Files
Jungfraujoch/image_analysis/geom_refinement/XtalOptimizer.cpp
Filip Leonarski 5cfd8bcc13
Some checks failed
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m3s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 13m41s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 13m45s
Build Packages / Generate python client (push) Successful in 11s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 14m2s
Build Packages / build:rpm (rocky8) (push) Successful in 14m4s
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 33s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 14m46s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 14m59s
Build Packages / build:rpm (rocky9) (push) Successful in 14m55s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 7m16s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 9m12s
Build Packages / Unit tests (push) Has been cancelled
XtalOptimizer: Fix error
2026-02-18 21:17:19 +01:00

670 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include "XtalOptimizer.h"
#include "ceres/ceres.h"
#include "ceres/rotation.h"
struct XtalResidual {
XtalResidual(double x, double y,
double lambda,
double pixel_size,
double angle_rad,
double exp_h, double exp_k,
double exp_l,
gemmi::CrystalSystem symmetry)
: obs_x(x), obs_y(y),
lambda(lambda),
pixel_size(pixel_size),
exp_h(exp_h),
exp_k(exp_k),
exp_l(exp_l),
angle_rad(angle_rad),
symmetry(symmetry) {
}
template<typename T>
bool operator()(const T *const beam_x,
const T *const beam_y,
const T *const distance_mm,
const T *const detector_rot,
const T *const rotation_axis,
const T *const p0,
const T *const p1,
const T *const p2,
T *residual) const {
// PyFAI convention (left-handed for rot1/rot2):
// poni_rot = Rz(-rot3) * Rx(-rot2) * Ry(+rot1)
// detector_rot[0] = rot1, detector_rot[1] = rot2 (rot3 = 0 assumed)
const T rot1 = detector_rot[0];
const T rot2 = detector_rot[1];
// Ry(+rot1): rotation around Y-axis
const T c1 = ceres::cos(rot1);
const T s1 = ceres::sin(rot1);
// Rx(-rot2): rotation around X-axis with inverted sign (PyFAI left-handed)
const T c2 = ceres::cos(-rot2);
const T s2 = ceres::sin(-rot2);
// Detector coordinates in mm
const T det_x = (T(obs_x) - beam_x[0]) * T(pixel_size);
const T det_y = (T(obs_y) - beam_y[0]) * T(pixel_size);
const T det_z = T(distance_mm[0]);
// Apply Ry(rot1) first: rotate around Y
const T t1_x = c1 * det_x + s1 * det_z;
const T t1_y = det_y;
const T t1_z = -s1 * det_x + c1 * det_z;
// Then apply Rx(-rot2): rotate around X
const T x = t1_x;
const T y = c2 * t1_y - s2 * t1_z;
const T z = s2 * t1_y + c2 * t1_z;
// convert to recip space
const T lab_norm = ceres::sqrt(x * x + y * y + z * z);
const T inv_norm = T(1) / lab_norm;
const T inv_lambda = T(1) / T(lambda);
T recip_raw[3];
recip_raw[0] = x * inv_norm * inv_lambda;
recip_raw[1] = y * inv_norm * inv_lambda;
recip_raw[2] = (z * inv_norm - T(1.0)) * inv_lambda;
// Apply goniometer "back-to-start" rotation:
// brings observed reciprocal from image orientation into reference crystal frame
const T aa_back[3] = {
T(angle_rad) * rotation_axis[0],
T(angle_rad) * rotation_axis[1],
T(angle_rad) * rotation_axis[2]
};
T recip_obs[3];
ceres::AngleAxisRotatePoint(aa_back, recip_raw, recip_obs);
const Eigen::Matrix<T, 3, 1> e_obs_recip(recip_obs[0], recip_obs[1], recip_obs[2]);
// Build unit cell lengths and B (convention: columns are a, b, c prior to global rotation)
Eigen::Matrix<T, 3, 1> e_uc_len = Eigen::Matrix<T, 3, 1>::Zero();
Eigen::Matrix<T, 3, 3> B = Eigen::Matrix<T, 3, 3>::Identity();
if (symmetry == gemmi::CrystalSystem::Hexagonal) {
e_uc_len << p1[0], p1[0], p1[2];
B(0, 1) = T(-0.5); // cos(120)
B(1, 1) = T(sqrt(3.0) / 2.0); // sin(120)
} else if (symmetry == gemmi::CrystalSystem::Orthorhombic) {
e_uc_len << p1[0], p1[1], p1[2];
} else if (symmetry == gemmi::CrystalSystem::Tetragonal) {
e_uc_len << p1[0], p1[0], p1[2];
} else if (symmetry == gemmi::CrystalSystem::Cubic) {
e_uc_len << p1[0], p1[0], p1[0];
} else if (symmetry == gemmi::CrystalSystem::Monoclinic) {
// Unique axis b: alpha = gamma = 90°, beta free (angle between a and c)
e_uc_len << p1[0], p1[1], p1[2];
B(0, 2) = ceres::cos(p2[0]);
B(2, 2) = ceres::sin(p2[0]);
} else {
// Triclinic: p1 = (a,b,c), p2 = (alpha, beta, gamma) in radians
const T ca = ceres::cos(p2[0]);
const T cb = ceres::cos(p2[1]);
const T cg = ceres::cos(p2[2]);
const T sg = ceres::sin(p2[2]);
e_uc_len << p1[0], p1[1], p1[2];
B(0, 0) = T(1);
B(1, 0) = T(0);
B(2, 0) = T(0);
B(0, 1) = cg;
B(1, 1) = sg;
B(2, 1) = T(0);
// c vector components:
const T cx = cb;
const T cy = (ca - cb * cg) / sg;
const T v = T(1) - cx * cx - cy * cy;
const T cz = (v >= T(0)) ? ceres::sqrt(v) : T(0);
B(0, 2) = cx;
B(1, 2) = cy;
B(2, 2) = cz;
}
// Build unrotated direct lattice columns: (D * B), then rotate them by p0.
// This avoids AngleAxisToRotationMatrix + matrix multiplications.
const T L0 = e_uc_len[0];
const T L1 = e_uc_len[1];
const T L2 = e_uc_len[2];
T col0_unrot[3] = {B(0, 0) * L0, B(1, 0) * L0, B(2, 0) * L0};
T col1_unrot[3] = {B(0, 1) * L1, B(1, 1) * L1, B(2, 1) * L1};
T col2_unrot[3] = {B(0, 2) * L2, B(1, 2) * L2, B(2, 2) * L2};
T col0_rot[3], col1_rot[3], col2_rot[3];
ceres::AngleAxisRotatePoint(p0, col0_unrot, col0_rot);
ceres::AngleAxisRotatePoint(p0, col1_unrot, col1_rot);
ceres::AngleAxisRotatePoint(p0, col2_unrot, col2_rot);
const Eigen::Matrix<T, 3, 1> A(col0_rot[0], col0_rot[1], col0_rot[2]);
const Eigen::Matrix<T, 3, 1> Bv(col1_rot[0], col1_rot[1], col1_rot[2]);
const Eigen::Matrix<T, 3, 1> C(col2_rot[0], col2_rot[1], col2_rot[2]);
const Eigen::Matrix<T, 3, 1> BxC = Bv.cross(C);
const Eigen::Matrix<T, 3, 1> CxA = C.cross(A);
const Eigen::Matrix<T, 3, 1> AxB = A.cross(Bv);
const T V = A.dot(BxC);
const T invV = T(1) / V;
const Eigen::Matrix<T, 3, 1> Astar = BxC * invV;
const Eigen::Matrix<T, 3, 1> Bstar = CxA * invV;
const Eigen::Matrix<T, 3, 1> Cstar = AxB * invV;
const T h = T(exp_h);
const T k = T(exp_k);
const T l = T(exp_l);
const Eigen::Matrix<T, 3, 1> e_pred_recip = Astar * h + Bstar * k + Cstar * l;
residual[0] = e_obs_recip[0] - e_pred_recip[0];
residual[1] = e_obs_recip[1] - e_pred_recip[1];
residual[2] = e_obs_recip[2] - e_pred_recip[2];
return true;
}
const double obs_x, obs_y;
const double lambda;
const double pixel_size;
const double exp_h;
const double exp_k;
const double exp_l;
const double angle_rad;
gemmi::CrystalSystem symmetry;
};
inline void LatticeToRodriguesAndLengths_GS(const CrystalLattice &latt,
double rod[3],
double lengths[3]) {
// Load lattice columns
const Coord a = latt.Vec0();
const Coord b = latt.Vec1();
const Coord c = latt.Vec2();
Eigen::Vector3d A(a[0], a[1], a[2]);
Eigen::Vector3d B(b[0], b[1], b[2]);
Eigen::Vector3d C(c[0], c[1], c[2]);
// Lengths = column norms (orthorhombic assumption)
lengths[0] = A.norm();
lengths[1] = B.norm();
lengths[2] = C.norm();
auto safe_unit = [](const Eigen::Vector3d &v, double eps = 1e-15) -> Eigen::Vector3d {
double n = v.norm();
return (n > eps) ? (v / n) : Eigen::Vector3d(1.0, 0.0, 0.0);
};
// GramSchmidt with original order: x from A, y from B orthogonalized vs x
Eigen::Vector3d e1 = safe_unit(A);
Eigen::Vector3d y = B - (e1.dot(B)) * e1;
Eigen::Vector3d e2 = safe_unit(y);
// z from cross to ensure right-handed basis
Eigen::Vector3d e3 = e1.cross(e2);
double n3 = e3.norm();
if (n3 < 1e-15) {
// Degenerate case: B nearly collinear with A → use C instead
y = C - (e1.dot(C)) * e1;
e2 = safe_unit(y);
e3 = e1.cross(e2);
n3 = e3.norm();
if (n3 < 1e-15) {
// Still degenerate: pick any perpendicular to e1
e2 = safe_unit((std::abs(e1.x()) < 0.9)
? Eigen::Vector3d::UnitX().cross(e1)
: Eigen::Vector3d::UnitY().cross(e1));
e3 = e1.cross(e2);
}
} else {
e3 /= n3;
}
Eigen::Matrix3d R;
R.col(0) = e1;
R.col(1) = e2;
R.col(2) = e3;
// Convert rotation to Rodrigues (axis * angle)
Eigen::AngleAxisd aa(R);
Eigen::Vector3d r = aa.angle() * aa.axis();
rod[0] = r.x();
rod[1] = r.y();
rod[2] = r.z();
}
void LatticeToRodriguesAndLengths_Hex(const CrystalLattice &latt, double rod[3], double ac[3]) {
const Coord a = latt.Vec0();
const Coord b = latt.Vec1();
const Coord c = latt.Vec2();
Eigen::Vector3d A(a[0], a[1], a[2]);
Eigen::Vector3d B(b[0], b[1], b[2]);
Eigen::Vector3d C(c[0], c[1], c[2]);
const double a_len = A.norm();
const double b_len = B.norm();
const double c_len = C.norm();
ac[0] = (a_len + b_len) / 2.0;
ac[1] = (a_len + b_len) / 2.0;
ac[2] = c_len;
Eigen::Vector3d e1;
Eigen::Vector3d e3;
if (a_len > 0.0)
e1 = A / a_len;
else
e1 = Eigen::Vector3d::UnitX();
if (c_len > 0.0)
e3 = C / c_len;
else
e3 = Eigen::Vector3d::UnitZ();
Eigen::Vector3d e2 = e3.cross(e1);
if (e2.norm() < 1e-15) {
e2 = (std::abs(e1.x()) < 0.9)
? Eigen::Vector3d::UnitX().cross(e1)
: Eigen::Vector3d::UnitY().cross(e1);
}
e2.normalize();
e3 = e1.cross(e2).normalized();
Eigen::Matrix3d R;
R.col(0) = e1;
R.col(1) = e2;
R.col(2) = e3;
Eigen::AngleAxisd aa(R);
Eigen::Vector3d r = aa.angle() * aa.axis();
rod[0] = r.x();
rod[1] = r.y();
rod[2] = r.z();
}
// Extract rotation (Rodrigues), lengths (a,b,c) and beta (rad) for monoclinic (unique axis b).
// Frame choice: e2 aligned with b; e1 from a projected orthogonal to e2; e3 = e1 x e2.
void LatticeToRodriguesLengthsBeta_Mono(const CrystalLattice &latt,
double rod[3],
double lengths[3],
double &beta_rad) {
const Coord a = latt.Vec0();
const Coord b = latt.Vec1();
const Coord c = latt.Vec2();
Eigen::Vector3d A(a[0], a[1], a[2]);
Eigen::Vector3d Bv(b[0], b[1], b[2]);
Eigen::Vector3d C(c[0], c[1], c[2]);
const double a_len = A.norm();
const double b_len = Bv.norm();
const double c_len = C.norm();
lengths[0] = a_len;
lengths[1] = b_len;
lengths[2] = c_len;
// beta = angle between a and c
double cos_beta = 0.0;
if (a_len > 0.0 && c_len > 0.0)
cos_beta = std::max(-1.0, std::min(1.0, A.dot(C) / (a_len * c_len)));
beta_rad = std::acos(cos_beta);
// Recover R from the same forward model used in refinement:
// L ≈ R * B(beta) * D(a,b,c) => R ≈ L * (B*D)^-1
Eigen::Matrix3d L;
L.col(0) = A;
L.col(1) = Bv;
L.col(2) = C;
Eigen::Matrix3d Bmono = Eigen::Matrix3d::Identity();
Bmono(0, 2) = std::cos(beta_rad);
Bmono(2, 2) = std::sin(beta_rad);
Eigen::DiagonalMatrix<double, 3> D(lengths[0], lengths[1], lengths[2]);
Eigen::Matrix3d M = Bmono * D;
Eigen::Matrix3d R_est = Eigen::Matrix3d::Identity();
if (std::abs(M.determinant()) > 1e-15) {
R_est = L * M.inverse();
}
Eigen::JacobiSVD<Eigen::Matrix3d> svd(R_est, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d R = svd.matrixU() * svd.matrixV().transpose();
if (R.determinant() < 0.0) {
Eigen::Matrix3d U = svd.matrixU();
U.col(2) *= -1.0;
R = U * svd.matrixV().transpose();
}
Eigen::AngleAxisd aa(R);
Eigen::Vector3d r = aa.angle() * aa.axis();
rod[0] = r.x();
rod[1] = r.y();
rod[2] = r.z();
}
CrystalLattice AngleAxisAndLengthsToLattice(const double rod[3], const double lengths[3], bool hex) {
const Eigen::Vector3d r(rod[0], rod[1], rod[2]);
const double angle = r.norm();
Eigen::Matrix3d R = Eigen::Matrix3d::Identity();
if (angle > 0.0)
R = Eigen::AngleAxisd(angle, r / angle).toRotationMatrix();
const Eigen::DiagonalMatrix<double, 3> D(lengths[0], lengths[1], lengths[2]);
Eigen::Matrix3d Bhex = Eigen::Matrix3d::Identity();
if (hex) {
Bhex(0, 1) = -1 / 2.0;
Bhex(1, 1) = sqrt(3) / 2;
}
// IMPORTANT: scale columns (a,b,c) by multiplying on the right with D.
auto latt = R * Bhex * D;
return CrystalLattice(Coord(latt(0, 0), latt(1, 0), latt(2, 0)),
Coord(latt(0, 1), latt(1, 1), latt(2, 1)),
Coord(latt(0, 2), latt(1, 2), latt(2, 2)));
}
CrystalLattice AngleAxisLengthsBetaToLattice_Mono(const double rod[3],
const double lengths[3],
double beta_rad) {
const Eigen::Vector3d r(rod[0], rod[1], rod[2]);
const double angle = r.norm();
Eigen::Matrix3d R = Eigen::Matrix3d::Identity();
if (angle > 0.0)
R = Eigen::AngleAxisd(angle, r / angle).toRotationMatrix();
const Eigen::DiagonalMatrix<double, 3> D(lengths[0], lengths[1], lengths[2]);
Eigen::Matrix3d B = Eigen::Matrix3d::Identity();
// Columns are unit directions of (a,b,c) in the unrotated crystal frame.
// For monoclinic (unique b): a along x, b along y, c in x-z with angle beta to a.
// Bmono = [[1,0,cosβ],[0,1,0],[0,0,sinβ]]
B(0, 2) = std::cos(beta_rad);
B(2, 2) = std::sin(beta_rad);
// IMPORTANT: scale columns (a,b,c) by multiplying on the right with D.
Eigen::Matrix3d latt = R * B * D;
return CrystalLattice(Coord(latt(0, 0), latt(1, 0), latt(2, 0)),
Coord(latt(0, 1), latt(1, 1), latt(2, 1)),
Coord(latt(0, 2), latt(1, 2), latt(2, 2)));
}
bool XtalOptimizerInternal(XtalOptimizerData &data,
const std::vector<SpotToSave> &spots,
const float tolerance) {
try {
data.latt.Regularize(data.crystal_system);
Coord vec0 = data.latt.Vec0();
Coord vec1 = data.latt.Vec1();
Coord vec2 = data.latt.Vec2();
double beta = data.latt.GetUnitCell().beta;
// Initial guess for the parameters
double beam_x = data.geom.GetBeamX_pxl();
double beam_y = data.geom.GetBeamY_pxl();
double distance_mm = data.geom.GetDetectorDistance_mm();
double detector_rot[2] = {data.geom.GetPoniRot1_rad(), data.geom.GetPoniRot2_rad()};
ceres::Problem problem;
double latt_vec0[3], latt_vec1[3], latt_vec2[3];
double rot_vec[3] = {1, 0, 0};
switch (data.crystal_system) {
case gemmi::CrystalSystem::Orthorhombic:
LatticeToRodriguesAndLengths_GS(data.latt, latt_vec0, latt_vec1);
break;
case gemmi::CrystalSystem::Tetragonal:
LatticeToRodriguesAndLengths_GS(data.latt, latt_vec0, latt_vec1);
latt_vec1[0] = (latt_vec1[0] + latt_vec1[1]) / 2.0;
break;
case gemmi::CrystalSystem::Cubic:
LatticeToRodriguesAndLengths_GS(data.latt, latt_vec0, latt_vec1);
latt_vec1[0] = (latt_vec1[0] + latt_vec1[1] + latt_vec1[2]) / 3.0;
break;
case gemmi::CrystalSystem::Hexagonal:
LatticeToRodriguesAndLengths_Hex(data.latt, latt_vec0, latt_vec1);
break;
case gemmi::CrystalSystem::Monoclinic:
LatticeToRodriguesLengthsBeta_Mono(data.latt, latt_vec0, latt_vec1, beta);
latt_vec2[0] = beta;
latt_vec2[1] = 0.0;
latt_vec2[2] = 0.0;
break;
default:
// Triclinic: initialize a,b,c and α,β,γ from current unit cell
LatticeToRodriguesAndLengths_GS(data.latt, latt_vec0, latt_vec1);
auto uc = data.latt.GetUnitCell();
latt_vec2[0] = uc.alpha * M_PI / 180.0;
latt_vec2[1] = uc.beta * M_PI / 180.0;
latt_vec2[2] = uc.gamma * M_PI / 180.0;
break;
}
if (data.axis) {
rot_vec[0] = data.axis->GetAxis().x;
rot_vec[1] = data.axis->GetAxis().y;
rot_vec[2] = data.axis->GetAxis().z;
}
const float tolerance_sq = tolerance * tolerance;
// Add residuals for each point
for (const auto &pt: spots) {
if (!data.index_ice_rings && pt.ice_ring)
continue;
float angle_rad = 0.0;
Coord recip = pt.ReciprocalCoord(data.geom);
if (data.axis) {
recip = data.axis->GetTransformationAngle(pt.phi) * recip;
angle_rad = pt.phi * M_PI / 180.0;
}
double h_fp = recip * vec0;
double k_fp = recip * vec1;
double l_fp = recip * vec2;
double h = std::round(h_fp);
double k = std::round(k_fp);
double l = std::round(l_fp);
double norm_sq = (h - h_fp) * (h - h_fp) + (k - k_fp) * (k - k_fp) + (l - l_fp) * (l - l_fp);
if (norm_sq > tolerance_sq)
continue;
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<XtalResidual, 3, 1, 1, 1, 2, 3, 3, 3, 3>(
new XtalResidual(pt.x, pt.y,
data.geom.GetWavelength_A(),
data.geom.GetPixelSize_mm(),
angle_rad,
h, k, l,
data.crystal_system)),
nullptr,
&beam_x,
&beam_y,
&distance_mm,
detector_rot,
rot_vec,
latt_vec0,
latt_vec1,
latt_vec2
);
}
if (problem.NumResidualBlocks() < data.min_spots)
return false;
if (!data.refine_distance_mm)
problem.SetParameterBlockConstant(&distance_mm);
else {
const double dist_range = 0.1;
problem.SetParameterLowerBound(&distance_mm, 0, distance_mm * (1.0 - dist_range));
problem.SetParameterUpperBound(&distance_mm, 0, distance_mm * (1.0 + dist_range));
}
if (!data.refine_beam_center) {
problem.SetParameterBlockConstant(&beam_x);
problem.SetParameterBlockConstant(&beam_y);
}
if (!data.refine_detector_angles) {
problem.SetParameterBlockConstant(detector_rot);
} else {
const double rot_range = 3.0 / 180.0 * M_PI;
for (int i = 0; i < 2; ++i) {
problem.SetParameterLowerBound(detector_rot, i, detector_rot[i] - rot_range);
problem.SetParameterUpperBound(detector_rot, i, detector_rot[i] + rot_range);
}
}
if (!data.refine_rotation_axis) {
problem.SetParameterBlockConstant(rot_vec);
}
if (!data.refine_unit_cell) {
problem.SetParameterBlockConstant(latt_vec1);
problem.SetParameterBlockConstant(latt_vec2);
} else {
// Parameter bounds
// Lengths
for (int i = 0; i < 3; ++i) {
problem.SetParameterLowerBound(latt_vec1, i, data.min_length_A);
problem.SetParameterUpperBound(latt_vec1, i, data.max_length_A);
}
if (data.crystal_system == gemmi::CrystalSystem::Monoclinic) {
const double beta_lo = std::max(1e-6, M_PI * (data.min_angle_deg / 180.0));
const double beta_hi = std::min(M_PI - 1e-6, M_PI * (data.max_angle_deg / 180.0));
problem.SetParameterLowerBound(latt_vec2, 0, beta_lo);
problem.SetParameterUpperBound(latt_vec2, 0, beta_hi);
} else if (data.crystal_system == gemmi::CrystalSystem::Triclinic) {
// α, β, γ bounds (radians)
const double alo = M_PI * (data.min_angle_deg / 180.0);
const double ahi = M_PI * (data.max_angle_deg / 180.0);
for (int i = 0; i < 3; ++i) {
problem.SetParameterLowerBound(latt_vec2, i, alo);
problem.SetParameterUpperBound(latt_vec2, i, ahi);
}
}
}
// Configure solver
ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = false;
options.max_solver_time_in_seconds = data.max_time;
options.logging_type = ceres::LoggingType::SILENT;
options.num_threads = 1; // Fix threads to 1, as this runs in multi-threaded context
ceres::Solver::Summary summary;
// Run optimization
ceres::Solve(options, &problem, &summary);
if (data.refine_beam_center) {
data.beam_corr_x = data.geom.GetBeamX_pxl() - beam_x;
data.beam_corr_y = data.geom.GetBeamY_pxl() - beam_y;
data.geom.BeamX_pxl(beam_x).BeamY_pxl(beam_y);
}
if (data.refine_distance_mm)
data.geom.DetectorDistance_mm(distance_mm);
if (data.refine_detector_angles)
data.geom.PoniRot1_rad(detector_rot[0]).PoniRot2_rad(detector_rot[1]);
if (data.axis && data.refine_rotation_axis)
data.axis.value().Axis(Coord(rot_vec[0], rot_vec[1], rot_vec[2]));
if (data.crystal_system == gemmi::CrystalSystem::Orthorhombic)
data.latt = AngleAxisAndLengthsToLattice(latt_vec0, latt_vec1, false);
else if (data.crystal_system == gemmi::CrystalSystem::Tetragonal) {
latt_vec1[1] = latt_vec1[0];
data.latt = AngleAxisAndLengthsToLattice(latt_vec0, latt_vec1, false);
} else if (data.crystal_system == gemmi::CrystalSystem::Cubic) {
latt_vec1[1] = latt_vec1[0];
latt_vec1[2] = latt_vec1[0];
data.latt = AngleAxisAndLengthsToLattice(latt_vec0, latt_vec1, false);
} else if (data.crystal_system == gemmi::CrystalSystem::Hexagonal) {
latt_vec1[1] = latt_vec1[0];
data.latt = AngleAxisAndLengthsToLattice(latt_vec0, latt_vec1, true);
} else if (data.crystal_system == gemmi::CrystalSystem::Monoclinic) {
data.latt = AngleAxisLengthsBetaToLattice_Mono(latt_vec0, latt_vec1, latt_vec2[0]);
} else {
// Triclinic: reconstruct with generic B from α,β,γ
const Eigen::Vector3d r(latt_vec0[0], latt_vec0[1], latt_vec0[2]);
const double angle = r.norm();
Eigen::Matrix3d R = Eigen::Matrix3d::Identity();
if (angle > 0.0)
R = Eigen::AngleAxisd(angle, r / angle).toRotationMatrix();
Eigen::Matrix3d B = Eigen::Matrix3d::Identity();
const double ca = std::cos(latt_vec2[0]);
const double cb = std::cos(latt_vec2[1]);
const double cg = std::cos(latt_vec2[2]);
const double sg = std::sin(latt_vec2[2]);
// a along x, b in x-y, c general
B(0, 0) = 1.0;
B(1, 0) = 0.0;
B(2, 0) = 0.0;
B(0, 1) = cg;
B(1, 1) = sg;
B(2, 1) = 0.0;
const double cx = cb;
const double cy = (ca - cb * cg) / sg;
const double cz = std::sqrt(std::max(0.0, 1.0 - cx * cx - cy * cy));
B(0, 2) = cx;
B(1, 2) = cy;
B(2, 2) = cz;
Eigen::DiagonalMatrix<double, 3> D(latt_vec1[0], latt_vec1[1], latt_vec1[2]);
Eigen::Matrix3d latt = R * B * D;
data.latt = CrystalLattice(Coord(latt(0, 0), latt(1, 0), latt(2, 0)),
Coord(latt(0, 1), latt(1, 1), latt(2, 1)),
Coord(latt(0, 2), latt(1, 2), latt(2, 2)));
}
data.latt.Regularize(data.crystal_system);
return true;
} catch (...) {
// Convergence problems, likely not updated
return false;
}
}
bool XtalOptimizer(XtalOptimizerData &data, const std::vector<SpotToSave> &spots) {
if (!XtalOptimizerInternal(data, spots, 0.3))
return false;
XtalOptimizerInternal(data, spots, 0.2);
return XtalOptimizerInternal(data, spots, 0.1);
}