253 lines
6.5 KiB
C++
253 lines
6.5 KiB
C++
// SPDX-FileCopyrightText: 2024 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
|
|
// SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
#include <cmath>
|
|
#include "Coord.h"
|
|
#include "JFJochException.h"
|
|
|
|
Coord::Coord() {
|
|
x = 0.0; y = 0.0; z = 0.0;
|
|
}
|
|
|
|
Coord::Coord(const float in[3]) {
|
|
x = in[0];
|
|
y = in[1];
|
|
z = in[2];
|
|
}
|
|
|
|
Coord::Coord(float in_x, float in_y, float in_z) {
|
|
x = in_x;
|
|
y = in_y;
|
|
z = in_z;
|
|
}
|
|
|
|
Coord Coord::operator+(const Coord &in) const {
|
|
return Coord(this->x+in.x, this->y+in.y, this->z+in.z);
|
|
}
|
|
|
|
Coord Coord::operator-(const Coord &in) const {
|
|
return Coord(this->x-in.x, this->y-in.y, this->z-in.z);
|
|
}
|
|
|
|
Coord Coord::operator*(float in) const {
|
|
return Coord(this->x*in, this->y*in, this->z*in);
|
|
}
|
|
|
|
Coord Coord::operator/(float in) const {
|
|
return Coord(this->x/in, this->y/in, this->z/in);
|
|
};
|
|
|
|
Coord Coord::operator-() const {
|
|
return Coord(- this->x, -this->y, -this->z);
|
|
}
|
|
|
|
Coord& Coord::operator+=(const Coord &in) {
|
|
this->x += in.x;
|
|
this->y += in.y;
|
|
this->z += in.z;
|
|
return *this;
|
|
}
|
|
|
|
Coord& Coord::operator-=(const Coord &in) {
|
|
this->x -= in.x;
|
|
this->y -= in.y;
|
|
this->z -= in.z;
|
|
return *this;
|
|
}
|
|
|
|
Coord& Coord::operator*=(float in) {
|
|
this->x *= in;
|
|
this->y *= in;
|
|
this->z *= in;
|
|
return *this;
|
|
}
|
|
|
|
Coord& Coord::operator/=(float in) {
|
|
this->x /= in;
|
|
this->y /= in;
|
|
this->z /= in;
|
|
return *this;
|
|
}
|
|
|
|
Coord Coord::operator%(const Coord &in) const {
|
|
return Coord(this->y * in.z - this->z * in.y,
|
|
this->z * in.x - this->x * in.z,
|
|
this->x * in.y - this->y * in.x);
|
|
}; // Cross product
|
|
|
|
float Coord::operator*(const Coord &in) const {
|
|
return this->x * in.x + this->y * in.y + this->z * in.z;
|
|
};
|
|
|
|
bool Coord::operator==(const Coord &other) const {
|
|
if ((this->x == other.x) && (this->y == other.y) && (this->z == other.z))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
float Coord::Length() const {
|
|
return sqrt(this->x*this->x + this->y*this->y + this->z*this->z);
|
|
}
|
|
|
|
Coord Coord::Normalize() const {
|
|
float len = Length();
|
|
if (len < 1e-12)
|
|
return Coord(0,0,0);
|
|
return Coord(this->x/len, this->y/len, this->z/len);
|
|
}
|
|
|
|
Coord operator*(float in1, const Coord& in2) {
|
|
return in2 * in1;
|
|
}
|
|
|
|
const float& Coord::operator[](int64_t val) const {
|
|
switch (val) {
|
|
case 0:
|
|
return x;
|
|
case 1:
|
|
return y;
|
|
case 2:
|
|
return z;
|
|
default:
|
|
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
|
|
"Coord index must be in range 0-2");
|
|
}
|
|
}
|
|
|
|
float& Coord::operator[](int64_t val) {
|
|
switch (val) {
|
|
case 0:
|
|
return x;
|
|
case 1:
|
|
return y;
|
|
case 2:
|
|
return z;
|
|
default:
|
|
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
|
|
"Coord index must be in range 0-2");
|
|
}
|
|
}
|
|
|
|
std::ostream &operator<<( std::ostream &output, const Coord &in ) {
|
|
output << in.x << " " << in.y << " " << in.z;
|
|
return output;
|
|
}
|
|
|
|
float angle_deg(const Coord &c1, const Coord &c2) {
|
|
float cos_ang = c1 * c2 / (c1.Length() * c2.Length());
|
|
const float epsilon = 1e-5f;
|
|
|
|
if (cos_ang > 1.0f && cos_ang < 1.0f + epsilon)
|
|
cos_ang = 1.0f;
|
|
else if (cos_ang < -1.0f && cos_ang > -1.0f - epsilon)
|
|
cos_ang = -1.0f;
|
|
|
|
return acosf(cos_ang) * (180.0f / static_cast<float>(M_PI));
|
|
}
|
|
|
|
void Coord::swap(Coord &other) noexcept {
|
|
std::swap(x, other.x);
|
|
std::swap(y, other.y);
|
|
std::swap(z, other.z);
|
|
}
|
|
|
|
// Then outside the class but in the same namespace:
|
|
inline void swap(Coord& a, Coord& b) noexcept {
|
|
a.swap(b);
|
|
}
|
|
|
|
|
|
RotMatrix::RotMatrix() {
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++)
|
|
v[i][j] = (i == j) ? 1 : 0;
|
|
}
|
|
};
|
|
|
|
RotMatrix::RotMatrix(float alpha, const Coord &dir) {
|
|
float c = cosf(alpha);
|
|
float s = sinf(alpha);
|
|
float t = 1.0f - c;
|
|
Coord n = dir.Normalize();
|
|
|
|
v[0][0] = t * n.x * n.x + c;
|
|
v[0][1] = t * n.x * n.y - s * n.z;
|
|
v[0][2] = t * n.x * n.z + s * n.y;
|
|
v[1][0] = t * n.x * n.y + s * n.z;
|
|
v[1][1] = t * n.y * n.y + c;
|
|
v[1][2] = t * n.y * n.z - s * n.x;
|
|
v[2][0] = t * n.x * n.z - s * n.y;
|
|
v[2][1] = t * n.y * n.z + s * n.x;
|
|
v[2][2] = t * n.z * n.z + c;
|
|
}
|
|
|
|
Coord RotMatrix::operator*(const Coord &in) const {
|
|
return {
|
|
v[0][0] * in.x + v[0][1] * in.y + v[0][2] * in.z,
|
|
v[1][0] * in.x + v[1][1] * in.y + v[1][2] * in.z,
|
|
v[2][0] * in.x + v[2][1] * in.y + v[2][2] * in.z
|
|
};
|
|
}
|
|
|
|
RotMatrix RotMatrix::operator*(const RotMatrix &other) const {
|
|
RotMatrix result;
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
result.v[i][j] = v[i][0] * other.v[0][j] +
|
|
v[i][1] * other.v[1][j] +
|
|
v[i][2] * other.v[2][j];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
RotMatrix RotMatrix::transpose() const {
|
|
RotMatrix result;
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
result.v[i][j] = v[j][i];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
RotMatrix RotMatrix::invert() const {
|
|
RotMatrix result;
|
|
float det = v[0][0] * (v[1][1] * v[2][2] - v[1][2] * v[2][1])
|
|
- v[0][1] * (v[1][0] * v[2][2] - v[1][2] * v[2][0])
|
|
+ v[0][2] * (v[1][0] * v[2][1] - v[1][1] * v[2][0]);
|
|
|
|
if (det == 0)
|
|
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
|
|
"Singular matrix, cannot invert");
|
|
|
|
float invDet = 1.0f / det;
|
|
|
|
result.v[0][0] = (v[1][1] * v[2][2] - v[1][2] * v[2][1]) * invDet;
|
|
result.v[0][1] = (v[0][2] * v[2][1] - v[0][1] * v[2][2]) * invDet;
|
|
result.v[0][2] = (v[0][1] * v[1][2] - v[0][2] * v[1][1]) * invDet;
|
|
result.v[1][0] = (v[1][2] * v[2][0] - v[1][0] * v[2][2]) * invDet;
|
|
result.v[1][1] = (v[0][0] * v[2][2] - v[0][2] * v[2][0]) * invDet;
|
|
result.v[1][2] = (v[0][2] * v[1][0] - v[0][0] * v[1][2]) * invDet;
|
|
result.v[2][0] = (v[1][0] * v[2][1] - v[1][1] * v[2][0]) * invDet;
|
|
result.v[2][1] = (v[0][1] * v[2][0] - v[0][0] * v[2][1]) * invDet;
|
|
result.v[2][2] = (v[0][0] * v[1][1] - v[0][1] * v[1][0]) * invDet;
|
|
|
|
return result;
|
|
}
|
|
|
|
RotMatrix RotMatrix::operator!() const {
|
|
return invert();
|
|
}
|
|
|
|
std::vector<float> RotMatrix::arr() const {
|
|
std::vector<float> ret;
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
ret.push_back(v[i][j]);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|