21 Commits

Author SHA1 Message Date
354e9d90fb Fixed missing initializer for variables in Phytron-Axis 2025-06-20 13:46:10 +02:00
deea821e3f Merge pull request 'el734' (#2) from el734 into master
Reviewed-on: #2
2025-06-11 15:07:19 +02:00
7a46788fd5 Install a el734 db file
also remove explicit libversion in the makefile
2025-06-11 15:05:14 +02:00
9e77eb585c Merge branch 'lift_axis_no_autoenable' 2025-04-17 17:00:19 +02:00
d0c009ea38 Removed PMAC drivers
Commented out the PMAC drivers to avoid namespace clashes with the new
turboPmac driver library.
2025-04-17 16:52:52 +02:00
7e1fc78f76 Moved curses from top-level import to function-level import and added a
comment why that is necessary
2024-10-24 10:49:18 +02:00
9e0d8a4322 Added a new script utils/decodeMasterMACStatusR10.py which allows to
decode the R10 status message of the MasterMACs controller.

Also fixed a bug in utils/deltatau.py (error when printing too much text
at once)
2024-10-24 10:34:19 +02:00
3cccfe930c Removed typo from C804Axis.cpp 2024-10-18 09:53:47 +02:00
8860d0c59f Updated the first-time-poll of C804 Axis 2024-10-18 09:48:17 +02:00
b6c38be113 Initial driver version for the C804 controller 2024-10-18 09:48:17 +02:00
b14b50c25a Merge branch 'can-we-have-pipelines' into 'master'
Adds CI-Pipeline with Formatting, Linter Checks and Build Steps

See merge request sinqdev/sinqepicsapp!4
2024-10-14 10:07:16 +02:00
477ffdbc0b Adds CI-Pipeline with Formatting, Linter Checks and Build Steps 2024-10-14 10:07:16 +02:00
0a23ec8f22 clang is too old 2024-10-10 13:22:09 +02:00
eb1bb58c36 Fixed an uninitialized memory bug: In AmorDetectorAxis, the variables
det_starting and det_startTime were not initialized before reading them
in the poll function, leading to erratic behaviour.
2024-10-04 17:04:56 +02:00
80205727c7 File pmacAxis.h:
The default constructor of LiftAxis just forwards to the pmacAxis
constructor, which has an optional argument "autoenable" with the default
value "true". However, we want that argument to be false, hence we provide
an explicit constructor.

File C804Axis.cpp:
Removed a typing error

File Makefile.RHEL8:
Switched compilation target name to 2024-amor-no-autoenable-lift-axis to
not disturb other instruments. The newly created library is meant just
for Amor. if no problems occur, we can upstream the changes to master
at the end of October and create a new library "2023-v3".
2024-10-04 14:57:21 +02:00
39098fd0d1 Adds .clang-format style for formatting files 2024-09-25 16:21:01 +02:00
d44fdbf736 Updated the first-time-poll of C804 Axis 2024-09-23 16:21:02 +02:00
20e5c35d44 Initial driver version for the C804 controller 2024-09-23 16:21:02 +02:00
1539bfc66a bugfix: don't need to run on initialisation 2024-09-23 09:04:08 +02:00
d88e5877a7 Bugfix: A disabled PMac is no longer consider moving 2024-09-18 10:57:57 +02:00
118e177e04 Bugfix: A disabled PMac is no longer consider moving 2024-09-18 10:48:59 +02:00
18 changed files with 1731 additions and 150 deletions

236
.clang-format Normal file
View File

@ -0,0 +1,236 @@
---
Language: Cpp
# BasedOnStyle: LLVM
AccessModifierOffset: -2
AlignAfterOpenBracket: Align
AlignArrayOfStructures: None
AlignConsecutiveAssignments:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
PadOperators: true
AlignConsecutiveBitFields:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
PadOperators: false
AlignConsecutiveDeclarations:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
PadOperators: false
AlignConsecutiveMacros:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCompound: false
PadOperators: false
AlignConsecutiveShortCaseStatements:
Enabled: false
AcrossEmptyLines: false
AcrossComments: false
AlignCaseColons: false
AlignEscapedNewlines: Right
AlignOperands: Align
AlignTrailingComments:
Kind: Always
OverEmptyLines: 0
AllowAllArgumentsOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortEnumsOnASingleLine: true
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: All
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AlwaysBreakTemplateDeclarations: MultiLine
AttributeMacros:
- __capability
BinPackArguments: true
BinPackParameters: true
BitFieldColonSpacing: Both
BraceWrapping:
AfterCaseLabel: false
AfterClass: false
AfterControlStatement: Never
AfterEnum: false
AfterExternBlock: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakAfterAttributes: Never
BreakAfterJavaFieldAnnotations: false
BreakArrays: true
BreakBeforeBinaryOperators: None
BreakBeforeConceptDeclarations: Always
BreakBeforeBraces: Attach
BreakBeforeInlineASMColon: OnlyMultiline
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: BeforeColon
BreakInheritanceList: BeforeColon
BreakStringLiterals: true
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DerivePointerAlignment: false
DisableFormat: false
EmptyLineAfterAccessModifier: Never
EmptyLineBeforeAccessModifier: LogicalBlock
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IfMacros:
- KJ_IF_MAYBE
IncludeBlocks: Preserve
IncludeCategories:
- Regex: '^"(llvm|llvm-c|clang|clang-c)/'
Priority: 2
SortPriority: 0
CaseSensitive: false
- Regex: '^(<|"(gtest|gmock|isl|json)/)'
Priority: 3
SortPriority: 0
CaseSensitive: false
- Regex: '.*'
Priority: 1
SortPriority: 0
CaseSensitive: false
IncludeIsMainRegex: '(Test)?$'
IncludeIsMainSourceRegex: ''
IndentAccessModifiers: false
IndentCaseBlocks: false
IndentCaseLabels: false
IndentExternBlock: AfterExternBlock
IndentGotoLabels: true
IndentPPDirectives: None
IndentRequiresClause: true
IndentWidth: 4
IndentWrappedFunctionNames: false
InsertBraces: false
InsertNewlineAtEOF: false
InsertTrailingCommas: None
IntegerLiteralSeparator:
Binary: 0
BinaryMinDigits: 0
Decimal: 0
DecimalMinDigits: 0
Hex: 0
HexMinDigits: 0
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: true
KeepEmptyLinesAtEOF: false
LambdaBodyIndentation: Signature
LineEnding: DeriveLF
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 2
ObjCBreakBeforeNestedBlockParam: true
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PackConstructorInitializers: BinPack
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 19
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakOpenParenthesis: 0
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyIndentedWhitespace: 0
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
PPIndentWidth: -1
QualifierAlignment: Leave
ReferenceAlignment: Pointer
ReflowComments: true
RemoveBracesLLVM: false
RemoveParentheses: Leave
RemoveSemicolon: false
RequiresClausePosition: OwnLine
RequiresExpressionIndentation: OuterScope
SeparateDefinitionBlocks: Leave
ShortNamespaceLines: 1
SortIncludes: CaseSensitive
SortJavaStaticImport: Before
SortUsingDeclarations: LexicographicNumeric
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceAroundPointerQualifiers: Default
SpaceBeforeAssignmentOperators: true
SpaceBeforeCaseColon: false
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeJsonColon: false
SpaceBeforeParens: ControlStatements
SpaceBeforeParensOptions:
AfterControlStatements: true
AfterForeachMacros: true
AfterFunctionDefinitionName: false
AfterFunctionDeclarationName: false
AfterIfMacros: true
AfterOverloadedOperator: false
AfterRequiresInClause: false
AfterRequiresInExpression: false
BeforeNonEmptyParentheses: false
SpaceBeforeRangeBasedForLoopColon: true
SpaceBeforeSquareBrackets: false
SpaceInEmptyBlock: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: Never
SpacesInContainerLiterals: true
SpacesInLineCommentPrefix:
Minimum: 1
Maximum: -1
SpacesInParens: Never
SpacesInParensOptions:
InCStyleCasts: false
InConditionalStatements: false
InEmptyParentheses: false
Other: false
SpacesInSquareBrackets: false
Standard: Latest
StatementAttributeLikeMacros:
- Q_EMIT
StatementMacros:
- Q_UNUSED
- QT_REQUIRE_VERSION
TabWidth: 4
UseTab: Never
VerilogBreakBetweenInstancePorts: true
WhitespaceSensitiveMacros:
- BOOST_PP_STRINGIZE
- CF_SWIFT_NAME
- NS_SWIFT_NAME
- PP_STRINGIZE
- STRINGIZE
...

51
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,51 @@
default:
image: docker.psi.ch:5000/wall_e/sinqepics:latest
stages:
- test
- build
cppcheck:
stage: test
script:
- cppcheck --std=c++17 --addon=cert --addon=misc --error-exitcode=1 sinqEPICSApp/
allow_failure: true # Long term this needs to be removed
artifacts:
expire_in: 1 week
tags:
- docker
formatting:
stage: test
script:
- clang-format --style=file --Werror --dry-run sinqEPICSApp/src/*.cpp sinqEPICSApp/src/*.c sinqEPICSApp/src/*.h
allow_failure: true # Long term this needs to be removed
artifacts:
expire_in: 1 week
tags:
- docker
# clangtidy:
# stage: test
# script:
# - curl https://docker.psi.ch:5000/v2/_catalog
# # - dnf update -y
# # - dnf install -y clang-tools-extra
# # - clang-tidy sinqEPICSApp/src/*.cpp sinqEPICSApp/src/*.c sinqEPICSApp/src/*.h -checks=cppcoreguidelines-*,cert-*
# # tags:
# # - docker
build_module:
stage: build
script:
- sed -i 's/ARCH_FILTER=.*/ARCH_FILTER=linux%/' Makefile.RHEL8
- make -f Makefile.RHEL8 install
- cp -rT "/ioc/modules/sinq/$(ls -U /ioc/modules/sinq/ | head -1)" "./sinq-${CI_COMMIT_SHORT_SHA}"
artifacts:
name: "sinq-${CI_COMMIT_SHORT_SHA}"
paths:
- "sinq-${CI_COMMIT_SHORT_SHA}/*"
expire_in: 1 week
when: always
tags:
- docker

View File

@ -4,21 +4,19 @@ include /ioc/tools/driver.makefile
MODULE=sinq
BUILDCLASSES=Linux
EPICS_VERSIONS=7.0.7
ARCH_FILTER=RHEL%
ARCH_FILTER=RHEL8%
# additional module dependencies
REQUIRED+=SynApps
REQUIRED+=stream
REQUIRED+=scaler
REQUIRED+=asynMotor
# Release version
LIBVERSION=2024-v2
REQUIRED+=motorBase
# DB files to include in the release
TEMPLATES += sinqEPICSApp/Db/dimetix.db
TEMPLATES += sinqEPICSApp/Db/slsvme.db
TEMPLATES += sinqEPICSApp/Db/spsamor.db
TEMPLATES += sinqEPICSApp/Db/el734.db
# DBD files to include in the release
DBDS += sinqEPICSApp/src/sinq.dbd
@ -32,10 +30,12 @@ SOURCES += sinqEPICSApp/src/NanotecDriver.cpp
SOURCES += sinqEPICSApp/src/stptok.cpp
SOURCES += sinqEPICSApp/src/PhytronDriver.cpp
SOURCES += sinqEPICSApp/src/EuroMoveDriver.cpp
SOURCES += sinqEPICSApp/src/pmacAsynIPPort.c
SOURCES += sinqEPICSApp/src/pmacAxis.cpp
SOURCES += sinqEPICSApp/src/pmacController.cpp
# SOURCES += sinqEPICSApp/src/pmacAsynIPPort.c
# SOURCES += sinqEPICSApp/src/pmacAxis.cpp
# SOURCES += sinqEPICSApp/src/pmacController.cpp
SOURCES += sinqEPICSApp/src/MasterMACSDriver.cpp
SOURCES += sinqEPICSApp/src/C804Axis.cpp
SOURCES += sinqEPICSApp/src/C804Controller.cpp
USR_CFLAGS += -Wall -Wextra # -Werror

View File

@ -38,3 +38,12 @@ Those political problems require a special development model:
Take care of the sinqEPICsApp/src/sinq.dbd file. This is the one which differs mostly between
amorsim and master branches.
# Formatting
Formatting is done via the [`.clang-format`](./.clang-format) file checked into
the repository. One option to apply the formatting to a given file is via the
command below.
```
clang-format -i -style=file <file>
```

34
sinqEPICSApp/Db/el734.db Normal file
View File

@ -0,0 +1,34 @@
record(motor,"$(P)$(M)")
{
field(DESC,"$(DESC)")
field(DTYP,"$(DTYP)")
field(DIR,"$(DIR)")
field(VELO,"$(VELO)")
field(HVEL,"$(VELO)")
field(VBAS,"$(VELO)")
field(VMAX, "${VMAX}")
field(ACCL,"$(ACCL)")
field(BDST,"$(BDST)")
field(BVEL,"$(BVEL)")
field(BACC,"$(BACC)")
field(OUT,"@asyn($(PORT),$(ADDR))")
field(MRES,"$(MRES)")
field(PREC,"$(PREC)")
field(EGU,"$(EGU)")
field(DHLM,"$(DHLM)")
field(DLLM,"$(DLLM)")
field(INIT,"$(INIT)")
field(PINI, "NO")
field(TWV,"1")
field(RTRY,"0")
}
# The message text
record(waveform, "$(P)$(M)-MsgTxt") {
field(DTYP, "asynOctetRead")
field(INP, "@asyn($(PORT),$(N),1) MOTOR_MESSAGE_TEXT")
field(FTVL, "CHAR")
field(NELM, "80")
field(SCAN, "I/O Intr")
}

View File

@ -50,14 +50,5 @@ record(longin, "$(P)$(M):Enable_RBV") {
record(longout, "$(P)$(M):Reread_Encoder") {
field(DTYP, "asynInt32")
field(OUT, "@asyn($(PORT),$(N),1) REREAD_ENCODER_POSITION")
field(PINI, "YES")
}
# reread encoder
record(longin, "$(P)$(M):Reread_Encoder_RBV") {
field(DTYP, "asynInt32")
field(INP, "@asyn($(PORT),$(N),1) REREAD_ENCODER_POSITION_RBV")
field(PINI, "NO")
field(SCAN, "1 second")
}

View File

@ -0,0 +1,477 @@
#include "C804Axis.h"
#include "C804Controller.h"
#include <cmath>
#include <errlog.h>
#include <limits>
#include <math.h>
#include <string.h>
#include <unistd.h>
C804Axis::C804Axis(C804Controller *pC, int axisNo)
: SINQAxis(pC, axisNo), pC_(pC) {
/*
The superclass constructor SINQAxis calls in turn its superclass constructor
asynMotorAxis. In the latter, a pointer to the constructed object this is
stored inside the array pAxes_:
pC->pAxes_[axisNo] = this;
Therefore, the axes are managed by the controller pC. See C804Controller.cpp
for further explanation. If axisNo is out of bounds, asynMotorAxis prints an
error (see
https://github.com/epics-modules/motor/blob/master/motorApp/MotorSrc/asynMotorAxis.cpp,
line 40). However, we want the IOC creation to stop completely, since this
is a configuration error.
*/
if (axisNo >= pC->numAxes_) {
exit(-1);
}
last_position_steps_ = 0;
last_poll_ = 0.0;
}
C804Axis::~C804Axis(void) {
// Since the controller memory is managed somewhere else, we don't need to
// clean up the pointer pC here.
}
/*
The polling function informs us about the state of the axis, in particular if it
is currently moving. It is called periodically, with the period defined by
the controller constructor arguments idlePollPeriod and movingPollPeriod
depending on the current axis state.
*/
asynStatus C804Axis::poll(bool *moving) {
// Local variable declaration
static const char *functionName = "C804Axis::poll";
// The poll function is just a wrapper around poll_no_param_lib_update and
// handles mainly the callParamCallbacks() function
asynStatus status_poll = C804Axis::poll_no_param_lib_update(moving);
// According to the function documentation of asynMotorAxis::poll, this
// function should be called at the end of a poll implementation.
asynStatus status_callback = callParamCallbacks();
if (status_callback != asynSuccess) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Updating the parameter library failed for axis %d\n",
functionName, axisNo_);
return status_callback;
} else {
return status_poll;
}
}
// Perform the actual poll
asynStatus C804Axis::poll_no_param_lib_update(bool *moving) {
// Local variable declaration
static const char *functionName = "C804Axis::poll";
asynStatus status;
int axis_status = 0;
// The controller returns the position and velocity in encoder steps.
// This value needs to be converted in user units (engineering units EGU)
// via the record field MRES of the motor record. This field has already
// been read by the constructor into the member variable
// motorRecResolution_. To go from steps to user units, multiply with
// motorRecResolution_ Example: If 10 steps correspond to 1 mm, MRES should
// be 0.1.
int position_error_steps = 0;
int motor_position_steps = 0;
int motor_velocity_steps = 0;
int programmed_motor_velocity_steps = 0;
double position_error = .0;
double motor_position = .0;
double motor_velocity = .0;
double programmed_motor_velocity = .0;
// The buffer sizes for command and response are defined in the controller
// (see the corresponding source code files)
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
/*
Cancel the poll if the last poll has "just" happened.
*/
if (time(NULL) < last_poll_ + 0.5 * pC_->movingPollPeriod_) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_WARNING,
"%s: Aborted poll since the last poll for axis %d happened a "
"short time ago\n",
functionName, axisNo_);
return asynSuccess;
} else {
last_poll_ = time(NULL);
}
/*
The parameter motorRecResolution_ is coupled to the field MRES of the motor
record in the following manner:
- In sinq_asyn_motor.db, the PV (motor_record_pv_name)MOTOR_REC_RESOLUTION
is defined as a copy of the field (motor_record_pv_name).MRES:
record(ao,"$(P)$(M):Resolution") {
field(DESC, "$(M) resolution")
field(DOL, "$(P)$(M).MRES CP MS")
field(OMSL, "closed_loop")
field(DTYP, "asynFloat64")
field(OUT, "@asyn($(PORT),$(ADDR))MOTOR_REC_RESOLUTION")
field(PREC, "$(PREC)")
}
- The PV name MOTOR_REC_RESOLUTION is coupled in asynMotorController.h to
the constant motorRecResolutionString
- ... which in turn is assigned to motorRecResolution_ in
asynMotorController.cpp This way of making the field visible to the driver
is described here: https://epics.anl.gov/tech-talk/2020/msg00378.php This is
a one-way coupling, changes to the parameter library via setDoubleParam are
NOT transferred to (motor_record_pv_name).MRES or to
(motor_record_pv_name):Resolution.
NOTE: This function must not be called in the constructor (e.g. in order to
save the read result to the member variable earlier), since the parameter
library is updated at a later stage!
*/
pC_->getDoubleParam(axisNo_, pC_->motorRecResolution_,
&motorRecResolution_);
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW, "Poll axis %d\n", axisNo_);
/*
We know that the motor resolution must not be zero. During the startup of
the IOC, polls can happen before the record is fully initialized. In that
case, all values are zero.
*/
if (motorRecResolution_ == 0) {
return asynError;
}
/*
Assume that the axis does not have a status problem. If it does have a
problem, this value will be overwritten further below. Setting this value
in itself does not trigger a callback immediately, any callbacks
(such as e.g. updating camonitor) are done in callParamCallbacks() at the
end of this function.
*/
setIntegerParam(pC_->motorStatusProblem_, false);
// Read out the position error of the axis (delta of target position to
// actual position)
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dTE", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dE%10d", &parsed_axis, &position_error_steps);
// Scale from the encoder resultion to user units
position_error = double(position_error_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, position error %f\n", functionName,
axisNo_, response, position_error);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the position error failed for axis %d\n",
functionName, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
// Stop the evaluation prematurely
return status;
}
// Read the current position.
snprintf(command, this->pC_->C804_MAXBUF_ - 1, "%dTP", this->axisNo_);
status =
this->pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dP%10d", &parsed_axis, &motor_position_steps);
// Scale from the encoder resultion to user units
motor_position = double(motor_position_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, position %f\n", functionName,
axisNo_, response, motor_position);
setDoubleParam(pC_->motorPosition_, motor_position);
setDoubleParam(pC_->motorEncoderPosition_, motor_position);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the position failed for axis %d\n", functionName,
axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
// Read the current velocity
snprintf(command, this->pC_->C804_MAXBUF_ - 1, "%dTV", this->axisNo_);
status =
this->pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dV%10d", &parsed_axis, &motor_velocity_steps);
// Scale from the encoder resultion to user units
motor_velocity = double(motor_velocity_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, velocity %f\n", functionName,
axisNo_, response, motor_velocity);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the velocity failed for axis %d\n", functionName,
axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
// Read the programmed velocity
snprintf(command, this->pC_->C804_MAXBUF_ - 1, "%dTY", this->axisNo_);
status =
this->pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dY%10d", &parsed_axis,
&programmed_motor_velocity_steps);
// Scale from the encoder resultion to user units
programmed_motor_velocity =
double(programmed_motor_velocity_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, programmed velocity %f\n",
functionName, axisNo_, response, programmed_motor_velocity);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the programmed velocity failed for axis %d\n",
functionName, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
// Read the motor status
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dTS", axisNo_);
status = pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dS%10d", &parsed_axis, &axis_status);
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, status %d\n", functionName,
axisNo_, response, axis_status);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the motor status %d\n", functionName, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
// Stop prematurely
return status;
}
// Check if the axis is enabled by reading out bit 2 (see
// https://stackoverflow.com/questions/2249731/how-do-i-get-bit-by-bit-data-from-an-integer-value-in-c)
int mask = 1 << 2;
int masked_n = axis_status & mask;
// Is 1 if the axis is disabled
int disabled = masked_n >> 2;
if (disabled) {
enabled_ = false;
} else {
enabled_ = true;
}
/*
Determine if the motor is moving. This is determined by the following
criteria: 1) The motor position changes from poll to poll 2) The motor is
enabled
*/
*moving = enabled_ && motor_position_steps != this->last_position_steps_;
// Update the cached_position
this->last_position_steps_ = motor_position_steps;
/*
Calculate the time the motor should need to reach its target, based on the
programmed velocity and compare this to the actual time the motor has spent
moving. If it has spent too much time in a moving state without reaching
the target, stop the motor and return an error.
*/
if (*moving) {
int motorStatusMoving = 0;
pC_->getIntegerParam(axisNo_, pC_->motorStatusMoving_,
&motorStatusMoving);
// motor is moving, but didn't move in the last poll
if (motorStatusMoving == 0) {
time_t current_time = time(NULL);
// Factor 2 of the calculated moving time
estimatedArrivalTime_ =
current_time + std::ceil(2 * std::fabs(position_error) /
programmed_motor_velocity);
} else {
// /*
// Motor is moving for a longer time than it should: Stop it
// */
// if (time(NULL) > estimatedArrivalTime_)
// {
// snprintf(command, pC_->C804_MAXBUF_ - 1, "%dST", axisNo_);
// status = pC_->lowLevelWriteRead(axisNo_, command, response);
// asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR, "%s: Stopped
// axis %d since it moved for double the time it should to reach
// its target\n", functionName, axisNo_);
// }
}
}
/*
One of these parameters (or both) are used to set (PV-name).DMOV.
This PV tells EPICS whether the axis / motor is currently moving or not.
*/
setIntegerParam(pC_->motorStatusMoving_, *moving);
setIntegerParam(pC_->motorStatusDone_, !(*moving));
callParamCallbacks();
return status;
}
asynStatus C804Axis::move(double position, int relative, double minVelocity,
double maxVelocity, double acceleration) {
asynStatus status;
static const char *functionName = "C804Axis::move";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
double position_c_units = 0.0; // Controller units
int position_steps = 0;
// Convert from user coordinates (EGU) to controller coordinates (steps).
// Check for overflow
if (motorRecResolution_ == 0.0) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: MRES must not be zero. Movement is aborted",
functionName);
return asynError;
}
position_c_units = position / motorRecResolution_;
// Check for overflow during the division
if (position_c_units * motorRecResolution_ != position) {
asynPrint(
pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: could not convert from user units (%f) to controller units "
"(user units divided by resolution MRES %f) due to overflow.",
functionName, position, motorRecResolution_);
return asynError;
}
// Steps can only be integer values => cast to integer while checking for
// overflow
if (std::numeric_limits<int>::max() < position_c_units ||
std::numeric_limits<int>::min() > position_c_units) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: target position %f cannot be converted to int "
"(overflow). Check target value %f and MRES %f",
functionName, position_c_units, position_c_units,
motorRecResolution_);
return asynError;
}
position_steps = static_cast<int>(position_c_units);
// Convert from relative to absolute values
if (relative) {
position_steps += last_position_steps_;
}
// If the axis is currently disabled, enable it
if (!enabled_) {
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dGO", axisNo_);
status =
pC_->lowLevelWriteRead(this->axisNo_, command, response, false);
if (status != asynSuccess) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Enabling axis %d\n failed", functionName, axisNo_);
return status;
}
}
// Start movement
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dMA%d", axisNo_, position_steps);
status = pC_->lowLevelWriteRead(this->axisNo_, command, response, false);
if (status != asynSuccess) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Setting the target position %d failed for axis %d\n",
functionName, position_steps, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
setIntegerParam(pC_->motorStatusProblem_, false);
// Reset the error flag
errorReported_ = 0;
return status;
}
asynStatus C804Axis::moveVelocity(double min_velocity, double max_velocity,
double acceleration) {
static const char *functionName = "C804Axis::moveVelocity";
return asynError;
}
asynStatus C804Axis::stop(double acceleration) {
asynStatus status = asynSuccess;
static const char *functionName = "C804Axis::stop";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
bool moving = false;
poll(&moving);
if (moving) {
// ST = Stop
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dST", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE, "%s: Stop axis %d\n",
functionName, axisNo_);
}
return status;
}
asynStatus C804Axis::home(double minVelocity, double maxVelocity,
double acceleration, int forwards) {
asynStatus status = asynSuccess;
static const char *functionName = "C804Axis::home";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dFE0",
axisNo_); // Home to the upper limit of the axis (25 mm)
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE, "%s: Homing axis %d\n",
functionName, axisNo_);
return status;
}
/**
If on is 0, disable the motor, otherwise enable it.
*/
asynStatus C804Axis::enable(int on) {
asynStatus status = asynSuccess;
static const char *functionName = "C804Axis::enable";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
if (on == 0) {
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dMF", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE,
"%s: Disable axis %d\n", functionName, axisNo_);
} else {
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dMN", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE,
"%s: Enable axis %d\n", functionName, axisNo_);
}
return status;
}

View File

@ -0,0 +1,40 @@
#ifndef C804Axis_H
#define C804Axis_H
#include "SINQController.h"
#include "SINQAxis.h"
// Forward declaration of the controller class to resolve the cyclic dependency
// between C804Controller.h and C804Axis.h. See https://en.cppreference.com/w/cpp/language/class.
class C804Controller;
class C804Axis : public SINQAxis
{
public:
/* These are the methods we override from the base class */
C804Axis(C804Controller *pController, int axisNo);
virtual ~C804Axis();
asynStatus move(double position, int relative, double min_velocity, double max_velocity, double acceleration);
asynStatus moveVelocity(double min_velocity, double max_velocity, double acceleration);
asynStatus stop(double acceleration);
asynStatus home(double minVelocity, double maxVelocity, double acceleration, int forwards);
asynStatus poll(bool *moving);
asynStatus poll_no_param_lib_update(bool *moving);
asynStatus enable(int on);
protected:
C804Controller *pC_;
void checkBounds(C804Controller *pController, int axisNo);
int last_position_steps_;
double motorRecResolution_;
time_t estimatedArrivalTime_;
time_t last_poll_;
int errorReported_;
bool enabled_;
private:
friend class C804Controller;
};
#endif

View File

@ -0,0 +1,458 @@
/**
Overview EPICS documentation
- https://docs.epics-controls.org/en/latest/index.html
- https://epics.anl.gov/modules/soft/asyn/R4-29/asynDriver.html
- https://www.physicstom.com/epics/
- https://epics.anl.gov/modules/soft/asyn/R4-20/asynDriver.pdf
*/
#include "C804Controller.h"
#include "asynOctetSyncIO.h"
#include <errlog.h>
#include <string.h>
#include <unistd.h>
#include <iocsh.h>
#include <epicsExport.h>
#include <registryFunction.h>
const double C804Controller::C804_TIMEOUT_ = 5.0;
static const char *driverName = "C804Controller";
/*
In SINQ, this constructor is usually called by its C interface function via the IOC shell.
A typical call looks like that (taken from SANS instrument st.cmd):
pmacAsynIPConfigure("pmcu1","sans1-mcu1:1025")
pmacV3CreateController("mcu1","pmcu1",0,9,50,10000);
pmacV3CreateAxis("mcu1",1,0);
pmacV3CreateAxis("mcu1",2,0);
pmacV3CreateAxis("mcu1",3,0);
pmacV3CreateAxis("mcu1",4,0);
pmacV3CreateAxis("mcu1",5,0);
pmacV3CreateAxis("mcu1",6,0);
pmacV3CreateAxis("mcu1",7,0);
pmacV3CreateAxis("mcu1",8,0);
The first call creates a port object in EPICS (port 1025 in this specific case) with the name "pmcu1".
The second call creates the controller with the following arguments:
- portName = "mcu1": The controller is registered by this name in EPICS. The axes
constructors below use the name to get the controller pointer from EPICS.
- lowLevelPortName = "pmcu1": The EPICS controller object connects to the physical
device via the port object "pmcu1".
- lowLevelPortAddress = 0: Connects to port 0 of asynOctetSyncIO. asynOctetSyncIO
is an interface for ASCII-string-based message communication between driver and device.
This value seems to be always zero (at least for all pmacAsynIPConfigure in the SINQ IOCs)
- numAxes = 9: Constructs the array "pAxes_" with space for 9 axis pointers (see below).
In the axes constructors below, we use the array indices 1 to 8, hence leaving the
first element of the array unitialized (it has index 0). This is mainly a convenience
to avoid talking about an "axis 0" when meaning the first axis.
- movingPollPeriod: The method C804Controller::poll is called in a loop every
movingPollPeriod seconds when the axis is moving
- idlePollPeriod: The method C804Controller::poll is called in a loop every
idlePollPeriod seconds when the axis is not moving
*/
C804Controller::C804Controller(const char *portName, const char *lowLevelPortName, int lowLevelPortAddress,
int numAxes, double movingPollPeriod, double idlePollPeriod, const int &extraParams)
: SINQController(portName, lowLevelPortName, numAxes, extraParams)
{
// Definition of local variables.
asynStatus status = asynSuccess;
/*
functionName is overwritten by the name of the current function in each method
of C804Controller. This is used for feedback messages to the user.
*/
static const char *functionName = "C804Controller::C804Controller";
/*
Update: We don't need this array, since all axes accesses are done
with the getAxis-function, which accesses the base class array
============================================================================
The array pAxes_ is a member of the superclass asynMotorController and is
allocated when calling the constructor of asynMotorController, which
is done by the constructor of SINQController:
pAxes_ = (asynMotorAxis**) calloc(numAxes, sizeof(asynMotorAxis*));
Therefore, on this line we create a pointer to that array while interpreting
every pointer in it as one to a C804Axis. This is valid because we populate
the array in the constructor of C804Axis and can therefore be sure that
all asynMotorAxis pointers in asynMotorController::pAxes_ are in fact pointers
to C804Axis axes.
Interestingly, this array usually is leaked after destruction of asynMotorController
(n this class, we clean it up in the constructor).
The reason for that is that the EPICS devices are usually created only once at
the start of the program and the memory is cleaned up by the OS.
*/
// pAxes_ = (C804Axis **)(asynMotorController::pAxes_);
// Initialize non static data members
lowLevelPortUser_ = NULL;
movingPollPeriod_ = movingPollPeriod;
idlePollPeriod_ = idlePollPeriod;
/*
We try to connect to the port via the port name provided by the constructor.
If this fails, we return an error message.
*/
status = pasynOctetSyncIO->connect(lowLevelPortName, lowLevelPortAddress, &lowLevelPortUser_, NULL);
if (status != asynSuccess)
{
/*
ASYN_TRACE_ERROR is a mask for the trace of asynUser (member variable this->lowLevelPortUser_)
The different mask options are listed on this page: https://epics.anl.gov/modules/soft/asyn/R4-29/asynDriver.html (section AsynTrace):
0x1 ASYN_TRACE_ERROR Run time errors are reported, e.g. timeouts.
0x2 ASYN_TRACEIO_DEVICE Device support reports I/O activity.
0x4 ASYN_TRACEIO_FILTER Any layer between device support and the low level driver reports any filtering it does on I/O.
0x8 ASYN_TRACEIO_DRIVER Low level driver reports I/O activity.
0x10 ASYN_TRACE_FLOW Report logic flow. Device support should report all queue requests, callbacks entered, and all calls to drivers. Layers between device support and low level drivers should report all calls they make to lower level drivers. Low level drivers report calls they make to other support.
0x20 ASYN_TRACE_WARNING Report warnings, i.e. conditions that are between ASYN_TRACE_ERROR and ASYN_TRACE_FLOW.
To see the output of these functions e.g. on the shell, a trace mask needs
to be set:
asynSetTraceIOMask("L0", -1, 0x2)
asynSetTraceMask("L0", -1, 0x9) <- this enables 0x8 + 0x1 => ASYN_TRACE_ERROR and ASYN_TRACEIO_DRIVER
https://github-wiki-see.page/m/ISISComputingGroup/ibex_developers_manual/wiki/ASYN-Trace-Masks-(Debugging-IOC,-ASYN)
Here, we are unable to connect to the controller, which is a runtime error -> ASYN_TRACE_ERROR.
However, since lowLevelPortUser_ might still be NULL (because
pasynOctetSyncIO->connect failed for some reason), we use the alternative
EPICS function errlogPrintf. This function does not provide a timestamp
and masking facilities.
*/
// asynPrint(this->lowLevelPortUser_, ASYN_TRACE_ERROR,
// "%s: cannot connect to C804 controller\n",
// functionName); // Asyn-framework function, needs to be configured by setTraceMasks
errlogPrintf("Fatal error in %s: cannot connect to C804 controller\n", functionName);
exit(-1);
}
/*
Here we define the terminators for messages sent to / received from the
physical device (Eos = End of string).
In the C804 manual, the terminator for an outgoing message is specified as
(rtn) == Carriage Return. From https://en.wikipedia.org/wiki/Escape_sequences_in_C:
(rtn) => \r
An incoming report is terminated by a CRLF ETX (again referring to https://en.wikipedia.org/wiki/Escape_sequences_in_C)
CR => \r
LF (line feed) = \n
ETX (end-of-text, see https://www.asciitable.com/) => \x03
*/
const char *message_to_device = "\r";
const char *message_from_device = "\x03";
pasynOctetSyncIO->setOutputEos(lowLevelPortUser_, message_to_device, strlen(message_to_device)); // Output: from EPICS to device
pasynOctetSyncIO->setInputEos(lowLevelPortUser_, message_from_device, strlen(message_from_device)); // Input: from device to EPICS
/*
See documentation of function in asynMotorController.cpp:
"Starts the motor poller thread.
* Derived classes will typically call this at near the end of their constructor.
[...]
"
The function arguments are:
* movingPollPeriod The time between polls when any axis is moving (in seconds).
* idlePollPeriod The time between polls when no axis is moving (in seconds).
* forcedFastPolls The number of times to force the movingPollPeriod after waking up the poller.
*/
startPoller(movingPollPeriod, idlePollPeriod, 1);
/*
After changing values in the parameter library (e.g. by calls to setIntegerParam),
the PV's need to be updated. This is done explictly by callParamCallbacks()
callParamCallbacks due to the separation asyn - EPICS (param lib vs. driver support)
*/
callParamCallbacks();
}
C804Controller::~C804Controller(void)
{
/*
Cleanup of the memory allocated in this->pAxes_. As discussed in the constructor,
this is not strictly necessary due to the way EPICS works, but it is good
practice anyway to properly clean up resources.
*/
free(this->pAxes_);
}
/*
Access one of the axes of the controller via the axis adress stored in asynUser.
If the axis does not exist or is not a C804Axis, a nullptr is returned and an error is emitted.
*/
C804Axis *C804Controller::getAxis(asynUser *pasynUser)
{
asynMotorAxis *asynAxis = asynMotorController::getAxis(pasynUser);
return C804Controller::castToC804Axis(asynAxis);
}
/*
Access one of the axes of the controller via the axis index.
If the axis does not exist or is not a C804Axis, the function must return Null
*/
C804Axis *C804Controller::getAxis(int axisNo)
{
asynMotorAxis *asynAxis = asynMotorController::getAxis(axisNo);
return C804Controller::castToC804Axis(asynAxis);
}
C804Axis *C804Controller::castToC804Axis(asynMotorAxis *asynAxis)
{
static const char *functionName = "C804Controller::getAxis";
// If the axis slot of the pAxes_ array is empty, a nullptr must be returned
if (asynAxis == nullptr)
{
return nullptr;
}
// Here, an error is emitted since asyn_axis is not a nullptr but also not an instance of C804Axis
C804Axis *axis = dynamic_cast<C804Axis *>(asynAxis);
if (axis == nullptr)
{
asynPrint(lowLevelPortUser_, ASYN_TRACE_ERROR, "%s: Axis %d is not a C804 Axis", functionName, axis->axisNo_);
}
return axis;
}
/*
Sends the given command to the axis specified by axisNo and returns the response
of the axis.
*/
asynStatus C804Controller::lowLevelWriteRead(int axisNo, const char *command, char *response, bool expect_response)
{
// Definition of local variables.
static const char *functionName = "C804Controller::lowLevelWriteRead";
asynStatus status = asynSuccess;
C804Axis *axis = getAxis(axisNo);
if (axis == nullptr)
{
// We already did the error logging directly in getAxis
return asynError;
}
// TBD: Is this interpretation correct?
int eomReason = 0; // Flag indicating why the message has ended
size_t nbytesOut = 0; // Number of bytes of the outgoing message (which is command + the end-of-string terminator defined in the constructor)
size_t nbytesIn = 0; // Number of bytes of the incoming message (which is response + the end-of-string terminator defined in the constructor)
// If the class instance could not be connected to the device, set an error flag.
if (lowLevelPortUser_ == nullptr)
{
asynPrint(this->lowLevelPortUser_, ASYN_TRACE_ERROR,
"%s: not connected to C804 controller\n",
functionName);
// Adjust the parameter library
setIntegerParam(this->motorStatusCommsError_, 1);
return asynError;
}
// Mask ASYN_TRACEIO_DRIVER is defined as "Device support reports I/O activity"
asynPrint(lowLevelPortUser_, ASYN_TRACEIO_DRIVER, "%s: command: %s\n", functionName, command);
// Writes the command to the port and blocks until a response has been received or until the timeout has been reached.
// For some inputs (such as TP = Tell position), we expect a response which is terminated by a character array "x03"
// Other messages such as MA100 (move) don't return a response
if (expect_response)
{
status = pasynOctetSyncIO->writeRead(lowLevelPortUser_,
command, strlen(command),
response, this->C804_MAXBUF_,
C804_TIMEOUT_,
&nbytesOut, &nbytesIn, &eomReason);
}
else
{
status = pasynOctetSyncIO->write(lowLevelPortUser_,
command, strlen(command),
C804_TIMEOUT_,
&nbytesOut);
}
// Writing and/or reading succeded
if (status == asynSuccess)
{
asynPrint(lowLevelPortUser_, ASYN_TRACEIO_DRIVER, "%s: device response: %s\n", functionName, response);
// Reset any error which might have been set
setIntegerParam(this->motorStatusCommsError_, 0);
}
else
{
asynPrint(this->lowLevelPortUser_, ASYN_TRACE_ERROR,
"%s: asynOctetSyncIO->writeRead failed for command %s on axis %d\n",
functionName, command, axisNo);
setIntegerParam(this->motorStatusCommsError_, 1);
}
// Block the thread to avoid sending too many messages in a short timeframe
usleep(interMessageSleep);
return status;
}
/*************************************************************************************/
/** The following functions are C-wrappers, and can be called directly from iocsh */
extern "C"
{
/*
C wrapper for the C804Controller constructor.
*/
asynStatus C804CreateController(const char *portName, const char *lowLevelPortName, int lowLevelPortAddress,
int numAxes, double movingPollPeriod, double idlePollPeriod)
{
/*
We create a new instance of C804CreateController, using the "new" keyword to allocate it
on the heap while avoiding RAII.
TBD: Where is the pointer to the controller stored?
https://github.com/epics-modules/motor/blob/master/motorApp/MotorSrc/asynMotorController.cpp
https://github.com/epics-modules/asyn/blob/master/asyn/asynPortDriver/asynPortDriver.cpp
Setting the pointer to nullptr / NULL immediately after construction is simply
done to avoid compiler warnings, see page 7 of this document:
https://subversion.xray.aps.anl.gov/synApps/measComp/trunk/documentation/measCompTutorial.pdf
*/
C804Controller *pController = new C804Controller(portName, lowLevelPortName, lowLevelPortAddress, numAxes, movingPollPeriod, idlePollPeriod);
pController = nullptr;
return asynSuccess;
}
/*
C wrapper for the C804Axis constructor.
See C804Axis::C804Axis.
*/
asynStatus C804CreateAxis(const char *C804Name, int axis)
{
C804Axis *pAxis;
static const char *functionName = "C804CreateAxis";
/*
findAsynPortDriver is a asyn library FFI function which uses the C ABI.
Therefore it returns a void pointer instead of e.g. a pointer to a superclass
of the controller such as asynPortDriver. Type-safe upcasting via dynamic_cast
is therefore not possible directly. However, we do know that the void
pointer is either a pointer to asynPortDriver (if a driver with the specified name exists)
or a nullptr. Therefore, we first do a nullptr check, then a cast to asynPortDriver
and lastly a (typesafe) dynamic_upcast to C804Controller
https://stackoverflow.com/questions/70906749/is-there-a-safe-way-to-cast-void-to-class-pointer-in-c
*/
void *ptr = findAsynPortDriver(C804Name);
if (ptr == nullptr)
{
/*
We can't use asynPrint here since this macro would require us
to get a lowLevelPortUser_ from a pointer to an asynPortDriver.
However, the given pointer is a nullptr and therefore doesn't
have a lowLevelPortUser_! printf is an EPICS alternative which
works w/o that, but doesn't offer the comfort provided
by the asynTrace-facility
*/
printf("%s:%s: Error port %s not found\n", driverName, functionName, C804Name);
return asynError;
}
// Unsafe cast of the pointer to an asynPortDriver
asynPortDriver *apd = (asynPortDriver *)(ptr);
// Safe downcast
C804Controller *pC = dynamic_cast<C804Controller *>(apd);
if (pC == nullptr)
{
printf("%s: controller on port %s is not a C804Controller\n", functionName, C804Name);
return asynError;
}
// Prevent manipulation of the controller from other threads while we create the new axis.
pC->lock();
/*
We create a new instance of C804Axis, using the "new" keyword to allocate it
on the heap while avoiding RAII. In the constructor, a pointer to the new object is stored in
the controller object "pC". Therefore, the axis instance can still be
reached later by quering "pC".
Setting the pointer to nullptr / NULL immediately after construction is simply
done to avoid compiler warnings, see page 7 of this document:
https://subversion.xray.aps.anl.gov/synApps/measComp/trunk/documentation/measCompTutorial.pdf
*/
pAxis = new C804Axis(pC, axis);
pAxis = nullptr;
// Allow manipulation of the controller again
pC->unlock();
return asynSuccess;
}
/*
This is boilerplate code which is used to make the FFI functions
C804CreateController and C804CreateAxis "known" to the IOC shell (iocsh).
TBD: If the code is compiled for running on vxWorks, this registration is
apparently not necessary?
*/
#ifdef vxWorks
#else
/*
Define name and type of the arguments for the C804CreateController function
in the iocsh. This is done by creating structs with the argument names and types
and then providing "factory" functions (configC804CreateControllerCallFunc).
These factory functions are used to register the constructors during compilation.
*/
static const iocshArg C804CreateControllerArg0 = {"Controller port name", iocshArgString};
static const iocshArg C804CreateControllerArg1 = {"Low level port name", iocshArgString};
static const iocshArg C804CreateControllerArg2 = {"Low level port address", iocshArgInt};
static const iocshArg C804CreateControllerArg3 = {"Number of axes", iocshArgInt};
static const iocshArg C804CreateControllerArg4 = {"Moving poll rate (s)", iocshArgDouble};
static const iocshArg C804CreateControllerArg5 = {"Idle poll rate (s)", iocshArgDouble};
static const iocshArg *const C804CreateControllerArgs[] = {&C804CreateControllerArg0,
&C804CreateControllerArg1,
&C804CreateControllerArg2,
&C804CreateControllerArg3,
&C804CreateControllerArg4,
&C804CreateControllerArg5};
static const iocshFuncDef configC804CreateController = {"C804CreateController", 6, C804CreateControllerArgs};
static void configC804CreateControllerCallFunc(const iocshArgBuf *args)
{
C804CreateController(args[0].sval, args[1].sval, args[2].ival, args[3].ival, args[4].dval, args[5].dval);
}
/*
Same procedure as for the C804CreateController function, but for the axis itself.
*/
static const iocshArg C804CreateAxisArg0 = {"Controller port name", iocshArgString};
static const iocshArg C804CreateAxisArg1 = {"Axis number", iocshArgInt};
static const iocshArg *const C804CreateAxisArgs[] = {&C804CreateAxisArg0,
&C804CreateAxisArg1};
static const iocshFuncDef configC804CreateAxis = {"C804CreateAxis", 2, C804CreateAxisArgs};
static void configC804CreateAxisCallFunc(const iocshArgBuf *args)
{
C804CreateAxis(args[0].sval, args[1].ival);
}
// This function is made known to EPICS in sinq.dbd and is called by EPICS
// in order to register both functions in the IOC shell
// TBD: Does this happen during compilation?
static void C804ControllerRegister(void)
{
iocshRegister(&configC804CreateController, configC804CreateControllerCallFunc);
iocshRegister(&configC804CreateAxis, configC804CreateAxisCallFunc);
}
epicsExportRegistrar(C804ControllerRegister);
#endif
} // extern "C"

View File

@ -0,0 +1,50 @@
#ifndef C804Controller_H
#define C804Controller_H
#include "SINQController.h"
#include "C804Axis.h"
#include "asynMotorAxis.h"
class C804Controller : public SINQController
{
public:
C804Controller(const char *portName, const char *lowLevelPortName, int lowLevelPortAddress, int numAxes, double movingPollPeriod,
double idlePollPeriod, const int &extraParams = 2);
virtual ~C804Controller();
/* These are the methods that we override */
C804Axis *getAxis(asynUser *pasynUser);
C804Axis *getAxis(int axisNo);
C804Axis *castToC804Axis(asynMotorAxis *asynAxis);
protected:
asynUser *lowLevelPortUser_;
// User-defined polling periods in ms
time_t movingPollPeriod_;
time_t idlePollPeriod_;
void log(const char *message);
asynStatus lowLevelWriteRead(int axisNo, const char *command, char *response, bool expect_response);
private:
// Set the maximum buffer size. This is an empirical value which must be large
// enough to avoid overflows for all commands to the device / responses from it.
static const uint32_t C804_MAXBUF_ = 200;
/*
When trying to communicate with the device, the underlying asynOctetSyncIO
interface waits for a response until this time (in seconds) has passed,
then it declares a timeout. This variable has to be specified in the .cpp-file.
Tying to specify in the .h-file results in the following compiler error:
In file included from ../sinqEPICSApp/src/C804Axis.cpp:2:
../sinqEPICSApp/src/C804Controller.h:38:23: error: constexpr needed for in-class initialization
of static data member const double C804Controller::C804_TIMEOUT_ of non-integral type
*/
static const double C804_TIMEOUT_;
friend class C804Axis;
};
#endif

View File

@ -143,6 +143,11 @@ asynStatus EL734Controller::transactController(int axisNo, char command[COMLEN],
pasynOctetSyncIO->flush(pasynUserController_);
if (axis != NULL)
{
axis->updateMsgTxtFromDriver("");
}
status = pasynOctetSyncIO->writeRead(pasynUserController_, command, strlen(command),
reply, COMLEN, 2., &out, &in, &reason);
if (status != asynSuccess)

View File

@ -250,6 +250,8 @@ PhytronAxis::PhytronAxis(PhytronController *pC, int axisNo, int enc)
haveBrake = 0;
brakeIO = -1;
next_poll = -1;
homing = 0;
homing_direction = 0;
}
int PhytronAxis::setBrake(int brakeNO)

View File

@ -114,7 +114,7 @@ typedef struct {
unsigned int dbInit;
}EL737priv;
static void dummyAsynCallback([[maybe_unused]] asynUser *pasynUser)
static void dummyAsynCallback(asynUser *pasynUser)
{
}

View File

@ -909,7 +909,7 @@ pmacV3Axis::pmacV3Axis(pmacController *pController, int axisNo)
};
asynStatus pmacV3Axis::poll(bool *moving) {
int status = 0;
asynStatus status = asynSuccess;
static const char *functionName = "pmacV3Axis::poll";
char message[132];
@ -925,8 +925,8 @@ asynStatus pmacV3Axis::poll(bool *moving) {
}
callParamCallbacks();
return status;
return status ? asynError : asynSuccess;
}
@ -986,9 +986,7 @@ asynStatus pmacV3Axis::getAxisStatus(bool *moving) {
previous_position_ = position;
previous_direction_ = direction;
/* are we done? */
/* if ((axStat == 0 || axStat < 0) && starting == 0) { */
if (axStat == 0 && starting == 0) {
if (axStat <= 0 && starting == 0) {
done = 1;
} else {
starting = 0;
@ -1188,6 +1186,8 @@ AmorDetectorAxis::AmorDetectorAxis(pmacController *pC, int axisNo, int function)
pC_->debugFlow(functionName);
_function = function;
det_starting = false;
det_startTime = time(NULL);
callParamCallbacks();
@ -1754,4 +1754,4 @@ asynStatus GirderAxis::poll(bool *moving) {
status = status > st ? status : st;
return status;
}
}

View File

@ -1,169 +1,180 @@
/********************************************
* pmacAxis.cpp
*
* PMAC Asyn motor based on the
*
* PMAC Asyn motor based on the
* asynMotorAxis class.
*
*
* Matthew Pearson
* 23 May 2012
*
*
* Modified to use the MsgTxt field for SINQ
*
* Mark Koennecke, January 2019
*
* EXtended with special motor axis for the Selene
* EXtended with special motor axis for the Selene
* guide, Mark Koennecke, February 2020
********************************************/
#ifndef pmacAxis_H
#define pmacAxis_H
#include "SINQController.h"
#include "SINQAxis.h"
#include "SINQController.h"
class pmacController;
class SeleneController;
class pmacAxis : public SINQAxis
{
class pmacAxis : public SINQAxis {
public:
/* These are the methods we override from the base class */
pmacAxis(pmacController *pController, int axisNo, bool enable=true);
virtual ~pmacAxis();
asynStatus move(double position, int relative, double min_velocity, double max_velocity, double acceleration);
asynStatus moveVelocity(double min_velocity, double max_velocity, double acceleration);
asynStatus home(double min_velocity, double max_velocity, double acceleration, int forwards);
asynStatus stop(double acceleration);
asynStatus poll(bool *moving);
asynStatus setPosition(double position);
asynStatus enable(int on);
/* These are the methods we override from the base class */
pmacAxis(pmacController *pController, int axisNo, bool enable = true);
virtual ~pmacAxis();
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus moveVelocity(double min_velocity, double max_velocity,
double acceleration);
asynStatus home(double min_velocity, double max_velocity,
double acceleration, int forwards);
asynStatus stop(double acceleration);
asynStatus poll(bool *moving);
asynStatus setPosition(double position);
asynStatus enable(int on);
protected:
pmacController *pC_;
asynStatus getAxisStatus(bool *moving);
asynStatus getAxisInitialStatus(void);
protected:
pmacController *pC_;
double setpointPosition_;
double encoderPosition_;
double currentVelocity_;
double velocity_;
double accel_;
double highLimit_;
double lowLimit_;
double scale_;
double previous_position_;
int previous_direction_;
int encoder_axis_;
int axisErrorCount;
asynStatus getAxisStatus(bool *moving);
asynStatus getAxisInitialStatus(void);
time_t startTime;
time_t status6Time;
int starting;
int homing;
double statusPos;
double setpointPosition_;
double encoderPosition_;
double currentVelocity_;
double velocity_;
double accel_;
double highLimit_;
double lowLimit_;
double scale_;
double previous_position_;
int previous_direction_;
int encoder_axis_;
int axisErrorCount;
time_t next_poll;
time_t startTime;
time_t status6Time;
int starting;
int homing;
double statusPos;
bool autoEnable;
friend class pmacController;
friend class pmacV3Controller;
time_t next_poll;
bool autoEnable;
friend class pmacController;
friend class pmacV3Controller;
};
/*--------------------------------------------------------------------------------------------*/
class SeleneAxis : public pmacAxis
{
class SeleneAxis : public pmacAxis {
public:
SeleneAxis(SeleneController *pController, int axisNo, double limitTarget);
asynStatus move(double position, int relative, double min_velocity, double max_velocity, double acceleration);
asynStatus setPosition(double position);
asynStatus home(double min_velocity, double max_velocity, double acceleration, int forwards);
SeleneAxis(SeleneController *pController, int axisNo, double limitTarget);
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus setPosition(double position);
asynStatus home(double min_velocity, double max_velocity,
double acceleration, int forwards);
protected:
friend class SeleneController;
friend class pmacController;
private:
double limitTarget;
asynStatus getSeleneAxisInitialStatus(void);
protected:
friend class SeleneController;
friend class pmacController;
private:
double limitTarget;
asynStatus getSeleneAxisInitialStatus(void);
};
/*
Yet another special set of motors for the Selene Guide at AMOR. Each segment can be lifted or tilted. This is
two motors. One acts as a slave and only writes a new target, the other also sets a new target and sends the
actual movement command. Both motors are coordianted in the motor controller in order to avoid tension on
the guide elements. This gaves rise to the function code LIFTSLAVE and LIFTMASTER.
Yet another special set of motors for the Selene Guide at AMOR. Each segment
can be lifted or tilted. This is two motors. One acts as a slave and only
writes a new target, the other also sets a new target and sends the actual
movement command. Both motors are coordianted in the motor controller in order
to avoid tension on the guide elements. This gaves rise to the function code
LIFTSLAVE and LIFTMASTER.
In another mode the whole guide can be lifted or tilted. Then motor 1 and 6 get new values and one of them
sends the drive command. This causes all 6 motors to drive synchronously to their new targets. This is
implemented through the LIFTSEGMENT function code.
In another mode the whole guide can be lifted or tilted. Then motor 1 and 6
get new values and one of them sends the drive command. This causes all 6
motors to drive synchronously to their new targets. This is implemented
through the LIFTSEGMENT function code.
Mark Koennecke, February 2020
Mark Koennecke, February 2020
The axis should not be enabled automatically
Michele Brambilla, February 2020
Michele Brambilla, February 2020
*/
class LiftAxis : public pmacAxis
{
public:
LiftAxis(pmacController *pController, int axisNo) : pmacAxis((pmacController *)pController,axisNo) {};
asynStatus move(double position, int relative, double min_velocity, double max_velocity, double acceleration);
asynStatus poll(bool *moving);
asynStatus stop(double acceleration);
private:
int waitStart;
class LiftAxis : public pmacAxis {
public:
/*
The default constructor of LiftAxis just forwards to the pmacAxis
constructor, which has an optional argument "autoenable" with the default
value "true". However, we want that argument to be false, hence we provide
an explicit constructor.
*/
LiftAxis(pmacController *pController, int axisNo)
: pmacAxis((pmacController *)pController, axisNo, false) {};
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus poll(bool *moving);
asynStatus stop(double acceleration);
private:
int waitStart;
};
/********************************************
/********************************************
* Protocol version 3 requires just some minor change
*
* Michele Brambilla, February 2022
********************************************/
class pmacV3Axis : public pmacAxis {
public:
public:
pmacV3Axis(pmacController *pController, int axisNo);
pmacV3Axis(pmacController *pController, int axisNo);
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus poll(bool *moving);
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus poll(bool *moving);
protected:
int IsEnable;
double Speed;
protected:
int IsEnable;
double Speed;
asynStatus getAxisStatus(bool *moving);
asynStatus getAxisStatus(bool *moving);
friend class pmacController;
friend class pmacV3Controller;
};
/*----------------------------------------------------------------------------------------------*/
class pmacHRPTAxis : public pmacV3Axis
{
public:
pmacHRPTAxis(pmacController *pController, int axisNo) : pmacV3Axis(pController,axisNo) {};
/**
* Override getAxisStatus in order to read the special parameter indicating a
* slit blade crash at HRPT
*/
asynStatus getAxisStatus(bool *moving);
protected:
friend class pmacController;
friend class pmacController;
friend class pmacV3Controller;
};
/*----------------------------------------------------------------------------------------------*/
class pmacHRPTAxis : public pmacV3Axis {
public:
pmacHRPTAxis(pmacController *pController, int axisNo)
: pmacV3Axis(pController, axisNo) {};
/**
* Override getAxisStatus in order to read the special parameter indicating
* a slit blade crash at HRPT
*/
asynStatus getAxisStatus(bool *moving);
protected:
friend class pmacController;
};
/*
* Special motors for the AMOR detector movement. The whole
* command set is different but on a pmac controller. This implements
* a coordinated movement of cox, coz and ftz in order not to break
* the flight tube which may have been mounted. This is mapped to three
* motors selected via the function code: com, the detector omega, coz,
* motors selected via the function code: com, the detector omega, coz,
* the detector z offset and park, for parking the flightpath.
*/
@ -171,39 +182,41 @@ class pmacHRPTAxis : public pmacV3Axis
#define ADCOZ 2
#define ADPARK 3
class AmorDetectorAxis: public pmacAxis {
public:
AmorDetectorAxis(pmacController *pController, int axisNo, int function);
class AmorDetectorAxis : public pmacAxis {
public:
AmorDetectorAxis(pmacController *pController, int axisNo, int function);
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus poll(bool *moving);
asynStatus moveVelocity(double min_velocity, double max_velocity, double acceleration);
asynStatus home(double min_velocity, double max_velocity, double acceleration, int forwards);
asynStatus stop(double acceleration);
asynStatus setPosition(double position);
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus poll(bool *moving);
asynStatus moveVelocity(double min_velocity, double max_velocity,
double acceleration);
asynStatus home(double min_velocity, double max_velocity,
double acceleration, int forwards);
asynStatus stop(double acceleration);
asynStatus setPosition(double position);
protected:
int _function;
int det_starting;
time_t det_startTime;
protected:
int _function;
int det_starting;
time_t det_startTime;
};
/*----------------------------------------------------------------------------------------------*/
class GirderAxis: public pmacV3Axis {
class GirderAxis : public pmacV3Axis {
public:
GirderAxis(pmacController *pController, int axisNo);
asynStatus move(double position, int relative, double min_velocity, double max_velocity, double acceleration);
asynStatus move(double position, int relative, double min_velocity,
double max_velocity, double acceleration);
asynStatus stop(double acceleration);
asynStatus poll(bool *moving);
protected:
int IsEnable;
friend class pmacController;
friend class pmacV3Controller;
friend class pmacController;
friend class pmacV3Controller;
};
#endif /* pmacAxis_H */

View File

@ -5,8 +5,9 @@ registrar(EL734Register)
registrar(PhytronRegister)
registrar(EuroMoveRegister)
registrar(NanotecRegister)
registrar(pmacControllerRegister)
registrar(pmacAsynIPPortRegister)
# registrar(pmacControllerRegister)
registrar(C804ControllerRegister)
# registrar(pmacAsynIPPortRegister)
registrar(MasterMACSRegister)
registrar(SINQControllerRegister)

213
utils/decodeMasterMACStatusR10.py Executable file
View File

@ -0,0 +1,213 @@
#!/usr/bin/env python3
# List of tuples which encodes the states given in the file description.
# Index first with the bit index, then with the bit value
interpretation = [
("Not ready to be switched on", "Ready to be switched on"), # Bit 0
("Not switched on", "Switched on"), # Bit 1
("Disabled", "Enabled"), # Bit 2
("Ok", "Fault condition set"), # Bit 3
("Motor supply voltage absent ", "Motor supply voltage present"), # Bit 4
("Motor performs quick stop", "Ok"), # Bit 5
("Switch on enabled", "Switch on disabled"), # Bit 6
("Ok", "RWarning: Movement function was called while motor is still moving. The function call is ignored"), # Bit 7
("Motor is idle", "Motor is currently moving"), # Bit 8
("Motor does not execute command messages (local mode)", "Motor does execute command messages (remote mode)"), # Bit 9
("Target not reached", "Target reached"), # Bit 10
("Ok", "Internal limit active"), # Bit 11
("Not specified", "Not specified"), # Bit 12
("Not specified", "Not specified"), # Bit 13
("No event set or event has not occurred yet", "Set event has occurred"), # Bit 14
("Axis off (power disabled)", "Axis on (power enabled)"), # Bit 15
]
def decode(value, big_endian: bool = False):
interpreted = []
bit_list = [(value >> shift_ind) & 1
for shift_ind in range(value.bit_length())] # little endian
if big_endian:
bit_list.reverse() # big endian
for (bit, interpretations) in zip(bit_list, interpretation):
interpreted.append(interpretations[bit])
return (bit_list, interpreted)
def print_decoded(bit_list, interpreted):
for (idx, (bit_value, msg)) in enumerate(zip(bit_list, interpreted)):
print(f"Bit {idx} = {bit_value}: {msg}")
def interactive():
# Imported here, because curses is not available in Windows. Using the
# interactive mode therefore fails on Windows, but at least the single
# command mode can be used (which would not be possible if we would import
# curses at the top level)
import curses
stdscr = curses.initscr()
curses.noecho()
curses.cbreak()
stdscr.keypad(True)
stdscr.scrollok(True)
stdscr.addstr(">> ")
stdscr.refresh()
history = [""]
ptr = len(history) - 1
while True:
c = stdscr.getch()
if c == curses.KEY_RIGHT:
(y, x) = stdscr.getyx()
if x < len(history[ptr]) + 3:
stdscr.move(y, x+1)
stdscr.refresh()
elif c == curses.KEY_LEFT:
(y, x) = stdscr.getyx()
if x > 3:
stdscr.move(y, x-1)
stdscr.refresh()
elif c == curses.KEY_UP:
if ptr > 0:
ptr -= 1
stdscr.addch("\r")
stdscr.clrtoeol()
stdscr.addstr(">> " + history[ptr])
elif c == curses.KEY_DOWN:
if ptr < len(history) - 1:
ptr += 1
stdscr.addch("\r")
stdscr.clrtoeol()
stdscr.addstr(">> " + history[ptr])
elif c == curses.KEY_ENTER or c == ord('\n') or c == ord('\r'):
if history[ptr] == 'quit':
break
# because of arrow keys move back to the end of the line
(y, x) = stdscr.getyx()
stdscr.move(y, 3+len(history[ptr]))
if history[ptr]:
result = interpret_inputs(history[ptr].split())
if result is None:
stdscr.addstr(f"\nBAD INPUT: Expected input of 'value [big_endian]', where 'value' is an int or a float and 'big_endian' is an optional boolean argument.")
else:
(arg, big_endian) = result
(bit_list, interpreted) = decode(arg, big_endian)
for (idx, (bit_value, msg)) in enumerate(zip(bit_list, interpreted)):
stdscr.addstr(f"\nBit {idx} = {bit_value}: {msg}")
stdscr.refresh()
if ptr == len(history) - 1 and history[ptr] != "":
history += [""]
else:
history[-1] = ""
ptr = len(history) - 1
stdscr.addstr("\n>> ")
stdscr.refresh()
else:
if ptr < len(history) - 1: # Modifying previous input
if len(history[-1]) == 0:
history[-1] = history[ptr]
ptr = len(history) - 1
else:
history += [history[ptr]]
ptr = len(history) - 1
if c == curses.KEY_BACKSPACE:
if len(history[ptr]) == 0:
continue
(y, x) = stdscr.getyx()
history[ptr] = history[ptr][0:x-4] + history[ptr][x-3:]
stdscr.addch("\r")
stdscr.clrtoeol()
stdscr.addstr(">> " + history[ptr])
stdscr.move(y, x-1)
stdscr.refresh()
else:
(y, x) = stdscr.getyx()
history[ptr] = history[ptr][0:x-3] + chr(c) + history[ptr][x-3:]
stdscr.addch("\r")
stdscr.clrtoeol()
stdscr.addstr(">> " + history[ptr])
stdscr.move(y, x+1)
stdscr.refresh()
# to quit
curses.nocbreak()
stdscr.keypad(False)
curses.echo()
curses.endwin()
def interpret_inputs(inputs):
number = None
big_endian = False
try:
number = int(float(inputs[0]))
if len(inputs) > 1:
second_arg = inputs[1]
if second_arg == "True" or second_arg == "true":
big_endian = True
elif second_arg == "False" or second_arg == "false":
big_endian = False
else:
big_endian = bool(int(second_arg))
return (number, big_endian)
except:
return None
if __name__ == "__main__":
from sys import argv
if len(argv) == 1:
# Start interactive mode
interactive()
else:
result = interpret_inputs(argv[1:])
if result is None:
print("""
Decode R10 message of MasterMACs
------------------
MasterMACs returns its status message (R10) as a floating-point number.
The bits of this float encode different states. These states are stored
in the interpretation variable.
This script can be used in two different ways:
Option 1: Single Command
------------------------
Usage: decodeMasterMACStatusR10.py value [big_endian]
'value' is the return value of a R10 command. This value is interpreted
bit-wise and the result is printed out. The optional second argument can
be used to specify whether the input value needs to be interpreted as
little or big endian. Default is False.
Option 2: CLI Mode
------------------
Usage: decodeMasterMACStatusR10.py
A prompt will be opened. Type in the return value of a R10 command, hit
enter and the interpretation will be printed in the prompt. After that,
the next value can be typed in. Type 'quit' to close the prompt.
""")
else:
print("Motor status")
print("============")
(arg, big_endian) = result
(bit_list, interpreted) = decode(arg, big_endian)
print_decoded(bit_list, interpreted)

View File

@ -64,6 +64,7 @@ if __name__ == "__main__":
curses.noecho()
curses.cbreak()
stdscr.keypad(True)
stdscr.scrollok(True)
stdscr.addstr(">> ")
stdscr.refresh()