XtalOptimizer: Fix error
Some checks failed
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m3s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 13m41s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 13m45s
Build Packages / Generate python client (push) Successful in 11s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 14m2s
Build Packages / build:rpm (rocky8) (push) Successful in 14m4s
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 33s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 14m46s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 14m59s
Build Packages / build:rpm (rocky9) (push) Successful in 14m55s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 7m16s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 9m12s
Build Packages / Unit tests (push) Has been cancelled

This commit is contained in:
2026-02-18 21:17:19 +01:00
parent 7634cd819a
commit 5cfd8bcc13
3 changed files with 177 additions and 14 deletions

View File

@@ -138,9 +138,9 @@ struct XtalResidual {
const T L1 = e_uc_len[1];
const T L2 = e_uc_len[2];
T col0_unrot[3] = {L0 * B(0, 0), L1 * B(1, 0), L2 * B(2, 0)};
T col1_unrot[3] = {L0 * B(0, 1), L1 * B(1, 1), L2 * B(2, 1)};
T col2_unrot[3] = {L0 * B(0, 2), L1 * B(1, 2), L2 * B(2, 2)};
T col0_unrot[3] = {B(0, 0) * L0, B(1, 0) * L0, B(2, 0) * L0};
T col1_unrot[3] = {B(0, 1) * L1, B(1, 1) * L1, B(2, 1) * L1};
T col2_unrot[3] = {B(0, 2) * L2, B(1, 2) * L2, B(2, 2) * L2};
T col0_rot[3], col1_rot[3], col2_rot[3];
ceres::AngleAxisRotatePoint(p0, col0_unrot, col0_rot);
@@ -298,7 +298,7 @@ void LatticeToRodriguesAndLengths_Hex(const CrystalLattice &latt, double rod[3],
// Extract rotation (Rodrigues), lengths (a,b,c) and beta (rad) for monoclinic (unique axis b).
// Frame choice: e2 aligned with b; e1 from a projected orthogonal to e2; e3 = e1 x e2.
inline void LatticeToRodriguesLengthsBeta_Mono(const CrystalLattice &latt,
void LatticeToRodriguesLengthsBeta_Mono(const CrystalLattice &latt,
double rod[3],
double lengths[3],
double &beta_rad) {
@@ -325,7 +325,7 @@ inline void LatticeToRodriguesLengthsBeta_Mono(const CrystalLattice &latt,
beta_rad = std::acos(cos_beta);
// Recover R from the same forward model used in refinement:
// L ≈ R * D(a,b,c) * B(beta) => R ≈ L * (D*B)^-1
// L ≈ R * B(beta) * D(a,b,c) => R ≈ L * (B*D)^-1
Eigen::Matrix3d L;
L.col(0) = A;
L.col(1) = Bv;
@@ -336,14 +336,13 @@ inline void LatticeToRodriguesLengthsBeta_Mono(const CrystalLattice &latt,
Bmono(2, 2) = std::sin(beta_rad);
Eigen::DiagonalMatrix<double, 3> D(lengths[0], lengths[1], lengths[2]);
Eigen::Matrix3d M = D * Bmono;
Eigen::Matrix3d M = Bmono * D;
Eigen::Matrix3d R_est = Eigen::Matrix3d::Identity();
if (std::abs(M.determinant()) > 1e-15) {
R_est = L * M.inverse();
}
// Project to nearest proper rotation (polar decomposition via SVD)
Eigen::JacobiSVD<Eigen::Matrix3d> svd(R_est, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d R = svd.matrixU() * svd.matrixV().transpose();
if (R.determinant() < 0.0) {
@@ -373,13 +372,15 @@ CrystalLattice AngleAxisAndLengthsToLattice(const double rod[3], const double le
Bhex(1, 1) = sqrt(3) / 2;
}
auto latt = R * D * Bhex;
// IMPORTANT: scale columns (a,b,c) by multiplying on the right with D.
auto latt = R * Bhex * D;
return CrystalLattice(Coord(latt(0, 0), latt(1, 0), latt(2, 0)),
Coord(latt(0, 1), latt(1, 1), latt(2, 1)),
Coord(latt(0, 2), latt(1, 2), latt(2, 2)));
}
inline CrystalLattice AngleAxisLengthsBetaToLattice_Mono(const double rod[3],
CrystalLattice AngleAxisLengthsBetaToLattice_Mono(const double rod[3],
const double lengths[3],
double beta_rad) {
const Eigen::Vector3d r(rod[0], rod[1], rod[2]);
@@ -391,11 +392,15 @@ inline CrystalLattice AngleAxisLengthsBetaToLattice_Mono(const double rod[3],
const Eigen::DiagonalMatrix<double, 3> D(lengths[0], lengths[1], lengths[2]);
Eigen::Matrix3d B = Eigen::Matrix3d::Identity();
// Columns are unit directions of (a,b,c) in the unrotated crystal frame.
// For monoclinic (unique b): a along x, b along y, c in x-z with angle beta to a.
// Bmono = [[1,0,cosβ],[0,1,0],[0,0,sinβ]]
B(0, 2) = std::cos(beta_rad);
B(2, 2) = std::sin(beta_rad);
Eigen::Matrix3d latt = R * D * B;
// IMPORTANT: scale columns (a,b,c) by multiplying on the right with D.
Eigen::Matrix3d latt = R * B * D;
return CrystalLattice(Coord(latt(0, 0), latt(1, 0), latt(2, 0)),
Coord(latt(0, 1), latt(1, 1), latt(2, 1)),
Coord(latt(0, 2), latt(1, 2), latt(2, 2)));
@@ -640,7 +645,7 @@ bool XtalOptimizerInternal(XtalOptimizerData &data,
B(2, 2) = cz;
Eigen::DiagonalMatrix<double, 3> D(latt_vec1[0], latt_vec1[1], latt_vec1[2]);
Eigen::Matrix3d latt = R * D * B;
Eigen::Matrix3d latt = R * B * D;
data.latt = CrystalLattice(Coord(latt(0, 0), latt(1, 0), latt(2, 0)),
Coord(latt(0, 1), latt(1, 1), latt(2, 1)),
@@ -661,3 +666,4 @@ bool XtalOptimizer(XtalOptimizerData &data, const std::vector<SpotToSave> &spots
XtalOptimizerInternal(data, spots, 0.2);
return XtalOptimizerInternal(data, spots, 0.1);
}

View File

@@ -42,6 +42,14 @@ struct XtalOptimizerData {
void LatticeToRodriguesAndLengths_GS(const CrystalLattice &latt, double rod[3], double lengths[3]);
void LatticeToRodriguesAndLengths_Hex(const CrystalLattice &latt, double rod[3], double ac[3]);
void LatticeToRodriguesLengthsBeta_Mono(const CrystalLattice &latt,
double rod[3],
double lengths[3],
double &beta_rad);
CrystalLattice AngleAxisLengthsBetaToLattice_Mono(const double rod[3],
const double lengths[3],
double beta_rad);
CrystalLattice AngleAxisAndLengthsToLattice(const double rod[3], const double lengths[3], bool hex = false);

View File

@@ -436,7 +436,7 @@ TEST_CASE("XtalOptimizer_monoclinic") {
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(50,60,70,90,96,90);
CrystalLattice latt_i(50,60,70,90,110,90);
auto uc_i = latt_i.GetUnitCell();
@@ -455,7 +455,7 @@ TEST_CASE("XtalOptimizer_monoclinic") {
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(49.5, 60.5, 69.8, 90, 95.5, 90);
xtal_opt.latt = CrystalLattice(49.5, 60.5, 69.8, 90, 110, 90);
xtal_opt.geom.BeamX_pxl(1007).BeamY_pxl(990).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Monoclinic;
@@ -714,4 +714,153 @@ TEST_CASE("XtalOptimizer_refine_rotation_axis") {
CHECK(fabsf(xtal_opt.axis->GetAxis().x - 1.0) < 0.01f);
CHECK(fabsf(xtal_opt.axis->GetAxis().y) < 0.01f);
CHECK(fabsf(xtal_opt.axis->GetAxis().z) < 0.01f);
}
}
// --- helpers for lattice sanity tests ---
#include <Eigen/Dense>
namespace {
Eigen::Vector3d to_eigen(const Coord& v) {
return {v[0], v[1], v[2]};
}
double angle_rad(const Eigen::Vector3d& a, const Eigen::Vector3d& b) {
const double na = a.norm();
const double nb = b.norm();
if (na == 0.0 || nb == 0.0)
return 0.0;
double c = a.dot(b) / (na * nb);
c = std::max(-1.0, std::min(1.0, c));
return std::acos(c);
}
// Compare two lattices up to a global rotation: compare Gram matrices G = L^T L (rotation-invariant).
Eigen::Matrix3d gram(const CrystalLattice& latt) {
const Eigen::Vector3d A = to_eigen(latt.Vec0());
const Eigen::Vector3d B = to_eigen(latt.Vec1());
const Eigen::Vector3d C = to_eigen(latt.Vec2());
Eigen::Matrix3d G;
G(0,0) = A.dot(A); G(0,1) = A.dot(B); G(0,2) = A.dot(C);
G(1,0) = B.dot(A); G(1,1) = B.dot(B); G(1,2) = B.dot(C);
G(2,0) = C.dot(A); G(2,1) = C.dot(B); G(2,2) = C.dot(C);
return G;
}
void check_gram_close(const CrystalLattice& a,
const CrystalLattice& b,
double abs_eps,
double rel_eps) {
const Eigen::Matrix3d Ga = gram(a);
const Eigen::Matrix3d Gb = gram(b);
for (int r = 0; r < 3; ++r) {
for (int c = 0; c < 3; ++c) {
const double va = Ga(r, c);
const double vb = Gb(r, c);
// Scale for relative error; avoid blowing up around zero.
const double scale = std::max({1.0, std::abs(va), std::abs(vb)});
const double tol = std::max(abs_eps, rel_eps * scale);
INFO("G(" << r << "," << c << ") va=" << va << " vb=" << vb
<< " scale=" << scale << " tol=" << tol);
CHECK(va == Catch::Approx(vb).margin(tol));
}
}
}
} // namespace
TEST_CASE("XtalOptimizer Lattice param roundtrip (GS) preserves Gram matrix") {
// Non-orthogonal, irregular basis, but still a valid lattice
CrystalLattice latt_i(Coord(40, 1, 2),
Coord( 3, 50, -4),
Coord(-5, 6, 80));
double rod[3]{}, lengths[3]{};
LatticeToRodriguesAndLengths_GS(latt_i, rod, lengths);
CrystalLattice latt_o = AngleAxisAndLengthsToLattice(rod, lengths, false);
// This parametrization only keeps "lengths + rotation", i.e. it cannot reproduce shear.
// So we *do not* compare Gram matrices here.
// Instead, sanity-check: reconstructed vectors have the requested lengths.
CHECK(latt_o.Vec0().Length() == Catch::Approx(lengths[0]).margin(1e-9));
CHECK(latt_o.Vec1().Length() == Catch::Approx(lengths[1]).margin(1e-9));
CHECK(latt_o.Vec2().Length() == Catch::Approx(lengths[2]).margin(1e-9));
}
TEST_CASE("XtalOptimizer Lattice param roundtrip (Hex) preserves unit cell") {
Coord a = Coord(40, 0, 0);
Coord b = Coord(40 / 2.0, 40 * std::sqrt(3) / 2.0, 0);
Coord c = Coord(0, 0, 70);
// Apply an arbitrary rotation to ensure the rod extraction is meaningful
RotMatrix R(1.0, Coord(0, 1, 1));
CrystalLattice latt_i(R * a, R * b, R * c);
double rod[3]{}, ac[3]{};
LatticeToRodriguesAndLengths_Hex(latt_i, rod, ac);
CrystalLattice latt_o = AngleAxisAndLengthsToLattice(rod, ac, true);
auto uc_o = latt_o.GetUnitCell();
CHECK(uc_o.a == Catch::Approx(40.0).margin(1e-6));
CHECK(uc_o.b == Catch::Approx(40.0).margin(1e-6));
CHECK(uc_o.c == Catch::Approx(70.0).margin(1e-6));
CHECK(uc_o.alpha == Catch::Approx(90.0).margin(1e-6));
CHECK(uc_o.beta == Catch::Approx(90.0).margin(1e-6));
CHECK(uc_o.gamma == Catch::Approx(120.0).margin(1e-6));
}
TEST_CASE("XtalOptimizer Monoclinic param roundtrip preserves Gram matrix (beta far from 90)") {
struct Case { double beta_deg; };
const std::vector<Case> cases = {
{60.0}, {75.0}, {115.0}, {130.0}
};
for (const auto& cs : cases) {
INFO("beta_deg=" << cs.beta_deg);
// Start from a clean monoclinic cell in its conventional setting (unique axis b).
CrystalLattice latt0(50, 60, 70, 90, cs.beta_deg, 90);
// Now apply a TRUE global rotation: rotate each basis vector (left-multiply).
RotMatrix R(0.7, Coord(0.3, 0.9, 0.1));
CrystalLattice latt_i(R * latt0.Vec0(),
R * latt0.Vec1(),
R * latt0.Vec2());
double rod[3]{}, lengths[3]{}, beta_rad = 0.0;
LatticeToRodriguesLengthsBeta_Mono(latt_i, rod, lengths, beta_rad);
// Basic sanity
CHECK(lengths[0] == Catch::Approx(50.0).margin(1e-6));
CHECK(lengths[1] == Catch::Approx(60.0).margin(1e-6));
CHECK(lengths[2] == Catch::Approx(70.0).margin(1e-6));
CHECK(beta_rad * 180.0 / M_PI == Catch::Approx(cs.beta_deg).margin(1e-6));
CrystalLattice latt_o = AngleAxisLengthsBetaToLattice_Mono(rod, lengths, beta_rad);
// Rotation-invariant check: Gram matrices match.
check_gram_close(latt_i, latt_o, /*abs_eps=*/5e-4, /*rel_eps=*/1e-10);
// Also check the unit-cell angles we expect for monoclinic(unique b).
auto uc_o = latt_o.GetUnitCell();
CHECK(uc_o.alpha == Catch::Approx(90.0).margin(1e-4));
CHECK(uc_o.gamma == Catch::Approx(90.0).margin(1e-4));
CHECK(uc_o.beta == Catch::Approx(cs.beta_deg).margin(1e-4));
}
}
TEST_CASE("XtalOptimizer Monoclinic beta geometry: extracted beta equals angle(a,c)") {
// This isolates only the beta definition, independent of other choices.
CrystalLattice latt_i(50, 60, 70, 90, 130, 90);
const Eigen::Vector3d A = to_eigen(latt_i.Vec0());
const Eigen::Vector3d C = to_eigen(latt_i.Vec2());
const double beta_geom = angle_rad(A, C);
double rod[3]{}, lengths[3]{}, beta_rad = 0.0;
LatticeToRodriguesLengthsBeta_Mono(latt_i, rod, lengths, beta_rad);
CHECK(beta_rad == Catch::Approx(beta_geom).margin(1e-12));
}