
||||
// template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
// if (shape_[0] < 20 && shape_[1] < 20)
|
||||
// Print_all();
|
||||
// else
|
||||
// Print_some();
|
||||
// }
|
||||
|
||||
template <typename T, int64_t Ndim>
|
||||
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {
|
||||
@ -418,4 +448,6 @@ NDArray<T, Ndim> load(const std::string &pathname,
|
||||
return img;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,5 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/ArrayExpr.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
@ -99,6 +99,15 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
|
||||
|
||||
NDView &operator/=(const NDView &other) { return elemenwise(other, std::divides<T>()); }
|
||||
|
||||
|
||||
template<size_t Size>
|
||||
NDView& operator=(const std::array<T, Size> &arr) {
|
||||
if(size() != arr.size())
|
||||
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
|
||||
std::copy(arr.begin(), arr.end(), begin());
|
||||
return *this;
|
||||
}
|
||||
|
||||
NDView &operator=(const T val) {
|
||||
for (auto it = begin(); it != end(); ++it)
|
||||
*it = val;
|
||||
|
@ -89,6 +89,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
m_cur_samples = 0;
|
||||
m_mean = 0;
|
||||
}
|
||||
|
||||
|
||||
@ -97,6 +98,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_sum(row, col) = 0;
|
||||
m_sum2(row, col) = 0;
|
||||
m_cur_samples(row, col) = 0;
|
||||
m_mean(row, col) = 0;
|
||||
}
|
||||
|
||||
|
||||
@ -119,7 +121,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
|
||||
/**
|
||||
* Push but don't update the cached mean. Speeds up the process
|
||||
* when intitializing the pedestal.
|
||||
* when initializing the pedestal.
|
||||
*
|
||||
*/
|
||||
template <typename T> void push_no_update(NDView<T, 2> frame) {
|
||||
@ -165,8 +167,8 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_sum2(row, col) += val * val;
|
||||
m_cur_samples(row, col)++;
|
||||
} else {
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_samples;
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
|
||||
}
|
||||
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
|
||||
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
|
||||
|
203
include/aare/ProducerConsumerQueue.hpp
Normal file
203
include/aare/ProducerConsumerQueue.hpp
Normal file
@ -0,0 +1,203 @@
|
||||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
// @author Bo Hu (bhu@fb.com)
|
||||
// @author Jordan DeLong (delong.j@fb.com)
|
||||
|
||||
// Changes made by PSD Detector Group:
|
||||
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size = 128; from folly/lang/Align.h
|
||||
// Changed extension to .hpp
|
||||
// Changed namespace to aare
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
constexpr std::size_t hardware_destructive_interference_size = 128;
|
||||
namespace aare {
|
||||
|
||||
/*
|
||||
* ProducerConsumerQueue is a one producer and one consumer queue
|
||||
* without locks.
|
||||
*/
|
||||
template <class T> struct ProducerConsumerQueue {
|
||||
typedef T value_type;
|
||||
|
||||
ProducerConsumerQueue(const ProducerConsumerQueue &) = delete;
|
||||
ProducerConsumerQueue &operator=(const ProducerConsumerQueue &) = delete;
|
||||
|
||||
|
||||
ProducerConsumerQueue(ProducerConsumerQueue &&other){
|
||||
size_ = other.size_;
|
||||
records_ = other.records_;
|
||||
other.records_ = nullptr;
|
||||
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
|
||||
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other){
|
||||
size_ = other.size_;
|
||||
records_ = other.records_;
|
||||
other.records_ = nullptr;
|
||||
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
|
||||
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
ProducerConsumerQueue():ProducerConsumerQueue(2){};
|
||||
// size must be >= 2.
|
||||
//
|
||||
// Also, note that the number of usable slots in the queue at any
|
||||
// given time is actually (size-1), so if you start with an empty queue,
|
||||
// isFull() will return true after size-1 insertions.
|
||||
explicit ProducerConsumerQueue(uint32_t size)
|
||||
: size_(size), records_(static_cast<T *>(std::malloc(sizeof(T) * size))), readIndex_(0), writeIndex_(0) {
|
||||
assert(size >= 2);
|
||||
if (!records_) {
|
||||
throw std::bad_alloc();
|
||||
}
|
||||
}
|
||||
|
||||
~ProducerConsumerQueue() {
|
||||
// We need to destruct anything that may still exist in our queue.
|
||||
// (No real synchronization needed at destructor time: only one
|
||||
// thread can be doing this.)
|
||||
if (!std::is_trivially_destructible<T>::value) {
|
||||
size_t readIndex = readIndex_;
|
||||
size_t endIndex = writeIndex_;
|
||||
while (readIndex != endIndex) {
|
||||
records_[readIndex].~T();
|
||||
if (++readIndex == size_) {
|
||||
readIndex = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::free(records_);
|
||||
}
|
||||
|
||||
template <class... Args> bool write(Args &&...recordArgs) {
|
||||
auto const currentWrite = writeIndex_.load(std::memory_order_relaxed);
|
||||
auto nextRecord = currentWrite + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
|
||||
new (&records_[currentWrite]) T(std::forward<Args>(recordArgs)...);
|
||||
writeIndex_.store(nextRecord, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
// queue is full
|
||||
return false;
|
||||
}
|
||||
|
||||
// move (or copy) the value at the front of the queue to given variable
|
||||
bool read(T &record) {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
|
||||
// queue is empty
|
||||
return false;
|
||||
}
|
||||
|
||||
auto nextRecord = currentRead + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
record = std::move(records_[currentRead]);
|
||||
records_[currentRead].~T();
|
||||
readIndex_.store(nextRecord, std::memory_order_release);
|
||||
return true;
|
||||
}
|
||||
|
||||
// pointer to the value at the front of the queue (for use in-place) or
|
||||
// nullptr if empty.
|
||||
T *frontPtr() {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
|
||||
// queue is empty
|
||||
return nullptr;
|
||||
}
|
||||
return &records_[currentRead];
|
||||
}
|
||||
|
||||
// queue must not be empty
|
||||
void popFront() {
|
||||
auto const currentRead = readIndex_.load(std::memory_order_relaxed);
|
||||
assert(currentRead != writeIndex_.load(std::memory_order_acquire));
|
||||
|
||||
auto nextRecord = currentRead + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
records_[currentRead].~T();
|
||||
readIndex_.store(nextRecord, std::memory_order_release);
|
||||
}
|
||||
|
||||
bool isEmpty() const {
|
||||
return readIndex_.load(std::memory_order_acquire) == writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
bool isFull() const {
|
||||
auto nextRecord = writeIndex_.load(std::memory_order_acquire) + 1;
|
||||
if (nextRecord == size_) {
|
||||
nextRecord = 0;
|
||||
}
|
||||
if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
|
||||
return false;
|
||||
}
|
||||
// queue is full
|
||||
return true;
|
||||
}
|
||||
|
||||
// * If called by consumer, then true size may be more (because producer may
|
||||
// be adding items concurrently).
|
||||
// * If called by producer, then true size may be less (because consumer may
|
||||
// be removing items concurrently).
|
||||
// * It is undefined to call this from any other thread.
|
||||
size_t sizeGuess() const {
|
||||
int ret = writeIndex_.load(std::memory_order_acquire) - readIndex_.load(std::memory_order_acquire);
|
||||
if (ret < 0) {
|
||||
ret += size_;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// maximum number of items in the queue.
|
||||
size_t capacity() const { return size_ - 1; }
|
||||
|
||||
private:
|
||||
using AtomicIndex = std::atomic<unsigned int>;
|
||||
|
||||
char pad0_[hardware_destructive_interference_size];
|
||||
// const uint32_t size_;
|
||||
uint32_t size_;
|
||||
// T *const records_;
|
||||
T* records_;
|
||||
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex readIndex_;
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex writeIndex_;
|
||||
|
||||
char pad1_[hardware_destructive_interference_size - sizeof(AtomicIndex)];
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -34,15 +34,19 @@ class RawFile : public FileInterface {
|
||||
size_t n_subfile_parts{}; // d0,d1...dn
|
||||
//TODO! move to vector of SubFile instead of pointers
|
||||
std::vector<std::vector<RawSubFile *>> subfiles; //subfiles[f0,f1...fn][d0,d1...dn]
|
||||
std::vector<xy> positions;
|
||||
std::vector<ModuleGeometry> m_module_pixel_0;
|
||||
// std::vector<xy> positions;
|
||||
|
||||
ModuleConfig cfg{0, 0};
|
||||
|
||||
RawMasterFile m_master;
|
||||
|
||||
size_t m_current_frame{};
|
||||
size_t m_rows{};
|
||||
size_t m_cols{};
|
||||
|
||||
// std::vector<ModuleGeometry> m_module_pixel_0;
|
||||
// size_t m_rows{};
|
||||
// size_t m_cols{};
|
||||
|
||||
DetectorGeometry m_geometry;
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -111,11 +115,12 @@ class RawFile : public FileInterface {
|
||||
*/
|
||||
static DetectorHeader read_header(const std::filesystem::path &fname);
|
||||
|
||||
void update_geometry_with_roi();
|
||||
// void update_geometry_with_roi();
|
||||
int find_number_of_subfiles();
|
||||
|
||||
void open_subfiles();
|
||||
void find_geometry();
|
||||
};
|
||||
|
||||
|
||||
} // namespace aare
|
@ -62,17 +62,6 @@ class ScanParameters {
|
||||
};
|
||||
|
||||
|
||||
struct ROI{
|
||||
int64_t xmin{};
|
||||
int64_t xmax{};
|
||||
int64_t ymin{};
|
||||
int64_t ymax{};
|
||||
|
||||
int64_t height() const { return ymax - ymin; }
|
||||
int64_t width() const { return xmax - xmin; }
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief Class for parsing a master file either in our .json format or the old
|
||||
* .raw format
|
||||
|
@ -64,8 +64,11 @@ class RawSubFile {
|
||||
|
||||
size_t bytes_per_frame() const { return m_bytes_per_frame; }
|
||||
size_t pixels_per_frame() const { return m_rows * m_cols; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / 8; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void read_with_map(std::byte *image_buf);
|
||||
|
||||
};
|
||||
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
const int MAX_CLUSTER_SIZE = 200;
|
||||
const int MAX_CLUSTER_SIZE = 50;
|
||||
namespace aare {
|
||||
|
||||
template <typename T> class VarClusterFinder {
|
||||
|
55
include/aare/algorithm.hpp
Normal file
55
include/aare/algorithm.hpp
Normal file
@ -0,0 +1,55 @@
|
||||
|
||||
#pragma once
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <vector>
|
||||
#include <aare/NDArray.hpp>
|
||||
|
||||
namespace aare {
|
||||
/**
|
||||
* @brief Find the index of the last element smaller than val
|
||||
* assume a sorted array
|
||||
*/
|
||||
template <typename T>
|
||||
size_t last_smaller(const T* first, const T* last, T val) {
|
||||
for (auto iter = first+1; iter != last; ++iter) {
|
||||
if (*iter > val) {
|
||||
return std::distance(first, iter-1);
|
||||
}
|
||||
}
|
||||
return std::distance(first, last-1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t last_smaller(const NDArray<T, 1>& arr, T val) {
|
||||
return last_smaller(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
size_t nearest_index(const T* first, const T* last, T val) {
|
||||
auto iter = std::min_element(first, last,
|
||||
[val](T a, T b) {
|
||||
return std::abs(a - val) < std::abs(b - val);
|
||||
});
|
||||
return std::distance(first, iter);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t nearest_index(const NDArray<T, 1>& arr, T val) {
|
||||
return nearest_index(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t nearest_index(const std::vector<T>& vec, T val) {
|
||||
return nearest_index(vec.data(), vec.data()+vec.size(), val);
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
size_t nearest_index(const std::array<T,N>& arr, T val) {
|
||||
return nearest_index(arr.data(), arr.data()+arr.size(), val);
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
13
include/aare/decode.hpp
Normal file
13
include/aare/decode.hpp
Normal file
@ -0,0 +1,13 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <aare/NDView.hpp>
|
||||
namespace aare {
|
||||
|
||||
|
||||
uint16_t adc_sar_05_decode64to16(uint64_t input);
|
||||
uint16_t adc_sar_04_decode64to16(uint64_t input);
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
|
||||
|
||||
} // namespace aare
|
@ -1,11 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/Dtype.hpp"
|
||||
// #include "aare/utils/logger.hpp"
|
||||
|
||||
#include <array>
|
||||
#include <stdexcept>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
@ -38,9 +36,12 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
inline constexpr size_t bits_per_byte = 8;
|
||||
|
||||
void assert_failed(const std::string &msg);
|
||||
|
||||
|
||||
|
||||
class DynamicCluster {
|
||||
public:
|
||||
int cluster_sizeX;
|
||||
@ -179,13 +180,45 @@ template <typename T> struct t_xy {
|
||||
using xy = t_xy<uint32_t>;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Class to hold the geometry of a module. Where pixel 0 is located and the size of the module
|
||||
*/
|
||||
struct ModuleGeometry{
|
||||
int x{};
|
||||
int y{};
|
||||
int origin_x{};
|
||||
int origin_y{};
|
||||
int height{};
|
||||
int width{};
|
||||
int row_index{};
|
||||
int col_index{};
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Class to hold the geometry of a detector. Number of modules, their size and where pixel 0
|
||||
* for each module is located
|
||||
*/
|
||||
struct DetectorGeometry{
|
||||
int modules_x{};
|
||||
int modules_y{};
|
||||
int pixels_x{};
|
||||
int pixels_y{};
|
||||
int module_gap_row{};
|
||||
int module_gap_col{};
|
||||
std::vector<ModuleGeometry> module_pixel_0;
|
||||
};
|
||||
|
||||
struct ROI{
|
||||
int64_t xmin{};
|
||||
int64_t xmax{};
|
||||
int64_t ymin{};
|
||||
int64_t ymax{};
|
||||
|
||||
int64_t height() const { return ymax - ymin; }
|
||||
int64_t width() const { return xmax - xmin; }
|
||||
bool contains(int64_t x, int64_t y) const {
|
||||
return x >= xmin && x < xmax && y >= ymin && y < ymax;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
using dynamic_shape = std::vector<int64_t>;
|
||||
|
||||
|
16
include/aare/geo_helpers.hpp
Normal file
16
include/aare/geo_helpers.hpp
Normal file
@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/RawMasterFile.hpp" //ROI refactor away
|
||||
namespace aare{
|
||||
|
||||
/**
|
||||
* @brief Update the detector geometry given a region of interest
|
||||
*
|
||||
* @param geo
|
||||
* @param roi
|
||||
* @return DetectorGeometry
|
||||
*/
|
||||
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, ROI roi);
|
||||
|
||||
|
||||
} // namespace aare
|
18
include/aare/utils/par.hpp
Normal file
18
include/aare/utils/par.hpp
Normal file
@ -0,0 +1,18 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
namespace aare {
|
||||
|
||||
template<typename F>
|
||||
void RunInParallel(F func, const std::vector<std::pair<int, int>>& tasks) {
|
||||
// auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
std::vector<std::thread> threads;
|
||||
for (auto &task : tasks) {
|
||||
threads.push_back(std::thread(func, task.first, task.second));
|
||||
}
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
} // namespace aare
|
8
include/aare/utils/task.hpp
Normal file
8
include/aare/utils/task.hpp
Normal file
@ -0,0 +1,8 @@
|
||||
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace aare {
|
||||
std::vector<std::pair<int, int>> split_task(int first, int last, int n_threads);
|
||||
|
||||
} // namespace aare
|
18
patches/libzmq_cmake_version.patch
Normal file
18
patches/libzmq_cmake_version.patch
Normal file
@ -0,0 +1,18 @@
|
||||
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||||
index dd3d8eb9..c0187747 100644
|
||||
--- a/CMakeLists.txt
|
||||
+++ b/CMakeLists.txt
|
||||
@@ -1,11 +1,8 @@
|
||||
# CMake build script for ZeroMQ
|
||||
project(ZeroMQ)
|
||||
|
||||
-if(${CMAKE_SYSTEM_NAME} STREQUAL Darwin)
|
||||
- cmake_minimum_required(VERSION 3.0.2)
|
||||
-else()
|
||||
- cmake_minimum_required(VERSION 2.8.12)
|
||||
-endif()
|
||||
+cmake_minimum_required(VERSION 3.15)
|
||||
+message(STATUS "Patched cmake version")
|
||||
|
||||
include(CheckIncludeFiles)
|
||||
include(CheckCCompilerFlag)
|
13
patches/lmfit.patch
Normal file
13
patches/lmfit.patch
Normal file
@ -0,0 +1,13 @@
|
||||
diff --git a/lib/CMakeLists.txt b/lib/CMakeLists.txt
|
||||
index 4efb7ed..6533660 100644
|
||||
--- a/lib/CMakeLists.txt
|
||||
+++ b/lib/CMakeLists.txt
|
||||
@@ -11,7 +11,7 @@ target_compile_definitions(${lib} PRIVATE "LMFIT_EXPORT") # for Windows DLL expo
|
||||
|
||||
target_include_directories(${lib}
|
||||
PUBLIC
|
||||
- $<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/>
|
||||
+ $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/>
|
||||
$<INSTALL_INTERFACE:include/>
|
||||
)
|
||||
|
@ -4,7 +4,9 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "aare"
|
||||
version = "2024.12.16.dev0"
|
||||
version = "2025.4.1"
|
||||
|
||||
|
||||
|
||||
[tool.scikit-build]
|
||||
cmake.verbose = true
|
||||
|
@ -28,6 +28,7 @@ target_link_libraries(_aare PRIVATE aare_core aare_compiler_flags)
|
||||
set( PYTHON_FILES
|
||||
aare/__init__.py
|
||||
aare/CtbRawFile.py
|
||||
aare/func.py
|
||||
aare/RawFile.py
|
||||
aare/transform.py
|
||||
aare/ScanParameters.py
|
||||
@ -43,10 +44,17 @@ set_target_properties(_aare PROPERTIES
|
||||
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/aare
|
||||
)
|
||||
|
||||
set(PYTHON_EXAMPLES
|
||||
examples/play.py
|
||||
examples/fits.py
|
||||
)
|
||||
|
||||
|
||||
# Copy the examples/scripts to the build directory
|
||||
configure_file(examples/play.py ${CMAKE_BINARY_DIR}/play.py)
|
||||
# Copy the python examples to the build directory
|
||||
foreach(FILE ${PYTHON_EXAMPLES})
|
||||
configure_file(${FILE} ${CMAKE_BINARY_DIR}/${FILE} )
|
||||
message(STATUS "Copying ${FILE} to ${CMAKE_BINARY_DIR}/${FILE}")
|
||||
endforeach(FILE ${PYTHON_EXAMPLES})
|
||||
|
||||
|
||||
if(AARE_INSTALL_PYTHONEXT)
|
||||
|
@ -2,14 +2,23 @@
|
||||
from . import _aare
|
||||
|
||||
|
||||
from ._aare import File, RawMasterFile, RawSubFile
|
||||
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
|
||||
# from ._aare import File, RawMasterFile, RawSubFile
|
||||
# from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import ClusterFile
|
||||
from ._aare import ClusterFile_Cluster3x3i as ClusterFile
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
|
||||
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
from ._aare import fit_gaus, fit_pol1
|
||||
from ._aare import Interpolator
|
||||
from .CtbRawFile import CtbRawFile
|
||||
from .RawFile import RawFile
|
||||
from .ScanParameters import ScanParameters
|
||||
|
||||
from .utils import random_pixels, random_pixel
|
||||
from .utils import random_pixels, random_pixel, flat_list
|
||||
|
||||
|
||||
#make functions available in the top level API
|
||||
from .func import *
|
||||
|
1
python/aare/func.py
Normal file
1
python/aare/func.py
Normal file
@ -0,0 +1 @@
|
||||
from ._aare import gaus, pol1
|
@ -2,6 +2,14 @@ import numpy as np
|
||||
from . import _aare
|
||||
|
||||
|
||||
class AdcSar04Transform64to16:
|
||||
def __call__(self, data):
|
||||
return _aare.adc_sar_04_decode64to16(data)
|
||||
|
||||
class AdcSar05Transform64to16:
|
||||
def __call__(self, data):
|
||||
return _aare.adc_sar_05_decode64to16(data)
|
||||
|
||||
class Moench05Transform:
|
||||
#Could be moved to C++ without changing the interface
|
||||
def __init__(self):
|
||||
@ -45,4 +53,6 @@ class Matterhorn02Transform:
|
||||
moench05 = Moench05Transform()
|
||||
moench05_1g = Moench05Transform1g()
|
||||
moench05_old = Moench05TransformOld()
|
||||
matterhorn02 = Matterhorn02Transform()
|
||||
matterhorn02 = Matterhorn02Transform()
|
||||
adc_sar_04_64to16 = AdcSar04Transform64to16()
|
||||
adc_sar_05_64to16 = AdcSar05Transform64to16()
|
@ -20,4 +20,8 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
|
||||
Returns:
|
||||
tuple: (row, col)
|
||||
"""
|
||||
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
|
||||
return random_pixels(1, xmin, xmax, ymin, ymax)[0]
|
||||
|
||||
def flat_list(xss):
|
||||
"""Flatten a list of lists."""
|
||||
return [x for xs in xss for x in xs]
|
79
python/examples/fits.py
Normal file
79
python/examples/fits.py
Normal file
@ -0,0 +1,79 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from aare import fit_gaus, fit_pol1
|
||||
from aare import gaus, pol1
|
||||
|
||||
textpm = f"±" #
|
||||
textmu = f"μ" #
|
||||
textsigma = f"σ" #
|
||||
|
||||
|
||||
|
||||
# ================================= Gauss fit =================================
|
||||
# Parameters
|
||||
mu = np.random.uniform(1, 100) # Mean of Gaussian
|
||||
sigma = np.random.uniform(4, 20) # Standard deviation
|
||||
num_points = 10000 # Number of points for smooth distribution
|
||||
noise_sigma = 100
|
||||
|
||||
# Generate Gaussian distribution
|
||||
data = np.random.normal(mu, sigma, num_points)
|
||||
|
||||
# Generate errors for each point
|
||||
errors = np.abs(np.random.normal(0, sigma, num_points)) # Errors with mean 0, std 0.5
|
||||
|
||||
# Create subplot
|
||||
fig0, ax0 = plt.subplots(1, 1, num=0, figsize=(12, 8))
|
||||
|
||||
x = np.histogram(data, bins=30)[1][:-1] + 0.05
|
||||
y = np.histogram(data, bins=30)[0]
|
||||
yerr = errors[:30]
|
||||
|
||||
|
||||
# Add the errors as error bars in the step plot
|
||||
ax0.errorbar(x, y, yerr=yerr, fmt=". ", capsize=5)
|
||||
ax0.grid()
|
||||
|
||||
par, err = fit_gaus(x, y, yerr)
|
||||
print(par, err)
|
||||
|
||||
x = np.linspace(x[0], x[-1], 1000)
|
||||
ax0.plot(x, gaus(x, par), marker="")
|
||||
ax0.set(xlabel="x", ylabel="Counts", title=f"A0 = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
|
||||
f"{textmu} = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
|
||||
f"{textsigma} = {par[2]:0.2f}{textpm}{err[2]:0.2f}\n"
|
||||
f"(init: {textmu}: {mu:0.2f}, {textsigma}: {sigma:0.2f})")
|
||||
fig0.tight_layout()
|
||||
|
||||
|
||||
|
||||
# ================================= pol1 fit =================================
|
||||
# Parameters
|
||||
n_points = 40
|
||||
|
||||
# Generate random slope and intercept (origin)
|
||||
slope = np.random.uniform(-10, 10) # Random slope between 0.5 and 2.0
|
||||
intercept = np.random.uniform(-10, 10) # Random intercept between -10 and 10
|
||||
|
||||
# Generate random x values
|
||||
x_values = np.random.uniform(-10, 10, n_points)
|
||||
|
||||
# Calculate y values based on the linear function y = mx + b + error
|
||||
errors = np.abs(np.random.normal(0, np.random.uniform(1, 5), n_points))
|
||||
var_points = np.random.normal(0, np.random.uniform(0.1, 2), n_points)
|
||||
y_values = slope * x_values + intercept + var_points
|
||||
|
||||
fig1, ax1 = plt.subplots(1, 1, num=1, figsize=(12, 8))
|
||||
ax1.errorbar(x_values, y_values, yerr=errors, fmt=". ", capsize=5)
|
||||
par, err = fit_pol1(x_values, y_values, errors)
|
||||
|
||||
|
||||
x = np.linspace(np.min(x_values), np.max(x_values), 1000)
|
||||
ax1.plot(x, pol1(x, par), marker="")
|
||||
ax1.set(xlabel="x", ylabel="y", title=f"a = {par[0]:0.2f}{textpm}{err[0]:0.2f}\n"
|
||||
f"b = {par[1]:0.2f}{textpm}{err[1]:0.2f}\n"
|
||||
f"(init: {slope:0.2f}, {intercept:0.2f})")
|
||||
fig1.tight_layout()
|
||||
|
||||
plt.show()
|
||||
|
@ -1,58 +1,79 @@
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
#Our normal python imports
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
import pickle
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import boost_histogram as bh
|
||||
import torch
|
||||
import math
|
||||
import time
|
||||
|
||||
from aare import File, ClusterFinder, VarClusterFinder
|
||||
|
||||
base = Path('/mnt/sls_det_storage/matterhorn_data/aare_test_data/')
|
||||
|
||||
f = File(base/'Moench03new/cu_half_speed_master_4.json')
|
||||
cf = ClusterFinder((400,400), (3,3))
|
||||
for i in range(1000):
|
||||
cf.push_pedestal_frame(f.read_frame())
|
||||
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
"""
|
||||
Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
res in one dimesion.
|
||||
"""
|
||||
x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
return 1 / (2*math.pi*sigma**2) * \
|
||||
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
im = ax.imshow(cf.pedestal())
|
||||
cf.pedestal()
|
||||
cf.noise()
|
||||
scale = 1000 #Scale factor when converting to integer
|
||||
pixel_size = 25 #um
|
||||
grid = 2
|
||||
resolution = 100
|
||||
sigma_um = 10
|
||||
xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
ticks = [0, 25, 50]
|
||||
|
||||
hit = np.array((20,20))
|
||||
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
|
||||
local_resolution = 99
|
||||
grid_size = 3
|
||||
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
pixels = pixels.numpy()
|
||||
pixels = (pixels*scale).astype(np.int32)
|
||||
v = ClusterVector_i(3,3)
|
||||
v.push_back(1,1, pixels)
|
||||
|
||||
with open(etahist_fname, "rb") as f:
|
||||
hist = pickle.load(f)
|
||||
eta = hist.view().copy()
|
||||
etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
|
||||
|
||||
|
||||
N = 500
|
||||
t0 = time.perf_counter()
|
||||
hist1 = bh.Histogram(bh.axis.Regular(40, -2, 4000))
|
||||
f.seek(0)
|
||||
|
||||
t0 = time.perf_counter()
|
||||
data = f.read_n(N)
|
||||
t_elapsed = time.perf_counter()-t0
|
||||
#Generate the hit
|
||||
|
||||
|
||||
n_bytes = data.itemsize*data.size
|
||||
|
||||
print(f'Reading {N} frames took {t_elapsed:.3f}s {N/t_elapsed:.0f} FPS, {n_bytes/1024**2:.4f} GB/s')
|
||||
|
||||
|
||||
for frame in data:
|
||||
a = cf.find_clusters(frame)
|
||||
|
||||
clusters = cf.steal_clusters()
|
||||
|
||||
# t_elapsed = time.perf_counter()-t0
|
||||
# print(f'Clustering {N} frames took {t_elapsed:.2f}s {N/t_elapsed:.0f} FPS')
|
||||
tmp = p.interpolate(v)
|
||||
print(f'tmp:{tmp}')
|
||||
pos = np.array((tmp['x'], tmp['y']))*25
|
||||
|
||||
|
||||
# t0 = time.perf_counter()
|
||||
# total_clusters = clusters.size
|
||||
|
||||
# hist1.fill(clusters.sum())
|
||||
|
||||
# t_elapsed = time.perf_counter()-t0
|
||||
# print(f'Filling histogram with the sum of {total_clusters} clusters took: {t_elapsed:.3f}s, {total_clusters/t_elapsed:.3g} clust/s')
|
||||
# print(f'Average number of clusters per frame {total_clusters/N:.3f}')
|
||||
print(pixels)
|
||||
fig, ax = plt.subplots(figsize = (7,7))
|
||||
ax.pcolormesh(xaxis, xaxis, t)
|
||||
ax.plot(*pos, 'o')
|
||||
ax.set_xticks([0,25,50,75])
|
||||
ax.set_yticks([0,25,50,75])
|
||||
ax.set_xlim(0,75)
|
||||
ax.set_ylim(0,75)
|
||||
ax.grid()
|
||||
print(f'{hit=}')
|
||||
print(f'{pos=}')
|
@ -1,4 +1,7 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
@ -8,117 +11,276 @@
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = float;
|
||||
using pd_type = double;
|
||||
|
||||
template <typename T>
|
||||
void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
|
||||
.def(py::init<int, int>())
|
||||
.def_property_readonly("size", &ClusterVector<T>::size)
|
||||
.def("element_offset",
|
||||
py::overload_cast<>(&ClusterVector<T>::element_offset, py::const_))
|
||||
.def_property_readonly("fmt",
|
||||
[typestr](ClusterVector<T> &self) {
|
||||
return fmt::format(
|
||||
self.fmt_base(), self.cluster_size_x(),
|
||||
self.cluster_size_y(), typestr);
|
||||
})
|
||||
.def("sum", [](ClusterVector<T> &self) {
|
||||
auto *vec = new std::vector<T>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def_buffer([typestr](ClusterVector<T> &self) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
self.data(), /* Pointer to buffer */
|
||||
self.element_offset(), /* Size of one scalar */
|
||||
fmt::format(self.fmt_base(), self.cluster_size_x(),
|
||||
self.cluster_size_y(),
|
||||
typestr), /* Format descriptor */
|
||||
1, /* Number of dimensions */
|
||||
{self.size()}, /* Buffer dimensions */
|
||||
{self.element_offset()} /* Strides (in bytes) for each index */
|
||||
);
|
||||
});
|
||||
using namespace aare;
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
using ClusterType =
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>;
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void>>(
|
||||
m, class_name.c_str())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType, void> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
cluster.data); // Copy array contents
|
||||
return cluster;
|
||||
}))
|
||||
|
||||
//.def(py::init<>())
|
||||
.def_readwrite("x", &ClusterType::x)
|
||||
.def_readwrite("y", &ClusterType::y)
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
c.data); // TODO dont iterate over centers!!!
|
||||
});
|
||||
}
|
||||
|
||||
void define_cluster_finder_bindings(py::module &m) {
|
||||
py::class_<ClusterFinder<uint16_t, pd_type>>(m, "ClusterFinder")
|
||||
.def(py::init<Shape<2>, Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("cluster_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 1'000'000)
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_vector(py::module &m, const std::string &typestr) {
|
||||
using ClusterType =
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, uint16_t, void>;
|
||||
auto class_name = fmt::format("ClusterVector_{}", typestr);
|
||||
|
||||
py::class_<ClusterVector<ClusterType>>(m, class_name.c_str(),
|
||||
py::buffer_protocol())
|
||||
|
||||
.def(py::init()) // TODO change!!!
|
||||
/*
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, ClusterType &cl) {
|
||||
// auto view = make_view_2d(data);
|
||||
self.push_back(cl);
|
||||
})
|
||||
*/
|
||||
/*
|
||||
.def(
|
||||
"push_back",
|
||||
[](ClusterVector<ClusterType> &self, py::object obj) {
|
||||
ClusterType &cl = py::cast<ClusterType &>(obj);
|
||||
self.push_back(cl);
|
||||
},
|
||||
py::arg("cluster"))
|
||||
*/
|
||||
|
||||
.def("push_back",
|
||||
[](ClusterVector<ClusterType> &self, const ClusterType &cluster) {
|
||||
self.push_back(cluster);
|
||||
})
|
||||
|
||||
//.def("push_back", &ClusterVector<ClusterType>::push_back) //TODO
|
||||
// implement push_back
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
[typestr]() { return fmt_format<ClusterType>; })
|
||||
/*
|
||||
.def("sum",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<T>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<T>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
*/
|
||||
.def_property_readonly("cluster_size_x",
|
||||
&ClusterVector<ClusterType>::cluster_size_x)
|
||||
.def_property_readonly("cluster_size_y",
|
||||
&ClusterVector<ClusterType>::cluster_size_y)
|
||||
.def_property_readonly("capacity",
|
||||
&ClusterVector<ClusterType>::capacity)
|
||||
.def_property("frame_number", &ClusterVector<ClusterType>::frame_number,
|
||||
&ClusterVector<ClusterType>::set_frame_number)
|
||||
.def_buffer(
|
||||
[typestr](ClusterVector<ClusterType> &self) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
self.data(), /* Pointer to buffer */
|
||||
self.item_size(), /* Size of one scalar */
|
||||
fmt_format<ClusterType>, /* Format descriptor */
|
||||
1, /* Number of dimensions */
|
||||
{self.size()}, /* Buffer dimensions */
|
||||
{self.item_size()} /* Strides (in bytes) for each index */
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename ClusterType>
|
||||
void define_cluster_finder_mt_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self,
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("pedestal",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def("noise",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def("steal_clusters",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self, bool realloc_same_capacity) {
|
||||
auto v = new ClusterVector<int>(self.steal_clusters(realloc_same_capacity));
|
||||
return v;
|
||||
}, py::arg("realloc_same_capacity") = false)
|
||||
.def("find_clusters",
|
||||
[](ClusterFinder<uint16_t, pd_type> &self,
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0)
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
|
||||
.def(
|
||||
"pedestal",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},
|
||||
py::arg("thread_index") = 0)
|
||||
.def(
|
||||
"noise",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},
|
||||
py::arg("thread_index") = 0);
|
||||
}
|
||||
|
||||
template <typename ClusterType>
|
||||
void define_cluster_collector_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
|
||||
.def("stop", &ClusterCollector<ClusterType>::stop)
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterCollector<ClusterType> &self) {
|
||||
auto v = new std::vector<ClusterVector<ClusterType>>(
|
||||
self.steal_clusters());
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership);
|
||||
}
|
||||
|
||||
template <typename ClusterType>
|
||||
void define_cluster_file_sink_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
|
||||
const std::filesystem::path &>())
|
||||
.def("stop", &ClusterFileSink<ClusterType>::stop);
|
||||
}
|
||||
|
||||
template <typename ClusterType>
|
||||
void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view);
|
||||
return;
|
||||
});
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly(
|
||||
"pedestal",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly(
|
||||
"noise",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
bool realloc_same_capacity) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.steal_clusters(realloc_same_capacity));
|
||||
return v;
|
||||
},
|
||||
py::arg("realloc_same_capacity") = false)
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
|
||||
m.def("hitmap", [](std::array<size_t, 2> image_size, ClusterVector<int32_t>& cv){
|
||||
|
||||
py::array_t<int32_t> hitmap(image_size);
|
||||
auto r = hitmap.mutable_unchecked<2>();
|
||||
m.def("hitmap",
|
||||
[](std::array<size_t, 2> image_size, ClusterVector<ClusterType> &cv) {
|
||||
py::array_t<int32_t> hitmap(image_size);
|
||||
auto r = hitmap.mutable_unchecked<2>();
|
||||
|
||||
// Initialize hitmap to 0
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
r(i, j) = 0;
|
||||
// Initialize hitmap to 0
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
r(i, j) = 0;
|
||||
|
||||
size_t stride = cv.element_offset();
|
||||
auto ptr = cv.data();
|
||||
for(size_t i=0; i<cv.size(); i++){
|
||||
auto x = *reinterpret_cast<int16_t*>(ptr);
|
||||
auto y = *reinterpret_cast<int16_t*>(ptr+sizeof(int16_t));
|
||||
r(y, x) += 1;
|
||||
ptr += stride;
|
||||
}
|
||||
return hitmap;
|
||||
});
|
||||
define_cluster_vector<int>(m, "i");
|
||||
define_cluster_vector<double>(m, "d");
|
||||
define_cluster_vector<float>(m, "f");
|
||||
|
||||
|
||||
py::class_<DynamicCluster>(m, "DynamicCluster", py::buffer_protocol())
|
||||
.def(py::init<int, int, Dtype>())
|
||||
.def("size", &DynamicCluster::size)
|
||||
.def("begin", &DynamicCluster::begin)
|
||||
.def("end", &DynamicCluster::end)
|
||||
.def_readwrite("x", &DynamicCluster::x)
|
||||
.def_readwrite("y", &DynamicCluster::y)
|
||||
.def_buffer([](DynamicCluster &c) -> py::buffer_info {
|
||||
return py::buffer_info(c.data(), c.dt.bytes(), c.dt.format_descr(),
|
||||
1, {c.size()}, {c.dt.bytes()});
|
||||
})
|
||||
|
||||
.def("__repr__", [](const DynamicCluster &a) {
|
||||
return "<DynamicCluster: x: " + std::to_string(a.x) +
|
||||
", y: " + std::to_string(a.y) + ">";
|
||||
});
|
||||
}
|
||||
size_t stride = cv.item_size();
|
||||
auto ptr = cv.data();
|
||||
for (size_t i = 0; i < cv.size(); i++) {
|
||||
auto x = *reinterpret_cast<int16_t *>(ptr);
|
||||
auto y = *reinterpret_cast<int16_t *>(ptr + sizeof(int16_t));
|
||||
r(y, x) += 1;
|
||||
ptr += stride;
|
||||
}
|
||||
return hitmap;
|
||||
});
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
@ -10,67 +11,81 @@
|
||||
#include <pybind11/stl/filesystem.h>
|
||||
#include <string>
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
void define_cluster_file_io_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(Cluster3x3, x, y, data);
|
||||
template <typename ClusterType>
|
||||
void define_cluster_file_io_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
// PYBIND11_NUMPY_DTYPE(Cluster<int, 3, 3>, x, y,
|
||||
// data); // is this used - maybe use as cluster type
|
||||
|
||||
py::class_<ClusterFile>(m, "ClusterFile")
|
||||
auto class_name = fmt::format("ClusterFile_{}", typestr);
|
||||
|
||||
py::class_<ClusterFile<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<const std::filesystem::path &, size_t,
|
||||
const std::string &>(),
|
||||
py::arg(), py::arg("chunk_size") = 1000, py::arg("mode") = "r")
|
||||
.def("read_clusters",
|
||||
[](ClusterFile &self, size_t n_clusters) {
|
||||
auto *vec =
|
||||
new std::vector<Cluster3x3>(self.read_clusters(n_clusters));
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def(
|
||||
"read_clusters",
|
||||
[](ClusterFile<ClusterType> &self, size_t n_clusters) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(n_clusters));
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership)
|
||||
.def("read_frame",
|
||||
[](ClusterFile &self) {
|
||||
int32_t frame_number;
|
||||
auto *vec =
|
||||
new std::vector<Cluster3x3>(self.read_frame(frame_number));
|
||||
return py::make_tuple(frame_number, return_vector(vec));
|
||||
[](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(self.read_frame());
|
||||
return v;
|
||||
})
|
||||
.def("write_frame", &ClusterFile::write_frame)
|
||||
.def("read_cluster_with_cut",
|
||||
[](ClusterFile &self, size_t n_clusters,
|
||||
py::array_t<double> noise_map, int nx, int ny) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
auto *vec =
|
||||
new std::vector<Cluster3x3>(self.read_cluster_with_cut(
|
||||
n_clusters, view.data(), nx, ny));
|
||||
return return_vector(vec);
|
||||
.def("set_roi", &ClusterFile<ClusterType>::set_roi)
|
||||
.def(
|
||||
"set_noise_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
self.set_noise_map(view);
|
||||
})
|
||||
|
||||
.def("set_gain_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
|
||||
auto view = make_view_2d(gain_map);
|
||||
self.set_gain_map(view);
|
||||
})
|
||||
.def("__enter__", [](ClusterFile &self) { return &self; })
|
||||
|
||||
// void set_gain_map(const GainMap &gain_map); //TODO do i need a
|
||||
// gainmap constructor?
|
||||
|
||||
.def("close", &ClusterFile<ClusterType>::close)
|
||||
.def("write_frame", &ClusterFile<ClusterType>::write_frame)
|
||||
.def("__enter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](ClusterFile &self,
|
||||
[](ClusterFile<ClusterType> &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
self.close();
|
||||
})
|
||||
.def("__iter__", [](ClusterFile &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile &self) {
|
||||
auto vec =
|
||||
new std::vector<Cluster3x3>(self.read_clusters(self.chunk_size()));
|
||||
if (vec->size() == 0) {
|
||||
.def("__iter__", [](ClusterFile<ClusterType> &self) { return &self; })
|
||||
.def("__next__", [](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(
|
||||
self.read_clusters(self.chunk_size()));
|
||||
if (v->size() == 0) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
return return_vector(vec);
|
||||
return v;
|
||||
});
|
||||
|
||||
m.def("calculate_eta2", []( aare::ClusterVector<int32_t> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
m.def("calculate_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -7,6 +7,7 @@
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/decode.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
@ -23,6 +24,47 @@ using namespace ::aare;
|
||||
|
||||
void define_ctb_raw_file_io_bindings(py::module &m) {
|
||||
|
||||
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
|
||||
|
||||
if(input.ndim() != 2){
|
||||
throw std::runtime_error("Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
//Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
//Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_05_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
|
||||
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
|
||||
|
||||
if(input.ndim() != 2){
|
||||
throw std::runtime_error("Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
//Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
//Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_04_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
|
@ -20,6 +20,11 @@
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
void define_file_io_bindings(py::module &m) {
|
||||
|
||||
|
||||
@ -124,8 +129,41 @@ void define_file_io_bindings(py::module &m) {
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames);
|
||||
return image;
|
||||
})
|
||||
.def("__enter__", [](File &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](File &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](File &self) { return &self; })
|
||||
.def("__next__", [](File &self) {
|
||||
|
||||
try{
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
}catch(std::runtime_error &e){
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
py::class_<FileConfig>(m, "FileConfig")
|
||||
.def(py::init<>())
|
||||
.def_readwrite("rows", &FileConfig::rows)
|
||||
@ -157,6 +195,8 @@ void define_file_io_bindings(py::module &m) {
|
||||
|
||||
py::class_<ROI>(m, "ROI")
|
||||
.def(py::init<>())
|
||||
.def(py::init<int64_t, int64_t, int64_t, int64_t>(), py::arg("xmin"),
|
||||
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
|
||||
.def_readwrite("xmin", &ROI::xmin)
|
||||
.def_readwrite("xmax", &ROI::xmax)
|
||||
.def_readwrite("ymin", &ROI::ymin)
|
||||
@ -205,7 +245,7 @@ void define_file_io_bindings(py::module &m) {
|
||||
return image;
|
||||
});
|
||||
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
// py::class_<ClusterHeader>(m, "ClusterHeader")
|
||||
// .def(py::init<>())
|
||||
// .def_readwrite("frame_number", &ClusterHeader::frame_number)
|
||||
|
250
python/src/fit.hpp
Normal file
250
python/src/fit.hpp
Normal file
@ -0,0 +1,250 @@
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
#include "aare/Fit.hpp"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace pybind11::literals;
|
||||
|
||||
|
||||
void define_fit_bindings(py::module &m) {
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::gaus(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
m.def(
|
||||
"pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y = new NDArray<double, 1>{aare::func::pol1(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D polynomial function for all points in x using parameters par. (p0+p1*x)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the polynomial function.
|
||||
par : array_like
|
||||
The parameters of the polynomial function. The first element is the intercept, and the second element is the slope.
|
||||
)",
|
||||
py::arg("x"), py::arg("par"));
|
||||
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
auto y_view = make_view_3d(y);
|
||||
auto x_view = make_view_1d(x);
|
||||
*par = aare::fit_gaus(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto y_view = make_view_1d(y);
|
||||
auto x_view = make_view_1d(x);
|
||||
*par = aare::fit_gaus(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
|
||||
Fit a 1D Gaussian to data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_gaus",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
|
||||
if (y.ndim() == 3) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
// the memory
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 3});
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
// Make views of the numpy arrays
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 3);
|
||||
} else if (y.ndim() == 1) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
// the memory
|
||||
auto par = new NDArray<double, 1>({3});
|
||||
auto par_err = new NDArray<double, 1>({3});
|
||||
|
||||
// Decode the numpy arrays
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
|
||||
double chi2 = 0;
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 3);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
|
||||
Fit a 1D Gaussian to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>{};
|
||||
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_3d(y);
|
||||
*par = aare::fit_pol1(x_view, y_view, n_threads);
|
||||
return return_image_data(par);
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>{};
|
||||
auto x_view = make_view_1d(x);
|
||||
auto y_view = make_view_1d(y);
|
||||
*par = aare::fit_pol1(x_view, y_view);
|
||||
return return_image_data(par);
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
py::arg("x"), py::arg("y"), py::arg("n_threads") = 4);
|
||||
|
||||
m.def(
|
||||
"fit_pol1",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
if (y.ndim() == 3) {
|
||||
auto par = new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
|
||||
|
||||
auto par_err =
|
||||
new NDArray<double, 3>({y.shape(0), y.shape(1), 2});
|
||||
|
||||
auto y_view = make_view_3d(y);
|
||||
auto y_view_err = make_view_3d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
|
||||
auto y_view = make_view_1d(y);
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Data must be 1D or 3D");
|
||||
}
|
||||
},
|
||||
R"(
|
||||
Fit a 1D polynomial to data with error estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The x values.
|
||||
y : array_like
|
||||
The y values.
|
||||
y_err : array_like
|
||||
The error in the y values.
|
||||
n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
}
|
81
python/src/interpolation.hpp
Normal file
81
python/src/interpolation.hpp
Normal file
@ -0,0 +1,81 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "np_helper.hpp"
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
template <typename ClusterType>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
|
||||
const std::string &typestr) {
|
||||
auto name = fmt::format("interpolate_{}", typestr);
|
||||
|
||||
interpolator.def(name.c_str(),
|
||||
[](aare::Interpolator &self,
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
auto photons = self.interpolate<ClusterType>(clusters);
|
||||
auto *ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
}
|
||||
|
||||
void define_interpolation_bindings(py::module &m) {
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
|
||||
|
||||
auto interpolator =
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style |
|
||||
py::array::forcecast>
|
||||
etacube,
|
||||
py::array_t<double> xbins,
|
||||
py::array_t<double> ybins,
|
||||
py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
.def("get_ietax",
|
||||
[](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("get_ietay", [](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
|
||||
register_interpolate<Cluster<int, 3, 3>>(interpolator, "Cluster3x3i");
|
||||
register_interpolate<Cluster<float, 3, 3>>(interpolator, "Cluster3x3f");
|
||||
register_interpolate<Cluster<double, 3, 3>>(interpolator, "Cluster3x3d");
|
||||
register_interpolate<Cluster<int, 2, 2>>(interpolator, "Cluster2x2i");
|
||||
register_interpolate<Cluster<float, 2, 2>>(interpolator, "Cluster2x2f");
|
||||
register_interpolate<Cluster<double, 2, 2>>(interpolator, "Cluster2x2d");
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
"hej",
|
||||
[]() {
|
||||
// auto boost_histogram = py::module_::import("boost_histogram");
|
||||
// py::object axis =
|
||||
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
|
||||
// py::object histogram = boost_histogram.attr("Histogram")(axis);
|
||||
// return histogram;
|
||||
// return h;
|
||||
},
|
||||
R"(
|
||||
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The points at which to evaluate the Gaussian function.
|
||||
par : array_like
|
||||
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
||||
)");
|
||||
}
|
@ -1,15 +1,17 @@
|
||||
//Files with bindings to the different classes
|
||||
#include "file.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#include "ctb_raw_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "var_cluster.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "pedestal.hpp"
|
||||
// Files with bindings to the different classes
|
||||
#include "cluster.hpp"
|
||||
#include "cluster_file.hpp"
|
||||
#include "ctb_raw_file.hpp"
|
||||
#include "file.hpp"
|
||||
#include "fit.hpp"
|
||||
#include "interpolation.hpp"
|
||||
#include "pedestal.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "var_cluster.hpp"
|
||||
|
||||
//Pybind stuff
|
||||
// Pybind stuff
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
@ -24,6 +26,55 @@ PYBIND11_MODULE(_aare, m) {
|
||||
define_pixel_map_bindings(m);
|
||||
define_pedestal_bindings<double>(m, "Pedestal_d");
|
||||
define_pedestal_bindings<float>(m, "Pedestal_f");
|
||||
define_cluster_finder_bindings(m);
|
||||
define_cluster_file_io_bindings(m);
|
||||
}
|
||||
define_fit_bindings(m);
|
||||
define_interpolation_bindings(m);
|
||||
|
||||
define_cluster_file_io_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_file_io_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_file_io_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_file_io_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_file_io_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
define_cluster_file_io_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
|
||||
define_cluster_vector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_vector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_vector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_vector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_vector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_cluster_vector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_finder_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_finder_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_finder_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_finder_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_finder_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
define_cluster_finder_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_finder_mt_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_finder_mt_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_finder_mt_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_finder_mt_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_finder_mt_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
define_cluster_finder_mt_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_file_sink_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_file_sink_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_file_sink_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_file_sink_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_file_sink_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2d");
|
||||
define_cluster_file_sink_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_collector_bindings<Cluster<int, 3, 3>>(m, "Cluster3x3i");
|
||||
define_cluster_collector_bindings<Cluster<double, 3, 3>>(m, "Cluster3x3f");
|
||||
define_cluster_collector_bindings<Cluster<float, 3, 3>>(m, "Cluster3x3d");
|
||||
define_cluster_collector_bindings<Cluster<int, 2, 2>>(m, "Cluster2x2i");
|
||||
define_cluster_collector_bindings<Cluster<double, 2, 2>>(m, "Cluster2x2f");
|
||||
define_cluster_collector_bindings<Cluster<float, 2, 2>>(m, "Cluster2x2d");
|
||||
|
||||
define_cluster<int, 3, 3, uint16_t>(m, "3x3i");
|
||||
define_cluster<float, 3, 3, uint16_t>(m, "3x3f");
|
||||
define_cluster<double, 3, 3, uint16_t>(m, "3x3d");
|
||||
define_cluster<int, 2, 2, uint16_t>(m, "2x2i");
|
||||
define_cluster<float, 2, 2, uint16_t>(m, "2x2f");
|
||||
define_cluster<double, 2, 2, uint16_t>(m, "2x2d");
|
||||
}
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "aare/NDView.hpp"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace aare;
|
||||
|
||||
// Pass image data back to python as a numpy array
|
||||
template <typename T, int64_t Ndim>
|
||||
@ -39,78 +40,47 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
|
||||
free_when_done); // numpy array references this parent
|
||||
}
|
||||
|
||||
// template <typename Reader> py::array do_read(Reader &r, size_t n_frames) {
|
||||
// py::array image;
|
||||
// if (n_frames == 0)
|
||||
// n_frames = r.total_frames();
|
||||
|
||||
// std::array<ssize_t, 3> shape{static_cast<ssize_t>(n_frames), r.rows(),
|
||||
// r.cols()};
|
||||
// const uint8_t item_size = r.bytes_per_pixel();
|
||||
// if (item_size == 1) {
|
||||
// image = py::array_t<uint8_t, py::array::c_style | py::array::forcecast>(
|
||||
// shape);
|
||||
// } else if (item_size == 2) {
|
||||
// image =
|
||||
// py::array_t<uint16_t, py::array::c_style | py::array::forcecast>(
|
||||
// shape);
|
||||
// } else if (item_size == 4) {
|
||||
// image =
|
||||
// py::array_t<uint32_t, py::array::c_style | py::array::forcecast>(
|
||||
// shape);
|
||||
// }
|
||||
// r.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames);
|
||||
// return image;
|
||||
// }
|
||||
|
||||
// py::array return_frame(pl::Frame *ptr) {
|
||||
// py::capsule free_when_done(ptr, [](void *f) {
|
||||
// pl::Frame *foo = reinterpret_cast<pl::Frame *>(f);
|
||||
// delete foo;
|
||||
// });
|
||||
|
||||
// const uint8_t item_size = ptr->bytes_per_pixel();
|
||||
// std::vector<ssize_t> shape;
|
||||
// for (auto val : ptr->shape())
|
||||
// if (val > 1)
|
||||
// shape.push_back(val);
|
||||
|
||||
// std::vector<ssize_t> strides;
|
||||
// if (shape.size() == 1)
|
||||
// strides.push_back(item_size);
|
||||
// else if (shape.size() == 2) {
|
||||
// strides.push_back(item_size * shape[1]);
|
||||
// strides.push_back(item_size);
|
||||
// }
|
||||
|
||||
// if (item_size == 1)
|
||||
// return py::array_t<uint8_t>(
|
||||
// shape, strides,
|
||||
// reinterpret_cast<uint8_t *>(ptr->data()), free_when_done);
|
||||
// else if (item_size == 2)
|
||||
// return py::array_t<uint16_t>(shape, strides,
|
||||
// reinterpret_cast<uint16_t *>(ptr->data()),
|
||||
// free_when_done);
|
||||
// else if (item_size == 4)
|
||||
// return py::array_t<uint32_t>(shape, strides,
|
||||
// reinterpret_cast<uint32_t *>(ptr->data()),
|
||||
// free_when_done);
|
||||
// return {};
|
||||
// }
|
||||
|
||||
// todo rewrite generic
|
||||
template <class T, int Flags> auto get_shape_3d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_3d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto get_shape_2d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_2d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> arr) {
|
||||
template <class T, int Flags>
|
||||
auto get_shape_1d(const py::array_t<T, Flags> &arr) {
|
||||
return aare::Shape<1>{arr.shape(0)};
|
||||
}
|
||||
|
||||
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
|
||||
}
|
||||
}
|
||||
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> &arr) {
|
||||
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
|
||||
}
|
||||
|
||||
template <typename ClusterType> struct fmt_format_trait; // forward declaration
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
struct fmt_format_trait<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
|
||||
static std::string value() {
|
||||
return fmt::format("T{{{}:x;{}:y;{}:data;}}",
|
||||
py::format_descriptor<CoordType>::format(),
|
||||
py::format_descriptor<CoordType>::format(),
|
||||
fmt::format("{}{}", ClusterSizeX * ClusterSizeY,
|
||||
py::format_descriptor<T>::format()));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename ClusterType>
|
||||
auto fmt_format = fmt_format_trait<ClusterType>::value();
|
@ -19,15 +19,24 @@ using namespace::aare;
|
||||
|
||||
void define_var_cluster_finder_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
|
||||
reserved, energy, max);
|
||||
reserved, energy, max, rows, cols, enes);
|
||||
|
||||
py::class_<VarClusterFinder<double>>(m, "VarClusterFinder")
|
||||
.def(py::init<Shape<2>, double>())
|
||||
.def("labeled",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new NDArray<int, 2>(self.labeled());
|
||||
auto *ptr = new NDArray<int, 2>(self.labeled());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("set_noiseMap",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
noise_map) {
|
||||
auto noise_map_span = make_view_2d(noise_map);
|
||||
self.set_noiseMap(noise_map_span);
|
||||
})
|
||||
.def("set_peripheralThresholdFactor",
|
||||
&VarClusterFinder<double>::set_peripheralThresholdFactor)
|
||||
.def("find_clusters",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
@ -35,6 +44,30 @@ void define_var_cluster_finder_bindings(py::module &m) {
|
||||
auto view = make_view_2d(img);
|
||||
self.find_clusters(view);
|
||||
})
|
||||
.def("find_clusters_X",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
img) {
|
||||
auto img_span = make_view_2d(img);
|
||||
self.find_clusters_X(img_span);
|
||||
})
|
||||
.def("single_pass",
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
img) {
|
||||
auto img_span = make_view_2d(img);
|
||||
self.single_pass(img_span);
|
||||
})
|
||||
.def("hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
|
||||
self.steal_hits());
|
||||
return return_vector(ptr);
|
||||
})
|
||||
.def("clear_hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
self.clear_hits();
|
||||
})
|
||||
.def("steal_hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
|
||||
|
64
python/tests/test_Cluster.py
Normal file
64
python/tests/test_Cluster.py
Normal file
@ -0,0 +1,64 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from _aare import ClusterVector_Cluster3x3i, Interpolator, Cluster3x3i, ClusterFinder_Cluster3x3i
|
||||
|
||||
def test_ClusterVector():
|
||||
"""Test ClusterVector"""
|
||||
|
||||
clustervector = ClusterVector_Cluster3x3i()
|
||||
assert clustervector.cluster_size_x == 3
|
||||
assert clustervector.cluster_size_y == 3
|
||||
assert clustervector.item_size() == 4+9*4
|
||||
assert clustervector.frame_number == 0
|
||||
assert clustervector.capacity == 1024
|
||||
assert clustervector.size == 0
|
||||
|
||||
cluster = Cluster3x3i(0,0,np.ones(9, dtype=np.int32))
|
||||
|
||||
clustervector.push_back(cluster)
|
||||
assert clustervector.size == 1
|
||||
|
||||
#push_back - check size
|
||||
|
||||
|
||||
|
||||
def test_Interpolator():
|
||||
"""Test Interpolator"""
|
||||
|
||||
ebins = np.linspace(0,10, 20, dtype=np.float64)
|
||||
xbins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
ybins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
|
||||
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
|
||||
interpolator = Interpolator(etacube, xbins, ybins, ebins)
|
||||
|
||||
assert interpolator.get_ietax().shape == (30,30,20)
|
||||
assert interpolator.get_ietay().shape == (30,30,20)
|
||||
clustervector = ClusterVector_Cluster3x3i()
|
||||
|
||||
cluster = Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
|
||||
#clustervector.push_back(cluster)
|
||||
#num_clusters = 1;
|
||||
|
||||
#assert interpolator.interpolate_Cluster3x3i(clustervector).shape == (num_clusters, 3)
|
||||
|
||||
|
||||
#def test_cluster_file():
|
||||
|
||||
#def test_cluster_finder():
|
||||
#"""Test ClusterFinder"""
|
||||
|
||||
#clusterfinder = ClusterFinder_Cluster3x3i([100,100])
|
||||
|
||||
#clusterfinder.find_clusters()
|
||||
|
||||
#clusters = clusterfinder.steal_clusters()
|
||||
|
||||
#print("cluster size: ", clusters.size())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
62
src/CalculateEta.test.cpp
Normal file
62
src/CalculateEta.test.cpp
Normal file
@ -0,0 +1,62 @@
|
||||
/************************************************
|
||||
* @file CalculateEta.test.cpp
|
||||
* @short test case to calculate_eta2
|
||||
***********************************************/
|
||||
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
// #include "catch.hpp"
|
||||
#include <array>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
using ClusterTypes =
|
||||
std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>, Cluster<int, 5, 5>,
|
||||
Cluster<int, 4, 2>, Cluster<int, 2, 3>>;
|
||||
|
||||
auto get_test_parameters() {
|
||||
return GENERATE(
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
|
||||
Eta2<int>{2. / 3, 3. / 4, corner::cBottomLeft, 7}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
|
||||
Eta2<int>{6. / 11, 2. / 7, corner::cTopRight, 20}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 8, 8, 9, 2,
|
||||
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
|
||||
Eta2<int>{9. / 17, 5. / 13, 8, 28}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
|
||||
Eta2<int>{7. / 11, 6. / 10, 1, 21}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
|
||||
Eta2<int>{3. / 5, 4. / 6, 1, 11}));
|
||||
}
|
||||
|
||||
TEST_CASE("compute_largest_2x2_subcluster", "[.eta_calculation]") {
|
||||
auto [cluster, expected_eta] = get_test_parameters();
|
||||
|
||||
auto [sum, index] = std::visit(
|
||||
[](const auto &clustertype) { return clustertype.max_sum_2x2(); },
|
||||
cluster);
|
||||
CHECK(expected_eta.c == index);
|
||||
CHECK(expected_eta.sum == sum);
|
||||
}
|
||||
|
||||
TEST_CASE("calculate_eta2", "[.eta_calculation]") {
|
||||
|
||||
auto [cluster, expected_eta] = get_test_parameters();
|
||||
|
||||
auto eta = std::visit(
|
||||
[](const auto &clustertype) { return calculate_eta2(clustertype); },
|
||||
cluster);
|
||||
|
||||
CHECK(eta.x == expected_eta.x);
|
||||
CHECK(eta.y == expected_eta.y);
|
||||
CHECK(eta.c == expected_eta.c);
|
||||
CHECK(eta.sum == expected_eta.sum);
|
||||
}
|
28
src/Cluster.test.cpp
Normal file
28
src/Cluster.test.cpp
Normal file
@ -0,0 +1,28 @@
|
||||
/************************************************
|
||||
* @file test-Cluster.cpp
|
||||
* @short test case for generic Cluster, ClusterVector, and calculate_eta2
|
||||
***********************************************/
|
||||
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
// #include "catch.hpp"
|
||||
#include <array>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("Correct Instantiation of Cluster and ClusterVector",
|
||||
"[.cluster][.instantiation]") {
|
||||
|
||||
CHECK(is_valid_cluster<double, 3, 3>);
|
||||
CHECK(is_valid_cluster<double, 3, 2>);
|
||||
CHECK(not is_valid_cluster<int, 0, 0>);
|
||||
CHECK(not is_valid_cluster<std::string, 2, 2>);
|
||||
CHECK(not is_valid_cluster<int, 2, 2, double>);
|
||||
|
||||
CHECK(not is_cluster_v<int>);
|
||||
CHECK(is_cluster_v<Cluster<int, 3, 3>>);
|
||||
}
|
@ -1,427 +0,0 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace aare {
|
||||
|
||||
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
|
||||
const std::string &mode)
|
||||
: m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(fname.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(fname.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
fname.string());
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
ClusterFile::~ClusterFile() { close(); }
|
||||
|
||||
void ClusterFile::close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void ClusterFile::write_frame(int32_t frame_number,
|
||||
const ClusterVector<int32_t> &clusters) {
|
||||
if (m_mode != "w") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
if (!(clusters.cluster_size_x() == 3) &&
|
||||
!(clusters.cluster_size_y() == 3)) {
|
||||
throw std::runtime_error("Only 3x3 clusters are supported");
|
||||
}
|
||||
fwrite(&frame_number, sizeof(frame_number), 1, fp);
|
||||
uint32_t n_clusters = clusters.size();
|
||||
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
|
||||
fwrite(clusters.data(), clusters.element_offset(), clusters.size(), fp);
|
||||
// write clusters
|
||||
// fwrite(clusters.data(), sizeof(Cluster), clusters.size(), fp);
|
||||
}
|
||||
|
||||
std::vector<Cluster3x3> ClusterFile::read_clusters(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
std::vector<Cluster3x3> clusters(n_clusters);
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
|
||||
auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to read we
|
||||
// read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread(reinterpret_cast<void *>(buf + nph_read),
|
||||
sizeof(Cluster3x3), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read += fread(reinterpret_cast<void *>(buf + nph_read),
|
||||
sizeof(Cluster3x3), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the vector to the number of clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
std::vector<Cluster3x3> ClusterFile::read_frame(int32_t &out_fnum) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
|
||||
if (fread(&out_fnum, sizeof(out_fnum), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
std::vector<Cluster3x3> clusters(n_clusters);
|
||||
|
||||
if (fread(clusters.data(), sizeof(Cluster3x3), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error("Could not read clusters");
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
|
||||
double *noise_map,
|
||||
int nx, int ny) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
std::vector<Cluster3x3> clusters(n_clusters);
|
||||
// size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
|
||||
// uint32_t *n_left, double *noise_map, int
|
||||
// nx, int ny) {
|
||||
int iframe = 0;
|
||||
// uint32_t nph = *n_left;
|
||||
uint32_t nph = m_num_left;
|
||||
// uint32_t nn = *n_left;
|
||||
uint32_t nn = m_num_left;
|
||||
size_t nph_read = 0;
|
||||
|
||||
int32_t t2max, tot1;
|
||||
int32_t tot3;
|
||||
// Cluster *ptr = buf;
|
||||
Cluster3x3 *ptr = clusters.data();
|
||||
int good = 1;
|
||||
double noise;
|
||||
// read photons left from previous frame
|
||||
if (noise_map)
|
||||
printf("Using noise map\n");
|
||||
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to
|
||||
// read we read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
for (size_t iph = 0; iph < nn; iph++) {
|
||||
// read photons 1 by 1
|
||||
size_t n_read =
|
||||
fread(reinterpret_cast<void *>(ptr), sizeof(Cluster3x3), 1, fp);
|
||||
if (n_read != 1) {
|
||||
clusters.resize(nph_read);
|
||||
return clusters;
|
||||
}
|
||||
// TODO! error handling on read
|
||||
good = 1;
|
||||
if (noise_map) {
|
||||
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
|
||||
tot1 = ptr->data[4];
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
|
||||
NULL);
|
||||
noise = noise_map[ptr->y * nx + ptr->x];
|
||||
if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
|
||||
;
|
||||
} else {
|
||||
good = 0;
|
||||
printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
|
||||
tot1, t2max, tot3);
|
||||
}
|
||||
} else {
|
||||
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
|
||||
good = 0;
|
||||
}
|
||||
}
|
||||
if (good) {
|
||||
ptr++;
|
||||
nph_read++;
|
||||
}
|
||||
(m_num_left)--;
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (nph_read < n_clusters) {
|
||||
// // keep on reading frames and photons until reaching
|
||||
// n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
// // printf("%d\n",nph_read);
|
||||
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
// // printf("** %d\n",nph);
|
||||
m_num_left = nph;
|
||||
for (size_t iph = 0; iph < nph; iph++) {
|
||||
// // read photons 1 by 1
|
||||
size_t n_read = fread(reinterpret_cast<void *>(ptr),
|
||||
sizeof(Cluster3x3), 1, fp);
|
||||
if (n_read != 1) {
|
||||
clusters.resize(nph_read);
|
||||
return clusters;
|
||||
// return nph_read;
|
||||
}
|
||||
good = 1;
|
||||
if (noise_map) {
|
||||
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
|
||||
ptr->y < ny) {
|
||||
tot1 = ptr->data[4];
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
|
||||
NULL, NULL, NULL);
|
||||
// noise = noise_map[ptr->y * nx + ptr->x];
|
||||
noise = noise_map[ptr->y + ny * ptr->x];
|
||||
if (tot1 > noise || t2max > 2 * noise ||
|
||||
tot3 > 3 * noise) {
|
||||
;
|
||||
} else
|
||||
good = 0;
|
||||
} else {
|
||||
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
|
||||
good = 0;
|
||||
}
|
||||
}
|
||||
if (good) {
|
||||
ptr++;
|
||||
nph_read++;
|
||||
}
|
||||
(m_num_left)--;
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
// printf("%d\n",nph_read);
|
||||
clusters.resize(nph_read);
|
||||
return clusters;
|
||||
}
|
||||
|
||||
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
|
||||
NDArray<double, 2> eta2({clusters.size(), 2});
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
// int32_t t2;
|
||||
// auto* ptr = reinterpret_cast<int32_t*> (clusters.element_ptr(i) + 2 *
|
||||
// sizeof(int16_t)); analyze_cluster(clusters.at<Cluster3x3>(i), &t2,
|
||||
// nullptr, nullptr, &eta2(i,0), &eta2(i,1) , nullptr, nullptr);
|
||||
auto [x, y] = calculate_eta2(clusters.at<Cluster3x3>(i));
|
||||
eta2(i, 0) = x;
|
||||
eta2(i, 1) = y;
|
||||
}
|
||||
return eta2;
|
||||
}
|
||||
|
||||
std::array<double, 2> calculate_eta2(Cluster3x3 &cl) {
|
||||
std::array<double, 2> eta2{};
|
||||
|
||||
std::array<int32_t, 4> tot2;
|
||||
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
|
||||
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
|
||||
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
|
||||
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
|
||||
|
||||
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
|
||||
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if ((cl.data[3] + cl.data[4]) != 0)
|
||||
eta2[0] =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
|
||||
if ((cl.data[1] + cl.data[4]) != 0)
|
||||
eta2[1] =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
|
||||
break;
|
||||
case cBottomRight:
|
||||
if ((cl.data[2] + cl.data[5]) != 0)
|
||||
eta2[0] =
|
||||
static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
|
||||
if ((cl.data[1] + cl.data[4]) != 0)
|
||||
eta2[1] =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
|
||||
break;
|
||||
case cTopLeft:
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta2[0] =
|
||||
static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta2[1] =
|
||||
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
|
||||
break;
|
||||
case cTopRight:
|
||||
if ((cl.data[5] + cl.data[4]) != 0)
|
||||
eta2[0] =
|
||||
static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta2[1] =
|
||||
static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
|
||||
break;
|
||||
// default:;
|
||||
}
|
||||
return eta2;
|
||||
}
|
||||
|
||||
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x,
|
||||
double *eta3y) {
|
||||
|
||||
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
||||
}
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||
|
||||
int ok = 1;
|
||||
|
||||
int32_t tot2[4];
|
||||
int32_t t2max = 0;
|
||||
char c = 0;
|
||||
int32_t val, tot3;
|
||||
|
||||
tot3 = 0;
|
||||
for (int i = 0; i < 4; i++)
|
||||
tot2[i] = 0;
|
||||
|
||||
for (int ix = 0; ix < 3; ix++) {
|
||||
for (int iy = 0; iy < 3; iy++) {
|
||||
val = data[iy * 3 + ix];
|
||||
// printf ("%d ",data[iy * 3 + ix]);
|
||||
tot3 += val;
|
||||
if (ix <= 1 && iy <= 1)
|
||||
tot2[cBottomLeft] += val;
|
||||
if (ix >= 1 && iy <= 1)
|
||||
tot2[cBottomRight] += val;
|
||||
if (ix <= 1 && iy >= 1)
|
||||
tot2[cTopLeft] += val;
|
||||
if (ix >= 1 && iy >= 1)
|
||||
tot2[cTopRight] += val;
|
||||
}
|
||||
// printf ("\n");
|
||||
}
|
||||
// printf ("\n");
|
||||
|
||||
if (t2 || quad) {
|
||||
|
||||
t2max = tot2[0];
|
||||
c = cBottomLeft;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
if (tot2[i] > t2max) {
|
||||
t2max = tot2[i];
|
||||
c = i;
|
||||
}
|
||||
}
|
||||
// printf("*** %d %d %d %d --
|
||||
// %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
|
||||
if (quad)
|
||||
*quad = c;
|
||||
if (t2)
|
||||
*t2 = t2max;
|
||||
}
|
||||
|
||||
if (t3)
|
||||
*t3 = tot3;
|
||||
|
||||
if (eta2x || eta2y) {
|
||||
if (eta2x)
|
||||
*eta2x = 0;
|
||||
if (eta2y)
|
||||
*eta2y = 0;
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if (eta2x && (data[3] + data[4]) != 0)
|
||||
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
|
||||
if (eta2y && (data[1] + data[4]) != 0)
|
||||
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
|
||||
break;
|
||||
case cBottomRight:
|
||||
if (eta2x && (data[2] + data[5]) != 0)
|
||||
*eta2x = static_cast<double>(data[5]) / (data[4] + data[5]);
|
||||
if (eta2y && (data[1] + data[4]) != 0)
|
||||
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
|
||||
break;
|
||||
case cTopLeft:
|
||||
if (eta2x && (data[7] + data[4]) != 0)
|
||||
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
|
||||
if (eta2y && (data[7] + data[4]) != 0)
|
||||
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
|
||||
break;
|
||||
case cTopRight:
|
||||
if (eta2x && t2max != 0)
|
||||
*eta2x = static_cast<double>(data[5]) / (data[5] + data[4]);
|
||||
if (eta2y && t2max != 0)
|
||||
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
|
||||
break;
|
||||
default:;
|
||||
}
|
||||
}
|
||||
|
||||
if (eta3x || eta3y) {
|
||||
if (eta3x && (data[3] + data[4] + data[5]) != 0)
|
||||
*eta3x = static_cast<double>(-data[3] + data[3 + 2]) /
|
||||
(data[3] + data[4] + data[5]);
|
||||
if (eta3y && (data[1] + data[4] + data[7]) != 0)
|
||||
*eta3y = static_cast<double>(-data[1] + data[2 * 3 + 1]) /
|
||||
(data[1] + data[4] + data[7]);
|
||||
}
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
||||
} // namespace aare
|
75
src/ClusterFile.test.cpp
Normal file
75
src/ClusterFile.test.cpp
Normal file
@ -0,0 +1,75 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
#include "test_config.hpp"
|
||||
|
||||
#include "aare/defs.hpp"
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <filesystem>
|
||||
|
||||
using aare::Cluster;
|
||||
using aare::ClusterFile;
|
||||
|
||||
TEST_CASE("Read one frame from a a cluster file", "[.integration]") {
|
||||
// We know that the frame has 97 clusters
|
||||
auto fpath =
|
||||
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
auto clusters = f.read_frame();
|
||||
REQUIRE(clusters.size() == 97);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
|
||||
TEST_CASE("Read one frame using ROI", "[.integration]") {
|
||||
// We know that the frame has 97 clusters
|
||||
auto fpath =
|
||||
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
aare::ROI roi;
|
||||
roi.xmin = 0;
|
||||
roi.xmax = 50;
|
||||
roi.ymin = 200;
|
||||
roi.ymax = 249;
|
||||
f.set_roi(roi);
|
||||
auto clusters = f.read_frame();
|
||||
REQUIRE(clusters.size() == 49);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
|
||||
// Check that all clusters are within the ROI
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto c = clusters.at(i);
|
||||
REQUIRE(c.x >= roi.xmin);
|
||||
REQUIRE(c.x <= roi.xmax);
|
||||
REQUIRE(c.y >= roi.ymin);
|
||||
REQUIRE(c.y <= roi.ymax);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Read clusters from single frame file", "[.integration]") {
|
||||
|
||||
auto fpath =
|
||||
test_data_path() / "clusters" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
SECTION("Read fewer clusters than available") {
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
auto clusters = f.read_clusters(50);
|
||||
REQUIRE(clusters.size() == 50);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
SECTION("Read more clusters than available") {
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
// 100 is the maximum number of clusters read
|
||||
auto clusters = f.read_clusters(100);
|
||||
REQUIRE(clusters.size() == 97);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
SECTION("Read all clusters") {
|
||||
ClusterFile<Cluster<int32_t, 3, 3>> f(fpath);
|
||||
auto clusters = f.read_clusters(97);
|
||||
REQUIRE(clusters.size() == 97);
|
||||
REQUIRE(clusters.frame_number() == 135);
|
||||
}
|
||||
}
|
@ -1,19 +1,18 @@
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <chrono>
|
||||
#include <random>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
//TODO! Find a way to test the cluster finder
|
||||
|
||||
|
||||
// TODO! Find a way to test the cluster finder
|
||||
|
||||
// class ClusterFinderUnitTest : public ClusterFinder {
|
||||
// public:
|
||||
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma = 5.0, double threshold = 0.0)
|
||||
// ClusterFinderUnitTest(int cluster_sizeX, int cluster_sizeY, double nSigma
|
||||
// = 5.0, double threshold = 0.0)
|
||||
// : ClusterFinder(cluster_sizeX, cluster_sizeY, nSigma, threshold) {}
|
||||
// double get_c2() { return c2; }
|
||||
// double get_c3() { return c3; }
|
||||
@ -37,8 +36,8 @@ using namespace aare;
|
||||
// REQUIRE_THAT(cf.get_c3(), Catch::Matchers::WithinRel(c3, 1e-9));
|
||||
// }
|
||||
|
||||
TEST_CASE("Construct a cluster finder"){
|
||||
ClusterFinder clusterFinder({400,400}, {3,3});
|
||||
TEST_CASE("Construct a cluster finder") {
|
||||
ClusterFinder clusterFinder({400, 400});
|
||||
// REQUIRE(clusterFinder.get_cluster_sizeX() == 3);
|
||||
// REQUIRE(clusterFinder.get_cluster_sizeY() == 3);
|
||||
// REQUIRE(clusterFinder.get_threshold() == 1);
|
||||
@ -49,16 +48,17 @@ TEST_CASE("Construct a cluster finder"){
|
||||
// aare::Pedestal pedestal(10, 10, 5);
|
||||
// NDArray<double, 2> frame({10, 10});
|
||||
// frame = 0;
|
||||
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1 threshold
|
||||
// ClusterFinder clusterFinder(3, 3, 1, 1); // 3x3 cluster, 1 nSigma, 1
|
||||
// threshold
|
||||
|
||||
// auto clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
||||
// auto clusters =
|
||||
// clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
||||
|
||||
// REQUIRE(clusters.size() == 0);
|
||||
|
||||
// frame(5, 5) = 10;
|
||||
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(), pedestal);
|
||||
// REQUIRE(clusters.size() == 1);
|
||||
// REQUIRE(clusters[0].x == 5);
|
||||
// clusters = clusterFinder.find_clusters_without_threshold(frame.span(),
|
||||
// pedestal); REQUIRE(clusters.size() == 1); REQUIRE(clusters[0].x == 5);
|
||||
// REQUIRE(clusters[0].y == 5);
|
||||
// for (int i = 0; i < 3; i++) {
|
||||
// for (int j = 0; j < 3; j++) {
|
||||
|
@ -1,108 +1,233 @@
|
||||
#include <cstdint>
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include <cstdint>
|
||||
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
using aare::Cluster;
|
||||
using aare::ClusterVector;
|
||||
|
||||
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read") {
|
||||
struct Cluster_i2x2 {
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[4];
|
||||
};
|
||||
TEST_CASE("ClusterVector 2x2 int32_t capacity 4, push back then read",
|
||||
"[.ClusterVector]") {
|
||||
|
||||
ClusterVector<int32_t> cv(2, 2, 4);
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv(4);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 2);
|
||||
REQUIRE(cv.cluster_size_y() == 2);
|
||||
// int16_t, int16_t, 2x2 int32_t = 20 bytes
|
||||
REQUIRE(cv.element_offset() == 20);
|
||||
REQUIRE(cv.item_size() == 20);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_i2x2 c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
// Create a cluster and push back into the vector
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.size() == 1);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
|
||||
//Read the cluster back out using copy. TODO! Can we improve the API?
|
||||
Cluster_i2x2 c2;
|
||||
std::byte *ptr = cv.element_ptr(0);
|
||||
std::copy(ptr, ptr + cv.element_offset(), reinterpret_cast<std::byte*>(&c2));
|
||||
auto c2 = cv.at(0);
|
||||
|
||||
//Check that the data is the same
|
||||
// Check that the data is the same
|
||||
REQUIRE(c1.x == c2.x);
|
||||
REQUIRE(c1.y == c2.y);
|
||||
for(size_t i = 0; i < 4; i++) {
|
||||
for (size_t i = 0; i < 4; i++) {
|
||||
REQUIRE(c1.data[i] == c2.data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Summing 3x1 clusters of int64"){
|
||||
struct Cluster_l3x1{
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
int32_t data[3];
|
||||
};
|
||||
|
||||
ClusterVector<int32_t> cv(3, 1, 2);
|
||||
TEST_CASE("Summing 3x1 clusters of int64", "[.ClusterVector]") {
|
||||
ClusterVector<Cluster<int32_t, 3, 1>> cv(2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 3);
|
||||
REQUIRE(cv.cluster_size_y() == 1);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_l3x1 c1 = {1, 2, {3, 4, 5}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
// Create a cluster and push back into the vector
|
||||
Cluster<int32_t, 3, 1> c1 = {1, 2, {3, 4, 5}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 1);
|
||||
|
||||
Cluster_l3x1 c2 = {6, 7, {8, 9, 10}};
|
||||
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
Cluster<int32_t, 3, 1> c2 = {6, 7, {8, 9, 10}};
|
||||
cv.push_back(c2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
REQUIRE(cv.size() == 2);
|
||||
|
||||
Cluster_l3x1 c3 = {11, 12, {13, 14, 15}};
|
||||
cv.push_back(c3.x, c3.y, reinterpret_cast<std::byte*>(&c3.data[0]));
|
||||
Cluster<int32_t, 3, 1> c3 = {11, 12, {13, 14, 15}};
|
||||
cv.push_back(c3);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
REQUIRE(cv.size() == 3);
|
||||
|
||||
/*
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 3);
|
||||
REQUIRE(sums[0] == 12);
|
||||
REQUIRE(sums[1] == 27);
|
||||
REQUIRE(sums[2] == 42);
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("Storing floats"){
|
||||
struct Cluster_f4x2{
|
||||
int16_t x;
|
||||
int16_t y;
|
||||
float data[8];
|
||||
};
|
||||
|
||||
ClusterVector<float> cv(2, 4, 2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
TEST_CASE("Storing floats", "[.ClusterVector]") {
|
||||
ClusterVector<Cluster<float, 2, 4>> cv(10);
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 0);
|
||||
REQUIRE(cv.cluster_size_x() == 2);
|
||||
REQUIRE(cv.cluster_size_y() == 4);
|
||||
|
||||
//Create a cluster and push back into the vector
|
||||
Cluster_f4x2 c1 = {1, 2, {3.0, 4.0, 5.0, 6.0,3.0, 4.0, 5.0, 6.0}};
|
||||
cv.push_back(c1.x, c1.y, reinterpret_cast<std::byte*>(&c1.data[0]));
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
// Create a cluster and push back into the vector
|
||||
Cluster<float, 2, 4> c1 = {1, 2, {3.0, 4.0, 5.0, 6.0, 3.0, 4.0, 5.0, 6.0}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 1);
|
||||
|
||||
|
||||
Cluster_f4x2 c2 = {6, 7, {8.0, 9.0, 10.0, 11.0,8.0, 9.0, 10.0, 11.0}};
|
||||
cv.push_back(c2.x, c2.y, reinterpret_cast<std::byte*>(&c2.data[0]));
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
Cluster<float, 2, 4> c2 = {
|
||||
6, 7, {8.0, 9.0, 10.0, 11.0, 8.0, 9.0, 10.0, 11.0}};
|
||||
cv.push_back(c2);
|
||||
REQUIRE(cv.capacity() == 10);
|
||||
REQUIRE(cv.size() == 2);
|
||||
|
||||
/*
|
||||
auto sums = cv.sum();
|
||||
REQUIRE(sums.size() == 2);
|
||||
REQUIRE_THAT(sums[0], Catch::Matchers::WithinAbs(36.0, 1e-6));
|
||||
REQUIRE_THAT(sums[1], Catch::Matchers::WithinAbs(76.0, 1e-6));
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("Push back more than initial capacity", "[.ClusterVector]") {
|
||||
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv(2);
|
||||
auto initial_data = cv.data();
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv.push_back(c1);
|
||||
REQUIRE(cv.size() == 1);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
|
||||
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv.push_back(c2);
|
||||
REQUIRE(cv.size() == 2);
|
||||
REQUIRE(cv.capacity() == 2);
|
||||
|
||||
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv.push_back(c3);
|
||||
REQUIRE(cv.size() == 3);
|
||||
REQUIRE(cv.capacity() == 4);
|
||||
|
||||
Cluster<int32_t, 2, 2> *ptr =
|
||||
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv.data());
|
||||
REQUIRE(ptr[0].x == 1);
|
||||
REQUIRE(ptr[0].y == 2);
|
||||
REQUIRE(ptr[1].x == 6);
|
||||
REQUIRE(ptr[1].y == 7);
|
||||
REQUIRE(ptr[2].x == 11);
|
||||
REQUIRE(ptr[2].y == 12);
|
||||
|
||||
// We should have allocated a new buffer, since we outgrew the initial
|
||||
// capacity
|
||||
REQUIRE(initial_data != cv.data());
|
||||
}
|
||||
|
||||
TEST_CASE("Concatenate two cluster vectors where the first has enough capacity",
|
||||
"[.ClusterVector]") {
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv1(12);
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv1.push_back(c1);
|
||||
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv1.push_back(c2);
|
||||
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
|
||||
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv2.push_back(c3);
|
||||
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
|
||||
cv2.push_back(c4);
|
||||
|
||||
cv1 += cv2;
|
||||
REQUIRE(cv1.size() == 4);
|
||||
REQUIRE(cv1.capacity() == 12);
|
||||
|
||||
Cluster<int32_t, 2, 2> *ptr =
|
||||
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
|
||||
REQUIRE(ptr[0].x == 1);
|
||||
REQUIRE(ptr[0].y == 2);
|
||||
REQUIRE(ptr[1].x == 6);
|
||||
REQUIRE(ptr[1].y == 7);
|
||||
REQUIRE(ptr[2].x == 11);
|
||||
REQUIRE(ptr[2].y == 12);
|
||||
REQUIRE(ptr[3].x == 16);
|
||||
REQUIRE(ptr[3].y == 17);
|
||||
}
|
||||
|
||||
TEST_CASE("Concatenate two cluster vectors where we need to allocate",
|
||||
"[.ClusterVector]") {
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv1(2);
|
||||
Cluster<int32_t, 2, 2> c1 = {1, 2, {3, 4, 5, 6}};
|
||||
cv1.push_back(c1);
|
||||
Cluster<int32_t, 2, 2> c2 = {6, 7, {8, 9, 10, 11}};
|
||||
cv1.push_back(c2);
|
||||
|
||||
ClusterVector<Cluster<int32_t, 2, 2>> cv2(2);
|
||||
Cluster<int32_t, 2, 2> c3 = {11, 12, {13, 14, 15, 16}};
|
||||
cv2.push_back(c3);
|
||||
Cluster<int32_t, 2, 2> c4 = {16, 17, {18, 19, 20, 21}};
|
||||
cv2.push_back(c4);
|
||||
|
||||
cv1 += cv2;
|
||||
REQUIRE(cv1.size() == 4);
|
||||
REQUIRE(cv1.capacity() == 4);
|
||||
|
||||
Cluster<int32_t, 2, 2> *ptr =
|
||||
reinterpret_cast<Cluster<int32_t, 2, 2> *>(cv1.data());
|
||||
REQUIRE(ptr[0].x == 1);
|
||||
REQUIRE(ptr[0].y == 2);
|
||||
REQUIRE(ptr[1].x == 6);
|
||||
REQUIRE(ptr[1].y == 7);
|
||||
REQUIRE(ptr[2].x == 11);
|
||||
REQUIRE(ptr[2].y == 12);
|
||||
REQUIRE(ptr[3].x == 16);
|
||||
REQUIRE(ptr[3].y == 17);
|
||||
}
|
||||
|
||||
struct ClusterTestData {
|
||||
uint8_t ClusterSizeX;
|
||||
uint8_t ClusterSizeY;
|
||||
std::vector<int64_t> index_map_x;
|
||||
std::vector<int64_t> index_map_y;
|
||||
};
|
||||
|
||||
TEST_CASE("Gain Map Calculation Index Map", "[.ClusterVector][.gain_map]") {
|
||||
|
||||
auto clustertestdata = GENERATE(
|
||||
ClusterTestData{3,
|
||||
3,
|
||||
{-1, 0, 1, -1, 0, 1, -1, 0, 1},
|
||||
{-1, -1, -1, 0, 0, 0, 1, 1, 1}},
|
||||
ClusterTestData{
|
||||
4,
|
||||
4,
|
||||
{-2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1, -2, -1, 0, 1},
|
||||
{-2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1}},
|
||||
ClusterTestData{2, 2, {-1, 0, -1, 0}, {-1, -1, 0, 0}},
|
||||
ClusterTestData{5,
|
||||
5,
|
||||
{-2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0,
|
||||
1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2},
|
||||
{-2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0,
|
||||
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}});
|
||||
|
||||
uint8_t ClusterSizeX = clustertestdata.ClusterSizeX;
|
||||
uint8_t ClusterSizeY = clustertestdata.ClusterSizeY;
|
||||
|
||||
std::vector<int64_t> index_map_x(ClusterSizeX * ClusterSizeY);
|
||||
std::vector<int64_t> index_map_y(ClusterSizeX * ClusterSizeY);
|
||||
|
||||
int64_t index_cluster_center_x = ClusterSizeX / 2;
|
||||
int64_t index_cluster_center_y = ClusterSizeY / 2;
|
||||
|
||||
for (size_t j = 0; j < ClusterSizeX * ClusterSizeY; j++) {
|
||||
index_map_x[j] = j % ClusterSizeX - index_cluster_center_x;
|
||||
index_map_y[j] = j / ClusterSizeX - index_cluster_center_y;
|
||||
}
|
||||
|
||||
CHECK(index_map_x == clustertestdata.index_map_x);
|
||||
CHECK(index_map_y == clustertestdata.index_map_y);
|
||||
}
|
@ -70,7 +70,7 @@ uint8_t Dtype::bitdepth() const {
|
||||
/**
|
||||
* @brief Get the number of bytes of the data type
|
||||
*/
|
||||
size_t Dtype::bytes() const { return bitdepth() / 8; }
|
||||
size_t Dtype::bytes() const { return bitdepth() / bits_per_byte; }
|
||||
|
||||
/**
|
||||
* @brief Construct a DType object from a TypeIndex
|
||||
|
@ -45,6 +45,8 @@ File& File::operator=(File &&other) noexcept {
|
||||
return *this;
|
||||
}
|
||||
|
||||
// void File::close() { file_impl->close(); }
|
||||
|
||||
Frame File::read_frame() { return file_impl->read_frame(); }
|
||||
Frame File::read_frame(size_t frame_index) {
|
||||
return file_impl->read_frame(frame_index);
|
||||
@ -71,7 +73,7 @@ size_t File::tell() const { return file_impl->tell(); }
|
||||
size_t File::rows() const { return file_impl->rows(); }
|
||||
size_t File::cols() const { return file_impl->cols(); }
|
||||
size_t File::bitdepth() const { return file_impl->bitdepth(); }
|
||||
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / 8; }
|
||||
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
|
||||
|
||||
DetectorType File::detector_type() const { return file_impl->detector_type(); }
|
||||
|
||||
|
276
src/Fit.cpp
Normal file
276
src/Fit.cpp
Normal file
@ -0,0 +1,276 @@
|
||||
#include "aare/Fit.hpp"
|
||||
#include "aare/utils/task.hpp"
|
||||
#include "aare/utils/par.hpp"
|
||||
#include <lmcurve2.h>
|
||||
#include <lmfit.hpp>
|
||||
#include <thread>
|
||||
|
||||
#include <array>
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
namespace func {
|
||||
|
||||
double gaus(const double x, const double *par) {
|
||||
return par[0] * exp(-pow(x - par[1], 2) / (2 * pow(par[2], 2)));
|
||||
}
|
||||
|
||||
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
NDArray<double, 1> y({x.shape(0)}, 0);
|
||||
for (size_t i = 0; i < x.size(); i++) {
|
||||
y(i) = gaus(x(i), par.data());
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
|
||||
|
||||
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
NDArray<double, 1> y({x.shape()}, 0);
|
||||
for (size_t i = 0; i < x.size(); i++) {
|
||||
y(i) = pol1(x(i), par.data());
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
} // namespace func
|
||||
|
||||
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
NDArray<double, 1> result = gaus_init_par(x, y);
|
||||
lm_status_struct status;
|
||||
|
||||
lmcurve(result.size(), result.data(), x.size(), x.data(), y.data(),
|
||||
aare::func::gaus, &lm_control_double, &status);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 3}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
|
||||
auto res = fit_gaus(x, values);
|
||||
result(row, col, 0) = res(0);
|
||||
result(row, col, 1) = res(1);
|
||||
result(row, col, 2) = res(2);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
return result;
|
||||
}
|
||||
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
|
||||
std::array<double, 3> start_par{0, 0, 0};
|
||||
auto e = std::max_element(y.begin(), y.end());
|
||||
auto idx = std::distance(y.begin(), e);
|
||||
|
||||
start_par[0] = *e; // For amplitude we use the maximum value
|
||||
start_par[1] =
|
||||
x[idx]; // For the mean we use the x value of the maximum value
|
||||
|
||||
// For sigma we estimate the fwhm and divide by 2.35
|
||||
// assuming equally spaced x values
|
||||
auto delta = x[1] - x[0];
|
||||
start_par[2] =
|
||||
std::count_if(y.begin(), y.end(),
|
||||
[e, delta](double val) { return val > *e / 2; }) *
|
||||
delta / 2.35;
|
||||
|
||||
return start_par;
|
||||
}
|
||||
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 2> start_par{0, 0};
|
||||
|
||||
|
||||
auto y2 = std::max_element(y.begin(), y.end());
|
||||
auto x2 = x[std::distance(y.begin(), y2)];
|
||||
auto y1 = std::min_element(y.begin(), y.end());
|
||||
auto x1 = x[std::distance(y.begin(), y1)];
|
||||
|
||||
start_par[0] =
|
||||
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
|
||||
start_par[1] =
|
||||
*y1 - ((*y2 - *y1) / (x2 - x1)) *
|
||||
x1; // For the mean we use the x value of the maximum value
|
||||
return start_par;
|
||||
}
|
||||
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
par_out.size() != 3 || par_err_out.size() != 3) {
|
||||
throw std::runtime_error("Data, x, data_err must have the same size "
|
||||
"and par_out, par_err_out must have size 3");
|
||||
}
|
||||
|
||||
|
||||
// /* Collection of output parameters for status info. */
|
||||
// typedef struct {
|
||||
// double fnorm; /* norm of the residue vector fvec. */
|
||||
// int nfev; /* actual number of iterations. */
|
||||
// int outcome; /* Status indicator. Nonnegative values are used as
|
||||
// index
|
||||
// for the message text lm_infmsg, set in lmmin.c. */
|
||||
// int userbreak; /* Set when function evaluation requests termination.
|
||||
// */
|
||||
// } lm_status_struct;
|
||||
|
||||
|
||||
lm_status_struct status;
|
||||
par_out = gaus_init_par(x, y);
|
||||
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
|
||||
|
||||
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
|
||||
// n_par - Number of free variables. Length of parameter vector par.
|
||||
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
|
||||
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
|
||||
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
|
||||
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
|
||||
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
|
||||
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
|
||||
// dy - Array of length m_dat. Contains the standard deviations of the values y.
|
||||
// f - A user-supplied parametric function f(ti;par).
|
||||
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
|
||||
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
|
||||
|
||||
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
|
||||
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
|
||||
&lm_control_double, &status);
|
||||
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (size_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
|
||||
NDView<double, 1> y_err_view(&y_err(row, col, 0),
|
||||
{y_err.shape(2)});
|
||||
NDView<double, 1> par_out_view(&par_out(row, col, 0),
|
||||
{par_out.shape(2)});
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
|
||||
chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
}
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
par_out.size() != 2 || par_err_out.size() != 2) {
|
||||
throw std::runtime_error("Data, x, data_err must have the same size "
|
||||
"and par_out, par_err_out must have size 2");
|
||||
}
|
||||
|
||||
lm_status_struct status;
|
||||
par_out = pol1_init_par(x, y);
|
||||
std::array<double, 4> cov{0, 0, 0, 0};
|
||||
|
||||
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
|
||||
x.size(), x.data(), y.data(), y_err.data(), aare::func::pol1,
|
||||
&lm_control_double, &status);
|
||||
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (size_t i = 0; i < y.size(); i++) {
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> y_view(&y(row, col, 0), {y.shape(2)});
|
||||
NDView<double, 1> y_err_view(&y_err(row, col, 0),
|
||||
{y_err.shape(2)});
|
||||
NDView<double, 1> par_out_view(&par_out(row, col, 0),
|
||||
{par_out.shape(2)});
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
// // Check that we have the correct sizes
|
||||
// if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
// par_out.size() != 2 || par_err_out.size() != 2) {
|
||||
// throw std::runtime_error("Data, x, data_err must have the same size "
|
||||
// "and par_out, par_err_out must have size 2");
|
||||
// }
|
||||
NDArray<double, 1> par = pol1_init_par(x, y);
|
||||
|
||||
lm_status_struct status;
|
||||
lmcurve(par.size(), par.data(), x.size(), x.data(), y.data(),
|
||||
aare::func::pol1, &lm_control_double, &status);
|
||||
|
||||
return par;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 2}, 0);
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
for (ssize_t col = 0; col < y.shape(1); col++) {
|
||||
NDView<double, 1> values(&y(row, col, 0), {y.shape(2)});
|
||||
auto res = fit_pol1(x, values);
|
||||
result(row, col, 0) = res(0);
|
||||
result(row, col, 1) = res(1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
|
||||
RunInParallel(process, tasks);
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace aare
|
56
src/Interpolator.cpp
Normal file
56
src/Interpolator.cpp
Normal file
@ -0,0 +1,56 @@
|
||||
#include "aare/Interpolator.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins)
|
||||
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
|
||||
m_energy_bins(ebins) {
|
||||
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
|
||||
etacube.shape(2) != ebins.size()) {
|
||||
throw std::invalid_argument(
|
||||
"The shape of the etacube does not match the shape of the bins");
|
||||
}
|
||||
|
||||
// Cumulative sum in the x direction
|
||||
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
|
||||
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize by the highest row, if norm less than 1 don't do anything
|
||||
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
|
||||
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
|
||||
double norm = val < 1 ? 1 : val;
|
||||
m_ietax(i, j, k) /= norm;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Cumulative sum in the y direction
|
||||
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
|
||||
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
|
||||
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize by the highest column, if norm less than 1 don't do anything
|
||||
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
|
||||
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
|
||||
double norm = val < 1 ? 1 : val;
|
||||
m_ietay(i, j, k) /= norm;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -2,6 +2,7 @@
|
||||
#include <array>
|
||||
#include <catch2/benchmark/catch_benchmark.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <numeric>
|
||||
|
||||
using aare::NDArray;
|
||||
using aare::NDView;
|
||||
@ -34,6 +35,24 @@ TEST_CASE("Construct from an NDView") {
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("3D NDArray from NDView"){
|
||||
std::vector<int> data(27);
|
||||
std::iota(data.begin(), data.end(), 0);
|
||||
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
|
||||
NDArray<int, 3> image(view);
|
||||
REQUIRE(image.shape() == view.shape());
|
||||
REQUIRE(image.size() == view.size());
|
||||
REQUIRE(image.data() != view.data());
|
||||
|
||||
for(int64_t i=0; i<image.shape(0); i++){
|
||||
for(int64_t j=0; j<image.shape(1); j++){
|
||||
for(int64_t k=0; k<image.shape(2); k++){
|
||||
REQUIRE(image(i, j, k) == view(i, j, k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("1D image") {
|
||||
std::array<int64_t, 1> shape{{20}};
|
||||
NDArray<short, 1> img(shape, 3);
|
||||
@ -379,4 +398,32 @@ TEST_CASE("Elementwise operations on images") {
|
||||
REQUIRE(A(i) == a_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Assign an std::array to a 1D NDArray") {
|
||||
NDArray<int, 1> a{{5}, 0};
|
||||
std::array<int, 5> b{1, 2, 3, 4, 5};
|
||||
a = b;
|
||||
for (uint32_t i = 0; i < a.size(); ++i) {
|
||||
REQUIRE(a(i) == b[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Assign an std::array to a 1D NDArray of a different size") {
|
||||
NDArray<int, 1> a{{3}, 0};
|
||||
std::array<int, 5> b{1, 2, 3, 4, 5};
|
||||
a = b;
|
||||
|
||||
REQUIRE(a.size() == 5);
|
||||
for (uint32_t i = 0; i < a.size(); ++i) {
|
||||
REQUIRE(a(i) == b[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Construct an NDArray from an std::array") {
|
||||
std::array<int, 5> b{1, 2, 3, 4, 5};
|
||||
NDArray<int, 1> a(b);
|
||||
for (uint32_t i = 0; i < a.size(); ++i) {
|
||||
REQUIRE(a(i) == b[i]);
|
||||
}
|
||||
}
|
158
src/RawFile.cpp
158
src/RawFile.cpp
@ -1,6 +1,7 @@
|
||||
#include "aare/RawFile.hpp"
|
||||
#include "aare/PixelMap.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/geo_helpers.hpp"
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
@ -21,8 +22,11 @@ RawFile::RawFile(const std::filesystem::path &fname, const std::string &mode)
|
||||
|
||||
|
||||
find_geometry();
|
||||
update_geometry_with_roi();
|
||||
|
||||
if (m_master.roi()){
|
||||
m_geometry = update_geometry_with_roi(m_geometry, m_master.roi().value());
|
||||
}
|
||||
|
||||
open_subfiles();
|
||||
} else {
|
||||
throw std::runtime_error(LOCATION +
|
||||
@ -72,9 +76,12 @@ size_t RawFile::n_mod() const { return n_subfile_parts; }
|
||||
|
||||
|
||||
size_t RawFile::bytes_per_frame() {
|
||||
return m_rows * m_cols * m_master.bitdepth() / 8;
|
||||
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / bits_per_byte;
|
||||
}
|
||||
size_t RawFile::pixels_per_frame() {
|
||||
// return m_rows * m_cols;
|
||||
return m_geometry.pixels_x * m_geometry.pixels_y;
|
||||
}
|
||||
size_t RawFile::pixels_per_frame() { return m_rows * m_cols; }
|
||||
|
||||
DetectorType RawFile::detector_type() const { return m_master.detector_type(); }
|
||||
|
||||
@ -92,8 +99,8 @@ void RawFile::seek(size_t frame_index) {
|
||||
size_t RawFile::tell() { return m_current_frame; };
|
||||
|
||||
size_t RawFile::total_frames() const { return m_master.frames_in_file(); }
|
||||
size_t RawFile::rows() const { return m_rows; }
|
||||
size_t RawFile::cols() const { return m_cols; }
|
||||
size_t RawFile::rows() const { return m_geometry.pixels_y; }
|
||||
size_t RawFile::cols() const { return m_geometry.pixels_x; }
|
||||
size_t RawFile::bitdepth() const { return m_master.bitdepth(); }
|
||||
xy RawFile::geometry() { return m_master.geometry(); }
|
||||
|
||||
@ -102,11 +109,11 @@ void RawFile::open_subfiles() {
|
||||
for (size_t i = 0; i != n_subfiles; ++i) {
|
||||
auto v = std::vector<RawSubFile *>(n_subfile_parts);
|
||||
for (size_t j = 0; j != n_subfile_parts; ++j) {
|
||||
auto pos = m_module_pixel_0[j];
|
||||
auto pos = m_geometry.module_pixel_0[j];
|
||||
v[j] = new RawSubFile(m_master.data_fname(j, i),
|
||||
m_master.detector_type(), pos.height,
|
||||
pos.width, m_master.bitdepth(),
|
||||
positions[j].row, positions[j].col);
|
||||
pos.row_index, pos.col_index);
|
||||
|
||||
}
|
||||
subfiles.push_back(v);
|
||||
@ -149,112 +156,49 @@ int RawFile::find_number_of_subfiles() {
|
||||
|
||||
RawMasterFile RawFile::master() const { return m_master; }
|
||||
|
||||
/**
|
||||
* @brief Find the geometry of the detector by opening all the subfiles and
|
||||
* reading the headers.
|
||||
*/
|
||||
void RawFile::find_geometry() {
|
||||
|
||||
//Hold the maximal row and column number found
|
||||
//Later used for calculating the total number of rows and columns
|
||||
uint16_t r{};
|
||||
uint16_t c{};
|
||||
|
||||
|
||||
for (size_t i = 0; i < n_subfile_parts; i++) {
|
||||
auto h = this->read_header(m_master.data_fname(i, 0));
|
||||
auto h = read_header(m_master.data_fname(i, 0));
|
||||
r = std::max(r, h.row);
|
||||
c = std::max(c, h.column);
|
||||
positions.push_back({h.row, h.column});
|
||||
// positions.push_back({h.row, h.column});
|
||||
|
||||
ModuleGeometry g;
|
||||
g.x = h.column * m_master.pixels_x();
|
||||
g.y = h.row * m_master.pixels_y();
|
||||
g.origin_x = h.column * m_master.pixels_x();
|
||||
g.origin_y = h.row * m_master.pixels_y();
|
||||
g.row_index = h.row;
|
||||
g.col_index = h.column;
|
||||
g.width = m_master.pixels_x();
|
||||
g.height = m_master.pixels_y();
|
||||
m_module_pixel_0.push_back(g);
|
||||
m_geometry.module_pixel_0.push_back(g);
|
||||
|
||||
}
|
||||
|
||||
r++;
|
||||
c++;
|
||||
|
||||
m_rows = (r * m_master.pixels_y());
|
||||
m_cols = (c * m_master.pixels_x());
|
||||
|
||||
m_rows += static_cast<size_t>((r - 1) * cfg.module_gap_row);
|
||||
|
||||
#ifdef AARE_VERBOSE
|
||||
fmt::print("\nRawFile::find_geometry()\n");
|
||||
for (size_t i = 0; i < m_module_pixel_0.size(); i++) {
|
||||
fmt::print("Module {} at position: (r:{},c:{})\n", i,
|
||||
m_module_pixel_0[i].y, m_module_pixel_0[i].x);
|
||||
}
|
||||
fmt::print("Image size: {}x{}\n\n", m_rows, m_cols);
|
||||
#endif
|
||||
}
|
||||
|
||||
void RawFile::update_geometry_with_roi() {
|
||||
// TODO! implement this
|
||||
if (m_master.roi()) {
|
||||
auto roi = m_master.roi().value();
|
||||
|
||||
// TODO! can we do this cleaner?
|
||||
int pos_y = 0;
|
||||
int pos_y_increment = 0;
|
||||
for (size_t row = 0; row < m_master.geometry().row; row++) {
|
||||
int pos_x = 0;
|
||||
for (size_t col = 0; col < m_master.geometry().col; col++) {
|
||||
auto &m = m_module_pixel_0[row * m_master.geometry().col + col];
|
||||
auto original_height = m.height;
|
||||
auto original_width = m.width;
|
||||
|
||||
// module is to the left of the roi
|
||||
if (m.x + m.width < roi.xmin) {
|
||||
m.width = 0;
|
||||
|
||||
// roi is in module
|
||||
} else {
|
||||
// here we only arrive when the roi is in or to the left of
|
||||
// the module
|
||||
if (roi.xmin > m.x) {
|
||||
m.width -= roi.xmin - m.x;
|
||||
}
|
||||
if (roi.xmax < m.x + m.width) {
|
||||
m.width -= m.x + original_width - roi.xmax;
|
||||
}
|
||||
m.x = pos_x;
|
||||
pos_x += m.width;
|
||||
}
|
||||
|
||||
if (m.y + m.height < roi.ymin) {
|
||||
m.height = 0;
|
||||
} else {
|
||||
if ((roi.ymin > m.y) && (roi.ymin < m.y + m.height)) {
|
||||
m.height -= roi.ymin - m.y;
|
||||
|
||||
}
|
||||
if (roi.ymax < m.y + m.height) {
|
||||
m.height -= m.y + original_height - roi.ymax;
|
||||
}
|
||||
m.y = pos_y;
|
||||
pos_y_increment = m.height;
|
||||
}
|
||||
}
|
||||
// increment pos_y
|
||||
pos_y += pos_y_increment;
|
||||
}
|
||||
|
||||
m_rows = roi.height();
|
||||
m_cols = roi.width();
|
||||
}
|
||||
|
||||
#ifdef AARE_VERBOSE
|
||||
fmt::print("RawFile::update_geometry_with_roi()\n");
|
||||
for (const auto &m : m_module_pixel_0) {
|
||||
fmt::print("Module at position: (r:{}, c:{}, h:{}, w:{})\n", m.y, m.x,
|
||||
m.height, m.width);
|
||||
}
|
||||
fmt::print("Updated image size: {}x{}\n\n", m_rows, m_cols);
|
||||
fmt::print("\n");
|
||||
#endif
|
||||
m_geometry.pixels_y = (r * m_master.pixels_y());
|
||||
m_geometry.pixels_x = (c * m_master.pixels_x());
|
||||
m_geometry.modules_x = c;
|
||||
m_geometry.modules_y = r;
|
||||
m_geometry.pixels_y += static_cast<size_t>((r - 1) * cfg.module_gap_row);
|
||||
|
||||
}
|
||||
|
||||
|
||||
Frame RawFile::get_frame(size_t frame_index) {
|
||||
auto f = Frame(m_rows, m_cols, Dtype::from_bitdepth(m_master.bitdepth()));
|
||||
auto f = Frame(m_geometry.pixels_y, m_geometry.pixels_x, Dtype::from_bitdepth(m_master.bitdepth()));
|
||||
std::byte *frame_buffer = f.data();
|
||||
get_frame_into(frame_index, frame_buffer);
|
||||
return f;
|
||||
@ -278,6 +222,10 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
|
||||
if (n_subfile_parts != 1) {
|
||||
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
|
||||
auto subfile_id = frame_index / m_master.max_frames_per_file();
|
||||
if (subfile_id >= subfiles.size()) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
" Subfile out of range. Possible missing data.");
|
||||
}
|
||||
frame_numbers[part_idx] =
|
||||
subfiles[subfile_id][part_idx]->frame_number(
|
||||
frame_index % m_master.max_frames_per_file());
|
||||
@ -311,12 +259,16 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
|
||||
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
|
||||
auto corrected_idx = frame_indices[part_idx];
|
||||
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
|
||||
if (subfile_id >= subfiles.size()) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
" Subfile out of range. Possible missing data.");
|
||||
}
|
||||
|
||||
// This is where we start writing
|
||||
auto offset = (m_module_pixel_0[part_idx].y * m_cols +
|
||||
m_module_pixel_0[part_idx].x)*m_master.bitdepth()/8;
|
||||
auto offset = (m_geometry.module_pixel_0[part_idx].origin_y * m_geometry.pixels_x +
|
||||
m_geometry.module_pixel_0[part_idx].origin_x)*m_master.bitdepth()/8;
|
||||
|
||||
if (m_module_pixel_0[part_idx].x!=0)
|
||||
if (m_geometry.module_pixel_0[part_idx].origin_x!=0)
|
||||
throw std::runtime_error(LOCATION + "Implementation error. x pos not 0.");
|
||||
|
||||
//TODO! Risk for out of range access
|
||||
@ -340,9 +292,13 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
|
||||
// level
|
||||
|
||||
for (size_t part_idx = 0; part_idx != n_subfile_parts; ++part_idx) {
|
||||
auto pos = m_module_pixel_0[part_idx];
|
||||
auto pos = m_geometry.module_pixel_0[part_idx];
|
||||
auto corrected_idx = frame_indices[part_idx];
|
||||
auto subfile_id = corrected_idx / m_master.max_frames_per_file();
|
||||
if (subfile_id >= subfiles.size()) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
" Subfile out of range. Possible missing data.");
|
||||
}
|
||||
|
||||
subfiles[subfile_id][part_idx]->seek(corrected_idx % m_master.max_frames_per_file());
|
||||
subfiles[subfile_id][part_idx]->read_into(part_buffer, header);
|
||||
@ -352,9 +308,9 @@ void RawFile::get_frame_into(size_t frame_index, std::byte *frame_buffer, Detect
|
||||
for (size_t cur_row = 0; cur_row < static_cast<size_t>(pos.height);
|
||||
cur_row++) {
|
||||
|
||||
auto irow = (pos.y + cur_row);
|
||||
auto icol = pos.x;
|
||||
auto dest = (irow * this->m_cols + icol);
|
||||
auto irow = (pos.origin_y + cur_row);
|
||||
auto icol = pos.origin_x;
|
||||
auto dest = (irow * this->m_geometry.pixels_x + icol);
|
||||
dest = dest * m_master.bitdepth() / 8;
|
||||
memcpy(frame_buffer + dest,
|
||||
part_buffer + cur_row * pos.width *
|
||||
@ -400,4 +356,8 @@ RawFile::~RawFile() {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,10 +1,13 @@
|
||||
#include "aare/File.hpp"
|
||||
#include "aare/RawMasterFile.hpp" //needed for ROI
|
||||
#include "aare/RawFile.hpp"
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <filesystem>
|
||||
|
||||
#include "test_config.hpp"
|
||||
|
||||
|
||||
using aare::File;
|
||||
|
||||
TEST_CASE("Read number of frames from a jungfrau raw file", "[.integration]") {
|
||||
@ -148,3 +151,5 @@ TEST_CASE("Read file with unordered frames", "[.integration]") {
|
||||
File f(fpath);
|
||||
REQUIRE_THROWS((f.read_frame()));
|
||||
}
|
||||
|
||||
|
||||
|
@ -9,11 +9,13 @@ namespace aare {
|
||||
RawSubFile::RawSubFile(const std::filesystem::path &fname,
|
||||
DetectorType detector, size_t rows, size_t cols,
|
||||
size_t bitdepth, uint32_t pos_row, uint32_t pos_col)
|
||||
: m_detector_type(detector), m_bitdepth(bitdepth), m_fname(fname), m_rows(rows), m_cols(cols),
|
||||
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row), m_pos_col(pos_col) {
|
||||
: m_detector_type(detector), m_bitdepth(bitdepth), m_fname(fname),
|
||||
m_rows(rows), m_cols(cols),
|
||||
m_bytes_per_frame((m_bitdepth / 8) * m_rows * m_cols), m_pos_row(pos_row),
|
||||
m_pos_col(pos_col) {
|
||||
if (m_detector_type == DetectorType::Moench03_old) {
|
||||
m_pixel_map = GenerateMoench03PixelMap();
|
||||
}else if(m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0){
|
||||
} else if (m_detector_type == DetectorType::Eiger && m_pos_row % 2 == 0) {
|
||||
m_pixel_map = GenerateEigerFlipRowsPixelMap();
|
||||
}
|
||||
|
||||
@ -42,7 +44,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
|
||||
|
||||
void RawSubFile::seek(size_t frame_index) {
|
||||
if (frame_index >= n_frames) {
|
||||
throw std::runtime_error("Frame number out of range");
|
||||
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, n_frames));
|
||||
}
|
||||
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
|
||||
}
|
||||
@ -51,37 +53,48 @@ size_t RawSubFile::tell() {
|
||||
return m_file.tellg() / (sizeof(DetectorHeader) + bytes_per_frame());
|
||||
}
|
||||
|
||||
|
||||
void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
|
||||
if(header){
|
||||
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
|
||||
if (header) {
|
||||
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
|
||||
} else {
|
||||
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
|
||||
}
|
||||
|
||||
//TODO! expand support for different bitdepths
|
||||
if(m_pixel_map){
|
||||
// TODO! expand support for different bitdepths
|
||||
if (m_pixel_map) {
|
||||
// read into a temporary buffer and then copy the data to the buffer
|
||||
// in the correct order
|
||||
// currently this only supports 16 bit data!
|
||||
auto part_buffer = new std::byte[bytes_per_frame()];
|
||||
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
|
||||
auto *data = reinterpret_cast<uint16_t *>(image_buf);
|
||||
auto *part_data = reinterpret_cast<uint16_t *>(part_buffer);
|
||||
for (size_t i = 0; i < pixels_per_frame(); i++) {
|
||||
data[i] = part_data[(*m_pixel_map)(i)];
|
||||
// TODO! add 4 bit support
|
||||
if(m_bitdepth == 8){
|
||||
read_with_map<uint8_t>(image_buf);
|
||||
}else if (m_bitdepth == 16) {
|
||||
read_with_map<uint16_t>(image_buf);
|
||||
} else if (m_bitdepth == 32) {
|
||||
read_with_map<uint32_t>(image_buf);
|
||||
}else{
|
||||
throw std::runtime_error("Unsupported bitdepth for read with pixel map");
|
||||
}
|
||||
delete[] part_buffer;
|
||||
|
||||
} else {
|
||||
// read directly into the buffer
|
||||
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void RawSubFile::read_with_map(std::byte *image_buf) {
|
||||
auto part_buffer = new std::byte[bytes_per_frame()];
|
||||
m_file.read(reinterpret_cast<char *>(part_buffer), bytes_per_frame());
|
||||
auto *data = reinterpret_cast<T *>(image_buf);
|
||||
auto *part_data = reinterpret_cast<T *>(part_buffer);
|
||||
for (size_t i = 0; i < pixels_per_frame(); i++) {
|
||||
data[i] = part_data[(*m_pixel_map)(i)];
|
||||
}
|
||||
delete[] part_buffer;
|
||||
}
|
||||
size_t RawSubFile::rows() const { return m_rows; }
|
||||
size_t RawSubFile::cols() const { return m_cols; }
|
||||
|
||||
|
||||
void RawSubFile::get_part(std::byte *buffer, size_t frame_index) {
|
||||
seek(frame_index);
|
||||
read_into(buffer, nullptr);
|
||||
@ -94,5 +107,4 @@ size_t RawSubFile::frame_number(size_t frame_index) {
|
||||
return h.frameNumber;
|
||||
}
|
||||
|
||||
|
||||
} // namespace aare
|
69
src/algorithm.test.cpp
Normal file
69
src/algorithm.test.cpp
Normal file
@ -0,0 +1,69 @@
|
||||
|
||||
|
||||
#include <aare/algorithm.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::nearest_index(arr, 2.3) == 2);
|
||||
REQUIRE(aare::nearest_index(arr, 2.6) == 3);
|
||||
REQUIRE(aare::nearest_index(arr, 45.0) == 4);
|
||||
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
|
||||
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("Passing integers to nearest_index works", "[algorithm]") {
|
||||
aare::NDArray<int, 1> arr({5});
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::nearest_index(arr, 2) == 2);
|
||||
REQUIRE(aare::nearest_index(arr, 3) == 3);
|
||||
REQUIRE(aare::nearest_index(arr, 45) == 4);
|
||||
REQUIRE(aare::nearest_index(arr, 0) == 0);
|
||||
REQUIRE(aare::nearest_index(arr, -1) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("nearest_index works with std::vector", "[algorithm]") {
|
||||
std::vector<double> vec = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
|
||||
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
|
||||
REQUIRE(aare::nearest_index(vec, 4555555.0) == 4);
|
||||
REQUIRE(aare::nearest_index(vec, 0.0) == 0);
|
||||
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("nearest index works with std::array", "[algorithm]") {
|
||||
std::array<double, 5> arr = {0, 1, 2, 3, 4};
|
||||
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
|
||||
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
|
||||
REQUIRE(aare::nearest_index(arr, 4555555.0) == 4);
|
||||
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
|
||||
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
|
||||
}
|
||||
|
||||
TEST_CASE("last smaller", "[algorithm]") {
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::last_smaller(arr, -10.0) == 0);
|
||||
REQUIRE(aare::last_smaller(arr, 0.0) == 0);
|
||||
REQUIRE(aare::last_smaller(arr, 2.3) == 2);
|
||||
REQUIRE(aare::last_smaller(arr, 253.) == 4);
|
||||
}
|
||||
|
||||
TEST_CASE("returns last bin strictly smaller", "[algorithm]") {
|
||||
aare::NDArray<double, 1> arr({5});
|
||||
for (size_t i = 0; i < arr.size(); i++) {
|
||||
arr[i] = i;
|
||||
}
|
||||
// arr 0, 1, 2, 3, 4
|
||||
REQUIRE(aare::last_smaller(arr, 2.0) == 2);
|
||||
}
|
61
src/decode.cpp
Normal file
61
src/decode.cpp
Normal file
@ -0,0 +1,61 @@
|
||||
#include "aare/decode.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
uint16_t adc_sar_05_decode64to16(uint64_t input){
|
||||
|
||||
//we want bits 29,19,28,18,31,21,27,20,24,23,25,22 and then pad to 16
|
||||
uint16_t output = 0;
|
||||
output |= ((input >> 22) & 1) << 11;
|
||||
output |= ((input >> 25) & 1) << 10;
|
||||
output |= ((input >> 23) & 1) << 9;
|
||||
output |= ((input >> 24) & 1) << 8;
|
||||
output |= ((input >> 20) & 1) << 7;
|
||||
output |= ((input >> 27) & 1) << 6;
|
||||
output |= ((input >> 21) & 1) << 5;
|
||||
output |= ((input >> 31) & 1) << 4;
|
||||
output |= ((input >> 18) & 1) << 3;
|
||||
output |= ((input >> 28) & 1) << 2;
|
||||
output |= ((input >> 19) & 1) << 1;
|
||||
output |= ((input >> 29) & 1) << 0;
|
||||
return output;
|
||||
}
|
||||
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
|
||||
for(int64_t i = 0; i < input.shape(0); i++){
|
||||
for(int64_t j = 0; j < input.shape(1); j++){
|
||||
output(i,j) = adc_sar_05_decode64to16(input(i,j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t adc_sar_04_decode64to16(uint64_t input){
|
||||
|
||||
// bit_map = array([15,17,19,21,23,4,6,8,10,12,14,16] LSB->MSB
|
||||
uint16_t output = 0;
|
||||
output |= ((input >> 16) & 1) << 11;
|
||||
output |= ((input >> 14) & 1) << 10;
|
||||
output |= ((input >> 12) & 1) << 9;
|
||||
output |= ((input >> 10) & 1) << 8;
|
||||
output |= ((input >> 8) & 1) << 7;
|
||||
output |= ((input >> 6) & 1) << 6;
|
||||
output |= ((input >> 4) & 1) << 5;
|
||||
output |= ((input >> 23) & 1) << 4;
|
||||
output |= ((input >> 21) & 1) << 3;
|
||||
output |= ((input >> 19) & 1) << 2;
|
||||
output |= ((input >> 17) & 1) << 1;
|
||||
output |= ((input >> 15) & 1) << 0;
|
||||
return output;
|
||||
}
|
||||
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
|
||||
for(int64_t i = 0; i < input.shape(0); i++){
|
||||
for(int64_t j = 0; j < input.shape(1); j++){
|
||||
output(i,j) = adc_sar_04_decode64to16(input(i,j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
71
src/geo_helpers.cpp
Normal file
71
src/geo_helpers.cpp
Normal file
@ -0,0 +1,71 @@
|
||||
|
||||
#include "aare/geo_helpers.hpp"
|
||||
#include "fmt/core.h"
|
||||
|
||||
namespace aare{
|
||||
|
||||
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi) {
|
||||
#ifdef AARE_VERBOSE
|
||||
fmt::println("update_geometry_with_roi() called with ROI: {} {} {} {}",
|
||||
roi.xmin, roi.xmax, roi.ymin, roi.ymax);
|
||||
fmt::println("Geometry: {} {} {} {} {} {}",
|
||||
geo.modules_x, geo.modules_y, geo.pixels_x, geo.pixels_y, geo.module_gap_row, geo.module_gap_col);
|
||||
#endif
|
||||
int pos_y = 0;
|
||||
int pos_y_increment = 0;
|
||||
for (int row = 0; row < geo.modules_y; row++) {
|
||||
int pos_x = 0;
|
||||
for (int col = 0; col < geo.modules_x; col++) {
|
||||
auto &m = geo.module_pixel_0[row * geo.modules_x + col];
|
||||
auto original_height = m.height;
|
||||
auto original_width = m.width;
|
||||
|
||||
// module is to the left of the roi
|
||||
if (m.origin_x + m.width < roi.xmin) {
|
||||
m.width = 0;
|
||||
|
||||
// roi is in module
|
||||
} else {
|
||||
// here we only arrive when the roi is in or to the left of
|
||||
// the module
|
||||
if (roi.xmin > m.origin_x) {
|
||||
m.width -= roi.xmin - m.origin_x;
|
||||
}
|
||||
if (roi.xmax < m.origin_x + original_width) {
|
||||
m.width -= m.origin_x + original_width - roi.xmax;
|
||||
}
|
||||
m.origin_x = pos_x;
|
||||
pos_x += m.width;
|
||||
}
|
||||
|
||||
if (m.origin_y + m.height < roi.ymin) {
|
||||
m.height = 0;
|
||||
} else {
|
||||
if ((roi.ymin > m.origin_y) && (roi.ymin < m.origin_y + m.height)) {
|
||||
m.height -= roi.ymin - m.origin_y;
|
||||
|
||||
}
|
||||
if (roi.ymax < m.origin_y + original_height) {
|
||||
m.height -= m.origin_y + original_height - roi.ymax;
|
||||
}
|
||||
m.origin_y = pos_y;
|
||||
pos_y_increment = m.height;
|
||||
}
|
||||
#ifdef AARE_VERBOSE
|
||||
fmt::println("Module {} {} {} {}", m.origin_x, m.origin_y, m.width, m.height);
|
||||
#endif
|
||||
}
|
||||
// increment pos_y
|
||||
pos_y += pos_y_increment;
|
||||
}
|
||||
|
||||
// m_rows = roi.height();
|
||||
// m_cols = roi.width();
|
||||
geo.pixels_x = roi.width();
|
||||
geo.pixels_y = roi.height();
|
||||
|
||||
return geo;
|
||||
|
||||
}
|
||||
|
||||
} // namespace aare
|
230
src/geo_helpers.test.cpp
Normal file
230
src/geo_helpers.test.cpp
Normal file
@ -0,0 +1,230 @@
|
||||
#include "aare/File.hpp"
|
||||
#include "aare/RawMasterFile.hpp" //needed for ROI
|
||||
#include "aare/RawFile.hpp"
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <filesystem>
|
||||
|
||||
#include "aare/geo_helpers.hpp"
|
||||
#include "test_config.hpp"
|
||||
|
||||
TEST_CASE("Simple ROIs on one module"){
|
||||
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
|
||||
aare::DetectorGeometry geo;
|
||||
|
||||
|
||||
aare::ModuleGeometry mod;
|
||||
mod.origin_x = 0;
|
||||
mod.origin_y = 0;
|
||||
mod.width = 1024;
|
||||
mod.height = 512;
|
||||
|
||||
|
||||
|
||||
geo.pixels_x = 1024;
|
||||
geo.pixels_y = 512;
|
||||
geo.modules_x = 1;
|
||||
geo.modules_y = 1;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
|
||||
SECTION("ROI is the whole module"){
|
||||
aare::ROI roi;
|
||||
roi.xmin = 0;
|
||||
roi.xmax = 1024;
|
||||
roi.ymin = 0;
|
||||
roi.ymax = 512;
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 1024);
|
||||
REQUIRE(updated_geo.pixels_y == 512);
|
||||
REQUIRE(updated_geo.modules_x == 1);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 1024);
|
||||
}
|
||||
SECTION("ROI is the top left corner of the module"){
|
||||
aare::ROI roi;
|
||||
roi.xmin = 100;
|
||||
roi.xmax = 200;
|
||||
roi.ymin = 150;
|
||||
roi.ymax = 200;
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 100);
|
||||
REQUIRE(updated_geo.pixels_y == 50);
|
||||
REQUIRE(updated_geo.modules_x == 1);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 50);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 100);
|
||||
}
|
||||
|
||||
SECTION("ROI is a small square"){
|
||||
aare::ROI roi;
|
||||
roi.xmin = 1000;
|
||||
roi.xmax = 1010;
|
||||
roi.ymin = 500;
|
||||
roi.ymax = 510;
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 10);
|
||||
REQUIRE(updated_geo.pixels_y == 10);
|
||||
REQUIRE(updated_geo.modules_x == 1);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 10);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 10);
|
||||
}
|
||||
SECTION("ROI is a few columns"){
|
||||
aare::ROI roi;
|
||||
roi.xmin = 750;
|
||||
roi.xmax = 800;
|
||||
roi.ymin = 0;
|
||||
roi.ymax = 512;
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 50);
|
||||
REQUIRE(updated_geo.pixels_y == 512);
|
||||
REQUIRE(updated_geo.modules_x == 1);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 512);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 50);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
TEST_CASE("Two modules side by side"){
|
||||
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
|
||||
aare::DetectorGeometry geo;
|
||||
|
||||
|
||||
aare::ModuleGeometry mod;
|
||||
mod.origin_x = 0;
|
||||
mod.origin_y = 0;
|
||||
mod.width = 1024;
|
||||
mod.height = 512;
|
||||
|
||||
geo.pixels_x = 2048;
|
||||
geo.pixels_y = 512;
|
||||
geo.modules_x = 2;
|
||||
geo.modules_y = 1;
|
||||
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
mod.origin_x = 1024;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
|
||||
SECTION("ROI is the whole image"){
|
||||
aare::ROI roi;
|
||||
roi.xmin = 0;
|
||||
roi.xmax = 2048;
|
||||
roi.ymin = 0;
|
||||
roi.ymax = 512;
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 2048);
|
||||
REQUIRE(updated_geo.pixels_y == 512);
|
||||
REQUIRE(updated_geo.modules_x == 2);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
}
|
||||
SECTION("rectangle on both modules"){
|
||||
aare::ROI roi;
|
||||
roi.xmin = 800;
|
||||
roi.xmax = 1300;
|
||||
roi.ymin = 200;
|
||||
roi.ymax = 499;
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 500);
|
||||
REQUIRE(updated_geo.pixels_y == 299);
|
||||
REQUIRE(updated_geo.modules_x == 2);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 299);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 224);
|
||||
REQUIRE(updated_geo.module_pixel_0[1].height == 299);
|
||||
REQUIRE(updated_geo.module_pixel_0[1].width == 276);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Three modules side by side"){
|
||||
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
|
||||
aare::DetectorGeometry geo;
|
||||
aare::ROI roi;
|
||||
roi.xmin = 700;
|
||||
roi.xmax = 2500;
|
||||
roi.ymin = 0;
|
||||
roi.ymax = 123;
|
||||
|
||||
aare::ModuleGeometry mod;
|
||||
mod.origin_x = 0;
|
||||
mod.origin_y = 0;
|
||||
mod.width = 1024;
|
||||
mod.height = 512;
|
||||
|
||||
geo.pixels_x = 3072;
|
||||
geo.pixels_y = 512;
|
||||
geo.modules_x = 3;
|
||||
geo.modules_y = 1;
|
||||
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
mod.origin_x = 1024;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
mod.origin_x = 2048;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 1800);
|
||||
REQUIRE(updated_geo.pixels_y == 123);
|
||||
REQUIRE(updated_geo.modules_x == 3);
|
||||
REQUIRE(updated_geo.modules_y == 1);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 123);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 324);
|
||||
REQUIRE(updated_geo.module_pixel_0[1].height == 123);
|
||||
REQUIRE(updated_geo.module_pixel_0[1].width == 1024);
|
||||
REQUIRE(updated_geo.module_pixel_0[2].height == 123);
|
||||
REQUIRE(updated_geo.module_pixel_0[2].width == 452);
|
||||
}
|
||||
|
||||
TEST_CASE("Four modules as a square"){
|
||||
// DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, aare::ROI roi)
|
||||
aare::DetectorGeometry geo;
|
||||
aare::ROI roi;
|
||||
roi.xmin = 500;
|
||||
roi.xmax = 2000;
|
||||
roi.ymin = 500;
|
||||
roi.ymax = 600;
|
||||
|
||||
aare::ModuleGeometry mod;
|
||||
mod.origin_x = 0;
|
||||
mod.origin_y = 0;
|
||||
mod.width = 1024;
|
||||
mod.height = 512;
|
||||
|
||||
geo.pixels_x = 2048;
|
||||
geo.pixels_y = 1024;
|
||||
geo.modules_x = 2;
|
||||
geo.modules_y = 2;
|
||||
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
mod.origin_x = 1024;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
mod.origin_x = 0;
|
||||
mod.origin_y = 512;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
mod.origin_x = 1024;
|
||||
geo.module_pixel_0.push_back(mod);
|
||||
|
||||
auto updated_geo = aare::update_geometry_with_roi(geo, roi);
|
||||
|
||||
REQUIRE(updated_geo.pixels_x == 1500);
|
||||
REQUIRE(updated_geo.pixels_y == 100);
|
||||
REQUIRE(updated_geo.modules_x == 2);
|
||||
REQUIRE(updated_geo.modules_y == 2);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].height == 12);
|
||||
REQUIRE(updated_geo.module_pixel_0[0].width == 524);
|
||||
REQUIRE(updated_geo.module_pixel_0[1].height == 12);
|
||||
REQUIRE(updated_geo.module_pixel_0[1].width == 976);
|
||||
REQUIRE(updated_geo.module_pixel_0[2].height == 88);
|
||||
REQUIRE(updated_geo.module_pixel_0[2].width == 524);
|
||||
REQUIRE(updated_geo.module_pixel_0[3].height == 88);
|
||||
REQUIRE(updated_geo.module_pixel_0[3].width == 976);
|
||||
}
|
30
src/utils/task.cpp
Normal file
30
src/utils/task.cpp
Normal file
@ -0,0 +1,30 @@
|
||||
#include "aare/utils/task.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
std::vector<std::pair<int, int>> split_task(int first, int last,
|
||||
int n_threads) {
|
||||
std::vector<std::pair<int, int>> vec;
|
||||
vec.reserve(n_threads);
|
||||
|
||||
int n_frames = last - first;
|
||||
|
||||
if (n_threads >= n_frames) {
|
||||
for (int i = 0; i != n_frames; ++i) {
|
||||
vec.push_back({i, i + 1});
|
||||
}
|
||||
return vec;
|
||||
}
|
||||
|
||||
int step = (n_frames) / n_threads;
|
||||
for (int i = 0; i != n_threads; ++i) {
|
||||
int start = step * i;
|
||||
int stop = step * (i + 1);
|
||||
if (i == n_threads - 1)
|
||||
stop = last;
|
||||
vec.push_back({start, stop});
|
||||
}
|
||||
return vec;
|
||||
}
|
||||
|
||||
} // namespace aare
|
32
src/utils/task.test.cpp
Normal file
32
src/utils/task.test.cpp
Normal file
@ -0,0 +1,32 @@
|
||||
#include "aare/utils/task.hpp"
|
||||
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
|
||||
TEST_CASE("Split a range into multiple tasks"){
|
||||
|
||||
auto tasks = aare::split_task(0, 10, 3);
|
||||
REQUIRE(tasks.size() == 3);
|
||||
REQUIRE(tasks[0].first == 0);
|
||||
REQUIRE(tasks[0].second == 3);
|
||||
REQUIRE(tasks[1].first == 3);
|
||||
REQUIRE(tasks[1].second == 6);
|
||||
REQUIRE(tasks[2].first == 6);
|
||||
REQUIRE(tasks[2].second == 10);
|
||||
|
||||
tasks = aare::split_task(0, 10, 1);
|
||||
REQUIRE(tasks.size() == 1);
|
||||
REQUIRE(tasks[0].first == 0);
|
||||
REQUIRE(tasks[0].second == 10);
|
||||
|
||||
tasks = aare::split_task(0, 10, 10);
|
||||
REQUIRE(tasks.size() == 10);
|
||||
for (int i = 0; i < 10; i++){
|
||||
REQUIRE(tasks[i].first == i);
|
||||
REQUIRE(tasks[i].second == i+1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
@ -7,6 +7,6 @@ inline auto test_data_path(){
|
||||
if(const char* env_p = std::getenv("AARE_TEST_DATA")){
|
||||
return std::filesystem::path(env_p);
|
||||
}else{
|
||||
throw std::runtime_error("AARE_TEST_DATA_PATH not set");
|
||||
throw std::runtime_error("Path to test data: $AARE_TEST_DATA not set");
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user