From a9e3e74ffc20bb9a152319892672cffe71ccb7a7 Mon Sep 17 00:00:00 2001 From: Beale John Henry Date: Tue, 21 Mar 2023 12:19:45 +0100 Subject: [PATCH] new version of convert-scan-for-pyfai for 16M detector - added in_batch line to help with the opening of images --- convert-scan-for-pyfai-16M.py | 92 +++++++++++++++++++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 convert-scan-for-pyfai-16M.py diff --git a/convert-scan-for-pyfai-16M.py b/convert-scan-for-pyfai-16M.py new file mode 100644 index 0000000..921ecf1 --- /dev/null +++ b/convert-scan-for-pyfai-16M.py @@ -0,0 +1,92 @@ +#!/usr/bin/env python3 + +# author J.Beale + +""" +# aim + - -16M=varient for large detectors +make image file to input into pyFAI for initial detector beam-centre and detector distance calibration +refer to Cristallina8M-calibration for complete protocol +https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit# + +# protocol +take scan of LaB6 +## IMPORTANT ## +- save image as photon-counts - in slic/run_control scale=beam energy +- detector_geometry=TRUE - saves detector panels in their correct orientation +## scan inputs ## +- <0.01 trans +- motor scan > 10 um per step +- 10 images per step, 100 steps +- use scan.json as input for this script + +# usage +python make-tiff.py -j -s -n + +# output +creates a .npy file that can be loaded directly into pyFAI +""" + +# modules +from matplotlib import pyplot as plt +import numpy as np +from sfdata import SFScanInfo +from tqdm import tqdm +import argparse + +def convert_image( path_to_json, jungfrau, name ): + + # opens scan + scan = SFScanInfo( path_to_json ) + + # step through scan and average files from each positions + mean_image = [] + for step in tqdm( enumerate(scan) ): + # step is a SFDataFiles object + subset = step[1] + + # go through data in_batches so you don't run out of memory + means = np.empty(subset[jungfrau].data.shape) + for indices, batch in subset[jungfrau].in_batches(size=2): + means[indices] = np.mean(batch.data, axis=(0)) + + # take mean of means for batch opened data + mean_image.append(np.mean(means, axis=0)) + + # sum averaged imaged + sum_image = np.sum( mean_image, axis=0 ) + + # output to file + np.save( "{0}.npy".format( name ), sum_image ) + + # create plot of summed, averaged scan + fig, ax = plt.subplots() + ax.imshow(sum_image, vmin=0, vmax=1000) + plt.show() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "-j", + "--jungfrau", + help="name of the jungfrau used, i.e., JF17T16V01 for Cristallina MX", + type=str, + default="JF17T16V01" + ) + parser.add_argument( + "-s", + "--scan", + help="path to json scan file", + type=str, + default="/sf/cristallina/data/p20590/raw/run0003/meta/scan.json" + ) + parser.add_argument( + "-n", + "--name", + help="name of output file", + type=str, + default="sum_mean_scan" + ) + args = parser.parse_args() + + convert_image( args.scan, args.jungfrau, args.name )