Files
Jungfraujoch/tests/XtalOptimizerTest.cpp
Filip Leonarski 5cfd8bcc13
Some checks failed
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m3s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 13m41s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 13m45s
Build Packages / Generate python client (push) Successful in 11s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 14m2s
Build Packages / build:rpm (rocky8) (push) Successful in 14m4s
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 33s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 14m46s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 14m59s
Build Packages / build:rpm (rocky9) (push) Successful in 14m55s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 7m16s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 9m12s
Build Packages / Unit tests (push) Has been cancelled
XtalOptimizer: Fix error
2026-02-18 21:17:19 +01:00

867 lines
34 KiB
C++

// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include <catch2/catch_all.hpp>
#include <iostream>
#include "../image_analysis/geom_refinement/XtalOptimizer.h"
#include "../image_analysis/bragg_prediction/BraggPrediction.h"
TEST_CASE("XtalOptimizer") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,40,80,90,90,90);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(40.2,39.4,80.2, 90,91, 89);
xtal_opt.geom.BeamX_pxl(1010).BeamY_pxl(995).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Triclinic;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.05);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.05);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabsf(uc_i.alpha - uc_o.alpha) < 0.1);
CHECK(fabsf(uc_i.beta - uc_o.beta) < 0.1);
CHECK(fabsf(uc_i.gamma - uc_o.gamma) < 0.1);
}
TEST_CASE("XtalOptimizer_NoBeamCenter") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,50,80,90,95,90);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(40.2,49.4,80.2, 90,94, 89);
xtal_opt.geom.BeamX_pxl(999.8).BeamY_pxl(1000.2).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Monoclinic;
xtal_opt.refine_beam_center = false;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - 999.8) < 0.01);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - 1000.2) < 0.01);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabsf(uc_i.alpha - uc_o.alpha) < 0.1);
CHECK(fabsf(uc_i.beta - uc_o.beta) < 0.1);
CHECK(fabsf(uc_i.gamma - uc_o.gamma) < 0.1);
}
TEST_CASE("XtalOptimizer_orthorombic") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,50,80,90,90,90);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(40.2,49.6,80.3, 90,91, 89);
xtal_opt.geom.BeamX_pxl(1005).BeamY_pxl(997).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Orthorhombic;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.1);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.1);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabs(uc_o.alpha - 90) < 0.02);
CHECK(fabs(uc_o.beta - 90) < 0.02);
CHECK(fabs(uc_o.gamma - 90) < 0.02);
}
TEST_CASE("XtalOptimizer_triclinic") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,55,120,95,97,100);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001,
};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(40.1,54.9,121, 95,97, 99.5);
xtal_opt.geom.BeamX_pxl(997).BeamY_pxl(1005).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Triclinic;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.2);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.2);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.5);
CHECK(fabsf(uc_i.alpha - uc_o.alpha) < 0.1);
CHECK(fabsf(uc_i.beta - uc_o.beta) < 0.1);
CHECK(fabsf(uc_i.gamma - uc_o.gamma) < 0.1);
}
TEST_CASE("XtalOptimizer_tetragonal") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,40,80,90,90,90);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(40.6,39.3,80.5, 90,91, 89);
xtal_opt.geom.BeamX_pxl(1010).BeamY_pxl(995).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Tetragonal;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.1);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.1);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.5);
CHECK(fabs(uc_o.alpha - 90) < 0.02);
CHECK(fabs(uc_o.beta - 90) < 0.02);
CHECK(fabs(uc_o.gamma - 90) < 0.02);
}
TEST_CASE("XtalOptimizer_hexagonal") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,40,70,90,90,120);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(39.5,39.8,70.1, 90,90, 119.5);
xtal_opt.geom.BeamX_pxl(1007).BeamY_pxl(990).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Hexagonal;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << " " << uc_o.alpha << " " << uc_o.beta
<< " " << uc_o.gamma << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.1);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.1);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabs(uc_o.alpha - 90) < 0.02);
CHECK(fabs(uc_o.beta - 90) < 0.01);
CHECK(fabs(uc_o.gamma - 120) < 0.01);
}
TEST_CASE("XtalOptimizer_hexagonal_unconstrained") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(40,40,70,90,90,120);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(39.9,39.8,70.1, 90,90, 120);
xtal_opt.geom.BeamX_pxl(1002).BeamY_pxl(998).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Triclinic;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_i = latt_i.GetUnitCell();
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << " " << uc_o.alpha << " " << uc_o.beta
<< " " << uc_o.gamma << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.3);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.3);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabs(uc_o.alpha - 90) < 0.1);
CHECK(fabs(uc_o.beta - 90) < 0.1);
CHECK(fabs(uc_o.gamma - 120) < 0.1);
}
TEST_CASE("XtalOptimizer_cubic") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(Coord(40,0,0),
Coord(0, 40 / sqrt(2), -40 / sqrt(2)),
Coord(0, 40 / sqrt(2), 40 / sqrt(2)));
auto uc_i = latt_i.GetUnitCell();
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(Coord(39,0,0),
Coord(0, 39.5 / sqrt(2), -40.5 / sqrt(2)),
Coord(0, 39.2 / sqrt(2), 39.7 / sqrt(2)));
xtal_opt.geom.BeamX_pxl(1007).BeamY_pxl(990).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Cubic;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.1);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.1);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabs(uc_o.alpha - 90) < 0.02);
CHECK(fabs(uc_o.beta - 90) < 0.02);
CHECK(fabs(uc_o.gamma - 90) < 0.02);
}
TEST_CASE("XtalOptimizer_monoclinic") {
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
CrystalLattice latt_i(50,60,70,90,110,90);
auto uc_i = latt_i.GetUnitCell();
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.001
};
BraggPrediction prediction;
auto count = prediction.Calc(exp_i, latt_i, prediction_settings);
std::vector<SpotToSave> spots;
for (int i = 0; i < count; ++i) {
auto refl = prediction.GetReflections().at(i);
spots.push_back(SpotToSave{refl.predicted_x, refl.predicted_y});
}
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(49.5, 60.5, 69.8, 90, 110, 90);
xtal_opt.geom.BeamX_pxl(1007).BeamY_pxl(990).DetectorDistance_mm(200)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Monoclinic;
auto start = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto end = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer took " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
auto uc_o = xtal_opt.latt.GetUnitCell();
std::cout << "Beam center: " << xtal_opt.geom.GetBeamX_pxl() << " " << xtal_opt.geom.GetBeamY_pxl() << std::endl;
std::cout << "Unit cell: " << uc_o.a << " " << uc_o.b << " " << uc_o.c << " " << uc_o.alpha << " " << uc_o.beta << " " << uc_o.gamma << std::endl;
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.2);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.2);
CHECK(fabsf(uc_i.a - uc_o.a) < 0.1);
CHECK(fabsf(uc_i.b - uc_o.b) < 0.1);
CHECK(fabsf(uc_i.c - uc_o.c) < 0.2);
CHECK(fabs(uc_o.alpha - 90) < 0.05);
CHECK(fabs(uc_o.beta - uc_i.beta) < 0.05);
CHECK(fabs(uc_o.gamma - 90) < 0.05);
}
TEST_CASE("LatticeToRodrigues") {
double rod[3];
double lengths[3];
CrystalLattice latt_i(40,50,80,90,90,90);
LatticeToRodriguesAndLengths_GS(latt_i, rod, lengths);
CHECK(lengths[0] == Catch::Approx(40.0));
CHECK(lengths[1] == Catch::Approx(50.0));
CHECK(lengths[2] == Catch::Approx(80.0));
CHECK(fabs(rod[0]) < 0.001);
CHECK(fabs(rod[1]) < 0.001);
CHECK(fabs(rod[2]) < 0.001);
auto latt_o = AngleAxisAndLengthsToLattice(rod, lengths, false);
CHECK(latt_o.Vec0().Length() == Catch::Approx(40.0));
CHECK(latt_o.Vec1().Length() == Catch::Approx(50.0));
CHECK(latt_o.Vec2().Length() == Catch::Approx(80.0));
}
TEST_CASE("LatticeToRodrigues_irregular") {
double rod[3];
double lengths[3];
CrystalLattice latt_i(Coord(40,0,0),
Coord(0, 50 / sqrt(2), -50 / sqrt(2)),
Coord(0, 80 / sqrt(2), 80 / sqrt(2)));
LatticeToRodriguesAndLengths_GS(latt_i, rod, lengths);
CHECK(lengths[0] == Catch::Approx(40.0));
CHECK(lengths[1] == Catch::Approx(50.0));
CHECK(lengths[2] == Catch::Approx(80.0));
auto latt_o = AngleAxisAndLengthsToLattice(rod, lengths, false);
CHECK(latt_o.Vec0().Length() == Catch::Approx(40.0));
CHECK(latt_o.Vec1().Length() == Catch::Approx(50.0));
CHECK(latt_o.Vec2().Length() == Catch::Approx(80.0));
}
TEST_CASE("LatticeToRodrigues_Hex") {
double rod[3];
double lengths[3];
Coord a = Coord(40,0,0);
Coord b = Coord(40 / 2, 40 * sqrt(3)/ 2.0, 0);
Coord c = Coord(0, 0, 70);
RotMatrix R(1.0, Coord(0,1,1));
CrystalLattice latt_i(R*a,R*b,R*c);
LatticeToRodriguesAndLengths_Hex(latt_i, rod, lengths);
CHECK(lengths[0] == Catch::Approx(40.0));
CHECK(lengths[1] == Catch::Approx(40.0));
CHECK(lengths[2] == Catch::Approx(70.0));
auto latt_o = AngleAxisAndLengthsToLattice(rod, lengths, true);
auto uc_o = latt_o.GetUnitCell();
CHECK(uc_o.a == Catch::Approx(40.0));
CHECK(uc_o.b == Catch::Approx(40.0));
CHECK(uc_o.c == Catch::Approx(70.0));
CHECK(uc_o.alpha == Catch::Approx(90.0));
CHECK(uc_o.beta == Catch::Approx(90.0));
CHECK(uc_o.gamma == Catch::Approx(120.0));
}
TEST_CASE("XtalOptimizer_rotation") {
// Geometry
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
// Base lattice (non-pathological)
CrystalLattice latt_base(40, 50, 80, 90, 95, 90);
auto uc_ref = latt_base.GetUnitCell();
// Rotation axis: around X with 3 deg per image
GoniometerAxis axis("omega", 0.0f, 3.0f, Coord(1,0,0), std::nullopt);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.002
};
std::vector<SpotToSave> spots;
BraggPrediction prediction;
// Predict reflections for images at 0-30 deg.
for (int img = 0; img < 10; ++img) {
// For a rotated image, per-image lattice is obtained as Multiply(rot.transpose())
const float angle_deg = axis.GetAngle_deg(img) + axis.GetWedge_deg() / 2.0f;
const RotMatrix rot = axis.GetTransformationAngle(angle_deg);
const CrystalLattice latt_img = latt_base.Multiply(rot.transpose());
const auto n = prediction.Calc(exp_i, latt_img, prediction_settings);
for (int i = 0; i < n; ++i) {
const auto& r = prediction.GetReflections().at(i);
SpotToSave s{};
s.x = r.predicted_x;
s.y = r.predicted_y;
s.image = img; // provide image index for rotation-aware refinement
s.phi = angle_deg;
s.intensity = 1.0f; // minimal positive value
s.ice_ring = false;
s.indexed = true;
spots.push_back(s);
}
}
// Seed slightly perturbed geometry and lattice; provide rotation axis for refinement
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(39.7f, 50.6f, 79.6f, 90.0f, 94.5f, 90.5f);
xtal_opt.geom.BeamX_pxl(1003).BeamY_pxl(997).DetectorDistance_mm(200.0)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Monoclinic;
xtal_opt.axis = axis;
xtal_opt.min_spots = 200;
xtal_opt.refine_beam_center = true;
xtal_opt.refine_distance_mm = false;
xtal_opt.refine_detector_angles = false;
auto t0 = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto t1 = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer (rotation 4 images) took "
<< std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()
<< " microseconds" << std::endl;
const auto uc_out = xtal_opt.latt.GetUnitCell();
// Geometry checks
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.2f);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.2f);
// Lattice checks
CHECK(fabsf(uc_ref.a - uc_out.a) < 0.2f);
CHECK(fabsf(uc_ref.b - uc_out.b) < 0.2f);
CHECK(fabsf(uc_ref.c - uc_out.c) < 0.3f);
CHECK(fabsf(uc_ref.alpha - uc_out.alpha) < 0.2f);
CHECK(fabsf(uc_ref.beta - uc_out.beta) < 0.2f);
CHECK(fabsf(uc_ref.gamma - uc_out.gamma) < 0.2f);
}
TEST_CASE("XtalOptimizer_refine_rotation_axis") {
// Geometry
DiffractionExperiment exp_i;
exp_i.IncidentEnergy_keV(WVL_1A_IN_KEV)
.BeamX_pxl(1000)
.BeamY_pxl(1000)
.PoniRot1_rad(0.01)
.PoniRot2_rad(0.02)
.DetectorDistance_mm(200);
// Base lattice (non-pathological)
CrystalLattice latt_base(40, 50, 80, 90, 95, 90);
auto uc_ref = latt_base.GetUnitCell();
// Rotation axis: around X with 3 deg per image
GoniometerAxis axis("omega", 0.0f, 3.0f, Coord(1,0,0), std::nullopt);
BraggPredictionSettings prediction_settings{
.high_res_A = 1.5,
.ewald_dist_cutoff = 0.002
};
std::vector<SpotToSave> spots;
BraggPrediction prediction;
// Predict reflections for images at 0-30 deg.
for (int img = 0; img < 10; ++img) {
// For a rotated image, per-image lattice is obtained as Multiply(rot.transpose())
const float angle_deg = axis.GetAngle_deg(img) + axis.GetWedge_deg() / 2.0f;
const RotMatrix rot = axis.GetTransformationAngle(angle_deg);
const CrystalLattice latt_img = latt_base.Multiply(rot.transpose());
const auto n = prediction.Calc(exp_i, latt_img, prediction_settings);
for (int i = 0; i < n; ++i) {
const auto& r = prediction.GetReflections().at(i);
SpotToSave s{};
s.x = r.predicted_x;
s.y = r.predicted_y;
s.image = img; // provide image index for rotation-aware refinement
s.intensity = 1.0f; // minimal positive value
s.phi = angle_deg;
s.ice_ring = false;
s.indexed = true;
spots.push_back(s);
}
}
// Seed slightly perturbed geometry and lattice; provide rotation axis for refinement
XtalOptimizerData xtal_opt;
xtal_opt.latt = CrystalLattice(39.7f, 50.6f, 79.6f, 90.0f, 94.5f, 90.5f);
xtal_opt.geom.BeamX_pxl(1003).BeamY_pxl(997).DetectorDistance_mm(200.0)
.PoniRot1_rad(0.01).PoniRot2_rad(0.02);
xtal_opt.crystal_system = gemmi::CrystalSystem::Monoclinic;
xtal_opt.axis = GoniometerAxis("omega", 0.0f, 3.0f,
Coord(0.8, 0.05, 0.05).Normalize(),
std::nullopt);
xtal_opt.min_spots = 200;
xtal_opt.refine_beam_center = true;
xtal_opt.refine_distance_mm = false;
xtal_opt.refine_detector_angles = false;
xtal_opt.refine_rotation_axis = true;
auto t0 = std::chrono::high_resolution_clock::now();
REQUIRE(XtalOptimizer(xtal_opt, spots));
auto t1 = std::chrono::high_resolution_clock::now();
std::cout << "XtalOptimizer (rotation 4 images) took "
<< std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()
<< " microseconds" << std::endl;
const auto uc_out = xtal_opt.latt.GetUnitCell();
// Geometry checks
CHECK(fabsf(xtal_opt.geom.GetBeamX_pxl() - exp_i.GetBeamX_pxl()) < 0.2f);
CHECK(fabsf(xtal_opt.geom.GetBeamY_pxl() - exp_i.GetBeamY_pxl()) < 0.2f);
// Lattice checks
CHECK(fabsf(uc_ref.a - uc_out.a) < 0.2f);
CHECK(fabsf(uc_ref.b - uc_out.b) < 0.2f);
CHECK(fabsf(uc_ref.c - uc_out.c) < 0.3f);
CHECK(fabsf(uc_ref.alpha - uc_out.alpha) < 0.2f);
CHECK(fabsf(uc_ref.beta - uc_out.beta) < 0.2f);
CHECK(fabsf(uc_ref.gamma - uc_out.gamma) < 0.2f);
CHECK(fabsf(xtal_opt.axis->GetAxis().x - 1.0) < 0.01f);
CHECK(fabsf(xtal_opt.axis->GetAxis().y) < 0.01f);
CHECK(fabsf(xtal_opt.axis->GetAxis().z) < 0.01f);
}
// --- helpers for lattice sanity tests ---
#include <Eigen/Dense>
namespace {
Eigen::Vector3d to_eigen(const Coord& v) {
return {v[0], v[1], v[2]};
}
double angle_rad(const Eigen::Vector3d& a, const Eigen::Vector3d& b) {
const double na = a.norm();
const double nb = b.norm();
if (na == 0.0 || nb == 0.0)
return 0.0;
double c = a.dot(b) / (na * nb);
c = std::max(-1.0, std::min(1.0, c));
return std::acos(c);
}
// Compare two lattices up to a global rotation: compare Gram matrices G = L^T L (rotation-invariant).
Eigen::Matrix3d gram(const CrystalLattice& latt) {
const Eigen::Vector3d A = to_eigen(latt.Vec0());
const Eigen::Vector3d B = to_eigen(latt.Vec1());
const Eigen::Vector3d C = to_eigen(latt.Vec2());
Eigen::Matrix3d G;
G(0,0) = A.dot(A); G(0,1) = A.dot(B); G(0,2) = A.dot(C);
G(1,0) = B.dot(A); G(1,1) = B.dot(B); G(1,2) = B.dot(C);
G(2,0) = C.dot(A); G(2,1) = C.dot(B); G(2,2) = C.dot(C);
return G;
}
void check_gram_close(const CrystalLattice& a,
const CrystalLattice& b,
double abs_eps,
double rel_eps) {
const Eigen::Matrix3d Ga = gram(a);
const Eigen::Matrix3d Gb = gram(b);
for (int r = 0; r < 3; ++r) {
for (int c = 0; c < 3; ++c) {
const double va = Ga(r, c);
const double vb = Gb(r, c);
// Scale for relative error; avoid blowing up around zero.
const double scale = std::max({1.0, std::abs(va), std::abs(vb)});
const double tol = std::max(abs_eps, rel_eps * scale);
INFO("G(" << r << "," << c << ") va=" << va << " vb=" << vb
<< " scale=" << scale << " tol=" << tol);
CHECK(va == Catch::Approx(vb).margin(tol));
}
}
}
} // namespace
TEST_CASE("XtalOptimizer Lattice param roundtrip (GS) preserves Gram matrix") {
// Non-orthogonal, irregular basis, but still a valid lattice
CrystalLattice latt_i(Coord(40, 1, 2),
Coord( 3, 50, -4),
Coord(-5, 6, 80));
double rod[3]{}, lengths[3]{};
LatticeToRodriguesAndLengths_GS(latt_i, rod, lengths);
CrystalLattice latt_o = AngleAxisAndLengthsToLattice(rod, lengths, false);
// This parametrization only keeps "lengths + rotation", i.e. it cannot reproduce shear.
// So we *do not* compare Gram matrices here.
// Instead, sanity-check: reconstructed vectors have the requested lengths.
CHECK(latt_o.Vec0().Length() == Catch::Approx(lengths[0]).margin(1e-9));
CHECK(latt_o.Vec1().Length() == Catch::Approx(lengths[1]).margin(1e-9));
CHECK(latt_o.Vec2().Length() == Catch::Approx(lengths[2]).margin(1e-9));
}
TEST_CASE("XtalOptimizer Lattice param roundtrip (Hex) preserves unit cell") {
Coord a = Coord(40, 0, 0);
Coord b = Coord(40 / 2.0, 40 * std::sqrt(3) / 2.0, 0);
Coord c = Coord(0, 0, 70);
// Apply an arbitrary rotation to ensure the rod extraction is meaningful
RotMatrix R(1.0, Coord(0, 1, 1));
CrystalLattice latt_i(R * a, R * b, R * c);
double rod[3]{}, ac[3]{};
LatticeToRodriguesAndLengths_Hex(latt_i, rod, ac);
CrystalLattice latt_o = AngleAxisAndLengthsToLattice(rod, ac, true);
auto uc_o = latt_o.GetUnitCell();
CHECK(uc_o.a == Catch::Approx(40.0).margin(1e-6));
CHECK(uc_o.b == Catch::Approx(40.0).margin(1e-6));
CHECK(uc_o.c == Catch::Approx(70.0).margin(1e-6));
CHECK(uc_o.alpha == Catch::Approx(90.0).margin(1e-6));
CHECK(uc_o.beta == Catch::Approx(90.0).margin(1e-6));
CHECK(uc_o.gamma == Catch::Approx(120.0).margin(1e-6));
}
TEST_CASE("XtalOptimizer Monoclinic param roundtrip preserves Gram matrix (beta far from 90)") {
struct Case { double beta_deg; };
const std::vector<Case> cases = {
{60.0}, {75.0}, {115.0}, {130.0}
};
for (const auto& cs : cases) {
INFO("beta_deg=" << cs.beta_deg);
// Start from a clean monoclinic cell in its conventional setting (unique axis b).
CrystalLattice latt0(50, 60, 70, 90, cs.beta_deg, 90);
// Now apply a TRUE global rotation: rotate each basis vector (left-multiply).
RotMatrix R(0.7, Coord(0.3, 0.9, 0.1));
CrystalLattice latt_i(R * latt0.Vec0(),
R * latt0.Vec1(),
R * latt0.Vec2());
double rod[3]{}, lengths[3]{}, beta_rad = 0.0;
LatticeToRodriguesLengthsBeta_Mono(latt_i, rod, lengths, beta_rad);
// Basic sanity
CHECK(lengths[0] == Catch::Approx(50.0).margin(1e-6));
CHECK(lengths[1] == Catch::Approx(60.0).margin(1e-6));
CHECK(lengths[2] == Catch::Approx(70.0).margin(1e-6));
CHECK(beta_rad * 180.0 / M_PI == Catch::Approx(cs.beta_deg).margin(1e-6));
CrystalLattice latt_o = AngleAxisLengthsBetaToLattice_Mono(rod, lengths, beta_rad);
// Rotation-invariant check: Gram matrices match.
check_gram_close(latt_i, latt_o, /*abs_eps=*/5e-4, /*rel_eps=*/1e-10);
// Also check the unit-cell angles we expect for monoclinic(unique b).
auto uc_o = latt_o.GetUnitCell();
CHECK(uc_o.alpha == Catch::Approx(90.0).margin(1e-4));
CHECK(uc_o.gamma == Catch::Approx(90.0).margin(1e-4));
CHECK(uc_o.beta == Catch::Approx(cs.beta_deg).margin(1e-4));
}
}
TEST_CASE("XtalOptimizer Monoclinic beta geometry: extracted beta equals angle(a,c)") {
// This isolates only the beta definition, independent of other choices.
CrystalLattice latt_i(50, 60, 70, 90, 130, 90);
const Eigen::Vector3d A = to_eigen(latt_i.Vec0());
const Eigen::Vector3d C = to_eigen(latt_i.Vec2());
const double beta_geom = angle_rad(A, C);
double rod[3]{}, lengths[3]{}, beta_rad = 0.0;
LatticeToRodriguesLengthsBeta_Mono(latt_i, rod, lengths, beta_rad);
CHECK(beta_rad == Catch::Approx(beta_geom).margin(1e-12));
}