new version of convert-scan-for-pyfai for 16M detector - added in_batch line to help with the opening of images
This commit is contained in:
92
convert-scan-for-pyfai-16M.py
Normal file
92
convert-scan-for-pyfai-16M.py
Normal file
@@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
- -16M=varient for large detectors
|
||||
make image file to input into pyFAI for initial detector beam-centre and detector distance calibration
|
||||
refer to Cristallina8M-calibration for complete protocol
|
||||
https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit#
|
||||
|
||||
# protocol
|
||||
take scan of LaB6
|
||||
## IMPORTANT ##
|
||||
- save image as photon-counts - in slic/run_control scale=beam energy
|
||||
- detector_geometry=TRUE - saves detector panels in their correct orientation
|
||||
## scan inputs ##
|
||||
- <0.01 trans
|
||||
- motor scan > 10 um per step
|
||||
- 10 images per step, 100 steps
|
||||
- use scan.json as input for this script
|
||||
|
||||
# usage
|
||||
python make-tiff.py -j <jugfrau-name> -s <path to scan file> -n <name of output file>
|
||||
|
||||
# output
|
||||
creates a .npy file that can be loaded directly into pyFAI
|
||||
"""
|
||||
|
||||
# modules
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
from sfdata import SFScanInfo
|
||||
from tqdm import tqdm
|
||||
import argparse
|
||||
|
||||
def convert_image( path_to_json, jungfrau, name ):
|
||||
|
||||
# opens scan
|
||||
scan = SFScanInfo( path_to_json )
|
||||
|
||||
# step through scan and average files from each positions
|
||||
mean_image = []
|
||||
for step in tqdm( enumerate(scan) ):
|
||||
# step is a SFDataFiles object
|
||||
subset = step[1]
|
||||
|
||||
# go through data in_batches so you don't run out of memory
|
||||
means = np.empty(subset[jungfrau].data.shape)
|
||||
for indices, batch in subset[jungfrau].in_batches(size=2):
|
||||
means[indices] = np.mean(batch.data, axis=(0))
|
||||
|
||||
# take mean of means for batch opened data
|
||||
mean_image.append(np.mean(means, axis=0))
|
||||
|
||||
# sum averaged imaged
|
||||
sum_image = np.sum( mean_image, axis=0 )
|
||||
|
||||
# output to file
|
||||
np.save( "{0}.npy".format( name ), sum_image )
|
||||
|
||||
# create plot of summed, averaged scan
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(sum_image, vmin=0, vmax=1000)
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-j",
|
||||
"--jungfrau",
|
||||
help="name of the jungfrau used, i.e., JF17T16V01 for Cristallina MX",
|
||||
type=str,
|
||||
default="JF17T16V01"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--scan",
|
||||
help="path to json scan file",
|
||||
type=str,
|
||||
default="/sf/cristallina/data/p20590/raw/run0003/meta/scan.json"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-n",
|
||||
"--name",
|
||||
help="name of output file",
|
||||
type=str,
|
||||
default="sum_mean_scan"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
convert_image( args.scan, args.jungfrau, args.name )
|
||||
Reference in New Issue
Block a user