51 Commits
0.3.1 ... 0.4.0

Author SHA1 Message Date
639dc070c3 Updating for version 0.4.0 2021-07-06 09:39:56 +02:00
fec463398d Calculate hkl-indices of first mouse entry
Fix #34
2021-07-05 17:24:37 +02:00
b6d7a52b06 Auto refresh list of files in proposal folder
For #34
2021-07-05 16:45:44 +02:00
d6e599d4f9 Utility title renames
For #34
2021-07-05 15:27:46 +02:00
d6b27fb33a Code cleanup 2021-06-29 18:53:46 +02:00
bae15ee2ef Use cell parameter from .cami/.hdf files in spind 2021-06-29 18:49:44 +02:00
c2bd6c25f5 Improve hdf_viewer -> spind user interation
Fix #33
2021-06-29 18:38:32 +02:00
cf6527af13 Overwrite metadata from .cami
Fix #32, fix #31
2021-06-29 13:17:54 +02:00
57e503fc3d Prepare spind input directly in hdf viewer 2021-06-23 11:25:44 +02:00
c10efeb9cc Apply UB redefinition from .cami file
For #31
2021-06-22 11:23:38 +02:00
137f20cc20 Fix handling of descending motor values 2021-06-20 20:30:20 +02:00
531463a637 Hardcode zebra proposals paths
Fix #30
2021-06-20 19:56:11 +02:00
e3368c1817 Convert scan motors with step=0 to normal params 2021-06-01 11:22:59 +02:00
313bd8bc62 Add support for multiple scan motors 2021-05-31 17:23:56 +02:00
fe61d3c4cb Add 2d image interpolation for param study 2021-05-31 15:14:37 +02:00
f6d9f63863 Process multiple peaks 2021-05-31 13:37:28 +02:00
620f32446a Disable exporting on param study 2021-05-28 16:16:04 +02:00
4b4d5c16ce Add parameter plot
For #24
2021-05-28 16:15:12 +02:00
91b9e01441 Switch to RadioGroup in param study 2021-05-28 15:02:39 +02:00
18ea894f35 Better titles for area method widgets 2021-05-28 11:46:56 +02:00
9141ac49c7 Improve open/append workflow 2021-05-27 18:47:23 +02:00
2adbcc6bcd Merge scan into another only once at max 2021-05-27 18:25:13 +02:00
b39d970960 Lowercase column names in dat files 2021-05-27 18:18:14 +02:00
b11004bf0f Always merge into the currently selected scan 2021-05-27 17:00:07 +02:00
6c2e221595 Add option to restore original scan after merging 2021-05-27 15:40:59 +02:00
502a4b8096 Consolidate naming
* replace "Counts" with "counts"
* better names for vars in scan merge procedure
2021-05-27 15:01:04 +02:00
3fe4fca96a Add jana output format
Fix #29
2021-05-25 14:56:48 +02:00
a3e3e6768f Improve clarity of button labels 2021-05-20 12:07:10 +02:00
0b6a58e160 Enable Fit/Int area selector 2021-05-20 12:00:53 +02:00
09d22e7674 Add default anatric path to pyzebra app cli 2021-05-11 16:27:24 +02:00
90387174e5 Add optional cli argument for spind path 2021-05-11 16:13:09 +02:00
e99edbaf72 Add a temporary workaround for integral area 2021-05-11 14:22:55 +02:00
a2fceffc1b Updating for version 0.3.2 2021-05-10 17:50:15 +02:00
415d68b4dc Return empty string for non-present anatric param 2021-05-10 17:29:36 +02:00
00ff4117ea Isolate anatric subprocesses 2021-05-10 17:06:20 +02:00
67853b8db4 Avoid using temp_dir for anatric xml config preview 2021-05-10 16:34:58 +02:00
60787bccb7 Clarify path to spind 2021-05-10 15:13:38 +02:00
880d86d750 Fix spind output update issues
Fix #27
2021-05-06 18:22:56 +02:00
7a88e5e254 Adapt spind results display according to #27 2021-05-06 17:43:20 +02:00
20f2a8ada4 Update preview on datatable content change 2021-05-04 17:14:59 +02:00
42c092fc14 Fix Safari browser double file download
Introduce a small time delay between .comm/.incomm file downloads

For #24
2021-05-04 16:50:51 +02:00
8153db9f67 Add an extra index spinner 2021-05-04 12:08:39 +02:00
62c969d6ad Allow .ccl files in param study
Fix #28
2021-05-04 11:09:48 +02:00
085620abae Set conda channel_priority to 'strict' 2021-04-23 11:16:57 +02:00
9ebe290966 Export nan for area value/error in case of a bad fit 2021-04-21 12:41:19 +02:00
c9cd96c521 Set lower and upper bounds for center and sigma 2021-04-20 18:25:14 +02:00
d745cda4a5 Reduce hkl columns width to 4 in comm files
Fix #26
2021-04-20 15:07:36 +02:00
1b5f70afa0 Set f0_intercept and f1_amplitude >= 0
For #26
2021-04-20 15:03:27 +02:00
a034065a09 Use Slider for image index 2021-04-12 18:35:58 +02:00
2a60c86b48 Display experiment conditions in DataTable 2021-04-12 18:18:59 +02:00
ccc075975f Unify data files discovery via proposal number 2021-04-12 17:28:25 +02:00
17 changed files with 813 additions and 517 deletions

View File

@ -16,6 +16,7 @@ jobs:
run: |
$CONDA/bin/conda install --quiet --yes conda-build anaconda-client
$CONDA/bin/conda config --append channels conda-forge
$CONDA/bin/conda config --set channel_priority strict
$CONDA/bin/conda config --set anaconda_upload yes
- name: Build and upload

View File

@ -23,10 +23,8 @@ requirements:
- scipy
- h5py
- bokeh =2.3
- matplotlib
- numba
- lmfit
- uncertainties
about:

View File

@ -4,4 +4,8 @@ from pyzebra.h5 import *
from pyzebra.xtal import *
from pyzebra.ccl_process import *
__version__ = "0.3.1"
ZEBRA_PROPOSALS_PATHS = [
f"/afs/psi.ch/project/sinqdata/{year}/zebra/" for year in (2016, 2017, 2018, 2020, 2021)
]
__version__ = "0.4.0"

View File

@ -7,6 +7,7 @@ DATA_FACTORY_IMPLEMENTATION = [
"morph",
"d10",
]
REFLECTION_PRINTER_FORMATS = [
"rafin",
"rafinf",
@ -20,15 +21,17 @@ REFLECTION_PRINTER_FORMATS = [
"oksana",
]
ANATRIC_PATH = "/afs/psi.ch/project/sinq/rhel7/bin/anatric"
ALGORITHMS = ["adaptivemaxcog", "adaptivedynamic"]
def anatric(config_file, anatric_path="/afs/psi.ch/project/sinq/rhel7/bin/anatric"):
def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None):
comp_proc = subprocess.run(
[anatric_path, config_file],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
cwd=cwd,
check=True,
text=True,
)
print(" ".join(comp_proc.args))
@ -59,10 +62,13 @@ class AnatricConfig:
def save_as(self, filename):
self._tree.write(filename)
def tostring(self):
return ET.tostring(self._tree.getroot(), encoding="unicode")
def _get_attr(self, name, tag, attr):
elem = self._tree.find(name).find(tag)
if elem is None:
return None
return ""
return elem.attrib[attr]
def _set_attr(self, name, tag, attr, value):
@ -225,7 +231,7 @@ class AnatricConfig:
elem = self._tree.find("crystal").find("UB")
if elem is not None:
return elem.text
return None
return ""
@crystal_UB.setter
def crystal_UB(self, value):
@ -247,7 +253,7 @@ class AnatricConfig:
elem = self._tree.find("DataFactory").find("dist1")
if elem is not None:
return elem.attrib["value"]
return None
return ""
@dataFactory_dist1.setter
def dataFactory_dist1(self, value):
@ -258,7 +264,7 @@ class AnatricConfig:
elem = self._tree.find("DataFactory").find("dist2")
if elem is not None:
return elem.attrib["value"]
return None
return ""
@dataFactory_dist2.setter
def dataFactory_dist2(self, value):
@ -269,7 +275,7 @@ class AnatricConfig:
elem = self._tree.find("DataFactory").find("dist3")
if elem is not None:
return elem.attrib["value"]
return None
return ""
@dataFactory_dist3.setter
def dataFactory_dist3(self, value):
@ -310,7 +316,7 @@ class AnatricConfig:
def _get_alg_attr(self, alg, tag, attr):
param_elem = self._alg_elems[alg].find(tag)
if param_elem is None:
return None
return ""
return param_elem.attrib[attr]
def _set_alg_attr(self, alg, tag, attr, value):

View File

@ -6,6 +6,7 @@ from bokeh.application.application import Application
from bokeh.application.handlers import ScriptHandler
from bokeh.server.server import Server
from pyzebra.anatric import ANATRIC_PATH
from pyzebra.app.handler import PyzebraHandler
logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO)
@ -38,10 +39,11 @@ def main():
)
parser.add_argument(
"--anatric-path",
type=str,
default=None,
help="path to anatric executable",
"--anatric-path", type=str, default=ANATRIC_PATH, help="path to anatric executable",
)
parser.add_argument(
"--spind-path", type=str, default=None, help="path to spind scripts folder",
)
parser.add_argument(
@ -55,7 +57,7 @@ def main():
logger.info(app_path)
pyzebra_handler = PyzebraHandler(args.anatric_path)
pyzebra_handler = PyzebraHandler(args.anatric_path, args.spind_path)
handler = ScriptHandler(filename=app_path, argv=args.args)
server = Server(
{"/": Application(pyzebra_handler, handler)},

View File

@ -5,7 +5,7 @@ class PyzebraHandler(Handler):
"""Provides a mechanism for generic bokeh applications to build up new streamvis documents.
"""
def __init__(self, anatric_path):
def __init__(self, anatric_path, spind_path):
"""Initialize a pyzebra handler for bokeh applications.
Args:
@ -14,6 +14,7 @@ class PyzebraHandler(Handler):
super().__init__() # no-op
self.anatric_path = anatric_path
self.spind_path = spind_path
def modify_document(self, doc):
"""Modify an application document with pyzebra specific features.
@ -26,5 +27,6 @@ class PyzebraHandler(Handler):
"""
doc.title = "pyzebra"
doc.anatric_path = self.anatric_path
doc.spind_path = self.spind_path
return doc

View File

@ -5,6 +5,7 @@ import tempfile
import types
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
@ -28,7 +29,7 @@ from bokeh.models import (
Panel,
PanTool,
Plot,
RadioButtonGroup,
RadioGroup,
ResetTool,
Scatter,
Select,
@ -43,40 +44,66 @@ from bokeh.models import (
)
import pyzebra
from pyzebra.ccl_io import AREA_METHODS
from pyzebra.ccl_io import EXPORT_TARGETS
from pyzebra.ccl_process import AREA_METHODS
javaScript = """
let j = 0;
for (let i = 0; i < js_data.data['fname'].length; i++) {
if (js_data.data['content'][i] === "") continue;
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = js_data.data['fname'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
setTimeout(function() {
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 100 * j)
j++;
}
"""
def create():
doc = curdoc()
det_data = {}
fit_params = {}
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""]))
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""], ext=["", ""]))
def proposal_textinput_callback(_attr, _old, new):
proposal = new.strip()
year = new[:4]
proposal_path = f"/afs/psi.ch/project/sinqdata/{year}/zebra/{proposal}"
ccl_file_list = []
def file_select_update_for_proposal():
proposal = proposal_textinput.value.strip()
if not proposal:
file_select.options = []
file_open_button.disabled = True
file_append_button.disabled = True
return
for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
proposal_path = os.path.join(zebra_proposals_path, proposal)
if os.path.isdir(proposal_path):
# found it
break
else:
raise ValueError(f"Can not find data for proposal '{proposal}'.")
file_list = []
for file in os.listdir(proposal_path):
if file.endswith((".ccl", ".dat")):
ccl_file_list.append((os.path.join(proposal_path, file), file))
file_select.options = ccl_file_list
file_list.append((os.path.join(proposal_path, file), file))
file_select.options = file_list
file_open_button.disabled = False
file_append_button.disabled = False
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
file_select_update_for_proposal()
proposal_textinput = TextInput(title="Proposal number:", width=210)
proposal_textinput.on_change("value", proposal_textinput_callback)
@ -92,16 +119,10 @@ def create():
scan_table_source.selected.indices = [0]
merge_options = [(str(i), f"{i} ({idx})") for i, idx in enumerate(scan_list)]
merge_source_select.options = merge_options
merge_source_select.value = merge_options[0][0]
merge_dest_select.options = merge_options
merge_dest_select.value = merge_options[0][0]
def ccl_file_select_callback(_attr, _old, _new):
pass
merge_from_select.options = merge_options
merge_from_select.value = merge_options[0][0]
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
file_select.on_change("value", ccl_file_select_callback)
def file_open_button_callback():
nonlocal det_data
@ -117,12 +138,12 @@ def create():
det_data = pyzebra.parse_1D(file, ext)
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
pyzebra.merge_duplicates(det_data)
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
js_data.data.update(fname=[base, base])
_init_datatable()
_update_preview()
append_upload_button.disabled = False
file_open_button = Button(label="Open New", width=100)
file_open_button = Button(label="Open New", width=100, disabled=True)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
@ -136,12 +157,13 @@ def create():
_init_datatable()
file_append_button = Button(label="Append", width=100)
file_append_button = Button(label="Append", width=100, disabled=True)
file_append_button.on_click(file_append_button_callback)
def upload_button_callback(_attr, _old, new):
nonlocal det_data
det_data = []
proposal_textinput.value = ""
for f_str, f_name in zip(new, upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
@ -153,10 +175,10 @@ def create():
det_data = pyzebra.parse_1D(file, ext)
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
pyzebra.merge_duplicates(det_data)
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
js_data.data.update(fname=[base, base])
_init_datatable()
_update_preview()
append_upload_button.disabled = False
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
@ -174,7 +196,7 @@ def create():
_init_datatable()
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True)
append_upload_button.on_change("value", append_upload_button_callback)
def monitor_spinner_callback(_attr, old, new):
@ -192,7 +214,7 @@ def create():
def _update_plot(scan):
scan_motor = scan["scan_motor"]
y = scan["Counts"]
y = scan["counts"]
x = scan[scan_motor]
plot.axis[0].axis_label = scan_motor
@ -301,7 +323,12 @@ def create():
_update_plot(det_data[new[0]])
def scan_table_source_callback(_attr, _old, _new):
_update_preview()
scan_table_source = ColumnDataSource(dict(scan=[], hkl=[], fit=[], export=[]))
scan_table_source.on_change("data", scan_table_source_callback)
scan_table = DataTable(
source=scan_table_source,
columns=[
@ -321,23 +348,29 @@ def create():
def _get_selected_scan():
return det_data[scan_table_source.selected.indices[0]]
merge_dest_select = Select(title="destination:", width=100)
merge_source_select = Select(title="source:", width=100)
merge_from_select = Select(title="scan:", width=145)
def merge_button_callback():
scan_dest_ind = int(merge_dest_select.value)
scan_source_ind = int(merge_source_select.value)
scan_into = _get_selected_scan()
scan_from = det_data[int(merge_from_select.value)]
if scan_dest_ind == scan_source_ind:
if scan_into is scan_from:
print("WARNING: Selected scans for merging are identical")
return
pyzebra.merge_scans(det_data[scan_dest_ind], det_data[scan_source_ind])
pyzebra.merge_scans(scan_into, scan_from)
_update_plot(_get_selected_scan())
merge_button = Button(label="Merge scans", width=145)
merge_button = Button(label="Merge into current", width=145)
merge_button.on_click(merge_button_callback)
def restore_button_callback():
pyzebra.restore_scan(_get_selected_scan())
_update_plot(_get_selected_scan())
restore_button = Button(label="Restore scan", width=145)
restore_button.on_click(restore_button_callback)
def fit_from_spinner_callback(_attr, _old, new):
fit_from_span.location = new
@ -367,7 +400,6 @@ def create():
# ("Pseudo Voigt1", "pseudovoigt1"),
],
width=145,
disabled=True,
)
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
@ -402,7 +434,7 @@ def create():
fitparams_select.value = []
fitparams_remove_button = Button(label="Remove fit function", width=145, disabled=True)
fitparams_remove_button = Button(label="Remove fit function", width=145)
fitparams_remove_button.on_click(fitparams_remove_button_callback)
def fitparams_factory(function):
@ -425,8 +457,12 @@ def create():
)
if function == "linear":
fitparams["value"] = [0, 0]
fitparams["value"] = [0, 1]
fitparams["vary"] = [False, True]
fitparams["min"] = [None, 0]
elif function == "gaussian":
fitparams["min"] = [0, None, None]
return fitparams
@ -454,48 +490,47 @@ def create():
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
def fit_all_button_callback():
def proc_all_button_callback():
for scan, export in zip(det_data, scan_table_source.data["export"]):
if export:
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
_update_plot(_get_selected_scan())
_update_table()
_update_preview()
fit_all_button = Button(label="Fit All", button_type="primary", width=145)
fit_all_button.on_click(fit_all_button_callback)
proc_all_button = Button(label="Process All", button_type="primary", width=145)
proc_all_button.on_click(proc_all_button_callback)
def fit_button_callback():
def proc_button_callback():
scan = _get_selected_scan()
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
_update_plot(scan)
_update_table()
_update_preview()
fit_button = Button(label="Fit Current", width=145)
fit_button.on_click(fit_button_callback)
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
def area_method_radiobutton_callback(_handler):
_update_preview()
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
area_method_radiobutton = RadioButtonGroup(
labels=["Fit area", "Int area"], active=0, width=145, disabled=True
)
area_method_radiobutton.on_click(area_method_radiobutton_callback)
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
def lorentz_checkbox_callback(_handler):
_update_preview()
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=[13, 5, 5, 5])
lorentz_checkbox.on_click(lorentz_checkbox_callback)
export_preview_textinput = TextAreaInput(title="Export file preview:", width=500, height=400)
export_preview_textinput = TextAreaInput(title="Export file(s) preview:", width=500, height=400)
def _update_preview():
with tempfile.TemporaryDirectory() as temp_dir:
@ -508,14 +543,13 @@ def create():
pyzebra.export_1D(
export_data,
temp_file,
area_method=AREA_METHODS[int(area_method_radiobutton.active)],
lorentz=bool(lorentz_checkbox.active),
export_target_select.value,
hkl_precision=int(hkl_precision_select.value),
)
exported_content = ""
file_content = []
for ext in (".comm", ".incomm"):
for ext in EXPORT_TARGETS[export_target_select.value]:
fname = temp_file + ext
if os.path.isfile(fname):
with open(fname) as f:
@ -528,6 +562,16 @@ def create():
js_data.data.update(content=file_content)
export_preview_textinput.value = exported_content
def export_target_select_callback(_attr, _old, new):
js_data.data.update(ext=EXPORT_TARGETS[new])
_update_preview()
export_target_select = Select(
title="Export target:", options=list(EXPORT_TARGETS.keys()), value="fullprof", width=80
)
export_target_select.on_change("value", export_target_select_callback)
js_data.data.update(ext=EXPORT_TARGETS[export_target_select.value])
def hkl_precision_select_callback(_attr, _old, _new):
_update_preview()
@ -536,24 +580,21 @@ def create():
)
hkl_precision_select.on_change("value", hkl_precision_select_callback)
save_button = Button(label="Download File", button_type="success", width=200)
save_button = Button(label="Download File(s)", button_type="success", width=200)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
Spacer(width=20),
column(
row(fit_from_spinner, fit_to_spinner),
row(area_method_radiobutton, lorentz_checkbox),
row(fit_button, fit_all_button),
),
column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton),
column(fit_to_spinner, proc_button, proc_all_button),
)
scan_layout = column(
scan_table,
monitor_spinner,
row(column(Spacer(height=19), merge_button), merge_dest_select, merge_source_select),
row(monitor_spinner, column(Spacer(height=19), restore_button)),
row(column(Spacer(height=19), merge_button), merge_from_select),
)
import_layout = column(
@ -568,7 +609,9 @@ def create():
export_layout = column(
export_preview_textinput,
row(hkl_precision_select, column(Spacer(height=19), row(save_button))),
row(
export_target_select, hkl_precision_select, column(Spacer(height=19), row(save_button))
),
)
tab_layout = column(

View File

@ -1,5 +1,6 @@
import base64
import io
import os
import re
import tempfile
@ -346,15 +347,12 @@ def create():
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/config.xml"
config.save_as(temp_file)
if doc.anatric_path:
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path)
else:
pyzebra.anatric(temp_file)
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path, cwd=temp_dir)
with open(config.logfile) as f_log:
with open(os.path.join(temp_dir, config.logfile)) as f_log:
output_log.value = f_log.read()
with open(config.reflectionPrinter_file) as f_res:
with open(os.path.join(temp_dir, config.reflectionPrinter_file)) as f_res:
output_res.value = f_res.read()
process_button = Button(label="Process", button_type="primary")
@ -389,11 +387,7 @@ def create():
)
async def update_config():
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/config.xml"
config.save_as(temp_file)
with open(temp_file) as f_config:
output_config.value = f_config.read()
output_config.value = config.tostring()
doc.add_periodic_callback(update_config, 1000)

View File

@ -1,8 +1,11 @@
import base64
import io
import math
import os
import numpy as np
from bokeh.events import MouseEnter
from bokeh.io import curdoc
from bokeh.layouts import column, gridplot, row
from bokeh.models import (
BasicTicker,
@ -12,9 +15,12 @@ from bokeh.models import (
CheckboxGroup,
ColumnDataSource,
DataRange1d,
DataTable,
Div,
FileInput,
Grid,
MultiSelect,
NumberFormatter,
HoverTool,
Image,
Line,
@ -27,50 +33,71 @@ from bokeh.models import (
Rect,
ResetTool,
Select,
Slider,
Spacer,
Spinner,
TextAreaInput,
TableColumn,
TextInput,
Title,
WheelZoomTool,
)
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
from scipy.optimize import curve_fit
import pyzebra
IMAGE_W = 256
IMAGE_H = 128
IMAGE_PLOT_W = int(IMAGE_W * 2.5)
IMAGE_PLOT_H = int(IMAGE_H * 2.5)
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
def create():
doc = curdoc()
det_data = {}
roi_selection = {}
cami_meta = {}
num_formatter = NumberFormatter(format="0.00", nan_format="")
def file_select_update_for_proposal():
proposal = proposal_textinput.value.strip()
if not proposal:
return
for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
proposal_path = os.path.join(zebra_proposals_path, proposal)
if os.path.isdir(proposal_path):
# found it
break
else:
raise ValueError(f"Can not find data for proposal '{proposal}'.")
def proposal_textinput_callback(_attr, _old, new):
proposal = new.strip()
year = new[:4]
proposal_path = f"/afs/psi.ch/project/sinqdata/{year}/zebra/{proposal}"
file_list = []
for file in os.listdir(proposal_path):
if file.endswith(".hdf"):
file_list.append((os.path.join(proposal_path, file), file))
filelist.options = file_list
filelist.value = file_list[0][0]
file_select.options = file_list
proposal_textinput = TextInput(title="Enter proposal number:", width=145)
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
nonlocal cami_meta
cami_meta = {}
file_select_update_for_proposal()
proposal_textinput = TextInput(title="Proposal number:", width=210)
proposal_textinput.on_change("value", proposal_textinput_callback)
def upload_button_callback(_attr, _old, new):
nonlocal cami_meta
proposal_textinput.value = ""
with io.StringIO(base64.b64decode(new).decode()) as file:
h5meta_list = pyzebra.parse_h5meta(file)
file_list = h5meta_list["filelist"]
filelist.options = [(entry, os.path.basename(entry)) for entry in file_list]
filelist.value = file_list[0]
cami_meta = pyzebra.parse_h5meta(file)
file_list = cami_meta["filelist"]
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".cami")
upload_button = FileInput(accept=".cami", width=200)
upload_button.on_change("value", upload_button_callback)
def update_image(index=None):
@ -101,14 +128,14 @@ def create():
image_glyph.color_mapper.high = im_max
if "mf" in det_data:
mf_spinner.value = det_data["mf"][index]
metadata_table_source.data.update(mf=[det_data["mf"][index]])
else:
mf_spinner.value = None
metadata_table_source.data.update(mf=[None])
if "temp" in det_data:
temp_spinner.value = det_data["temp"][index]
metadata_table_source.data.update(temp=[det_data["temp"][index]])
else:
temp_spinner.value = None
metadata_table_source.data.update(temp=[None])
gamma, nu = calculate_pol(det_data, index)
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
@ -152,32 +179,53 @@ def create():
scanning_motor_range.end = var_end
scanning_motor_range.reset_start = var_start
scanning_motor_range.reset_end = var_end
scanning_motor_range.bounds = (var_start, var_end)
# handle both, ascending and descending sequences
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
def filelist_callback(_attr, _old, new):
def file_select_callback(_attr, old, new):
nonlocal det_data
det_data = pyzebra.read_detector_data(new)
if not new:
# skip empty selections
return
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
file_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
det_data = pyzebra.read_detector_data(new[0], cami_meta)
index_spinner.value = 0
index_spinner.high = det_data["data"].shape[0] - 1
index_slider.end = det_data["data"].shape[0] - 1
zebra_mode = det_data["zebra_mode"]
if zebra_mode == "nb":
geometry_textinput.value = "normal beam"
metadata_table_source.data.update(geom=["normal beam"])
else: # zebra_mode == "bi"
geometry_textinput.value = "bisecting"
metadata_table_source.data.update(geom=["bisecting"])
update_image(0)
update_overview_plot()
filelist = Select(title="Available .hdf files:")
filelist.on_change("value", filelist_callback)
file_select = MultiSelect(title="Available .hdf files:", width=210, height=250)
file_select.on_change("value", file_select_callback)
def index_spinner_callback(_attr, _old, new):
def index_callback(_attr, _old, new):
update_image(new)
index_spinner = Spinner(title="Image index:", value=0, low=0, width=80)
index_spinner.on_change("value", index_spinner_callback)
index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)
index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
index_spinner.on_change("value", index_callback)
index_slider.js_link("value_throttled", index_spinner, "value")
index_spinner.js_link("value", index_slider, "value")
plot = Plot(
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
@ -232,6 +280,15 @@ def create():
image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
plot.add_glyph(image_source, image_glyph, name="image_glyph")
# calculate hkl-indices of first mouse entry
def mouse_enter_callback(_event):
if det_data and np.array_equal(image_source.data["h"][0], np.zeros((1, 1))):
index = index_spinner.value
h, k, l = calculate_hkl(det_data, index)
image_source.data.update(h=[h], k=[k], l=[l])
plot.on_event(MouseEnter, mouse_enter_callback)
# ---- projections
proj_v = Plot(
x_range=plot.x_range,
@ -321,7 +378,7 @@ def create():
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=400,
plot_width=IMAGE_PLOT_W,
plot_width=IMAGE_PLOT_W - 3,
)
# ---- tools
@ -359,7 +416,7 @@ def create():
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=400,
plot_width=IMAGE_PLOT_H,
plot_width=IMAGE_PLOT_H + 22,
)
# ---- tools
@ -398,7 +455,7 @@ def create():
roi_avg_plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(),
plot_height=200,
plot_height=150,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
@ -446,7 +503,7 @@ def create():
update_image()
main_auto_checkbox = CheckboxGroup(
labels=["Main Auto Range"], active=[0], width=145, margin=[10, 5, 0, 5]
labels=["Frame Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
main_auto_checkbox.on_click(main_auto_checkbox_callback)
@ -492,7 +549,7 @@ def create():
update_overview_plot()
proj_auto_checkbox = CheckboxGroup(
labels=["Projections Auto Range"], active=[0], width=145, margin=[10, 5, 0, 5]
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
@ -527,43 +584,149 @@ def create():
)
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
def hkl_button_callback():
index = index_spinner.value
h, k, l = calculate_hkl(det_data, index)
image_source.data.update(h=[h], k=[k], l=[l])
events_data = dict(
wave=[],
ddist=[],
cell=[],
frame=[],
x_pos=[],
y_pos=[],
intensity=[],
snr_cnts=[],
gamma=[],
omega=[],
chi=[],
phi=[],
nu=[],
)
doc.events_data = events_data
hkl_button = Button(label="Calculate hkl (slow)", width=210)
hkl_button.on_click(hkl_button_callback)
events_table_source = ColumnDataSource(events_data)
events_table = DataTable(
source=events_table_source,
columns=[
TableColumn(field="frame", title="Frame", formatter=num_formatter, width=70),
TableColumn(field="x_pos", title="X", formatter=num_formatter, width=70),
TableColumn(field="y_pos", title="Y", formatter=num_formatter, width=70),
TableColumn(field="intensity", title="Intensity", formatter=num_formatter, width=70),
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
],
height=150,
width=630,
autosize_mode="none",
index_position=None,
)
selection_list = TextAreaInput(rows=7)
def add_event_button_callback():
p0 = [1.0, 0.0, 1.0]
maxfev = 100000
def selection_button_callback():
nonlocal roi_selection
selection = [
int(np.floor(det_x_range.start)),
int(np.ceil(det_x_range.end)),
int(np.floor(det_y_range.start)),
int(np.ceil(det_y_range.end)),
int(np.floor(frame_range.start)),
int(np.ceil(frame_range.end)),
]
wave = det_data["wave"]
ddist = det_data["ddist"]
cell = det_data["cell"]
filename_id = filelist.value[-8:-4]
if filename_id in roi_selection:
roi_selection[f"{filename_id}"].append(selection)
else:
roi_selection[f"{filename_id}"] = [selection]
gamma = det_data["gamma"][0]
omega = det_data["omega"][0]
nu = det_data["nu"][0]
chi = det_data["chi"][0]
phi = det_data["phi"][0]
selection_list.value = str(roi_selection)
scan_motor = det_data["scan_motor"]
var_angle = det_data[scan_motor]
selection_button = Button(label="Add selection")
selection_button.on_click(selection_button_callback)
x0 = int(np.floor(det_x_range.start))
xN = int(np.ceil(det_x_range.end))
y0 = int(np.floor(det_y_range.start))
yN = int(np.ceil(det_y_range.end))
fr0 = int(np.floor(frame_range.start))
frN = int(np.ceil(frame_range.end))
data_roi = det_data["data"][fr0:frN, y0:yN, x0:xN]
mf_spinner = Spinner(title="Magnetic field:", format="0.00", width=100, disabled=True)
temp_spinner = Spinner(title="Temperature:", format="0.00", width=100, disabled=True)
geometry_textinput = TextInput(title="Geometry:", width=120, disabled=True)
cnts = np.sum(data_roi, axis=(1, 2))
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
m = cnts.mean()
sd = cnts.std()
snr_cnts = np.where(sd == 0, 0, m / sd)
frC = fr0 + coeff[1]
var_F = var_angle[math.floor(frC)]
var_C = var_angle[math.ceil(frC)]
frStep = frC - math.floor(frC)
var_step = var_C - var_F
var_p = var_F + var_step * frStep
if scan_motor == "gamma":
gamma = var_p
elif scan_motor == "omega":
omega = var_p
elif scan_motor == "nu":
nu = var_p
elif scan_motor == "chi":
chi = var_p
elif scan_motor == "phi":
phi = var_p
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
projX = np.sum(data_roi, axis=(0, 1))
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
x_pos = x0 + coeff[1]
projY = np.sum(data_roi, axis=(0, 2))
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
y_pos = y0 + coeff[1]
events_data["wave"].append(wave)
events_data["ddist"].append(ddist)
events_data["cell"].append(cell)
events_data["frame"].append(frC)
events_data["x_pos"].append(x_pos)
events_data["y_pos"].append(y_pos)
events_data["intensity"].append(intensity)
events_data["snr_cnts"].append(snr_cnts)
events_data["gamma"].append(gamma)
events_data["omega"].append(omega)
events_data["chi"].append(chi)
events_data["phi"].append(phi)
events_data["nu"].append(nu)
events_table_source.data = events_data
add_event_button = Button(label="Add spind event", width=145)
add_event_button.on_click(add_event_button_callback)
def remove_event_button_callback():
ind2remove = events_table_source.selected.indices
for value in events_data.values():
for ind in reversed(ind2remove):
del value[ind]
events_table_source.data = events_data
remove_event_button = Button(label="Remove spind event", width=145)
remove_event_button.on_click(remove_event_button_callback)
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
metadata_table = DataTable(
source=metadata_table_source,
columns=[
TableColumn(field="geom", title="Geometry", width=100),
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
],
width=300,
height=50,
autosize_mode="none",
index_position=None,
)
# Final layout
import_layout = column(proposal_textinput, upload_div, upload_button, file_select)
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
colormap_layout = column(
colormap,
@ -573,12 +736,9 @@ def create():
row(proj_display_min_spinner, proj_display_max_spinner),
)
layout_controls = row(
column(selection_button, selection_list),
Spacer(width=20),
column(colormap_layout),
Spacer(width=20),
column(row(mf_spinner, temp_spinner), row(geometry_textinput, index_spinner), hkl_button),
layout_controls = column(
row(metadata_table, index_spinner, column(Spacer(height=25), index_slider)),
row(column(add_event_button, remove_event_button), events_table),
)
layout_overview = column(
@ -591,19 +751,25 @@ def create():
)
tab_layout = row(
column(
row(
proposal_textinput, filelist, Spacer(width=100), column(upload_div, upload_button),
),
layout_overview,
layout_controls,
),
column(import_layout, colormap_layout),
column(layout_overview, layout_controls),
column(roi_avg_plot, layout_image),
)
return Panel(child=tab_layout, title="hdf viewer")
def gauss(x, *p):
"""Defines Gaussian function
Args:
A - amplitude, mu - position of the center, sigma - width
Returns:
Gaussian function
"""
A, mu, sigma = p
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
def calculate_hkl(det_data, index):
h = np.empty(shape=(IMAGE_H, IMAGE_W))
k = np.empty(shape=(IMAGE_H, IMAGE_W))

View File

@ -6,6 +6,7 @@ import tempfile
import types
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
@ -21,6 +22,7 @@ from bokeh.models import (
FileInput,
Grid,
HoverTool,
Image,
Legend,
Line,
LinearAxis,
@ -30,7 +32,7 @@ from bokeh.models import (
Panel,
PanTool,
Plot,
RadioButtonGroup,
RadioGroup,
ResetTool,
Scatter,
Select,
@ -46,9 +48,10 @@ from bokeh.models import (
)
from bokeh.palettes import Category10, Turbo256
from bokeh.transform import linear_cmap
from scipy import interpolate
import pyzebra
from pyzebra.ccl_io import AREA_METHODS
from pyzebra.ccl_process import AREA_METHODS
javaScript = """
for (let i = 0; i < js_data.data['fname'].length; i++) {
@ -73,19 +76,39 @@ def color_palette(n_colors):
def create():
doc = curdoc()
det_data = []
fit_params = {}
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""]))
def proposal_textinput_callback(_attr, _old, new):
proposal = new.strip()
year = new[:4]
proposal_path = f"/afs/psi.ch/project/sinqdata/{year}/zebra/{proposal}"
dat_file_list = []
def file_select_update_for_proposal():
proposal = proposal_textinput.value.strip()
if not proposal:
file_select.options = []
file_open_button.disabled = True
file_append_button.disabled = True
return
for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
proposal_path = os.path.join(zebra_proposals_path, proposal)
if os.path.isdir(proposal_path):
# found it
break
else:
raise ValueError(f"Can not find data for proposal '{proposal}'.")
file_list = []
for file in os.listdir(proposal_path):
if file.endswith(".dat"):
dat_file_list.append((os.path.join(proposal_path, file), file))
file_select.options = dat_file_list
if file.endswith((".ccl", ".dat")):
file_list.append((os.path.join(proposal_path, file), file))
file_select.options = file_list
file_open_button.disabled = False
file_append_button.disabled = False
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
file_select_update_for_proposal()
proposal_textinput = TextInput(title="Proposal number:", width=210)
proposal_textinput.on_change("value", proposal_textinput_callback)
@ -106,13 +129,11 @@ def create():
scan_table_source.selected.indices = []
scan_table_source.selected.indices = [0]
scan_motor_select.options = det_data[0]["scan_motors"]
scan_motor_select.value = det_data[0]["scan_motor"]
param_select.value = "user defined"
def file_select_callback(_attr, _old, _new):
pass
file_select = MultiSelect(title="Available .dat files:", width=210, height=250)
file_select.on_change("value", file_select_callback)
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
def file_open_button_callback():
nonlocal det_data
@ -130,9 +151,9 @@ def create():
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
_init_datatable()
_update_preview()
append_upload_button.disabled = False
file_open_button = Button(label="Open New", width=100)
file_open_button = Button(label="Open New", width=100, disabled=True)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
@ -146,12 +167,13 @@ def create():
_init_datatable()
file_append_button = Button(label="Append", width=100)
file_append_button = Button(label="Append", width=100, disabled=True)
file_append_button.on_click(file_append_button_callback)
def upload_button_callback(_attr, _old, new):
nonlocal det_data
det_data = []
proposal_textinput.value = ""
for f_str, f_name in zip(new, upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
@ -165,10 +187,10 @@ def create():
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
_init_datatable()
_update_preview()
append_upload_button.disabled = False
upload_div = Div(text="or upload new .dat files:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".dat", multiple=True, width=200)
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
upload_button.on_change("value", upload_button_callback)
def append_upload_button_callback(_attr, _old, new):
@ -183,7 +205,7 @@ def create():
_init_datatable()
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
append_upload_button = FileInput(accept=".dat", multiple=True, width=200)
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True)
append_upload_button.on_change("value", append_upload_button_callback)
def monitor_spinner_callback(_attr, _old, new):
@ -194,6 +216,15 @@ def create():
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
monitor_spinner.on_change("value", monitor_spinner_callback)
def scan_motor_select_callback(_attr, _old, new):
if det_data:
for scan in det_data:
scan["scan_motor"] = new
_update_plot()
scan_motor_select = Select(title="Scan motor:", options=[], width=145)
scan_motor_select.on_change("value", scan_motor_select_callback)
def _update_table():
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
scan_table_source.data.update(fit=fit_ok)
@ -205,7 +236,7 @@ def create():
def _update_single_scan_plot(scan):
scan_motor = scan["scan_motor"]
y = scan["Counts"]
y = scan["counts"]
x = scan[scan_motor]
plot.axis[0].axis_label = scan_motor
@ -254,10 +285,10 @@ def create():
scan_motor = scan["scan_motor"]
xs.append(scan[scan_motor])
x.extend(scan[scan_motor])
ys.append(scan["Counts"])
ys.append(scan["counts"])
y.extend([float(p)] * len(scan[scan_motor]))
param.append(float(p))
par.extend(scan["Counts"])
par.extend(scan["counts"])
if det_data:
scan_motor = det_data[0]["scan_motor"]
@ -271,6 +302,32 @@ def create():
mapper["transform"].high = np.max([np.max(y) for y in ys])
ov_param_plot_scatter_source.data.update(x=x, y=y, param=par)
if y:
interp_f = interpolate.interp2d(x, y, par)
x1, x2 = min(x), max(x)
y1, y2 = min(y), max(y)
image = interp_f(
np.linspace(x1, x2, ov_param_plot.inner_width // 10),
np.linspace(y1, y2, ov_param_plot.inner_height // 10),
assume_sorted=True,
)
ov_param_plot_image_source.data.update(
image=[image], x=[x1], y=[y1], dw=[x2 - x1], dh=[y2 - y1]
)
else:
ov_param_plot_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
def _update_param_plot():
x = []
y = []
fit_param = fit_param_select.value
for s, p in zip(det_data, scan_table_source.data["param"]):
if "fit" in s and fit_param:
x.append(p)
y.append(s["fit"].values[fit_param])
param_plot_scatter_source.data.update(x=x, y=y)
# Main plot
plot = Plot(
x_range=DataRange1d(),
@ -327,7 +384,7 @@ def create():
plot.toolbar.logo = None
# Overview multilines plot
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700)
ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
@ -346,7 +403,7 @@ def create():
# Overview perams plot
ov_param_plot = Plot(
x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700
x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700
)
ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
@ -355,6 +412,11 @@ def create():
ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
ov_param_plot_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
ov_param_plot.add_glyph(
ov_param_plot_image_source, Image(image="image", x="x", y="y", dw="dw", dh="dh")
)
ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[]))
mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50)
ov_param_plot.add_glyph(
@ -365,12 +427,34 @@ def create():
ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
ov_param_plot.toolbar.logo = None
# Parameter plot
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[]))
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
param_plot.toolbar.logo = None
def fit_param_select_callback(_attr, _old, _new):
_update_param_plot()
fit_param_select = Select(title="Fit parameter", options=[], width=145)
fit_param_select.on_change("value", fit_param_select_callback)
# Plot tabs
plots = Tabs(
tabs=[
Panel(child=plot, title="single scan"),
Panel(child=ov_plot, title="overview"),
Panel(child=ov_param_plot, title="overview map"),
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
]
)
@ -392,7 +476,12 @@ def create():
_update_plot()
def scan_table_source_callback(_attr, _old, _new):
_update_preview()
scan_table_source = ColumnDataSource(dict(file=[], scan=[], param=[], fit=[], export=[]))
scan_table_source.on_change("data", scan_table_source_callback)
scan_table = DataTable(
source=scan_table_source,
columns=[
@ -424,6 +513,7 @@ def create():
param = [scan[new] for scan in det_data]
scan_table_source.data["param"] = param
_update_param_plot()
param_select = Select(
title="Parameter:",
@ -519,8 +609,12 @@ def create():
)
if function == "linear":
fitparams["value"] = [0, 0]
fitparams["value"] = [0, 1]
fitparams["vary"] = [False, True]
fitparams["min"] = [None, 0]
elif function == "gaussian":
fitparams["min"] = [0, None, None]
return fitparams
@ -548,48 +642,63 @@ def create():
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
def fit_all_button_callback():
def proc_all_button_callback():
for scan, export in zip(det_data, scan_table_source.data["export"]):
if export:
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
_update_plot()
_update_table()
_update_preview()
fit_all_button = Button(label="Fit All", button_type="primary", width=145)
fit_all_button.on_click(fit_all_button_callback)
for scan in det_data:
if "fit" in scan:
options = list(scan["fit"].params.keys())
fit_param_select.options = options
fit_param_select.value = options[0]
break
_update_param_plot()
def fit_button_callback():
proc_all_button = Button(label="Process All", button_type="primary", width=145)
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
scan = _get_selected_scan()
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
_update_plot()
_update_table()
_update_preview()
fit_button = Button(label="Fit Current", width=145)
fit_button.on_click(fit_button_callback)
for scan in det_data:
if "fit" in scan:
options = list(scan["fit"].params.keys())
fit_param_select.options = options
fit_param_select.value = options[0]
break
_update_param_plot()
def area_method_radiobutton_callback(_handler):
_update_preview()
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
area_method_radiobutton = RadioButtonGroup(
labels=["Fit area", "Int area"], active=0, width=145, disabled=True
)
area_method_radiobutton.on_click(area_method_radiobutton_callback)
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
def lorentz_checkbox_callback(_handler):
_update_preview()
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=[13, 5, 5, 5])
lorentz_checkbox.on_click(lorentz_checkbox_callback)
export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
export_preview_textinput = TextAreaInput(title="Export file(s) preview:", width=450, height=400)
def _update_preview():
with tempfile.TemporaryDirectory() as temp_dir:
@ -599,12 +708,7 @@ def create():
if export:
export_data.append(s)
pyzebra.export_1D(
export_data,
temp_file,
area_method=AREA_METHODS[int(area_method_radiobutton.active)],
lorentz=bool(lorentz_checkbox.active),
)
# pyzebra.export_1D(export_data, temp_file, "fullprof")
exported_content = ""
file_content = []
@ -621,21 +725,18 @@ def create():
js_data.data.update(content=file_content)
export_preview_textinput.value = exported_content
save_button = Button(label="Download File", button_type="success", width=220)
save_button = Button(label="Download File(s)", button_type="success", width=220)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
Spacer(width=20),
column(
row(fit_from_spinner, fit_to_spinner),
row(area_method_radiobutton, lorentz_checkbox),
row(fit_button, fit_all_button),
),
column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton),
column(fit_to_spinner, proc_button, proc_all_button),
)
scan_layout = column(scan_table, row(monitor_spinner, param_select))
scan_layout = column(scan_table, row(monitor_spinner, scan_motor_select, param_select))
import_layout = column(
proposal_textinput,

View File

@ -1,11 +1,9 @@
import ast
import math
import os
import subprocess
import tempfile
from collections import defaultdict
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Button,
@ -17,17 +15,16 @@ from bokeh.models import (
TextAreaInput,
TextInput,
)
from scipy.optimize import curve_fit
import pyzebra
def create():
path_prefix_textinput = TextInput(title="Path prefix:", value="")
selection_list = TextAreaInput(title="ROIs:", rows=7)
lattice_const_textinput = TextInput(
title="Lattice constants:", value="8.3211,8.3211,8.3211,90.00,90.00,90.00"
)
doc = curdoc()
events_data = doc.events_data
npeaks_spinner = Spinner(title="Number of peaks from hdf_view panel:", disabled=True)
lattice_const_textinput = TextInput(title="Lattice constants:", disabled=True)
max_res_spinner = Spinner(title="max-res:", value=2, step=0.01, width=145)
seed_pool_size_spinner = Spinner(title="seed-pool-size:", value=5, step=0.01, width=145)
seed_len_tol_spinner = Spinner(title="seed-len-tol:", value=0.02, step=0.01, width=145)
@ -38,13 +35,15 @@ def create():
ub_matrices = []
def process_button_callback():
# drop table selection to clear result fields
results_table_source.selected.indices = []
nonlocal diff_vec
with tempfile.TemporaryDirectory() as temp_dir:
temp_peak_list_dir = os.path.join(temp_dir, "peak_list")
os.mkdir(temp_peak_list_dir)
temp_event_file = os.path.join(temp_peak_list_dir, "event-0.txt")
temp_hkl_file = os.path.join(temp_dir, "hkl.h5")
roi_dict = ast.literal_eval(selection_list.value)
comp_proc = subprocess.run(
[
@ -52,7 +51,7 @@ def create():
"-n",
"2",
"python",
"spind/gen_hkl_table.py",
os.path.join(doc.spind_path, "gen_hkl_table.py"),
lattice_const_textinput.value,
"--max-res",
str(max_res_spinner.value),
@ -67,7 +66,33 @@ def create():
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
diff_vec = prepare_event_file(temp_event_file, roi_dict, path_prefix_textinput.value)
# prepare an event file
diff_vec = []
with open(temp_event_file, "w") as f:
npeaks = len(next(iter(doc.events_data.values())))
for ind in range(npeaks):
wave = events_data["wave"][ind]
ddist = events_data["ddist"][ind]
x_pos = events_data["x_pos"][ind]
y_pos = events_data["y_pos"][ind]
intensity = events_data["intensity"][ind]
snr_cnts = events_data["snr_cnts"][ind]
gamma = events_data["gamma"][ind]
omega = events_data["omega"][ind]
chi = events_data["chi"][ind]
phi = events_data["phi"][ind]
nu = events_data["nu"][ind]
ga, nu = pyzebra.det2pol(ddist, gamma, nu, x_pos, y_pos)
diff_vector = pyzebra.z1frmd(wave, ga, omega, chi, phi, nu)
d_spacing = float(pyzebra.dandth(wave, diff_vector)[0])
diff_vector = diff_vector.flatten() * 1e10
dv1, dv2, dv3 = diff_vector
diff_vec.append(diff_vector)
f.write(
f"{x_pos} {y_pos} {intensity} {snr_cnts} {dv1} {dv2} {dv3} {d_spacing}\n"
)
print(f"Content of {temp_event_file}:")
with open(temp_event_file) as f:
@ -79,7 +104,7 @@ def create():
"-n",
"2",
"python",
"spind/SPIND.py",
os.path.join(doc.spind_path, "SPIND.py"),
temp_peak_list_dir,
temp_hkl_file,
"-o",
@ -102,9 +127,11 @@ def create():
print(comp_proc.stdout)
spind_out_file = os.path.join(temp_dir, "spind.txt")
spind_res = dict(
label=[], crystal_id=[], match_rate=[], matched_peaks=[], column_5=[], ub_matrix=[],
)
try:
with open(spind_out_file) as f_out:
spind_res = defaultdict(list)
for line in f_out:
c1, c2, c3, c4, c5, *c_rest = line.split()
spind_res["label"].append(c1)
@ -115,12 +142,10 @@ def create():
# last digits are spind UB matrix
vals = list(map(float, c_rest))
ub_matrix_spind = np.array(vals).reshape(3, 3)
ub_matrix = np.linalg.inv(np.transpose(ub_matrix_spind))
ub_matrix_spind = np.transpose(np.array(vals).reshape(3, 3))
ub_matrix = np.linalg.inv(ub_matrix_spind)
ub_matrices.append(ub_matrix)
spind_res["ub_matrix"].append(ub_matrix_spind)
results_table_source.data.update(spind_res)
spind_res["ub_matrix"].append(str(ub_matrix_spind * 1e-10))
print(f"Content of {spind_out_file}:")
with open(spind_out_file) as f:
@ -129,9 +154,14 @@ def create():
except FileNotFoundError:
print("No results from spind")
results_table_source.data.update(spind_res)
process_button = Button(label="Process", button_type="primary")
process_button.on_click(process_button_callback)
if doc.spind_path is None:
process_button.disabled = True
ub_matrix_textareainput = TextAreaInput(title="UB matrix:", rows=7, width=400)
hkl_textareainput = TextAreaInput(title="hkl values:", rows=7, width=400)
@ -145,10 +175,12 @@ def create():
ub_matrix_textareainput.value = str(ub_matrix * 1e10)
hkl_textareainput.value = res
else:
ub_matrix_textareainput.value = None
hkl_textareainput.value = None
ub_matrix_textareainput.value = ""
hkl_textareainput.value = ""
results_table_source = ColumnDataSource(dict())
results_table_source = ColumnDataSource(
dict(label=[], crystal_id=[], match_rate=[], matched_peaks=[], column_5=[], ub_matrix=[])
)
results_table = DataTable(
source=results_table_source,
columns=[
@ -169,8 +201,7 @@ def create():
tab_layout = row(
column(
path_prefix_textinput,
selection_list,
npeaks_spinner,
lattice_const_textinput,
row(max_res_spinner, seed_pool_size_spinner),
row(seed_len_tol_spinner, seed_angle_tol_spinner),
@ -180,87 +211,13 @@ def create():
column(results_table, row(ub_matrix_textareainput, hkl_textareainput)),
)
async def update_npeaks_spinner():
npeaks = len(next(iter(doc.events_data.values())))
npeaks_spinner.value = npeaks
# TODO: check cell parameter for consistency?
if npeaks:
lattice_const_textinput.value = ",".join(map(str, doc.events_data["cell"][0]))
doc.add_periodic_callback(update_npeaks_spinner, 1000)
return Panel(child=tab_layout, title="spind")
def gauss(x, *p):
"""Defines Gaussian function
Args:
A - amplitude, mu - position of the center, sigma - width
Returns:
Gaussian function
"""
A, mu, sigma = p
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
def prepare_event_file(export_filename, roi_dict, path_prefix=""):
diff_vec = []
p0 = [1.0, 0.0, 1.0]
maxfev = 100000
with open(export_filename, "w") as f:
for file, rois in roi_dict.items():
dat = pyzebra.read_detector_data(path_prefix + file + ".hdf")
wave = dat["wave"]
ddist = dat["ddist"]
gamma = dat["gamma"][0]
omega = dat["omega"][0]
nu = dat["nu"][0]
chi = dat["chi"][0]
phi = dat["phi"][0]
scan_motor = dat["scan_motor"]
var_angle = dat[scan_motor]
for roi in rois:
x0, xN, y0, yN, fr0, frN = roi
data_roi = dat["data"][fr0:frN, y0:yN, x0:xN]
cnts = np.sum(data_roi, axis=(1, 2))
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
m = cnts.mean()
sd = cnts.std()
snr_cnts = np.where(sd == 0, 0, m / sd)
frC = fr0 + coeff[1]
var_F = var_angle[math.floor(frC)]
var_C = var_angle[math.ceil(frC)]
frStep = frC - math.floor(frC)
var_step = var_C - var_F
var_p = var_F + var_step * frStep
if scan_motor == "gamma":
gamma = var_p
elif scan_motor == "omega":
omega = var_p
elif scan_motor == "nu":
nu = var_p
elif scan_motor == "chi":
chi = var_p
elif scan_motor == "phi":
phi = var_p
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
projX = np.sum(data_roi, axis=(0, 1))
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
x_pos = x0 + coeff[1]
projY = np.sum(data_roi, axis=(0, 2))
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
y_pos = y0 + coeff[1]
ga, nu = pyzebra.det2pol(ddist, gamma, nu, x_pos, y_pos)
diff_vector = pyzebra.z1frmd(wave, ga, omega, chi, phi, nu)
d_spacing = float(pyzebra.dandth(wave, diff_vector)[0])
diff_vector = diff_vector.flatten() * 1e10
dv1, dv2, dv3 = diff_vector
diff_vec.append(diff_vector)
f.write(f"{x_pos} {y_pos} {intensity} {snr_cnts} {dv1} {dv2} {dv3} {d_spacing}\n")
return diff_vec

View File

@ -76,7 +76,7 @@ CCL_SECOND_LINE = (
("scan_motor", str),
)
AREA_METHODS = ("fit_area", "int_area")
EXPORT_TARGETS = {"fullprof": (".comm", ".incomm"), "jana": (".col", ".incol")}
def load_1D(filepath):
@ -159,6 +159,7 @@ def parse_1D(fileobj, data_type):
# "om" -> "omega"
s["scan_motor"] = "omega"
s["scan_motors"] = ["omega", ]
# overwrite metadata, because it only refers to the scan center
half_dist = (s["n_points"] - 1) / 2 * s["angle_step"]
s["omega"] = np.linspace(s["omega"] - half_dist, s["omega"] + half_dist, s["n_points"])
@ -167,7 +168,7 @@ def parse_1D(fileobj, data_type):
counts = []
while len(counts) < s["n_points"]:
counts.extend(map(float, next(fileobj).split()))
s["Counts"] = np.array(counts)
s["counts"] = np.array(counts)
if s["h"].is_integer() and s["k"].is_integer() and s["l"].is_integer():
s["h"], s["k"], s["l"] = map(int, (s["h"], s["k"], s["l"]))
@ -182,23 +183,15 @@ def parse_1D(fileobj, data_type):
s = defaultdict(list)
match = re.search("Scanning Variables: (.*), Steps: (.*)", next(fileobj))
if match.group(1) == "h, k, l":
steps = match.group(2).split()
for step, ind in zip(steps, "hkl"):
if float(step) != 0:
scan_motor = ind
break
else:
scan_motor = match.group(1)
s["scan_motor"] = scan_motor
motors = [motor.lower() for motor in match.group(1).split(", ")]
steps = [float(step) for step in match.group(2).split()]
match = re.search("(.*) Points, Mode: (.*), Preset (.*)", next(fileobj))
if match.group(2) != "Monitor":
raise Exception("Unknown mode in dat file.")
s["monitor"] = float(match.group(3))
col_names = next(fileobj).split()
col_names = list(map(str.lower, next(fileobj).split()))
for line in fileobj:
if "END-OF-DATA" in line:
@ -211,15 +204,28 @@ def parse_1D(fileobj, data_type):
for name in col_names:
s[name] = np.array(s[name])
s["scan_motors"] = []
for motor, step in zip(motors, steps):
if step == 0:
# it's not a scan motor, so keep only the median value
s[motor] = np.median(s[motor])
else:
s["scan_motors"].append(motor)
s["scan_motor"] = s["scan_motors"][0]
# "om" -> "omega"
if s["scan_motor"] == "om":
s["scan_motor"] = "omega"
if "om" in s["scan_motors"]:
s["scan_motors"][s["scan_motors"].index("om")] = "omega"
if s["scan_motor"] == "om":
s["scan_motor"] = "omega"
s["omega"] = s["om"]
del s["om"]
# "tt" -> "temp"
elif s["scan_motor"] == "tt":
s["scan_motor"] = "temp"
elif "tt" in s["scan_motors"]:
s["scan_motors"][s["scan_motors"].index("tt")] = "temp"
if s["scan_motor"] == "tt":
s["scan_motor"] = "temp"
s["temp"] = s["tt"]
del s["tt"]
@ -243,14 +249,19 @@ def parse_1D(fileobj, data_type):
return scan
def export_1D(data, path, area_method=AREA_METHODS[0], lorentz=False, hkl_precision=2):
"""Exports data in the .comm/.incomm format
def export_1D(data, path, export_target, hkl_precision=2):
"""Exports data in the .comm/.incomm format for fullprof or .col/.incol format for jana.
Scans with integer/real hkl values are saved in .comm/.incomm files correspondingly. If no scans
are present for a particular output format, that file won't be created.
Scans with integer/real hkl values are saved in .comm/.incomm or .col/.incol files
correspondingly. If no scans are present for a particular output format, that file won't be
created.
"""
if export_target not in EXPORT_TARGETS:
raise ValueError(f"Unknown export target: {export_target}.")
zebra_mode = data[0]["zebra_mode"]
file_content = {".comm": [], ".incomm": []}
exts = EXPORT_TARGETS[export_target]
file_content = {ext: [] for ext in exts}
for scan in data:
if "fit" not in scan:
@ -261,36 +272,11 @@ def export_1D(data, path, area_method=AREA_METHODS[0], lorentz=False, hkl_precis
h, k, l = scan["h"], scan["k"], scan["l"]
hkl_are_integers = isinstance(h, int) # if True, other indices are of type 'int' too
if hkl_are_integers:
hkl_str = f"{h:6}{k:6}{l:6}"
hkl_str = f"{h:4}{k:4}{l:4}"
else:
hkl_str = f"{h:8.{hkl_precision}f}{k:8.{hkl_precision}f}{l:8.{hkl_precision}f}"
for name, param in scan["fit"].params.items():
if "amplitude" in name:
area_n = param.value
area_s = param.stderr
break
else:
area_n = 0
area_s = 0
if area_n is None or area_s is None:
print(f"Couldn't export scan: {scan['idx']}")
continue
# apply lorentz correction to area
if lorentz:
if zebra_mode == "bi":
twotheta = np.deg2rad(scan["twotheta"])
corr_factor = np.sin(twotheta)
else: # zebra_mode == "nb":
gamma = np.deg2rad(scan["gamma"])
nu = np.deg2rad(scan["nu"])
corr_factor = np.sin(gamma) * np.cos(nu)
area_n = np.abs(area_n * corr_factor)
area_s = np.abs(area_s * corr_factor)
area_n, area_s = scan["area"]
area_str = f"{area_n:10.2f}{area_s:10.2f}"
ang_str = ""
@ -299,9 +285,16 @@ def export_1D(data, path, area_method=AREA_METHODS[0], lorentz=False, hkl_precis
angle_center = (np.min(scan[angle]) + np.max(scan[angle])) / 2
else:
angle_center = scan[angle]
if angle == "twotheta" and export_target == "jana":
angle_center /= 2
ang_str = ang_str + f"{angle_center:8g}"
ref = file_content[".comm"] if hkl_are_integers else file_content[".incomm"]
if export_target == "jana":
ang_str = ang_str + f"{scan['temp']:8}" + f"{scan['monitor']:8}"
ref = file_content[exts[0]] if hkl_are_integers else file_content[exts[1]]
ref.append(idx_str + hkl_str + area_str + ang_str + "\n")
for ext, content in file_content.items():

View File

@ -3,6 +3,7 @@ import os
import numpy as np
from lmfit.models import GaussianModel, LinearModel, PseudoVoigtModel, VoigtModel
from scipy.integrate import simpson, trapezoid
from .ccl_io import CCL_ANGLES
@ -22,18 +23,23 @@ MAX_RANGE_GAP = {
"omega": 0.5,
}
AREA_METHODS = ("fit_area", "int_area")
def normalize_dataset(dataset, monitor=100_000):
for scan in dataset:
monitor_ratio = monitor / scan["monitor"]
scan["Counts"] *= monitor_ratio
scan["counts"] *= monitor_ratio
scan["monitor"] = monitor
def merge_duplicates(dataset):
for scan_i, scan_j in itertools.combinations(dataset, 2):
if _parameters_match(scan_i, scan_j):
merge_scans(scan_i, scan_j)
merged = np.zeros(len(dataset), dtype=np.bool)
for ind_into, scan_into in enumerate(dataset):
for ind_from, scan_from in enumerate(dataset[ind_into + 1 :], start=ind_into + 1):
if _parameters_match(scan_into, scan_from) and not merged[ind_from]:
merge_scans(scan_into, scan_from)
merged[ind_from] = True
def _parameters_match(scan1, scan2):
@ -61,30 +67,45 @@ def _parameters_match(scan1, scan2):
return True
def merge_datasets(dataset1, dataset2):
for scan_j in dataset2:
for scan_i in dataset1:
if _parameters_match(scan_i, scan_j):
merge_scans(scan_i, scan_j)
break
def merge_datasets(dataset_into, dataset_from):
merged = np.zeros(len(dataset_from), dtype=np.bool)
for scan_into in dataset_into:
for ind, scan_from in enumerate(dataset_from):
if _parameters_match(scan_into, scan_from) and not merged[ind]:
merge_scans(scan_into, scan_from)
merged[ind] = True
dataset1.append(scan_j)
for scan_from in dataset_from:
dataset_into.append(scan_from)
def merge_scans(scan1, scan2):
omega = np.concatenate((scan1["omega"], scan2["omega"]))
counts = np.concatenate((scan1["Counts"], scan2["Counts"]))
def merge_scans(scan_into, scan_from):
# TODO: does it need to be "scan_motor" instead of omega for a generalized solution?
if "init_omega" not in scan_into:
scan_into["init_omega"] = scan_into["omega"]
scan_into["init_counts"] = scan_into["counts"]
omega = np.concatenate((scan_into["omega"], scan_from["omega"]))
counts = np.concatenate((scan_into["counts"], scan_from["counts"]))
index = np.argsort(omega)
scan1["omega"] = omega[index]
scan1["Counts"] = counts[index]
scan_into["omega"] = omega[index]
scan_into["counts"] = counts[index]
scan2["active"] = False
scan_from["active"] = False
fname1 = os.path.basename(scan1["original_filename"])
fname2 = os.path.basename(scan2["original_filename"])
print(f'Merging scans: {scan1["idx"]} ({fname1}) <-- {scan2["idx"]} ({fname2})')
fname1 = os.path.basename(scan_into["original_filename"])
fname2 = os.path.basename(scan_from["original_filename"])
print(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
def restore_scan(scan):
if "init_omega" in scan:
scan["omega"] = scan["init_omega"]
scan["counts"] = scan["init_counts"]
del scan["init_omega"]
del scan["init_counts"]
def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
@ -93,7 +114,7 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
if fit_to is None:
fit_to = np.inf
y_fit = scan["Counts"]
y_fit = scan["counts"]
x_fit = scan[scan["scan_motor"]]
# apply fitting range
@ -128,6 +149,17 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
else:
param_hints[hint_name] = tmp
if "center" in param_name:
if np.isneginf(param_hints["min"]):
param_hints["min"] = np.min(x_fit)
if np.isposinf(param_hints["max"]):
param_hints["max"] = np.max(x_fit)
if "sigma" in param_name:
if np.isposinf(param_hints["max"]):
param_hints["max"] = np.max(x_fit) - np.min(x_fit)
_model.set_param_hint(param_name, **param_hints)
if model is None:
@ -137,3 +169,42 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
weights = [1 / np.sqrt(val) if val != 0 else 1 for val in y_fit]
scan["fit"] = model.fit(y_fit, x=x_fit, weights=weights)
def get_area(scan, area_method, lorentz):
if area_method not in AREA_METHODS:
raise ValueError(f"Unknown area method: {area_method}.")
if area_method == "fit_area":
area_v = 0
area_s = 0
for name, param in scan["fit"].params.items():
if "amplitude" in name:
if param.stderr is None:
area_v = np.nan
area_s = np.nan
else:
area_v += param.value
area_s += param.stderr
else: # area_method == "int_area"
y_val = scan["counts"]
x_val = scan[scan["scan_motor"]]
y_bkg = scan["fit"].eval_components(x=x_val)["f0_"]
area_v = simpson(y_val, x=x_val) - trapezoid(y_bkg, x=x_val)
area_s = np.sqrt(area_v)
if lorentz:
# lorentz correction to area
if scan["zebra_mode"] == "bi":
twotheta = np.deg2rad(scan["twotheta"])
corr_factor = np.sin(twotheta)
else: # zebra_mode == "nb":
gamma = np.deg2rad(scan["gamma"])
nu = np.deg2rad(scan["nu"])
corr_factor = np.sin(gamma) * np.cos(nu)
area_v = np.abs(area_v * corr_factor)
area_s = np.abs(area_s * corr_factor)
scan["area"] = (area_v, area_s)

View File

@ -1,6 +1,11 @@
import h5py
import numpy as np
META_MATRIX = ("UB")
META_CELL = ("cell")
META_STR = ("name")
def read_h5meta(filepath):
"""Open and parse content of a h5meta file.
@ -23,18 +28,37 @@ def parse_h5meta(file):
line = line.strip()
if line.startswith("#begin "):
section = line[len("#begin ") :]
content[section] = []
if section in ("detector parameters", "crystal"):
content[section] = {}
else:
content[section] = []
elif line.startswith("#end"):
section = None
elif section:
content[section].append(line)
if section in ("detector parameters", "crystal"):
if "=" in line:
variable, value = line.split("=", 1)
variable = variable.strip()
value = value.strip()
if variable in META_STR:
pass
elif variable in META_CELL:
value = np.array(value.split(",")[:6], dtype=np.float)
elif variable in META_MATRIX:
value = np.array(value.split(",")[:9], dtype=np.float).reshape(3, 3)
else: # default is a single float number
value = float(value)
content[section][variable] = value
else:
content[section].append(line)
return content
def read_detector_data(filepath):
def read_detector_data(filepath, cami_meta=None):
"""Read detector data and angles from an h5 file.
Args:
@ -57,6 +81,11 @@ def read_detector_data(filepath):
else:
det_data["zebra_mode"] = "nb"
# overwrite zebra_mode from cami
if cami_meta is not None:
if "zebra_mode" in cami_meta:
det_data["zebra_mode"] = cami_meta["zebra_mode"][0]
# om, sometimes ph
if det_data["zebra_mode"] == "nb":
det_data["omega"] = h5f["/entry1/area_detector2/rotation_angle"][:]
@ -70,6 +99,8 @@ def read_detector_data(filepath):
det_data["chi"] = h5f["/entry1/sample/chi"][:] # ch
det_data["phi"] = h5f["/entry1/sample/phi"][:] # ph
det_data["ub"] = h5f["/entry1/sample/UB"][:].reshape(3, 3)
det_data["name"] = h5f["/entry1/sample/name"][0].decode()
det_data["cell"] = h5f["/entry1/sample/cell"][:]
for var in ("omega", "gamma", "nu", "chi", "phi"):
if abs(det_data[var][0] - det_data[var][-1]) > 0.1:
@ -85,4 +116,22 @@ def read_detector_data(filepath):
if "/entry1/sample/temperature" in h5f:
det_data["temp"] = h5f["/entry1/sample/temperature"][:]
# overwrite metadata from .cami
if cami_meta is not None:
if "crystal" in cami_meta:
cami_meta_crystal = cami_meta["crystal"]
if "name" in cami_meta_crystal:
det_data["name"] = cami_meta_crystal["name"]
if "UB" in cami_meta_crystal:
det_data["ub"] = cami_meta_crystal["UB"]
if "cell" in cami_meta_crystal:
det_data["cell"] = cami_meta_crystal["cell"]
if "lambda" in cami_meta_crystal:
det_data["wave"] = cami_meta_crystal["lambda"]
if "detector parameters" in cami_meta:
cami_meta_detparam = cami_meta["detector parameters"]
if "dist1" in cami_meta_detparam:
det_data["ddist"] = cami_meta_detparam["dist1"]
return det_data

View File

@ -1,15 +1,5 @@
import math
import numpy as np
from numba import njit
from scipy.optimize import curve_fit
import pyzebra
try:
from matplotlib import pyplot as plt
except ImportError:
print("matplotlib is not available")
pi_r = 180 / np.pi
@ -393,84 +383,3 @@ def gauss(x, *p):
"""
A, mu, sigma = p
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
def box_int(file, box):
"""Calculates center of the peak in the NB-geometry angles and Intensity of the peak
Args:
file name, box size [x0:xN, y0:yN, fr0:frN]
Returns:
gamma, omPeak, nu polar angles, Int and data for 3 fit plots
"""
dat = pyzebra.read_detector_data(file)
sttC = dat["gamma"][0]
om = dat["omega"]
nuC = dat["nu"][0]
ddist = dat["ddist"]
# defining indices
x0, xN, y0, yN, fr0, frN = box
# omega fit
om = dat["omega"][fr0:frN]
cnts = np.sum(dat["data"][fr0:frN, y0:yN, x0:xN], axis=(1, 2))
p0 = [1.0, 0.0, 1.0]
coeff, var_matrix = curve_fit(gauss, range(len(cnts)), cnts, p0=p0)
frC = fr0 + coeff[1]
omF = dat["omega"][math.floor(frC)]
omC = dat["omega"][math.ceil(frC)]
frStep = frC - math.floor(frC)
omStep = omC - omF
omP = omF + omStep * frStep
Int = coeff[1] * abs(coeff[2] * omStep) * math.sqrt(2) * math.sqrt(np.pi)
# omega plot
x_fit = np.linspace(0, len(cnts), 100)
y_fit = gauss(x_fit, *coeff)
plt.figure()
plt.subplot(131)
plt.plot(range(len(cnts)), cnts)
plt.plot(x_fit, y_fit)
plt.ylabel("Intensity in the box")
plt.xlabel("Frame N of the box")
label = "om"
# gamma fit
sliceXY = dat["data"][fr0:frN, y0:yN, x0:xN]
sliceXZ = np.sum(sliceXY, axis=1)
sliceYZ = np.sum(sliceXY, axis=2)
projX = np.sum(sliceXZ, axis=0)
p0 = [1.0, 0.0, 1.0]
coeff, var_matrix = curve_fit(gauss, range(len(projX)), projX, p0=p0)
x = x0 + coeff[1]
# gamma plot
x_fit = np.linspace(0, len(projX), 100)
y_fit = gauss(x_fit, *coeff)
plt.subplot(132)
plt.plot(range(len(projX)), projX)
plt.plot(x_fit, y_fit)
plt.ylabel("Intensity in the box")
plt.xlabel("X-pixel of the box")
# nu fit
projY = np.sum(sliceYZ, axis=0)
p0 = [1.0, 0.0, 1.0]
coeff, var_matrix = curve_fit(gauss, range(len(projY)), projY, p0=p0)
y = y0 + coeff[1]
# nu plot
x_fit = np.linspace(0, len(projY), 100)
y_fit = gauss(x_fit, *coeff)
plt.subplot(133)
plt.plot(range(len(projY)), projY)
plt.plot(x_fit, y_fit)
plt.ylabel("Intensity in the box")
plt.xlabel("Y-pixel of the box")
ga, nu = pyzebra.det2pol(ddist, sttC, nuC, x, y)
return ga[0], omP, nu[0], Int

View File

@ -1,4 +1,4 @@
source /home/pyzebra/miniconda3/etc/profile.d/conda.sh
conda activate prod
pyzebra --port=80 --allow-websocket-origin=pyzebra.psi.ch:80
pyzebra --port=80 --allow-websocket-origin=pyzebra.psi.ch:80 --spind-path=/home/pyzebra/spind

View File

@ -1,4 +1,4 @@
source /home/pyzebra/miniconda3/etc/profile.d/conda.sh
conda activate test
python ~/pyzebra/pyzebra/app/cli.py --allow-websocket-origin=pyzebra.psi.ch:5006
python ~/pyzebra/pyzebra/app/cli.py --allow-websocket-origin=pyzebra.psi.ch:5006 --spind-path=/home/pyzebra/spind