Python client is built in CI (no new release)
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,3 +1,5 @@
|
||||
cmake-build-debug/
|
||||
cmake-build-release/
|
||||
build*/
|
||||
python-client/
|
||||
openapi-generator-cli.jar
|
||||
|
||||
@@ -54,9 +54,7 @@ build:x86:python_client:
|
||||
tags:
|
||||
- python
|
||||
script:
|
||||
- cd python-client
|
||||
- python3 setup.py sdist bdist_wheel
|
||||
- mv dist/* ..
|
||||
- bash gen_python_client.sh
|
||||
artifacts:
|
||||
paths:
|
||||
- jfjoch_client-*whl
|
||||
|
||||
10
gen_python_client.sh
Normal file
10
gen_python_client.sh
Normal file
@@ -0,0 +1,10 @@
|
||||
#!/bin/bash
|
||||
|
||||
VERSION=$(<VERSION)
|
||||
OPENAPI_VERSION=7.8.0
|
||||
wget https://repo1.maven.org/maven2/org/openapitools/openapi-generator-cli/${OPENAPI_VERSION}/openapi-generator-cli-${OPENAPI_VERSION}.jar -O openapi-generator-cli.jar
|
||||
|
||||
java -jar openapi-generator-cli.jar generate -i broker/jfjoch_api.yaml -o python-client/ -g python --git-host=git.psi.ch --git-repo-id jungfraujoch --git-user-id jungfraujoch --additional-properties=packageName=jfjoch_client,packageVersion=$VERSION
|
||||
cd python-client
|
||||
python3 setup.py sdist bdist_wheel
|
||||
mv dist/* ..
|
||||
@@ -34,9 +34,8 @@ release-cli create --name "Release $PACKAGE_VERSION_SEM" --tag-name $PACKAGE_VER
|
||||
--assets-link "{\"name\":\"jfjoch-client-${PACKAGE_VERSION_PYTHON}.tar.gz\",\"url\":\"${PACKAGE_REGISTRY_URL}/jfjoch-client-${PACKAGE_VERSION_PYTHON}.tar.gz\",\"link_type\":\"package\"}"
|
||||
|
||||
if [ -n "$CI_PYPI_TOKEN" ]; then
|
||||
cd python-client
|
||||
python3 setup.py sdist bdist_wheel
|
||||
rm -rf dist/
|
||||
mkdir dist/
|
||||
cp jfjoch_client-${PACKAGE_VERSION_PYTHON}-py3-none-any.whl jfjoch-client-${PACKAGE_VERSION_PYTHON}.tar.gz dist/
|
||||
twine upload dist/* -u __token__ -p $CI_PYPI_TOKEN --skip-existing
|
||||
mv dist/* ..
|
||||
cd ..
|
||||
fi
|
||||
fi
|
||||
|
||||
@@ -1,200 +0,0 @@
|
||||
# jfjoch-client
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland).
|
||||
Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU.
|
||||
Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
|
||||
This Python package is automatically generated by the [OpenAPI Generator](https://openapi-generator.tech) project:
|
||||
|
||||
- API version: 1.0.0-rc.23
|
||||
- Package version: 1.0.0-rc.23
|
||||
- Generator version: 7.8.0
|
||||
- Build package: org.openapitools.codegen.languages.PythonClientCodegen
|
||||
|
||||
## Requirements.
|
||||
|
||||
Python 3.7+
|
||||
|
||||
## Installation & Usage
|
||||
### pip install
|
||||
|
||||
If the python package is hosted on a repository, you can install directly using:
|
||||
|
||||
```sh
|
||||
pip install git+https://git.psi.ch/jungfraujoch/jungfraujoch.git
|
||||
```
|
||||
(you may need to run `pip` with root permission: `sudo pip install git+https://git.psi.ch/jungfraujoch/jungfraujoch.git`)
|
||||
|
||||
Then import the package:
|
||||
```python
|
||||
import jfjoch_client
|
||||
```
|
||||
|
||||
### Setuptools
|
||||
|
||||
Install via [Setuptools](http://pypi.python.org/pypi/setuptools).
|
||||
|
||||
```sh
|
||||
python setup.py install --user
|
||||
```
|
||||
(or `sudo python setup.py install` to install the package for all users)
|
||||
|
||||
Then import the package:
|
||||
```python
|
||||
import jfjoch_client
|
||||
```
|
||||
|
||||
### Tests
|
||||
|
||||
Execute `pytest` to run the tests.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Please follow the [installation procedure](#installation--usage) and then run the following:
|
||||
|
||||
```python
|
||||
|
||||
import jfjoch_client
|
||||
from jfjoch_client.rest import ApiException
|
||||
from pprint import pprint
|
||||
|
||||
# Defining the host is optional and defaults to http://localhost:5232
|
||||
# See configuration.py for a list of all supported configuration parameters.
|
||||
configuration = jfjoch_client.Configuration(
|
||||
host = "http://localhost:5232"
|
||||
)
|
||||
|
||||
|
||||
|
||||
# Enter a context with an instance of the API client
|
||||
with jfjoch_client.ApiClient(configuration) as api_client:
|
||||
# Create an instance of the API class
|
||||
api_instance = jfjoch_client.DefaultApi(api_client)
|
||||
|
||||
try:
|
||||
# Cancel running data collection
|
||||
api_instance.cancel_post()
|
||||
except ApiException as e:
|
||||
print("Exception when calling DefaultApi->cancel_post: %s\n" % e)
|
||||
|
||||
```
|
||||
|
||||
## Documentation for API Endpoints
|
||||
|
||||
All URIs are relative to *http://localhost:5232*
|
||||
|
||||
Class | Method | HTTP request | Description
|
||||
------------ | ------------- | ------------- | -------------
|
||||
*DefaultApi* | [**cancel_post**](docs/DefaultApi.md#cancel_post) | **POST** /cancel | Cancel running data collection
|
||||
*DefaultApi* | [**config_azim_int_get**](docs/DefaultApi.md#config_azim_int_get) | **GET** /config/azim_int | Get radial integration configuration
|
||||
*DefaultApi* | [**config_azim_int_put**](docs/DefaultApi.md#config_azim_int_put) | **PUT** /config/azim_int | Configure radial integration
|
||||
*DefaultApi* | [**config_detector_get**](docs/DefaultApi.md#config_detector_get) | **GET** /config/detector | Get detector configuration
|
||||
*DefaultApi* | [**config_detector_put**](docs/DefaultApi.md#config_detector_put) | **PUT** /config/detector | Change detector configuration
|
||||
*DefaultApi* | [**config_image_format_conversion_post**](docs/DefaultApi.md#config_image_format_conversion_post) | **POST** /config/image_format/conversion | Configure format for data collection with full conversion
|
||||
*DefaultApi* | [**config_image_format_get**](docs/DefaultApi.md#config_image_format_get) | **GET** /config/image_format | Get image output format
|
||||
*DefaultApi* | [**config_image_format_put**](docs/DefaultApi.md#config_image_format_put) | **PUT** /config/image_format | Change image output format
|
||||
*DefaultApi* | [**config_image_format_raw_post**](docs/DefaultApi.md#config_image_format_raw_post) | **POST** /config/image_format/raw | Configure format for raw data collection
|
||||
*DefaultApi* | [**config_instrument_get**](docs/DefaultApi.md#config_instrument_get) | **GET** /config/instrument | Get instrument metadata
|
||||
*DefaultApi* | [**config_instrument_put**](docs/DefaultApi.md#config_instrument_put) | **PUT** /config/instrument | Change instrument metadata
|
||||
*DefaultApi* | [**config_internal_generator_image_put**](docs/DefaultApi.md#config_internal_generator_image_put) | **PUT** /config/internal_generator_image | Load binary image for internal FPGA generator
|
||||
*DefaultApi* | [**config_internal_generator_image_tiff_put**](docs/DefaultApi.md#config_internal_generator_image_tiff_put) | **PUT** /config/internal_generator_image.tiff | Load TIFF image for internal FPGA generator
|
||||
*DefaultApi* | [**config_mask_tiff_get**](docs/DefaultApi.md#config_mask_tiff_get) | **GET** /config/mask.tiff | Get mask of the detector
|
||||
*DefaultApi* | [**config_select_detector_get**](docs/DefaultApi.md#config_select_detector_get) | **GET** /config/select_detector | List available detectors
|
||||
*DefaultApi* | [**config_select_detector_put**](docs/DefaultApi.md#config_select_detector_put) | **PUT** /config/select_detector | Select detector
|
||||
*DefaultApi* | [**config_spot_finding_get**](docs/DefaultApi.md#config_spot_finding_get) | **GET** /config/spot_finding | Get data processing configuration
|
||||
*DefaultApi* | [**config_spot_finding_put**](docs/DefaultApi.md#config_spot_finding_put) | **PUT** /config/spot_finding | Configure spot finding
|
||||
*DefaultApi* | [**config_user_mask_tiff_get**](docs/DefaultApi.md#config_user_mask_tiff_get) | **GET** /config/user_mask.tiff | Get user mask of the detector
|
||||
*DefaultApi* | [**config_user_mask_tiff_put**](docs/DefaultApi.md#config_user_mask_tiff_put) | **PUT** /config/user_mask.tiff | Upload user mask of the detector
|
||||
*DefaultApi* | [**config_zeromq_preview_get**](docs/DefaultApi.md#config_zeromq_preview_get) | **GET** /config/zeromq_preview | Get ZeroMQ preview settings
|
||||
*DefaultApi* | [**config_zeromq_preview_put**](docs/DefaultApi.md#config_zeromq_preview_put) | **PUT** /config/zeromq_preview | Set ZeroMQ preview settings
|
||||
*DefaultApi* | [**deactivate_post**](docs/DefaultApi.md#deactivate_post) | **POST** /deactivate | Prepare detector to turn off
|
||||
*DefaultApi* | [**detector_status_get**](docs/DefaultApi.md#detector_status_get) | **GET** /detector/status | Get detector status
|
||||
*DefaultApi* | [**fpga_status_get**](docs/DefaultApi.md#fpga_status_get) | **GET** /fpga_status | Get status of FPGA devices
|
||||
*DefaultApi* | [**initialize_post**](docs/DefaultApi.md#initialize_post) | **POST** /initialize | Initialize detector and data acquisition
|
||||
*DefaultApi* | [**pedestal_post**](docs/DefaultApi.md#pedestal_post) | **POST** /pedestal | Collect dark current for the detector
|
||||
*DefaultApi* | [**plot_azim_int_get**](docs/DefaultApi.md#plot_azim_int_get) | **GET** /plot/azim_int | Generate radial integration profile
|
||||
*DefaultApi* | [**plot_bkg_estimate_get**](docs/DefaultApi.md#plot_bkg_estimate_get) | **GET** /plot/bkg_estimate | Generate background estimate plot
|
||||
*DefaultApi* | [**plot_error_pixel_get**](docs/DefaultApi.md#plot_error_pixel_get) | **GET** /plot/error_pixel | Generate error pixels plot
|
||||
*DefaultApi* | [**plot_image_collection_efficiency_get**](docs/DefaultApi.md#plot_image_collection_efficiency_get) | **GET** /plot/image_collection_efficiency | Generate image collection efficiency plot
|
||||
*DefaultApi* | [**plot_indexing_rate_get**](docs/DefaultApi.md#plot_indexing_rate_get) | **GET** /plot/indexing_rate | Generate indexing rate plot
|
||||
*DefaultApi* | [**plot_receiver_delay_get**](docs/DefaultApi.md#plot_receiver_delay_get) | **GET** /plot/receiver_delay | Generate receiver delay plot
|
||||
*DefaultApi* | [**plot_receiver_free_send_buffers_get**](docs/DefaultApi.md#plot_receiver_free_send_buffers_get) | **GET** /plot/receiver_free_send_buffers | Generate receiver free send buffer plot
|
||||
*DefaultApi* | [**plot_roi_max_count_get**](docs/DefaultApi.md#plot_roi_max_count_get) | **GET** /plot/roi_max_count | Generate plot of ROI max count
|
||||
*DefaultApi* | [**plot_roi_sum_get**](docs/DefaultApi.md#plot_roi_sum_get) | **GET** /plot/roi_sum | Generate ROI sum plot
|
||||
*DefaultApi* | [**plot_roi_valid_pixels_get**](docs/DefaultApi.md#plot_roi_valid_pixels_get) | **GET** /plot/roi_valid_pixels | Generate plot of ROI valid pixels
|
||||
*DefaultApi* | [**plot_spot_count_get**](docs/DefaultApi.md#plot_spot_count_get) | **GET** /plot/spot_count | Generate spot count plot
|
||||
*DefaultApi* | [**plot_strong_pixel_get**](docs/DefaultApi.md#plot_strong_pixel_get) | **GET** /plot/strong_pixel | Generate strong pixels plot
|
||||
*DefaultApi* | [**preview_calibration_tiff_get**](docs/DefaultApi.md#preview_calibration_tiff_get) | **GET** /preview/calibration.tiff | Get last preview image in TIFF format for calibration with PyFAI/Dioptas
|
||||
*DefaultApi* | [**preview_image_jpeg_get**](docs/DefaultApi.md#preview_image_jpeg_get) | **GET** /preview/image.jpeg | Get last preview image in JPEG format using default settings
|
||||
*DefaultApi* | [**preview_image_jpeg_post**](docs/DefaultApi.md#preview_image_jpeg_post) | **POST** /preview/image.jpeg | Get last preview image in JPEG format using custom settings
|
||||
*DefaultApi* | [**preview_image_tiff_get**](docs/DefaultApi.md#preview_image_tiff_get) | **GET** /preview/image.tiff | Get last preview image in TIFF format
|
||||
*DefaultApi* | [**preview_pedestal_tiff_get**](docs/DefaultApi.md#preview_pedestal_tiff_get) | **GET** /preview/pedestal.tiff | Get pedestal G0 in TIFF format
|
||||
*DefaultApi* | [**roi_box_get**](docs/DefaultApi.md#roi_box_get) | **GET** /roi/box | Get box ROIs
|
||||
*DefaultApi* | [**roi_box_put**](docs/DefaultApi.md#roi_box_put) | **PUT** /roi/box | Upload box ROIs
|
||||
*DefaultApi* | [**roi_circle_get**](docs/DefaultApi.md#roi_circle_get) | **GET** /roi/circle | Get circular ROI
|
||||
*DefaultApi* | [**roi_circle_put**](docs/DefaultApi.md#roi_circle_put) | **PUT** /roi/circle | Upload circular ROI
|
||||
*DefaultApi* | [**start_post**](docs/DefaultApi.md#start_post) | **POST** /start | Start detector
|
||||
*DefaultApi* | [**statistics_calibration_get**](docs/DefaultApi.md#statistics_calibration_get) | **GET** /statistics/calibration | Get calibration statistics
|
||||
*DefaultApi* | [**statistics_data_collection_get**](docs/DefaultApi.md#statistics_data_collection_get) | **GET** /statistics/data_collection | Get data collection statistics
|
||||
*DefaultApi* | [**statistics_get**](docs/DefaultApi.md#statistics_get) | **GET** /statistics | Get general statistics
|
||||
*DefaultApi* | [**status_get**](docs/DefaultApi.md#status_get) | **GET** /status | Get Jungfraujoch status
|
||||
*DefaultApi* | [**trigger_post**](docs/DefaultApi.md#trigger_post) | **POST** /trigger | Send soft trigger to the detector
|
||||
*DefaultApi* | [**version_get**](docs/DefaultApi.md#version_get) | **GET** /version |
|
||||
*DefaultApi* | [**wait_till_done_post**](docs/DefaultApi.md#wait_till_done_post) | **POST** /wait_till_done | Wait for acquisition done
|
||||
*DefaultApi* | [**xfel_event_code_get**](docs/DefaultApi.md#xfel_event_code_get) | **GET** /xfel/event_code | Return XFEL event codes for the current data acquisition
|
||||
*DefaultApi* | [**xfel_pulse_id_get**](docs/DefaultApi.md#xfel_pulse_id_get) | **GET** /xfel/pulse_id | Return XFEL pulse IDs for the current data acquisition
|
||||
|
||||
|
||||
## Documentation For Models
|
||||
|
||||
- [AzimIntSettings](docs/AzimIntSettings.md)
|
||||
- [BrokerStatus](docs/BrokerStatus.md)
|
||||
- [CalibrationStatisticsInner](docs/CalibrationStatisticsInner.md)
|
||||
- [DatasetSettings](docs/DatasetSettings.md)
|
||||
- [DatasetSettingsUnitCell](docs/DatasetSettingsUnitCell.md)
|
||||
- [Detector](docs/Detector.md)
|
||||
- [DetectorList](docs/DetectorList.md)
|
||||
- [DetectorListDetectorsInner](docs/DetectorListDetectorsInner.md)
|
||||
- [DetectorModule](docs/DetectorModule.md)
|
||||
- [DetectorModuleDirection](docs/DetectorModuleDirection.md)
|
||||
- [DetectorPowerState](docs/DetectorPowerState.md)
|
||||
- [DetectorSelection](docs/DetectorSelection.md)
|
||||
- [DetectorSettings](docs/DetectorSettings.md)
|
||||
- [DetectorState](docs/DetectorState.md)
|
||||
- [DetectorStatus](docs/DetectorStatus.md)
|
||||
- [DetectorTiming](docs/DetectorTiming.md)
|
||||
- [DetectorType](docs/DetectorType.md)
|
||||
- [ErrorMessage](docs/ErrorMessage.md)
|
||||
- [FpgaStatusInner](docs/FpgaStatusInner.md)
|
||||
- [ImageFormatSettings](docs/ImageFormatSettings.md)
|
||||
- [ImagePusherType](docs/ImagePusherType.md)
|
||||
- [InstrumentMetadata](docs/InstrumentMetadata.md)
|
||||
- [JfjochSettings](docs/JfjochSettings.md)
|
||||
- [JfjochStatistics](docs/JfjochStatistics.md)
|
||||
- [MeasurementStatistics](docs/MeasurementStatistics.md)
|
||||
- [PcieDevicesInner](docs/PcieDevicesInner.md)
|
||||
- [Plot](docs/Plot.md)
|
||||
- [Plots](docs/Plots.md)
|
||||
- [PreviewSettings](docs/PreviewSettings.md)
|
||||
- [RoiBox](docs/RoiBox.md)
|
||||
- [RoiBoxList](docs/RoiBoxList.md)
|
||||
- [RoiCircle](docs/RoiCircle.md)
|
||||
- [RoiCircleList](docs/RoiCircleList.md)
|
||||
- [RotationAxis](docs/RotationAxis.md)
|
||||
- [SpotFindingSettings](docs/SpotFindingSettings.md)
|
||||
- [StandardDetectorGeometry](docs/StandardDetectorGeometry.md)
|
||||
- [ZeromqPreviewSettings](docs/ZeromqPreviewSettings.md)
|
||||
- [ZeromqSettings](docs/ZeromqSettings.md)
|
||||
|
||||
|
||||
<a id="documentation-for-authorization"></a>
|
||||
## Documentation For Authorization
|
||||
|
||||
Endpoints do not require authorization.
|
||||
|
||||
|
||||
## Author
|
||||
|
||||
filip.leonarski@psi.ch
|
||||
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
# AzimIntSettings
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**polarization_factor** | **float** | If polarization factor is provided, than polarization correction is enabled. | [optional]
|
||||
**solid_angle_corr** | **bool** | Apply solid angle correction for radial integration | [default to True]
|
||||
**high_q_recip_a** | **float** | |
|
||||
**low_q_recip_a** | **float** | |
|
||||
**q_spacing** | **float** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.azim_int_settings import AzimIntSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of AzimIntSettings from a JSON string
|
||||
azim_int_settings_instance = AzimIntSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(AzimIntSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
azim_int_settings_dict = azim_int_settings_instance.to_dict()
|
||||
# create an instance of AzimIntSettings from a dict
|
||||
azim_int_settings_from_dict = AzimIntSettings.from_dict(azim_int_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# BrokerStatus
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**state** | **str** | |
|
||||
**progress** | **float** | Progress of data collection (only available if receiving is running) | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.broker_status import BrokerStatus
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of BrokerStatus from a JSON string
|
||||
broker_status_instance = BrokerStatus.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(BrokerStatus.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
broker_status_dict = broker_status_instance.to_dict()
|
||||
# create an instance of BrokerStatus from a dict
|
||||
broker_status_from_dict = BrokerStatus.from_dict(broker_status_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,37 +0,0 @@
|
||||
# CalibrationStatisticsInner
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**module_number** | **int** | |
|
||||
**storage_cell_number** | **int** | |
|
||||
**pedestal_g0_mean** | **float** | |
|
||||
**pedestal_g1_mean** | **float** | |
|
||||
**pedestal_g2_mean** | **float** | |
|
||||
**gain_g0_mean** | **float** | |
|
||||
**gain_g1_mean** | **float** | |
|
||||
**gain_g2_mean** | **float** | |
|
||||
**masked_pixels** | **int** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.calibration_statistics_inner import CalibrationStatisticsInner
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of CalibrationStatisticsInner from a JSON string
|
||||
calibration_statistics_inner_instance = CalibrationStatisticsInner.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(CalibrationStatisticsInner.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
calibration_statistics_inner_dict = calibration_statistics_inner_instance.to_dict()
|
||||
# create an instance of CalibrationStatisticsInner from a dict
|
||||
calibration_statistics_inner_from_dict = CalibrationStatisticsInner.from_dict(calibration_statistics_inner_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
# DatasetSettings
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**images_per_trigger** | **int** | For standard synchrotron data collection - this is number of images collected per one TTL trigger For XFEL (pulsed source) - this number is ignored and set to 1 For storage cell mode - this number is ignored and set to number of storage cells | [optional] [default to 1]
|
||||
**ntrigger** | **int** | Number of TTL trigger that the detector is expected to receive during data collection | [optional] [default to 1]
|
||||
**image_time_us** | **int** | Image time. If not provided (or zero value) the frame time is assumed as default. Image time must be multiple of frame time; max value is 256 * frame_time. In XFEL mode: summation happens for frames collected with multiple triggers. Ignored for storage cells and if raw data are saved. | [optional]
|
||||
**beam_x_pxl** | **float** | /entry/detector/beam_center_x in NXmx Beam center in X direction [pixels] |
|
||||
**beam_y_pxl** | **float** | /entry/detector/beam_center_y in NXmx Beam center in X direction [pixels] |
|
||||
**detector_distance_mm** | **float** | /entry/detector/distance in NXmx Detector distance [mm] |
|
||||
**incident_energy_ke_v** | **float** | Used to calculate /entry/beam/incident_wavelength in NXmx Incident particle (photon, electron) energy in keV |
|
||||
**file_prefix** | **str** | Prefix for filenames. If left empty, no file will be saved. | [optional] [default to '']
|
||||
**images_per_file** | **int** | Number of files in a single HDF5 data file (0 = write all images to a single data file). | [optional] [default to 1000]
|
||||
**space_group_number** | **int** | | [optional] [default to 0]
|
||||
**sample_name** | **str** | /entry/sample/name in NXmx Sample name | [optional] [default to '']
|
||||
**compression** | **str** | | [optional] [default to 'bslz4']
|
||||
**total_flux** | **float** | /entry/beam/total_flux in NXmx Flux incident on beam plane in photons per second. In other words this is the flux integrated over area. [photons/s] | [optional]
|
||||
**transmission** | **float** | /entry/instrument/attenuator/attenuator_transmission Transmission of attenuator (filter) [no units] | [optional]
|
||||
**goniometer** | [**RotationAxis**](RotationAxis.md) | | [optional]
|
||||
**header_appendix** | **object** | Header appendix, added as user_data/user to start message (can be any valid JSON) | [optional]
|
||||
**image_appendix** | **object** | Image appendix, added as user_data to image message (can be any valid JSON) | [optional]
|
||||
**data_reduction_factor_serialmx** | **float** | Rate at which non-indexed images are accepted to be forwarded to writer. Value of 1.0 (default) means that all images are written. Values below zero mean that non-indexed images will be accepted with a given probability. | [optional] [default to 1.0]
|
||||
**pixel_value_low_threshold** | **int** | Set all counts lower than the value to zero. When the value is set, negative numbers other than error pixel value are always set to zero. Setting to zero is equivalent to turning the option off. | [optional]
|
||||
**run_number** | **int** | Number of run within an experimental session. Transferred over CBOR stream as \"series ID\", though not saved in HDF5 file. It is highly recommended to keep this number unique for each data collection during experimental series. If not provided, the number will be automatically incremented. | [optional]
|
||||
**run_name** | **str** | Unique ID of run. Transferred over CBOR stream as \"unique series ID\", though not saved in HDF5 file. It is highly recommended to keep this name unique for each data collection during experimental series. If not provided, the name will be automatically generated as number + colon + file_prefix. | [optional]
|
||||
**experiment_group** | **str** | Name of group owning the data (e.g. p-group or proposal number). Transferred over CBOR stream, though not saved in HDF5 file. | [optional]
|
||||
**poisson_compression** | **int** | Enable lossy compression of pixel values that preserves Poisson statistics. Requires to provide a numerical factor SQ. Pixel value P will be transformed to round(sqrt(P) * SQ), with rounding to the closest integer. Compression is turned off if the value is missing or it is set to zero. | [optional]
|
||||
**write_nxmx_hdf5_master** | **bool** | Write NXmx formatted HDF5 master file. Recommended to use for macromolecular crystallography experiments and to turn off for other experiments. | [optional] [default to True]
|
||||
**save_calibration** | **bool** | Forward image calibration (at the moment pedestal and pedestal RMS for JUNGFRAU) using the ZeroMQ stream to writer. If parameter is not provided calibration will be saved only if more than 4 images are recorded. | [optional]
|
||||
**unit_cell** | [**DatasetSettingsUnitCell**](DatasetSettingsUnitCell.md) | | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.dataset_settings import DatasetSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DatasetSettings from a JSON string
|
||||
dataset_settings_instance = DatasetSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DatasetSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
dataset_settings_dict = dataset_settings_instance.to_dict()
|
||||
# create an instance of DatasetSettings from a dict
|
||||
dataset_settings_from_dict = DatasetSettings.from_dict(dataset_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,35 +0,0 @@
|
||||
# DatasetSettingsUnitCell
|
||||
|
||||
Units of angstrom and degree
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**a** | **float** | |
|
||||
**b** | **float** | |
|
||||
**c** | **float** | |
|
||||
**alpha** | **float** | |
|
||||
**beta** | **float** | |
|
||||
**gamma** | **float** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.dataset_settings_unit_cell import DatasetSettingsUnitCell
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DatasetSettingsUnitCell from a JSON string
|
||||
dataset_settings_unit_cell_instance = DatasetSettingsUnitCell.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DatasetSettingsUnitCell.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
dataset_settings_unit_cell_dict = dataset_settings_unit_cell_instance.to_dict()
|
||||
# create an instance of DatasetSettingsUnitCell from a dict
|
||||
dataset_settings_unit_cell_from_dict = DatasetSettingsUnitCell.from_dict(dataset_settings_unit_cell_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,43 +0,0 @@
|
||||
# Detector
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**description** | **str** | |
|
||||
**serial_number** | **str** | |
|
||||
**type** | [**DetectorType**](DetectorType.md) | | [optional]
|
||||
**high_voltage_v** | **int** | | [optional] [default to 0]
|
||||
**udp_interface_count** | **int** | | [optional] [default to 1]
|
||||
**module_sync** | **bool** | Use module 0 as master for timing. Only applies to JUNGFRAU detector (this cannot be turned off for EIGER). | [optional] [default to True]
|
||||
**sensor_thickness_um** | **float** | | [optional] [default to 320]
|
||||
**calibration_file** | **List[str]** | Gain file (JUNGFRAU) or trimbit file (EIGER). One entry per module. Either empty or number of module entries. | [optional]
|
||||
**hostname** | **List[str]** | Hostname for detector module. One entry per module One entry per module. Either empty or number of module entries. | [optional]
|
||||
**sensor_material** | **str** | | [optional] [default to 'Si']
|
||||
**tx_delay** | **List[int]** | | [optional]
|
||||
**base_data_ipv4_address** | **str** | | [optional]
|
||||
**standard_geometry** | [**StandardDetectorGeometry**](StandardDetectorGeometry.md) | | [optional]
|
||||
**custom_geometry** | [**List[DetectorModule]**](DetectorModule.md) | | [optional]
|
||||
**mirror_y** | **bool** | Mirror detector in Y direction to account for MX convention of (0,0) point in top left corner | [optional] [default to True]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector import Detector
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of Detector from a JSON string
|
||||
detector_instance = Detector.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(Detector.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_dict = detector_instance.to_dict()
|
||||
# create an instance of Detector from a dict
|
||||
detector_from_dict = Detector.from_dict(detector_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# DetectorList
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**detectors** | [**List[DetectorListDetectorsInner]**](DetectorListDetectorsInner.md) | |
|
||||
**current_id** | **int** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector_list import DetectorList
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DetectorList from a JSON string
|
||||
detector_list_instance = DetectorList.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DetectorList.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_list_dict = detector_list_instance.to_dict()
|
||||
# create an instance of DetectorList from a dict
|
||||
detector_list_from_dict = DetectorList.from_dict(detector_list_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
# DetectorListDetectorsInner
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**id** | **int** | |
|
||||
**description** | **str** | |
|
||||
**serial_number** | **str** | |
|
||||
**base_ipv4_addr** | **str** | |
|
||||
**udp_interface_count** | **int** | Number of UDP interfaces per detector module |
|
||||
**nmodules** | **int** | |
|
||||
**width** | **int** | |
|
||||
**height** | **int** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector_list_detectors_inner import DetectorListDetectorsInner
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DetectorListDetectorsInner from a JSON string
|
||||
detector_list_detectors_inner_instance = DetectorListDetectorsInner.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DetectorListDetectorsInner.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_list_detectors_inner_dict = detector_list_detectors_inner_instance.to_dict()
|
||||
# create an instance of DetectorListDetectorsInner from a dict
|
||||
detector_list_detectors_inner_from_dict = DetectorListDetectorsInner.from_dict(detector_list_detectors_inner_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
# DetectorModule
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**x0** | **float** | |
|
||||
**y0** | **float** | |
|
||||
**fast_axis** | [**DetectorModuleDirection**](DetectorModuleDirection.md) | |
|
||||
**slow_axis** | [**DetectorModuleDirection**](DetectorModuleDirection.md) | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector_module import DetectorModule
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DetectorModule from a JSON string
|
||||
detector_module_instance = DetectorModule.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DetectorModule.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_module_dict = detector_module_instance.to_dict()
|
||||
# create an instance of DetectorModule from a dict
|
||||
detector_module_from_dict = DetectorModule.from_dict(detector_module_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
# DetectorModuleDirection
|
||||
|
||||
|
||||
## Enum
|
||||
|
||||
* `XP` (value: `'Xp'`)
|
||||
|
||||
* `XN` (value: `'Xn'`)
|
||||
|
||||
* `YP` (value: `'Yp'`)
|
||||
|
||||
* `YN` (value: `'Yn'`)
|
||||
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,15 +0,0 @@
|
||||
# DetectorPowerState
|
||||
|
||||
Power on of ASICs
|
||||
|
||||
## Enum
|
||||
|
||||
* `POWERON` (value: `'PowerOn'`)
|
||||
|
||||
* `POWEROFF` (value: `'PowerOff'`)
|
||||
|
||||
* `PARTIAL` (value: `'Partial'`)
|
||||
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
# DetectorSelection
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**id** | **int** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector_selection import DetectorSelection
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DetectorSelection from a JSON string
|
||||
detector_selection_instance = DetectorSelection.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DetectorSelection.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_selection_dict = detector_selection_instance.to_dict()
|
||||
# create an instance of DetectorSelection from a dict
|
||||
detector_selection_from_dict = DetectorSelection.from_dict(detector_selection_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,44 +0,0 @@
|
||||
# DetectorSettings
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**frame_time_us** | **int** | Interval between consecutive frames. |
|
||||
**count_time_us** | **int** | Integration time of the detector. If not provided count time will be set to maximum value for a given frame time. | [optional]
|
||||
**internal_frame_generator** | **bool** | Use internal frame generator in FPGA instead of getting data from a real detector | [optional] [default to False]
|
||||
**internal_frame_generator_images** | **int** | | [optional] [default to 1]
|
||||
**detector_trigger_delay_ns** | **int** | Delay between TTL trigger and acquisition start [ns] | [optional] [default to 0]
|
||||
**timing** | [**DetectorTiming**](DetectorTiming.md) | | [optional] [default to DetectorTiming.TRIGGER]
|
||||
**eiger_threshold_ke_v** | **float** | | [optional]
|
||||
**jungfrau_pedestal_g0_frames** | **int** | | [optional] [default to 2000]
|
||||
**jungfrau_pedestal_g1_frames** | **int** | | [optional] [default to 300]
|
||||
**jungfrau_pedestal_g2_frames** | **int** | | [optional] [default to 300]
|
||||
**jungfrau_pedestal_g0_rms_limit** | **int** | Pixels with pedestal G0 RMS above the threshold are marked as masked pixels | [optional] [default to 100]
|
||||
**jungfrau_pedestal_min_image_count** | **int** | Minimum number of collected images for pedestal to consider it viable | [optional] [default to 128]
|
||||
**jungfrau_storage_cell_count** | **int** | | [optional] [default to 1]
|
||||
**jungfrau_storage_cell_delay_ns** | **int** | Delay between two storage cells [ns] | [optional] [default to 5000]
|
||||
**jungfrau_fixed_gain_g1** | **bool** | Fix gain to G1 (can be useful for storage cells) | [optional] [default to False]
|
||||
**jungfrau_use_gain_hg0** | **bool** | Use high G0 (for low energy applications) | [optional] [default to False]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector_settings import DetectorSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DetectorSettings from a JSON string
|
||||
detector_settings_instance = DetectorSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DetectorSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_settings_dict = detector_settings_instance.to_dict()
|
||||
# create an instance of DetectorSettings from a dict
|
||||
detector_settings_from_dict = DetectorSettings.from_dict(detector_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
# DetectorState
|
||||
|
||||
Current state of the detector
|
||||
|
||||
## Enum
|
||||
|
||||
* `IDLE` (value: `'Idle'`)
|
||||
|
||||
* `WAITING` (value: `'Waiting'`)
|
||||
|
||||
* `BUSY` (value: `'Busy'`)
|
||||
|
||||
* `ERROR` (value: `'Error'`)
|
||||
|
||||
* `NOT_CONNECTED` (value: `'Not connected'`)
|
||||
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
# DetectorStatus
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**state** | [**DetectorState**](DetectorState.md) | |
|
||||
**powerchip** | [**DetectorPowerState**](DetectorPowerState.md) | |
|
||||
**server_version** | **str** | Detector server (on read-out boards) version |
|
||||
**number_of_triggers_left** | **int** | Remaining triggers to the detector (max of all modules) |
|
||||
**fpga_temp_deg_c** | **List[int]** | Temperature of detector FPGAs |
|
||||
**high_voltage_v** | **List[int]** | High voltage for detector modules |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.detector_status import DetectorStatus
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of DetectorStatus from a JSON string
|
||||
detector_status_instance = DetectorStatus.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(DetectorStatus.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
detector_status_dict = detector_status_instance.to_dict()
|
||||
# create an instance of DetectorStatus from a dict
|
||||
detector_status_from_dict = DetectorStatus.from_dict(detector_status_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
# DetectorTiming
|
||||
|
||||
|
||||
## Enum
|
||||
|
||||
* `AUTO` (value: `'auto'`)
|
||||
|
||||
* `TRIGGER` (value: `'trigger'`)
|
||||
|
||||
* `BURST` (value: `'burst'`)
|
||||
|
||||
* `GATED` (value: `'gated'`)
|
||||
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,12 +0,0 @@
|
||||
# DetectorType
|
||||
|
||||
|
||||
## Enum
|
||||
|
||||
* `EIGER` (value: `'EIGER'`)
|
||||
|
||||
* `JUNGFRAU` (value: `'JUNGFRAU'`)
|
||||
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# ErrorMessage
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**msg** | **str** | Human readable message |
|
||||
**reason** | **str** | Enumerate field for automated analysis |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.error_message import ErrorMessage
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of ErrorMessage from a JSON string
|
||||
error_message_instance = ErrorMessage.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(ErrorMessage.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
error_message_dict = error_message_instance.to_dict()
|
||||
# create an instance of ErrorMessage from a dict
|
||||
error_message_from_dict = ErrorMessage.from_dict(error_message_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,39 +0,0 @@
|
||||
# FpgaStatusInner
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**pci_dev_id** | **str** | |
|
||||
**serial_number** | **str** | |
|
||||
**base_mac_addr** | **str** | |
|
||||
**eth_link_count** | **int** | |
|
||||
**eth_link_status** | **int** | |
|
||||
**power_usage_w** | **float** | |
|
||||
**fpga_temp_c** | **float** | |
|
||||
**hbm_temp_c** | **float** | |
|
||||
**packets_udp** | **int** | |
|
||||
**packets_sls** | **int** | |
|
||||
**idle** | **bool** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.fpga_status_inner import FpgaStatusInner
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of FpgaStatusInner from a JSON string
|
||||
fpga_status_inner_instance = FpgaStatusInner.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(FpgaStatusInner.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
fpga_status_inner_dict = fpga_status_inner_instance.to_dict()
|
||||
# create an instance of FpgaStatusInner from a dict
|
||||
fpga_status_inner_from_dict = FpgaStatusInner.from_dict(fpga_status_inner_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
# ImageFormatSettings
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**summation** | **bool** | Enable summation of images to a given image_time If disabled images are saved according to original detector speed, but image count is adjusted |
|
||||
**geometry_transform** | **bool** | Place module read-out into their location on composed detector and extend multipixels |
|
||||
**jungfrau_conversion** | **bool** | Convert pixel value in ADU to photon counts/energy Only affects JUNGFRAU detector |
|
||||
**jungfrau_conversion_factor_ke_v** | **float** | Used to convert energy deposited into pixel to counts If not provided incident_energy_keV is used | [optional]
|
||||
**bit_depth_image** | **int** | Bit depth of resulting image (it doesn't affect the original detector value) If not provided value is adjusted automatically | [optional]
|
||||
**signed_output** | **bool** | Controls if pixels have signed output If not provided value is adjusted automatically | [optional]
|
||||
**mask_module_edges** | **bool** | Mask 1 pixel on the module boundary | [default to True]
|
||||
**mask_chip_edges** | **bool** | Mask multipixels on chip boundary | [default to True]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.image_format_settings import ImageFormatSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of ImageFormatSettings from a JSON string
|
||||
image_format_settings_instance = ImageFormatSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(ImageFormatSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
image_format_settings_dict = image_format_settings_instance.to_dict()
|
||||
# create an instance of ImageFormatSettings from a dict
|
||||
image_format_settings_from_dict = ImageFormatSettings.from_dict(image_format_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
# ImagePusherType
|
||||
|
||||
|
||||
## Enum
|
||||
|
||||
* `ZEROMQ` (value: `'ZeroMQ'`)
|
||||
|
||||
* `HDF5` (value: `'HDF5'`)
|
||||
|
||||
* `CBOR` (value: `'CBOR'`)
|
||||
|
||||
* `NONE` (value: `'None'`)
|
||||
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
# InstrumentMetadata
|
||||
|
||||
Metadata for a measurement instrument
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**source_name** | **str** | |
|
||||
**source_type** | **str** | Type of radiation source. NXmx gives a fixed dictionary, though Jungfraujoch is not enforcing compliance. https://manual.nexusformat.org/classes/base_classes/NXsource.html#nxsource NXsource allows the following: Spallation Neutron Source Pulsed Reactor Neutron Source Reactor Neutron Source Synchrotron X-ray Source Pulsed Muon Source Rotating Anode X-ray Fixed Tube X-ray UV Laser Free-Electron Laser Optical Laser Ion Source UV Plasma Source Metal Jet X-ray | [optional] [default to '']
|
||||
**instrument_name** | **str** | |
|
||||
**pulsed_source** | **bool** | Settings specific to XFEL (e.g., every image has to come from TTL trigger, save pulse ID and event code) | [optional] [default to False]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.instrument_metadata import InstrumentMetadata
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of InstrumentMetadata from a JSON string
|
||||
instrument_metadata_instance = InstrumentMetadata.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(InstrumentMetadata.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
instrument_metadata_dict = instrument_metadata_instance.to_dict()
|
||||
# create an instance of InstrumentMetadata from a dict
|
||||
instrument_metadata_from_dict = InstrumentMetadata.from_dict(instrument_metadata_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,42 +0,0 @@
|
||||
# JfjochSettings
|
||||
|
||||
Default settings for Jungfraujoch software. This structure is used to provide default settings using configuration JSON file and is not used in HTTP.
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**pcie** | [**List[PcieDevicesInner]**](PcieDevicesInner.md) | | [optional]
|
||||
**zeromq** | [**ZeromqSettings**](ZeromqSettings.md) | | [optional]
|
||||
**instrument** | [**InstrumentMetadata**](InstrumentMetadata.md) | | [optional]
|
||||
**detector** | [**List[Detector]**](Detector.md) | |
|
||||
**detector_settings** | [**DetectorSettings**](DetectorSettings.md) | | [optional]
|
||||
**azim_int** | [**AzimIntSettings**](AzimIntSettings.md) | | [optional]
|
||||
**image_format** | [**ImageFormatSettings**](ImageFormatSettings.md) | | [optional]
|
||||
**image_buffer_mi_b** | **int** | Size of internal buffer in MiB for images before they are sent to a stream | [optional] [default to 2048]
|
||||
**receiver_threads** | **int** | Number of threads used by the receiver | [optional] [default to 64]
|
||||
**numa_policy** | **str** | NUMA policy to bind CPUs | [optional]
|
||||
**frontend_directory** | **str** | Location of built JavaScript web frontend |
|
||||
**image_pusher** | [**ImagePusherType**](ImagePusherType.md) | | [default to ImagePusherType.NONE]
|
||||
**zeromq_preview** | [**ZeromqPreviewSettings**](ZeromqPreviewSettings.md) | | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.jfjoch_settings import JfjochSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of JfjochSettings from a JSON string
|
||||
jfjoch_settings_instance = JfjochSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(JfjochSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
jfjoch_settings_dict = jfjoch_settings_instance.to_dict()
|
||||
# create an instance of JfjochSettings from a dict
|
||||
jfjoch_settings_from_dict = JfjochSettings.from_dict(jfjoch_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
# JfjochStatistics
|
||||
|
||||
Pool statistics for Jungfraujoch to reduce transfers between frontend and jfjoch_broker
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**detector** | [**DetectorStatus**](DetectorStatus.md) | | [optional]
|
||||
**detector_list** | [**DetectorList**](DetectorList.md) | | [optional]
|
||||
**detector_settings** | [**DetectorSettings**](DetectorSettings.md) | | [optional]
|
||||
**image_format_settings** | [**ImageFormatSettings**](ImageFormatSettings.md) | | [optional]
|
||||
**instrument_metadata** | [**InstrumentMetadata**](InstrumentMetadata.md) | | [optional]
|
||||
**data_processing_settings** | [**SpotFindingSettings**](SpotFindingSettings.md) | | [optional]
|
||||
**measurement** | [**MeasurementStatistics**](MeasurementStatistics.md) | | [optional]
|
||||
**broker** | [**BrokerStatus**](BrokerStatus.md) | | [optional]
|
||||
**fpga** | [**List[FpgaStatusInner]**](FpgaStatusInner.md) | | [optional]
|
||||
**calibration** | [**List[CalibrationStatisticsInner]**](CalibrationStatisticsInner.md) | | [optional]
|
||||
**zeromq_preview** | [**ZeromqPreviewSettings**](ZeromqPreviewSettings.md) | | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.jfjoch_statistics import JfjochStatistics
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of JfjochStatistics from a JSON string
|
||||
jfjoch_statistics_instance = JfjochStatistics.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(JfjochStatistics.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
jfjoch_statistics_dict = jfjoch_statistics_instance.to_dict()
|
||||
# create an instance of JfjochStatistics from a dict
|
||||
jfjoch_statistics_from_dict = JfjochStatistics.from_dict(jfjoch_statistics_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,46 +0,0 @@
|
||||
# MeasurementStatistics
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**file_prefix** | **str** | | [optional]
|
||||
**run_number** | **int** | Number of data collection run. This can be either automatically incremented or provided externally for each data collection. | [optional]
|
||||
**experiment_group** | **str** | Name of group owning the data (e.g. p-group or proposal number). | [optional]
|
||||
**images_expected** | **int** | | [optional]
|
||||
**images_collected** | **int** | Images collected by the receiver. This number will be lower than images expected if there were issues with data collection performance. | [optional]
|
||||
**images_sent** | **int** | Images sent to the writer. The value does not include images discarded by lossy compression filter and images not forwarded due to full ZeroMQ queue. | [optional]
|
||||
**images_discarded_lossy_compression** | **int** | Images discarded by the lossy compression filter | [optional]
|
||||
**max_image_number_sent** | **int** | | [optional]
|
||||
**collection_efficiency** | **float** | | [optional]
|
||||
**compression_ratio** | **float** | | [optional]
|
||||
**cancelled** | **bool** | | [optional]
|
||||
**max_receiver_delay** | **int** | | [optional]
|
||||
**indexing_rate** | **float** | | [optional]
|
||||
**detector_width** | **int** | | [optional]
|
||||
**detector_height** | **int** | | [optional]
|
||||
**detector_pixel_depth** | **int** | | [optional]
|
||||
**bkg_estimate** | **float** | | [optional]
|
||||
**unit_cell** | **str** | | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.measurement_statistics import MeasurementStatistics
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of MeasurementStatistics from a JSON string
|
||||
measurement_statistics_instance = MeasurementStatistics.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(MeasurementStatistics.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
measurement_statistics_dict = measurement_statistics_instance.to_dict()
|
||||
# create an instance of MeasurementStatistics from a dict
|
||||
measurement_statistics_from_dict = MeasurementStatistics.from_dict(measurement_statistics_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# PcieDevicesInner
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**blk** | **str** | Block device name | [optional]
|
||||
**ipv4** | **str** | IPv4 address of the block device | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.pcie_devices_inner import PcieDevicesInner
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of PcieDevicesInner from a JSON string
|
||||
pcie_devices_inner_instance = PcieDevicesInner.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(PcieDevicesInner.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
pcie_devices_inner_dict = pcie_devices_inner_instance.to_dict()
|
||||
# create an instance of PcieDevicesInner from a dict
|
||||
pcie_devices_inner_from_dict = PcieDevicesInner.from_dict(pcie_devices_inner_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
# Plot
|
||||
|
||||
x and y coordinates for plotting, it is OK to assume that both arrays have the same size; layout is optimized for Plotly
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**title** | **str** | | [default to '']
|
||||
**x** | **List[float]** | |
|
||||
**y** | **List[float]** | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.plot import Plot
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of Plot from a JSON string
|
||||
plot_instance = Plot.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(Plot.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
plot_dict = plot_instance.to_dict()
|
||||
# create an instance of Plot from a dict
|
||||
plot_from_dict = Plot.from_dict(plot_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# Plots
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**title** | **str** | | [optional]
|
||||
**plot** | [**List[Plot]**](Plot.md) | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.plots import Plots
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of Plots from a JSON string
|
||||
plots_instance = Plots.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(Plots.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
plots_dict = plots_instance.to_dict()
|
||||
# create an instance of Plots from a dict
|
||||
plots_from_dict = Plots.from_dict(plots_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
# PreviewSettings
|
||||
|
||||
Settings for JPEG rendering of preview images
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**saturation** | **int** | Saturation value to set contrast in the preview image |
|
||||
**show_spots** | **bool** | Show spot finding results on the image | [optional] [default to True]
|
||||
**show_roi** | **bool** | Show ROI areas on the image | [optional] [default to False]
|
||||
**jpeg_quality** | **int** | Quality of JPEG image (100 - highest; 0 - lowest) | [optional] [default to 100]
|
||||
**show_indexed** | **bool** | Preview indexed images only | [optional] [default to False]
|
||||
**show_user_mask** | **bool** | Show user mask | [optional] [default to False]
|
||||
**resolution_ring** | **float** | | [optional] [default to 0.1]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.preview_settings import PreviewSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of PreviewSettings from a JSON string
|
||||
preview_settings_instance = PreviewSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(PreviewSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
preview_settings_dict = preview_settings_instance.to_dict()
|
||||
# create an instance of PreviewSettings from a dict
|
||||
preview_settings_from_dict = PreviewSettings.from_dict(preview_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
# RoiBox
|
||||
|
||||
Box ROI
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**name** | **str** | Name for the ROI; used in the plots |
|
||||
**min_x_pxl** | **int** | Lower bound (inclusive) in X coordinate for the box |
|
||||
**max_x_pxl** | **int** | Upper bound (inclusive) in X coordinate for the box |
|
||||
**min_y_pxl** | **int** | Lower bound (inclusive) in Y coordinate for the box |
|
||||
**max_y_pxl** | **int** | Upper bound (inclusive) in Y coordinate for the box |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.roi_box import RoiBox
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of RoiBox from a JSON string
|
||||
roi_box_instance = RoiBox.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(RoiBox.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
roi_box_dict = roi_box_instance.to_dict()
|
||||
# create an instance of RoiBox from a dict
|
||||
roi_box_from_dict = RoiBox.from_dict(roi_box_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# RoiBoxList
|
||||
|
||||
List of box ROIs
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**rois** | [**List[RoiBox]**](RoiBox.md) | | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.roi_box_list import RoiBoxList
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of RoiBoxList from a JSON string
|
||||
roi_box_list_instance = RoiBoxList.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(RoiBoxList.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
roi_box_list_dict = roi_box_list_instance.to_dict()
|
||||
# create an instance of RoiBoxList from a dict
|
||||
roi_box_list_from_dict = RoiBoxList.from_dict(roi_box_list_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
# RoiCircle
|
||||
|
||||
Circular ROI
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**name** | **str** | Name for the ROI; used in the plots |
|
||||
**center_x_pxl** | **float** | X coordinate of center of the circle [pixels] |
|
||||
**center_y_pxl** | **float** | Y coordinate of center of the circle [pixels] |
|
||||
**radius_pxl** | **float** | Radius of the circle [pixels] |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.roi_circle import RoiCircle
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of RoiCircle from a JSON string
|
||||
roi_circle_instance = RoiCircle.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(RoiCircle.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
roi_circle_dict = roi_circle_instance.to_dict()
|
||||
# create an instance of RoiCircle from a dict
|
||||
roi_circle_from_dict = RoiCircle.from_dict(roi_circle_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
# RoiCircleList
|
||||
|
||||
List of circular ROIs
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**rois** | [**List[RoiCircle]**](RoiCircle.md) | |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.roi_circle_list import RoiCircleList
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of RoiCircleList from a JSON string
|
||||
roi_circle_list_instance = RoiCircleList.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(RoiCircleList.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
roi_circle_list_dict = roi_circle_list_instance.to_dict()
|
||||
# create an instance of RoiCircleList from a dict
|
||||
roi_circle_list_from_dict = RoiCircleList.from_dict(roi_circle_list_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
# RotationAxis
|
||||
|
||||
Definition of a crystal rotation axis
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**name** | **str** | Name of rotation axis (e.g., omega, phi) | [optional] [default to 'omega']
|
||||
**step** | **float** | Angle step in degrees |
|
||||
**start** | **float** | Start angle in degrees | [optional] [default to 0]
|
||||
**vector** | **List[float]** | Rotation axis |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.rotation_axis import RotationAxis
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of RotationAxis from a JSON string
|
||||
rotation_axis_instance = RotationAxis.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(RotationAxis.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
rotation_axis_dict = rotation_axis_instance.to_dict()
|
||||
# create an instance of RotationAxis from a dict
|
||||
rotation_axis_from_dict = RotationAxis.from_dict(rotation_axis_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,39 +0,0 @@
|
||||
# SpotFindingSettings
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**enable** | **bool** | Enable spot finding. This is temporary setting, i.e. can be changed anytime during data collection. Even if disabled spot finding information will still be send and written, though always with zero spots. | [default to True]
|
||||
**indexing** | **bool** | Enable indexing. This is temporary setting, i.e. can be changed anytime during data collection. | [default to True]
|
||||
**filter_powder_rings** | **bool** | Filter spots which form powder rings (e.g., ice rings) | [optional] [default to False]
|
||||
**min_spot_count_powder_ring** | **int** | Minimum number of spots to consider a thin resolution shell (0.01 A^-1) a powder ring and filter out. | [optional]
|
||||
**signal_to_noise_threshold** | **float** | |
|
||||
**photon_count_threshold** | **int** | |
|
||||
**min_pix_per_spot** | **int** | |
|
||||
**max_pix_per_spot** | **int** | |
|
||||
**high_resolution_limit** | **float** | |
|
||||
**low_resolution_limit** | **float** | |
|
||||
**indexing_tolerance** | **float** | Acceptance tolerance for spots after the indexing run - the larger the number, the more spots will be accepted |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.spot_finding_settings import SpotFindingSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of SpotFindingSettings from a JSON string
|
||||
spot_finding_settings_instance = SpotFindingSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(SpotFindingSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
spot_finding_settings_dict = spot_finding_settings_instance.to_dict()
|
||||
# create an instance of SpotFindingSettings from a dict
|
||||
spot_finding_settings_from_dict = SpotFindingSettings.from_dict(spot_finding_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
# StandardDetectorGeometry
|
||||
|
||||
Regular rectangular geometry, first module is in the bottom left corner of the detector
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**nmodules** | **int** | Number of modules in the detector |
|
||||
**gap_x** | **int** | Gap size in X direction [pixels] | [optional] [default to 8]
|
||||
**gap_y** | **int** | Gap size in Y direction [pixels] | [optional] [default to 36]
|
||||
**modules_in_row** | **int** | Number of modules in one row | [optional] [default to 1]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.standard_detector_geometry import StandardDetectorGeometry
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of StandardDetectorGeometry from a JSON string
|
||||
standard_detector_geometry_instance = StandardDetectorGeometry.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(StandardDetectorGeometry.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
standard_detector_geometry_dict = standard_detector_geometry_instance.to_dict()
|
||||
# create an instance of StandardDetectorGeometry from a dict
|
||||
standard_detector_geometry_from_dict = StandardDetectorGeometry.from_dict(standard_detector_geometry_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
# ZeromqPreviewSettings
|
||||
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**enabled** | **bool** | ZeroMQ preview socket is enabled. | [default to True]
|
||||
**period_ms** | **int** | Period for generating preview image sent to the ZeroMQ interface in milliseconds. Default is 1 second. If set to zero, all images will be sent ZeroMQ (should be used only in case of relatively slow data collection). This has no effect on HTTP based preview, which updates always at rate of 1 second. | [default to 1000]
|
||||
**socket_address** | **str** | PUB ZeroMQ socket for preview images. This socket operates at a reduced frame rate. Images are serialized using CBOR. Address follows ZeroMQ convention for sockets - in practice ipc://<socket file> and tpc://<IP address>:<port> sockets are OK. 0.0.0.0 instead of IP address is accepted and means listening on all network interfaces. | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.zeromq_preview_settings import ZeromqPreviewSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of ZeromqPreviewSettings from a JSON string
|
||||
zeromq_preview_settings_instance = ZeromqPreviewSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(ZeromqPreviewSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
zeromq_preview_settings_dict = zeromq_preview_settings_instance.to_dict()
|
||||
# create an instance of ZeromqPreviewSettings from a dict
|
||||
zeromq_preview_settings_from_dict = ZeromqPreviewSettings.from_dict(zeromq_preview_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
# ZeromqSettings
|
||||
|
||||
ZeroMQ configuration for Jungfraujoch software. This structure is used to provide default settings using configuration JSON file and is not used in HTTP.
|
||||
|
||||
## Properties
|
||||
|
||||
Name | Type | Description | Notes
|
||||
------------ | ------------- | ------------- | -------------
|
||||
**send_watermark** | **int** | Watermark for ZeroMQ send queue (number of outstanding messages queued on Jungfraujoch server per queue) | [optional] [default to 100]
|
||||
**send_buffer_size** | **int** | Send buffer size for ZeroMQ socket | [optional]
|
||||
**image_socket** | **List[str]** | PUSH ZeroMQ socket for images. In case multiple sockets are provided, images are streamed over multiple sockets. Images are serialized using CBOR. Address follows ZeroMQ convention for sockets - in practice ipc://<socket file> and tpc://<IP address>:<port> sockets are OK. 0.0.0.0 instead of IP address is accepted and means listening on all network interfaces. | [optional]
|
||||
**writer_notification_socket** | **str** | PULL ZeroMQ socket for notifications from writer that it finished operation. This allows Jungfraujoch to operate in a synchronous manner, with end of acquisition being also end of writing. Address follows ZeroMQ convention for sockets - in practice ipc://<socket file> and tpc://<IP address>:<port> sockets are OK. 0.0.0.0 instead of IP address should be avoided, as this socket address is forwarded to the writer process via START ZerOMQ message and in case of multiple ineterfaces the address might be ambigous. Using * (star) instead of port number is allowed and it means a random free port number. | [optional]
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from jfjoch_client.models.zeromq_settings import ZeromqSettings
|
||||
|
||||
# TODO update the JSON string below
|
||||
json = "{}"
|
||||
# create an instance of ZeromqSettings from a JSON string
|
||||
zeromq_settings_instance = ZeromqSettings.from_json(json)
|
||||
# print the JSON string representation of the object
|
||||
print(ZeromqSettings.to_json())
|
||||
|
||||
# convert the object into a dict
|
||||
zeromq_settings_dict = zeromq_settings_instance.to_dict()
|
||||
# create an instance of ZeromqSettings from a dict
|
||||
zeromq_settings_from_dict = ZeromqSettings.from_dict(zeromq_settings_dict)
|
||||
```
|
||||
[[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
|
||||
|
||||
|
||||
@@ -1,72 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
# flake8: noqa
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
__version__ = "1.0.0-rc.23"
|
||||
|
||||
# import apis into sdk package
|
||||
from jfjoch_client.api.default_api import DefaultApi
|
||||
|
||||
# import ApiClient
|
||||
from jfjoch_client.api_response import ApiResponse
|
||||
from jfjoch_client.api_client import ApiClient
|
||||
from jfjoch_client.configuration import Configuration
|
||||
from jfjoch_client.exceptions import OpenApiException
|
||||
from jfjoch_client.exceptions import ApiTypeError
|
||||
from jfjoch_client.exceptions import ApiValueError
|
||||
from jfjoch_client.exceptions import ApiKeyError
|
||||
from jfjoch_client.exceptions import ApiAttributeError
|
||||
from jfjoch_client.exceptions import ApiException
|
||||
|
||||
# import models into sdk package
|
||||
from jfjoch_client.models.azim_int_settings import AzimIntSettings
|
||||
from jfjoch_client.models.broker_status import BrokerStatus
|
||||
from jfjoch_client.models.calibration_statistics_inner import CalibrationStatisticsInner
|
||||
from jfjoch_client.models.dataset_settings import DatasetSettings
|
||||
from jfjoch_client.models.dataset_settings_unit_cell import DatasetSettingsUnitCell
|
||||
from jfjoch_client.models.detector import Detector
|
||||
from jfjoch_client.models.detector_list import DetectorList
|
||||
from jfjoch_client.models.detector_list_detectors_inner import DetectorListDetectorsInner
|
||||
from jfjoch_client.models.detector_module import DetectorModule
|
||||
from jfjoch_client.models.detector_module_direction import DetectorModuleDirection
|
||||
from jfjoch_client.models.detector_power_state import DetectorPowerState
|
||||
from jfjoch_client.models.detector_selection import DetectorSelection
|
||||
from jfjoch_client.models.detector_settings import DetectorSettings
|
||||
from jfjoch_client.models.detector_state import DetectorState
|
||||
from jfjoch_client.models.detector_status import DetectorStatus
|
||||
from jfjoch_client.models.detector_timing import DetectorTiming
|
||||
from jfjoch_client.models.detector_type import DetectorType
|
||||
from jfjoch_client.models.error_message import ErrorMessage
|
||||
from jfjoch_client.models.fpga_status_inner import FpgaStatusInner
|
||||
from jfjoch_client.models.image_format_settings import ImageFormatSettings
|
||||
from jfjoch_client.models.image_pusher_type import ImagePusherType
|
||||
from jfjoch_client.models.instrument_metadata import InstrumentMetadata
|
||||
from jfjoch_client.models.jfjoch_settings import JfjochSettings
|
||||
from jfjoch_client.models.jfjoch_statistics import JfjochStatistics
|
||||
from jfjoch_client.models.measurement_statistics import MeasurementStatistics
|
||||
from jfjoch_client.models.pcie_devices_inner import PcieDevicesInner
|
||||
from jfjoch_client.models.plot import Plot
|
||||
from jfjoch_client.models.plots import Plots
|
||||
from jfjoch_client.models.preview_settings import PreviewSettings
|
||||
from jfjoch_client.models.roi_box import RoiBox
|
||||
from jfjoch_client.models.roi_box_list import RoiBoxList
|
||||
from jfjoch_client.models.roi_circle import RoiCircle
|
||||
from jfjoch_client.models.roi_circle_list import RoiCircleList
|
||||
from jfjoch_client.models.rotation_axis import RotationAxis
|
||||
from jfjoch_client.models.spot_finding_settings import SpotFindingSettings
|
||||
from jfjoch_client.models.standard_detector_geometry import StandardDetectorGeometry
|
||||
from jfjoch_client.models.zeromq_preview_settings import ZeromqPreviewSettings
|
||||
from jfjoch_client.models.zeromq_settings import ZeromqSettings
|
||||
@@ -1,5 +0,0 @@
|
||||
# flake8: noqa
|
||||
|
||||
# import apis into api package
|
||||
from jfjoch_client.api.default_api import DefaultApi
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,789 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
import datetime
|
||||
from dateutil.parser import parse
|
||||
from enum import Enum
|
||||
import decimal
|
||||
import json
|
||||
import mimetypes
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
|
||||
from urllib.parse import quote
|
||||
from typing import Tuple, Optional, List, Dict, Union
|
||||
from pydantic import SecretStr
|
||||
|
||||
from jfjoch_client.configuration import Configuration
|
||||
from jfjoch_client.api_response import ApiResponse, T as ApiResponseT
|
||||
import jfjoch_client.models
|
||||
from jfjoch_client import rest
|
||||
from jfjoch_client.exceptions import (
|
||||
ApiValueError,
|
||||
ApiException,
|
||||
BadRequestException,
|
||||
UnauthorizedException,
|
||||
ForbiddenException,
|
||||
NotFoundException,
|
||||
ServiceException
|
||||
)
|
||||
|
||||
RequestSerialized = Tuple[str, str, Dict[str, str], Optional[str], List[str]]
|
||||
|
||||
class ApiClient:
|
||||
"""Generic API client for OpenAPI client library builds.
|
||||
|
||||
OpenAPI generic API client. This client handles the client-
|
||||
server communication, and is invariant across implementations. Specifics of
|
||||
the methods and models for each application are generated from the OpenAPI
|
||||
templates.
|
||||
|
||||
:param configuration: .Configuration object for this client
|
||||
:param header_name: a header to pass when making calls to the API.
|
||||
:param header_value: a header value to pass when making calls to
|
||||
the API.
|
||||
:param cookie: a cookie to include in the header when making calls
|
||||
to the API
|
||||
"""
|
||||
|
||||
PRIMITIVE_TYPES = (float, bool, bytes, str, int)
|
||||
NATIVE_TYPES_MAPPING = {
|
||||
'int': int,
|
||||
'long': int, # TODO remove as only py3 is supported?
|
||||
'float': float,
|
||||
'str': str,
|
||||
'bool': bool,
|
||||
'date': datetime.date,
|
||||
'datetime': datetime.datetime,
|
||||
'decimal': decimal.Decimal,
|
||||
'object': object,
|
||||
}
|
||||
_pool = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
configuration=None,
|
||||
header_name=None,
|
||||
header_value=None,
|
||||
cookie=None
|
||||
) -> None:
|
||||
# use default configuration if none is provided
|
||||
if configuration is None:
|
||||
configuration = Configuration.get_default()
|
||||
self.configuration = configuration
|
||||
|
||||
self.rest_client = rest.RESTClientObject(configuration)
|
||||
self.default_headers = {}
|
||||
if header_name is not None:
|
||||
self.default_headers[header_name] = header_value
|
||||
self.cookie = cookie
|
||||
# Set default User-Agent.
|
||||
self.user_agent = 'OpenAPI-Generator/1.0.0-rc.23/python'
|
||||
self.client_side_validation = configuration.client_side_validation
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
pass
|
||||
|
||||
@property
|
||||
def user_agent(self):
|
||||
"""User agent for this API client"""
|
||||
return self.default_headers['User-Agent']
|
||||
|
||||
@user_agent.setter
|
||||
def user_agent(self, value):
|
||||
self.default_headers['User-Agent'] = value
|
||||
|
||||
def set_default_header(self, header_name, header_value):
|
||||
self.default_headers[header_name] = header_value
|
||||
|
||||
|
||||
_default = None
|
||||
|
||||
@classmethod
|
||||
def get_default(cls):
|
||||
"""Return new instance of ApiClient.
|
||||
|
||||
This method returns newly created, based on default constructor,
|
||||
object of ApiClient class or returns a copy of default
|
||||
ApiClient.
|
||||
|
||||
:return: The ApiClient object.
|
||||
"""
|
||||
if cls._default is None:
|
||||
cls._default = ApiClient()
|
||||
return cls._default
|
||||
|
||||
@classmethod
|
||||
def set_default(cls, default):
|
||||
"""Set default instance of ApiClient.
|
||||
|
||||
It stores default ApiClient.
|
||||
|
||||
:param default: object of ApiClient.
|
||||
"""
|
||||
cls._default = default
|
||||
|
||||
def param_serialize(
|
||||
self,
|
||||
method,
|
||||
resource_path,
|
||||
path_params=None,
|
||||
query_params=None,
|
||||
header_params=None,
|
||||
body=None,
|
||||
post_params=None,
|
||||
files=None, auth_settings=None,
|
||||
collection_formats=None,
|
||||
_host=None,
|
||||
_request_auth=None
|
||||
) -> RequestSerialized:
|
||||
|
||||
"""Builds the HTTP request params needed by the request.
|
||||
:param method: Method to call.
|
||||
:param resource_path: Path to method endpoint.
|
||||
:param path_params: Path parameters in the url.
|
||||
:param query_params: Query parameters in the url.
|
||||
:param header_params: Header parameters to be
|
||||
placed in the request header.
|
||||
:param body: Request body.
|
||||
:param post_params dict: Request post form parameters,
|
||||
for `application/x-www-form-urlencoded`, `multipart/form-data`.
|
||||
:param auth_settings list: Auth Settings names for the request.
|
||||
:param files dict: key -> filename, value -> filepath,
|
||||
for `multipart/form-data`.
|
||||
:param collection_formats: dict of collection formats for path, query,
|
||||
header, and post parameters.
|
||||
:param _request_auth: set to override the auth_settings for an a single
|
||||
request; this effectively ignores the authentication
|
||||
in the spec for a single request.
|
||||
:return: tuple of form (path, http_method, query_params, header_params,
|
||||
body, post_params, files)
|
||||
"""
|
||||
|
||||
config = self.configuration
|
||||
|
||||
# header parameters
|
||||
header_params = header_params or {}
|
||||
header_params.update(self.default_headers)
|
||||
if self.cookie:
|
||||
header_params['Cookie'] = self.cookie
|
||||
if header_params:
|
||||
header_params = self.sanitize_for_serialization(header_params)
|
||||
header_params = dict(
|
||||
self.parameters_to_tuples(header_params,collection_formats)
|
||||
)
|
||||
|
||||
# path parameters
|
||||
if path_params:
|
||||
path_params = self.sanitize_for_serialization(path_params)
|
||||
path_params = self.parameters_to_tuples(
|
||||
path_params,
|
||||
collection_formats
|
||||
)
|
||||
for k, v in path_params:
|
||||
# specified safe chars, encode everything
|
||||
resource_path = resource_path.replace(
|
||||
'{%s}' % k,
|
||||
quote(str(v), safe=config.safe_chars_for_path_param)
|
||||
)
|
||||
|
||||
# post parameters
|
||||
if post_params or files:
|
||||
post_params = post_params if post_params else []
|
||||
post_params = self.sanitize_for_serialization(post_params)
|
||||
post_params = self.parameters_to_tuples(
|
||||
post_params,
|
||||
collection_formats
|
||||
)
|
||||
if files:
|
||||
post_params.extend(self.files_parameters(files))
|
||||
|
||||
# auth setting
|
||||
self.update_params_for_auth(
|
||||
header_params,
|
||||
query_params,
|
||||
auth_settings,
|
||||
resource_path,
|
||||
method,
|
||||
body,
|
||||
request_auth=_request_auth
|
||||
)
|
||||
|
||||
# body
|
||||
if body:
|
||||
body = self.sanitize_for_serialization(body)
|
||||
|
||||
# request url
|
||||
if _host is None or self.configuration.ignore_operation_servers:
|
||||
url = self.configuration.host + resource_path
|
||||
else:
|
||||
# use server/host defined in path or operation instead
|
||||
url = _host + resource_path
|
||||
|
||||
# query parameters
|
||||
if query_params:
|
||||
query_params = self.sanitize_for_serialization(query_params)
|
||||
url_query = self.parameters_to_url_query(
|
||||
query_params,
|
||||
collection_formats
|
||||
)
|
||||
url += "?" + url_query
|
||||
|
||||
return method, url, header_params, body, post_params
|
||||
|
||||
|
||||
def call_api(
|
||||
self,
|
||||
method,
|
||||
url,
|
||||
header_params=None,
|
||||
body=None,
|
||||
post_params=None,
|
||||
_request_timeout=None
|
||||
) -> rest.RESTResponse:
|
||||
"""Makes the HTTP request (synchronous)
|
||||
:param method: Method to call.
|
||||
:param url: Path to method endpoint.
|
||||
:param header_params: Header parameters to be
|
||||
placed in the request header.
|
||||
:param body: Request body.
|
||||
:param post_params dict: Request post form parameters,
|
||||
for `application/x-www-form-urlencoded`, `multipart/form-data`.
|
||||
:param _request_timeout: timeout setting for this request.
|
||||
:return: RESTResponse
|
||||
"""
|
||||
|
||||
try:
|
||||
# perform request and return response
|
||||
response_data = self.rest_client.request(
|
||||
method, url,
|
||||
headers=header_params,
|
||||
body=body, post_params=post_params,
|
||||
_request_timeout=_request_timeout
|
||||
)
|
||||
|
||||
except ApiException as e:
|
||||
raise e
|
||||
|
||||
return response_data
|
||||
|
||||
def response_deserialize(
|
||||
self,
|
||||
response_data: rest.RESTResponse,
|
||||
response_types_map: Optional[Dict[str, ApiResponseT]]=None
|
||||
) -> ApiResponse[ApiResponseT]:
|
||||
"""Deserializes response into an object.
|
||||
:param response_data: RESTResponse object to be deserialized.
|
||||
:param response_types_map: dict of response types.
|
||||
:return: ApiResponse
|
||||
"""
|
||||
|
||||
msg = "RESTResponse.read() must be called before passing it to response_deserialize()"
|
||||
assert response_data.data is not None, msg
|
||||
|
||||
response_type = response_types_map.get(str(response_data.status), None)
|
||||
if not response_type and isinstance(response_data.status, int) and 100 <= response_data.status <= 599:
|
||||
# if not found, look for '1XX', '2XX', etc.
|
||||
response_type = response_types_map.get(str(response_data.status)[0] + "XX", None)
|
||||
|
||||
# deserialize response data
|
||||
response_text = None
|
||||
return_data = None
|
||||
try:
|
||||
if response_type == "bytearray":
|
||||
return_data = response_data.data
|
||||
elif response_type == "file":
|
||||
return_data = self.__deserialize_file(response_data)
|
||||
elif response_type is not None:
|
||||
match = None
|
||||
content_type = response_data.getheader('content-type')
|
||||
if content_type is not None:
|
||||
match = re.search(r"charset=([a-zA-Z\-\d]+)[\s;]?", content_type)
|
||||
encoding = match.group(1) if match else "utf-8"
|
||||
response_text = response_data.data.decode(encoding)
|
||||
return_data = self.deserialize(response_text, response_type, content_type)
|
||||
finally:
|
||||
if not 200 <= response_data.status <= 299:
|
||||
raise ApiException.from_response(
|
||||
http_resp=response_data,
|
||||
body=response_text,
|
||||
data=return_data,
|
||||
)
|
||||
|
||||
return ApiResponse(
|
||||
status_code = response_data.status,
|
||||
data = return_data,
|
||||
headers = response_data.getheaders(),
|
||||
raw_data = response_data.data
|
||||
)
|
||||
|
||||
def sanitize_for_serialization(self, obj):
|
||||
"""Builds a JSON POST object.
|
||||
|
||||
If obj is None, return None.
|
||||
If obj is SecretStr, return obj.get_secret_value()
|
||||
If obj is str, int, long, float, bool, return directly.
|
||||
If obj is datetime.datetime, datetime.date
|
||||
convert to string in iso8601 format.
|
||||
If obj is decimal.Decimal return string representation.
|
||||
If obj is list, sanitize each element in the list.
|
||||
If obj is dict, return the dict.
|
||||
If obj is OpenAPI model, return the properties dict.
|
||||
|
||||
:param obj: The data to serialize.
|
||||
:return: The serialized form of data.
|
||||
"""
|
||||
if obj is None:
|
||||
return None
|
||||
elif isinstance(obj, Enum):
|
||||
return obj.value
|
||||
elif isinstance(obj, SecretStr):
|
||||
return obj.get_secret_value()
|
||||
elif isinstance(obj, self.PRIMITIVE_TYPES):
|
||||
return obj
|
||||
elif isinstance(obj, list):
|
||||
return [
|
||||
self.sanitize_for_serialization(sub_obj) for sub_obj in obj
|
||||
]
|
||||
elif isinstance(obj, tuple):
|
||||
return tuple(
|
||||
self.sanitize_for_serialization(sub_obj) for sub_obj in obj
|
||||
)
|
||||
elif isinstance(obj, (datetime.datetime, datetime.date)):
|
||||
return obj.isoformat()
|
||||
elif isinstance(obj, decimal.Decimal):
|
||||
return str(obj)
|
||||
|
||||
elif isinstance(obj, dict):
|
||||
obj_dict = obj
|
||||
else:
|
||||
# Convert model obj to dict except
|
||||
# attributes `openapi_types`, `attribute_map`
|
||||
# and attributes which value is not None.
|
||||
# Convert attribute name to json key in
|
||||
# model definition for request.
|
||||
if hasattr(obj, 'to_dict') and callable(getattr(obj, 'to_dict')):
|
||||
obj_dict = obj.to_dict()
|
||||
else:
|
||||
obj_dict = obj.__dict__
|
||||
|
||||
return {
|
||||
key: self.sanitize_for_serialization(val)
|
||||
for key, val in obj_dict.items()
|
||||
}
|
||||
|
||||
def deserialize(self, response_text: str, response_type: str, content_type: Optional[str]):
|
||||
"""Deserializes response into an object.
|
||||
|
||||
:param response: RESTResponse object to be deserialized.
|
||||
:param response_type: class literal for
|
||||
deserialized object, or string of class name.
|
||||
:param content_type: content type of response.
|
||||
|
||||
:return: deserialized object.
|
||||
"""
|
||||
|
||||
# fetch data from response object
|
||||
if content_type is None:
|
||||
try:
|
||||
data = json.loads(response_text)
|
||||
except ValueError:
|
||||
data = response_text
|
||||
elif content_type.startswith("application/json"):
|
||||
if response_text == "":
|
||||
data = ""
|
||||
else:
|
||||
data = json.loads(response_text)
|
||||
elif content_type.startswith("text/plain"):
|
||||
data = response_text
|
||||
else:
|
||||
raise ApiException(
|
||||
status=0,
|
||||
reason="Unsupported content type: {0}".format(content_type)
|
||||
)
|
||||
|
||||
return self.__deserialize(data, response_type)
|
||||
|
||||
def __deserialize(self, data, klass):
|
||||
"""Deserializes dict, list, str into an object.
|
||||
|
||||
:param data: dict, list or str.
|
||||
:param klass: class literal, or string of class name.
|
||||
|
||||
:return: object.
|
||||
"""
|
||||
if data is None:
|
||||
return None
|
||||
|
||||
if isinstance(klass, str):
|
||||
if klass.startswith('List['):
|
||||
m = re.match(r'List\[(.*)]', klass)
|
||||
assert m is not None, "Malformed List type definition"
|
||||
sub_kls = m.group(1)
|
||||
return [self.__deserialize(sub_data, sub_kls)
|
||||
for sub_data in data]
|
||||
|
||||
if klass.startswith('Dict['):
|
||||
m = re.match(r'Dict\[([^,]*), (.*)]', klass)
|
||||
assert m is not None, "Malformed Dict type definition"
|
||||
sub_kls = m.group(2)
|
||||
return {k: self.__deserialize(v, sub_kls)
|
||||
for k, v in data.items()}
|
||||
|
||||
# convert str to class
|
||||
if klass in self.NATIVE_TYPES_MAPPING:
|
||||
klass = self.NATIVE_TYPES_MAPPING[klass]
|
||||
else:
|
||||
klass = getattr(jfjoch_client.models, klass)
|
||||
|
||||
if klass in self.PRIMITIVE_TYPES:
|
||||
return self.__deserialize_primitive(data, klass)
|
||||
elif klass == object:
|
||||
return self.__deserialize_object(data)
|
||||
elif klass == datetime.date:
|
||||
return self.__deserialize_date(data)
|
||||
elif klass == datetime.datetime:
|
||||
return self.__deserialize_datetime(data)
|
||||
elif klass == decimal.Decimal:
|
||||
return decimal.Decimal(data)
|
||||
elif issubclass(klass, Enum):
|
||||
return self.__deserialize_enum(data, klass)
|
||||
else:
|
||||
return self.__deserialize_model(data, klass)
|
||||
|
||||
def parameters_to_tuples(self, params, collection_formats):
|
||||
"""Get parameters as list of tuples, formatting collections.
|
||||
|
||||
:param params: Parameters as dict or list of two-tuples
|
||||
:param dict collection_formats: Parameter collection formats
|
||||
:return: Parameters as list of tuples, collections formatted
|
||||
"""
|
||||
new_params: List[Tuple[str, str]] = []
|
||||
if collection_formats is None:
|
||||
collection_formats = {}
|
||||
for k, v in params.items() if isinstance(params, dict) else params:
|
||||
if k in collection_formats:
|
||||
collection_format = collection_formats[k]
|
||||
if collection_format == 'multi':
|
||||
new_params.extend((k, value) for value in v)
|
||||
else:
|
||||
if collection_format == 'ssv':
|
||||
delimiter = ' '
|
||||
elif collection_format == 'tsv':
|
||||
delimiter = '\t'
|
||||
elif collection_format == 'pipes':
|
||||
delimiter = '|'
|
||||
else: # csv is the default
|
||||
delimiter = ','
|
||||
new_params.append(
|
||||
(k, delimiter.join(str(value) for value in v)))
|
||||
else:
|
||||
new_params.append((k, v))
|
||||
return new_params
|
||||
|
||||
def parameters_to_url_query(self, params, collection_formats):
|
||||
"""Get parameters as list of tuples, formatting collections.
|
||||
|
||||
:param params: Parameters as dict or list of two-tuples
|
||||
:param dict collection_formats: Parameter collection formats
|
||||
:return: URL query string (e.g. a=Hello%20World&b=123)
|
||||
"""
|
||||
new_params: List[Tuple[str, str]] = []
|
||||
if collection_formats is None:
|
||||
collection_formats = {}
|
||||
for k, v in params.items() if isinstance(params, dict) else params:
|
||||
if isinstance(v, bool):
|
||||
v = str(v).lower()
|
||||
if isinstance(v, (int, float)):
|
||||
v = str(v)
|
||||
if isinstance(v, dict):
|
||||
v = json.dumps(v)
|
||||
|
||||
if k in collection_formats:
|
||||
collection_format = collection_formats[k]
|
||||
if collection_format == 'multi':
|
||||
new_params.extend((k, str(value)) for value in v)
|
||||
else:
|
||||
if collection_format == 'ssv':
|
||||
delimiter = ' '
|
||||
elif collection_format == 'tsv':
|
||||
delimiter = '\t'
|
||||
elif collection_format == 'pipes':
|
||||
delimiter = '|'
|
||||
else: # csv is the default
|
||||
delimiter = ','
|
||||
new_params.append(
|
||||
(k, delimiter.join(quote(str(value)) for value in v))
|
||||
)
|
||||
else:
|
||||
new_params.append((k, quote(str(v))))
|
||||
|
||||
return "&".join(["=".join(map(str, item)) for item in new_params])
|
||||
|
||||
def files_parameters(self, files: Dict[str, Union[str, bytes]]):
|
||||
"""Builds form parameters.
|
||||
|
||||
:param files: File parameters.
|
||||
:return: Form parameters with files.
|
||||
"""
|
||||
params = []
|
||||
for k, v in files.items():
|
||||
if isinstance(v, str):
|
||||
with open(v, 'rb') as f:
|
||||
filename = os.path.basename(f.name)
|
||||
filedata = f.read()
|
||||
elif isinstance(v, bytes):
|
||||
filename = k
|
||||
filedata = v
|
||||
else:
|
||||
raise ValueError("Unsupported file value")
|
||||
mimetype = (
|
||||
mimetypes.guess_type(filename)[0]
|
||||
or 'application/octet-stream'
|
||||
)
|
||||
params.append(
|
||||
tuple([k, tuple([filename, filedata, mimetype])])
|
||||
)
|
||||
return params
|
||||
|
||||
def select_header_accept(self, accepts: List[str]) -> Optional[str]:
|
||||
"""Returns `Accept` based on an array of accepts provided.
|
||||
|
||||
:param accepts: List of headers.
|
||||
:return: Accept (e.g. application/json).
|
||||
"""
|
||||
if not accepts:
|
||||
return None
|
||||
|
||||
for accept in accepts:
|
||||
if re.search('json', accept, re.IGNORECASE):
|
||||
return accept
|
||||
|
||||
return accepts[0]
|
||||
|
||||
def select_header_content_type(self, content_types):
|
||||
"""Returns `Content-Type` based on an array of content_types provided.
|
||||
|
||||
:param content_types: List of content-types.
|
||||
:return: Content-Type (e.g. application/json).
|
||||
"""
|
||||
if not content_types:
|
||||
return None
|
||||
|
||||
for content_type in content_types:
|
||||
if re.search('json', content_type, re.IGNORECASE):
|
||||
return content_type
|
||||
|
||||
return content_types[0]
|
||||
|
||||
def update_params_for_auth(
|
||||
self,
|
||||
headers,
|
||||
queries,
|
||||
auth_settings,
|
||||
resource_path,
|
||||
method,
|
||||
body,
|
||||
request_auth=None
|
||||
) -> None:
|
||||
"""Updates header and query params based on authentication setting.
|
||||
|
||||
:param headers: Header parameters dict to be updated.
|
||||
:param queries: Query parameters tuple list to be updated.
|
||||
:param auth_settings: Authentication setting identifiers list.
|
||||
:resource_path: A string representation of the HTTP request resource path.
|
||||
:method: A string representation of the HTTP request method.
|
||||
:body: A object representing the body of the HTTP request.
|
||||
The object type is the return value of sanitize_for_serialization().
|
||||
:param request_auth: if set, the provided settings will
|
||||
override the token in the configuration.
|
||||
"""
|
||||
if not auth_settings:
|
||||
return
|
||||
|
||||
if request_auth:
|
||||
self._apply_auth_params(
|
||||
headers,
|
||||
queries,
|
||||
resource_path,
|
||||
method,
|
||||
body,
|
||||
request_auth
|
||||
)
|
||||
else:
|
||||
for auth in auth_settings:
|
||||
auth_setting = self.configuration.auth_settings().get(auth)
|
||||
if auth_setting:
|
||||
self._apply_auth_params(
|
||||
headers,
|
||||
queries,
|
||||
resource_path,
|
||||
method,
|
||||
body,
|
||||
auth_setting
|
||||
)
|
||||
|
||||
def _apply_auth_params(
|
||||
self,
|
||||
headers,
|
||||
queries,
|
||||
resource_path,
|
||||
method,
|
||||
body,
|
||||
auth_setting
|
||||
) -> None:
|
||||
"""Updates the request parameters based on a single auth_setting
|
||||
|
||||
:param headers: Header parameters dict to be updated.
|
||||
:param queries: Query parameters tuple list to be updated.
|
||||
:resource_path: A string representation of the HTTP request resource path.
|
||||
:method: A string representation of the HTTP request method.
|
||||
:body: A object representing the body of the HTTP request.
|
||||
The object type is the return value of sanitize_for_serialization().
|
||||
:param auth_setting: auth settings for the endpoint
|
||||
"""
|
||||
if auth_setting['in'] == 'cookie':
|
||||
headers['Cookie'] = auth_setting['value']
|
||||
elif auth_setting['in'] == 'header':
|
||||
if auth_setting['type'] != 'http-signature':
|
||||
headers[auth_setting['key']] = auth_setting['value']
|
||||
elif auth_setting['in'] == 'query':
|
||||
queries.append((auth_setting['key'], auth_setting['value']))
|
||||
else:
|
||||
raise ApiValueError(
|
||||
'Authentication token must be in `query` or `header`'
|
||||
)
|
||||
|
||||
def __deserialize_file(self, response):
|
||||
"""Deserializes body to file
|
||||
|
||||
Saves response body into a file in a temporary folder,
|
||||
using the filename from the `Content-Disposition` header if provided.
|
||||
|
||||
handle file downloading
|
||||
save response body into a tmp file and return the instance
|
||||
|
||||
:param response: RESTResponse.
|
||||
:return: file path.
|
||||
"""
|
||||
fd, path = tempfile.mkstemp(dir=self.configuration.temp_folder_path)
|
||||
os.close(fd)
|
||||
os.remove(path)
|
||||
|
||||
content_disposition = response.getheader("Content-Disposition")
|
||||
if content_disposition:
|
||||
m = re.search(
|
||||
r'filename=[\'"]?([^\'"\s]+)[\'"]?',
|
||||
content_disposition
|
||||
)
|
||||
assert m is not None, "Unexpected 'content-disposition' header value"
|
||||
filename = m.group(1)
|
||||
path = os.path.join(os.path.dirname(path), filename)
|
||||
|
||||
with open(path, "wb") as f:
|
||||
f.write(response.data)
|
||||
|
||||
return path
|
||||
|
||||
def __deserialize_primitive(self, data, klass):
|
||||
"""Deserializes string to primitive type.
|
||||
|
||||
:param data: str.
|
||||
:param klass: class literal.
|
||||
|
||||
:return: int, long, float, str, bool.
|
||||
"""
|
||||
try:
|
||||
return klass(data)
|
||||
except UnicodeEncodeError:
|
||||
return str(data)
|
||||
except TypeError:
|
||||
return data
|
||||
|
||||
def __deserialize_object(self, value):
|
||||
"""Return an original value.
|
||||
|
||||
:return: object.
|
||||
"""
|
||||
return value
|
||||
|
||||
def __deserialize_date(self, string):
|
||||
"""Deserializes string to date.
|
||||
|
||||
:param string: str.
|
||||
:return: date.
|
||||
"""
|
||||
try:
|
||||
return parse(string).date()
|
||||
except ImportError:
|
||||
return string
|
||||
except ValueError:
|
||||
raise rest.ApiException(
|
||||
status=0,
|
||||
reason="Failed to parse `{0}` as date object".format(string)
|
||||
)
|
||||
|
||||
def __deserialize_datetime(self, string):
|
||||
"""Deserializes string to datetime.
|
||||
|
||||
The string should be in iso8601 datetime format.
|
||||
|
||||
:param string: str.
|
||||
:return: datetime.
|
||||
"""
|
||||
try:
|
||||
return parse(string)
|
||||
except ImportError:
|
||||
return string
|
||||
except ValueError:
|
||||
raise rest.ApiException(
|
||||
status=0,
|
||||
reason=(
|
||||
"Failed to parse `{0}` as datetime object"
|
||||
.format(string)
|
||||
)
|
||||
)
|
||||
|
||||
def __deserialize_enum(self, data, klass):
|
||||
"""Deserializes primitive type to enum.
|
||||
|
||||
:param data: primitive type.
|
||||
:param klass: class literal.
|
||||
:return: enum value.
|
||||
"""
|
||||
try:
|
||||
return klass(data)
|
||||
except ValueError:
|
||||
raise rest.ApiException(
|
||||
status=0,
|
||||
reason=(
|
||||
"Failed to parse `{0}` as `{1}`"
|
||||
.format(data, klass)
|
||||
)
|
||||
)
|
||||
|
||||
def __deserialize_model(self, data, klass):
|
||||
"""Deserializes list or dict to model.
|
||||
|
||||
:param data: dict, list.
|
||||
:param klass: class literal.
|
||||
:return: model object.
|
||||
"""
|
||||
|
||||
return klass.from_dict(data)
|
||||
@@ -1,21 +0,0 @@
|
||||
"""API response object."""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Optional, Generic, Mapping, TypeVar
|
||||
from pydantic import Field, StrictInt, StrictBytes, BaseModel
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
class ApiResponse(BaseModel, Generic[T]):
|
||||
"""
|
||||
API response object
|
||||
"""
|
||||
|
||||
status_code: StrictInt = Field(description="HTTP status code")
|
||||
headers: Optional[Mapping[str, str]] = Field(None, description="HTTP headers")
|
||||
data: T = Field(description="Deserialized data given the data type")
|
||||
raw_data: StrictBytes = Field(description="Raw data (HTTP response body)")
|
||||
|
||||
model_config = {
|
||||
"arbitrary_types_allowed": True
|
||||
}
|
||||
@@ -1,451 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
import copy
|
||||
import logging
|
||||
from logging import FileHandler
|
||||
import multiprocessing
|
||||
import sys
|
||||
from typing import Optional
|
||||
import urllib3
|
||||
|
||||
import http.client as httplib
|
||||
|
||||
JSON_SCHEMA_VALIDATION_KEYWORDS = {
|
||||
'multipleOf', 'maximum', 'exclusiveMaximum',
|
||||
'minimum', 'exclusiveMinimum', 'maxLength',
|
||||
'minLength', 'pattern', 'maxItems', 'minItems'
|
||||
}
|
||||
|
||||
class Configuration:
|
||||
"""This class contains various settings of the API client.
|
||||
|
||||
:param host: Base url.
|
||||
:param ignore_operation_servers
|
||||
Boolean to ignore operation servers for the API client.
|
||||
Config will use `host` as the base url regardless of the operation servers.
|
||||
:param api_key: Dict to store API key(s).
|
||||
Each entry in the dict specifies an API key.
|
||||
The dict key is the name of the security scheme in the OAS specification.
|
||||
The dict value is the API key secret.
|
||||
:param api_key_prefix: Dict to store API prefix (e.g. Bearer).
|
||||
The dict key is the name of the security scheme in the OAS specification.
|
||||
The dict value is an API key prefix when generating the auth data.
|
||||
:param username: Username for HTTP basic authentication.
|
||||
:param password: Password for HTTP basic authentication.
|
||||
:param access_token: Access token.
|
||||
:param server_index: Index to servers configuration.
|
||||
:param server_variables: Mapping with string values to replace variables in
|
||||
templated server configuration. The validation of enums is performed for
|
||||
variables with defined enum values before.
|
||||
:param server_operation_index: Mapping from operation ID to an index to server
|
||||
configuration.
|
||||
:param server_operation_variables: Mapping from operation ID to a mapping with
|
||||
string values to replace variables in templated server configuration.
|
||||
The validation of enums is performed for variables with defined enum
|
||||
values before.
|
||||
:param ssl_ca_cert: str - the path to a file of concatenated CA certificates
|
||||
in PEM format.
|
||||
:param retries: Number of retries for API requests.
|
||||
|
||||
"""
|
||||
|
||||
_default = None
|
||||
|
||||
def __init__(self, host=None,
|
||||
api_key=None, api_key_prefix=None,
|
||||
username=None, password=None,
|
||||
access_token=None,
|
||||
server_index=None, server_variables=None,
|
||||
server_operation_index=None, server_operation_variables=None,
|
||||
ignore_operation_servers=False,
|
||||
ssl_ca_cert=None,
|
||||
retries=None,
|
||||
*,
|
||||
debug: Optional[bool] = None
|
||||
) -> None:
|
||||
"""Constructor
|
||||
"""
|
||||
self._base_path = "http://localhost:5232" if host is None else host
|
||||
"""Default Base url
|
||||
"""
|
||||
self.server_index = 0 if server_index is None and host is None else server_index
|
||||
self.server_operation_index = server_operation_index or {}
|
||||
"""Default server index
|
||||
"""
|
||||
self.server_variables = server_variables or {}
|
||||
self.server_operation_variables = server_operation_variables or {}
|
||||
"""Default server variables
|
||||
"""
|
||||
self.ignore_operation_servers = ignore_operation_servers
|
||||
"""Ignore operation servers
|
||||
"""
|
||||
self.temp_folder_path = None
|
||||
"""Temp file folder for downloading files
|
||||
"""
|
||||
# Authentication Settings
|
||||
self.api_key = {}
|
||||
if api_key:
|
||||
self.api_key = api_key
|
||||
"""dict to store API key(s)
|
||||
"""
|
||||
self.api_key_prefix = {}
|
||||
if api_key_prefix:
|
||||
self.api_key_prefix = api_key_prefix
|
||||
"""dict to store API prefix (e.g. Bearer)
|
||||
"""
|
||||
self.refresh_api_key_hook = None
|
||||
"""function hook to refresh API key if expired
|
||||
"""
|
||||
self.username = username
|
||||
"""Username for HTTP basic authentication
|
||||
"""
|
||||
self.password = password
|
||||
"""Password for HTTP basic authentication
|
||||
"""
|
||||
self.access_token = access_token
|
||||
"""Access token
|
||||
"""
|
||||
self.logger = {}
|
||||
"""Logging Settings
|
||||
"""
|
||||
self.logger["package_logger"] = logging.getLogger("jfjoch_client")
|
||||
self.logger["urllib3_logger"] = logging.getLogger("urllib3")
|
||||
self.logger_format = '%(asctime)s %(levelname)s %(message)s'
|
||||
"""Log format
|
||||
"""
|
||||
self.logger_stream_handler = None
|
||||
"""Log stream handler
|
||||
"""
|
||||
self.logger_file_handler: Optional[FileHandler] = None
|
||||
"""Log file handler
|
||||
"""
|
||||
self.logger_file = None
|
||||
"""Debug file location
|
||||
"""
|
||||
if debug is not None:
|
||||
self.debug = debug
|
||||
else:
|
||||
self.__debug = False
|
||||
"""Debug switch
|
||||
"""
|
||||
|
||||
self.verify_ssl = True
|
||||
"""SSL/TLS verification
|
||||
Set this to false to skip verifying SSL certificate when calling API
|
||||
from https server.
|
||||
"""
|
||||
self.ssl_ca_cert = ssl_ca_cert
|
||||
"""Set this to customize the certificate file to verify the peer.
|
||||
"""
|
||||
self.cert_file = None
|
||||
"""client certificate file
|
||||
"""
|
||||
self.key_file = None
|
||||
"""client key file
|
||||
"""
|
||||
self.assert_hostname = None
|
||||
"""Set this to True/False to enable/disable SSL hostname verification.
|
||||
"""
|
||||
self.tls_server_name = None
|
||||
"""SSL/TLS Server Name Indication (SNI)
|
||||
Set this to the SNI value expected by the server.
|
||||
"""
|
||||
|
||||
self.connection_pool_maxsize = multiprocessing.cpu_count() * 5
|
||||
"""urllib3 connection pool's maximum number of connections saved
|
||||
per pool. urllib3 uses 1 connection as default value, but this is
|
||||
not the best value when you are making a lot of possibly parallel
|
||||
requests to the same host, which is often the case here.
|
||||
cpu_count * 5 is used as default value to increase performance.
|
||||
"""
|
||||
|
||||
self.proxy: Optional[str] = None
|
||||
"""Proxy URL
|
||||
"""
|
||||
self.proxy_headers = None
|
||||
"""Proxy headers
|
||||
"""
|
||||
self.safe_chars_for_path_param = ''
|
||||
"""Safe chars for path_param
|
||||
"""
|
||||
self.retries = retries
|
||||
"""Adding retries to override urllib3 default value 3
|
||||
"""
|
||||
# Enable client side validation
|
||||
self.client_side_validation = True
|
||||
|
||||
self.socket_options = None
|
||||
"""Options to pass down to the underlying urllib3 socket
|
||||
"""
|
||||
|
||||
self.datetime_format = "%Y-%m-%dT%H:%M:%S.%f%z"
|
||||
"""datetime format
|
||||
"""
|
||||
|
||||
self.date_format = "%Y-%m-%d"
|
||||
"""date format
|
||||
"""
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
cls = self.__class__
|
||||
result = cls.__new__(cls)
|
||||
memo[id(self)] = result
|
||||
for k, v in self.__dict__.items():
|
||||
if k not in ('logger', 'logger_file_handler'):
|
||||
setattr(result, k, copy.deepcopy(v, memo))
|
||||
# shallow copy of loggers
|
||||
result.logger = copy.copy(self.logger)
|
||||
# use setters to configure loggers
|
||||
result.logger_file = self.logger_file
|
||||
result.debug = self.debug
|
||||
return result
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
@classmethod
|
||||
def set_default(cls, default):
|
||||
"""Set default instance of configuration.
|
||||
|
||||
It stores default configuration, which can be
|
||||
returned by get_default_copy method.
|
||||
|
||||
:param default: object of Configuration
|
||||
"""
|
||||
cls._default = default
|
||||
|
||||
@classmethod
|
||||
def get_default_copy(cls):
|
||||
"""Deprecated. Please use `get_default` instead.
|
||||
|
||||
Deprecated. Please use `get_default` instead.
|
||||
|
||||
:return: The configuration object.
|
||||
"""
|
||||
return cls.get_default()
|
||||
|
||||
@classmethod
|
||||
def get_default(cls):
|
||||
"""Return the default configuration.
|
||||
|
||||
This method returns newly created, based on default constructor,
|
||||
object of Configuration class or returns a copy of default
|
||||
configuration.
|
||||
|
||||
:return: The configuration object.
|
||||
"""
|
||||
if cls._default is None:
|
||||
cls._default = Configuration()
|
||||
return cls._default
|
||||
|
||||
@property
|
||||
def logger_file(self):
|
||||
"""The logger file.
|
||||
|
||||
If the logger_file is None, then add stream handler and remove file
|
||||
handler. Otherwise, add file handler and remove stream handler.
|
||||
|
||||
:param value: The logger_file path.
|
||||
:type: str
|
||||
"""
|
||||
return self.__logger_file
|
||||
|
||||
@logger_file.setter
|
||||
def logger_file(self, value):
|
||||
"""The logger file.
|
||||
|
||||
If the logger_file is None, then add stream handler and remove file
|
||||
handler. Otherwise, add file handler and remove stream handler.
|
||||
|
||||
:param value: The logger_file path.
|
||||
:type: str
|
||||
"""
|
||||
self.__logger_file = value
|
||||
if self.__logger_file:
|
||||
# If set logging file,
|
||||
# then add file handler and remove stream handler.
|
||||
self.logger_file_handler = logging.FileHandler(self.__logger_file)
|
||||
self.logger_file_handler.setFormatter(self.logger_formatter)
|
||||
for _, logger in self.logger.items():
|
||||
logger.addHandler(self.logger_file_handler)
|
||||
|
||||
@property
|
||||
def debug(self):
|
||||
"""Debug status
|
||||
|
||||
:param value: The debug status, True or False.
|
||||
:type: bool
|
||||
"""
|
||||
return self.__debug
|
||||
|
||||
@debug.setter
|
||||
def debug(self, value):
|
||||
"""Debug status
|
||||
|
||||
:param value: The debug status, True or False.
|
||||
:type: bool
|
||||
"""
|
||||
self.__debug = value
|
||||
if self.__debug:
|
||||
# if debug status is True, turn on debug logging
|
||||
for _, logger in self.logger.items():
|
||||
logger.setLevel(logging.DEBUG)
|
||||
# turn on httplib debug
|
||||
httplib.HTTPConnection.debuglevel = 1
|
||||
else:
|
||||
# if debug status is False, turn off debug logging,
|
||||
# setting log level to default `logging.WARNING`
|
||||
for _, logger in self.logger.items():
|
||||
logger.setLevel(logging.WARNING)
|
||||
# turn off httplib debug
|
||||
httplib.HTTPConnection.debuglevel = 0
|
||||
|
||||
@property
|
||||
def logger_format(self):
|
||||
"""The logger format.
|
||||
|
||||
The logger_formatter will be updated when sets logger_format.
|
||||
|
||||
:param value: The format string.
|
||||
:type: str
|
||||
"""
|
||||
return self.__logger_format
|
||||
|
||||
@logger_format.setter
|
||||
def logger_format(self, value):
|
||||
"""The logger format.
|
||||
|
||||
The logger_formatter will be updated when sets logger_format.
|
||||
|
||||
:param value: The format string.
|
||||
:type: str
|
||||
"""
|
||||
self.__logger_format = value
|
||||
self.logger_formatter = logging.Formatter(self.__logger_format)
|
||||
|
||||
def get_api_key_with_prefix(self, identifier, alias=None):
|
||||
"""Gets API key (with prefix if set).
|
||||
|
||||
:param identifier: The identifier of apiKey.
|
||||
:param alias: The alternative identifier of apiKey.
|
||||
:return: The token for api key authentication.
|
||||
"""
|
||||
if self.refresh_api_key_hook is not None:
|
||||
self.refresh_api_key_hook(self)
|
||||
key = self.api_key.get(identifier, self.api_key.get(alias) if alias is not None else None)
|
||||
if key:
|
||||
prefix = self.api_key_prefix.get(identifier)
|
||||
if prefix:
|
||||
return "%s %s" % (prefix, key)
|
||||
else:
|
||||
return key
|
||||
|
||||
def get_basic_auth_token(self):
|
||||
"""Gets HTTP basic authentication header (string).
|
||||
|
||||
:return: The token for basic HTTP authentication.
|
||||
"""
|
||||
username = ""
|
||||
if self.username is not None:
|
||||
username = self.username
|
||||
password = ""
|
||||
if self.password is not None:
|
||||
password = self.password
|
||||
return urllib3.util.make_headers(
|
||||
basic_auth=username + ':' + password
|
||||
).get('authorization')
|
||||
|
||||
def auth_settings(self):
|
||||
"""Gets Auth Settings dict for api client.
|
||||
|
||||
:return: The Auth Settings information dict.
|
||||
"""
|
||||
auth = {}
|
||||
return auth
|
||||
|
||||
def to_debug_report(self):
|
||||
"""Gets the essential information for debugging.
|
||||
|
||||
:return: The report for debugging.
|
||||
"""
|
||||
return "Python SDK Debug Report:\n"\
|
||||
"OS: {env}\n"\
|
||||
"Python Version: {pyversion}\n"\
|
||||
"Version of the API: 1.0.0-rc.23\n"\
|
||||
"SDK Package Version: 1.0.0-rc.23".\
|
||||
format(env=sys.platform, pyversion=sys.version)
|
||||
|
||||
def get_host_settings(self):
|
||||
"""Gets an array of host settings
|
||||
|
||||
:return: An array of host settings
|
||||
"""
|
||||
return [
|
||||
{
|
||||
'url': "http://localhost:5232",
|
||||
'description': "Test Jungfraujoch system",
|
||||
}
|
||||
]
|
||||
|
||||
def get_host_from_settings(self, index, variables=None, servers=None):
|
||||
"""Gets host URL based on the index and variables
|
||||
:param index: array index of the host settings
|
||||
:param variables: hash of variable and the corresponding value
|
||||
:param servers: an array of host settings or None
|
||||
:return: URL based on host settings
|
||||
"""
|
||||
if index is None:
|
||||
return self._base_path
|
||||
|
||||
variables = {} if variables is None else variables
|
||||
servers = self.get_host_settings() if servers is None else servers
|
||||
|
||||
try:
|
||||
server = servers[index]
|
||||
except IndexError:
|
||||
raise ValueError(
|
||||
"Invalid index {0} when selecting the host settings. "
|
||||
"Must be less than {1}".format(index, len(servers)))
|
||||
|
||||
url = server['url']
|
||||
|
||||
# go through variables and replace placeholders
|
||||
for variable_name, variable in server.get('variables', {}).items():
|
||||
used_value = variables.get(
|
||||
variable_name, variable['default_value'])
|
||||
|
||||
if 'enum_values' in variable \
|
||||
and used_value not in variable['enum_values']:
|
||||
raise ValueError(
|
||||
"The variable `{0}` in the host URL has invalid value "
|
||||
"{1}. Must be {2}.".format(
|
||||
variable_name, variables[variable_name],
|
||||
variable['enum_values']))
|
||||
|
||||
url = url.replace("{" + variable_name + "}", used_value)
|
||||
|
||||
return url
|
||||
|
||||
@property
|
||||
def host(self):
|
||||
"""Return generated host."""
|
||||
return self.get_host_from_settings(self.server_index, variables=self.server_variables)
|
||||
|
||||
@host.setter
|
||||
def host(self, value):
|
||||
"""Fix base path."""
|
||||
self._base_path = value
|
||||
self.server_index = None
|
||||
@@ -1,200 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
from typing import Any, Optional
|
||||
from typing_extensions import Self
|
||||
|
||||
class OpenApiException(Exception):
|
||||
"""The base exception class for all OpenAPIExceptions"""
|
||||
|
||||
|
||||
class ApiTypeError(OpenApiException, TypeError):
|
||||
def __init__(self, msg, path_to_item=None, valid_classes=None,
|
||||
key_type=None) -> None:
|
||||
""" Raises an exception for TypeErrors
|
||||
|
||||
Args:
|
||||
msg (str): the exception message
|
||||
|
||||
Keyword Args:
|
||||
path_to_item (list): a list of keys an indices to get to the
|
||||
current_item
|
||||
None if unset
|
||||
valid_classes (tuple): the primitive classes that current item
|
||||
should be an instance of
|
||||
None if unset
|
||||
key_type (bool): False if our value is a value in a dict
|
||||
True if it is a key in a dict
|
||||
False if our item is an item in a list
|
||||
None if unset
|
||||
"""
|
||||
self.path_to_item = path_to_item
|
||||
self.valid_classes = valid_classes
|
||||
self.key_type = key_type
|
||||
full_msg = msg
|
||||
if path_to_item:
|
||||
full_msg = "{0} at {1}".format(msg, render_path(path_to_item))
|
||||
super(ApiTypeError, self).__init__(full_msg)
|
||||
|
||||
|
||||
class ApiValueError(OpenApiException, ValueError):
|
||||
def __init__(self, msg, path_to_item=None) -> None:
|
||||
"""
|
||||
Args:
|
||||
msg (str): the exception message
|
||||
|
||||
Keyword Args:
|
||||
path_to_item (list) the path to the exception in the
|
||||
received_data dict. None if unset
|
||||
"""
|
||||
|
||||
self.path_to_item = path_to_item
|
||||
full_msg = msg
|
||||
if path_to_item:
|
||||
full_msg = "{0} at {1}".format(msg, render_path(path_to_item))
|
||||
super(ApiValueError, self).__init__(full_msg)
|
||||
|
||||
|
||||
class ApiAttributeError(OpenApiException, AttributeError):
|
||||
def __init__(self, msg, path_to_item=None) -> None:
|
||||
"""
|
||||
Raised when an attribute reference or assignment fails.
|
||||
|
||||
Args:
|
||||
msg (str): the exception message
|
||||
|
||||
Keyword Args:
|
||||
path_to_item (None/list) the path to the exception in the
|
||||
received_data dict
|
||||
"""
|
||||
self.path_to_item = path_to_item
|
||||
full_msg = msg
|
||||
if path_to_item:
|
||||
full_msg = "{0} at {1}".format(msg, render_path(path_to_item))
|
||||
super(ApiAttributeError, self).__init__(full_msg)
|
||||
|
||||
|
||||
class ApiKeyError(OpenApiException, KeyError):
|
||||
def __init__(self, msg, path_to_item=None) -> None:
|
||||
"""
|
||||
Args:
|
||||
msg (str): the exception message
|
||||
|
||||
Keyword Args:
|
||||
path_to_item (None/list) the path to the exception in the
|
||||
received_data dict
|
||||
"""
|
||||
self.path_to_item = path_to_item
|
||||
full_msg = msg
|
||||
if path_to_item:
|
||||
full_msg = "{0} at {1}".format(msg, render_path(path_to_item))
|
||||
super(ApiKeyError, self).__init__(full_msg)
|
||||
|
||||
|
||||
class ApiException(OpenApiException):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
status=None,
|
||||
reason=None,
|
||||
http_resp=None,
|
||||
*,
|
||||
body: Optional[str] = None,
|
||||
data: Optional[Any] = None,
|
||||
) -> None:
|
||||
self.status = status
|
||||
self.reason = reason
|
||||
self.body = body
|
||||
self.data = data
|
||||
self.headers = None
|
||||
|
||||
if http_resp:
|
||||
if self.status is None:
|
||||
self.status = http_resp.status
|
||||
if self.reason is None:
|
||||
self.reason = http_resp.reason
|
||||
if self.body is None:
|
||||
try:
|
||||
self.body = http_resp.data.decode('utf-8')
|
||||
except Exception:
|
||||
pass
|
||||
self.headers = http_resp.getheaders()
|
||||
|
||||
@classmethod
|
||||
def from_response(
|
||||
cls,
|
||||
*,
|
||||
http_resp,
|
||||
body: Optional[str],
|
||||
data: Optional[Any],
|
||||
) -> Self:
|
||||
if http_resp.status == 400:
|
||||
raise BadRequestException(http_resp=http_resp, body=body, data=data)
|
||||
|
||||
if http_resp.status == 401:
|
||||
raise UnauthorizedException(http_resp=http_resp, body=body, data=data)
|
||||
|
||||
if http_resp.status == 403:
|
||||
raise ForbiddenException(http_resp=http_resp, body=body, data=data)
|
||||
|
||||
if http_resp.status == 404:
|
||||
raise NotFoundException(http_resp=http_resp, body=body, data=data)
|
||||
|
||||
if 500 <= http_resp.status <= 599:
|
||||
raise ServiceException(http_resp=http_resp, body=body, data=data)
|
||||
raise ApiException(http_resp=http_resp, body=body, data=data)
|
||||
|
||||
def __str__(self):
|
||||
"""Custom error messages for exception"""
|
||||
error_message = "({0})\n"\
|
||||
"Reason: {1}\n".format(self.status, self.reason)
|
||||
if self.headers:
|
||||
error_message += "HTTP response headers: {0}\n".format(
|
||||
self.headers)
|
||||
|
||||
if self.data or self.body:
|
||||
error_message += "HTTP response body: {0}\n".format(self.data or self.body)
|
||||
|
||||
return error_message
|
||||
|
||||
|
||||
class BadRequestException(ApiException):
|
||||
pass
|
||||
|
||||
|
||||
class NotFoundException(ApiException):
|
||||
pass
|
||||
|
||||
|
||||
class UnauthorizedException(ApiException):
|
||||
pass
|
||||
|
||||
|
||||
class ForbiddenException(ApiException):
|
||||
pass
|
||||
|
||||
|
||||
class ServiceException(ApiException):
|
||||
pass
|
||||
|
||||
|
||||
def render_path(path_to_item):
|
||||
"""Returns a string representation of a path"""
|
||||
result = ""
|
||||
for pth in path_to_item:
|
||||
if isinstance(pth, int):
|
||||
result += "[{0}]".format(pth)
|
||||
else:
|
||||
result += "['{0}']".format(pth)
|
||||
return result
|
||||
@@ -1,55 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
# flake8: noqa
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
# import models into model package
|
||||
from jfjoch_client.models.azim_int_settings import AzimIntSettings
|
||||
from jfjoch_client.models.broker_status import BrokerStatus
|
||||
from jfjoch_client.models.calibration_statistics_inner import CalibrationStatisticsInner
|
||||
from jfjoch_client.models.dataset_settings import DatasetSettings
|
||||
from jfjoch_client.models.dataset_settings_unit_cell import DatasetSettingsUnitCell
|
||||
from jfjoch_client.models.detector import Detector
|
||||
from jfjoch_client.models.detector_list import DetectorList
|
||||
from jfjoch_client.models.detector_list_detectors_inner import DetectorListDetectorsInner
|
||||
from jfjoch_client.models.detector_module import DetectorModule
|
||||
from jfjoch_client.models.detector_module_direction import DetectorModuleDirection
|
||||
from jfjoch_client.models.detector_power_state import DetectorPowerState
|
||||
from jfjoch_client.models.detector_selection import DetectorSelection
|
||||
from jfjoch_client.models.detector_settings import DetectorSettings
|
||||
from jfjoch_client.models.detector_state import DetectorState
|
||||
from jfjoch_client.models.detector_status import DetectorStatus
|
||||
from jfjoch_client.models.detector_timing import DetectorTiming
|
||||
from jfjoch_client.models.detector_type import DetectorType
|
||||
from jfjoch_client.models.error_message import ErrorMessage
|
||||
from jfjoch_client.models.fpga_status_inner import FpgaStatusInner
|
||||
from jfjoch_client.models.image_format_settings import ImageFormatSettings
|
||||
from jfjoch_client.models.image_pusher_type import ImagePusherType
|
||||
from jfjoch_client.models.instrument_metadata import InstrumentMetadata
|
||||
from jfjoch_client.models.jfjoch_settings import JfjochSettings
|
||||
from jfjoch_client.models.jfjoch_statistics import JfjochStatistics
|
||||
from jfjoch_client.models.measurement_statistics import MeasurementStatistics
|
||||
from jfjoch_client.models.pcie_devices_inner import PcieDevicesInner
|
||||
from jfjoch_client.models.plot import Plot
|
||||
from jfjoch_client.models.plots import Plots
|
||||
from jfjoch_client.models.preview_settings import PreviewSettings
|
||||
from jfjoch_client.models.roi_box import RoiBox
|
||||
from jfjoch_client.models.roi_box_list import RoiBoxList
|
||||
from jfjoch_client.models.roi_circle import RoiCircle
|
||||
from jfjoch_client.models.roi_circle_list import RoiCircleList
|
||||
from jfjoch_client.models.rotation_axis import RotationAxis
|
||||
from jfjoch_client.models.spot_finding_settings import SpotFindingSettings
|
||||
from jfjoch_client.models.standard_detector_geometry import StandardDetectorGeometry
|
||||
from jfjoch_client.models.zeromq_preview_settings import ZeromqPreviewSettings
|
||||
from jfjoch_client.models.zeromq_settings import ZeromqSettings
|
||||
@@ -1,97 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class AzimIntSettings(BaseModel):
|
||||
"""
|
||||
AzimIntSettings
|
||||
""" # noqa: E501
|
||||
polarization_factor: Optional[Union[Annotated[float, Field(le=1.0, strict=True, ge=-1.0)], Annotated[int, Field(le=1, strict=True, ge=-1)]]] = Field(default=None, description="If polarization factor is provided, than polarization correction is enabled.")
|
||||
solid_angle_corr: StrictBool = Field(description="Apply solid angle correction for radial integration")
|
||||
high_q_recip_a: Union[StrictFloat, StrictInt] = Field(alias="high_q_recipA")
|
||||
low_q_recip_a: Union[StrictFloat, StrictInt] = Field(alias="low_q_recipA")
|
||||
q_spacing: Union[StrictFloat, StrictInt]
|
||||
__properties: ClassVar[List[str]] = ["polarization_factor", "solid_angle_corr", "high_q_recipA", "low_q_recipA", "q_spacing"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of AzimIntSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of AzimIntSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"polarization_factor": obj.get("polarization_factor"),
|
||||
"solid_angle_corr": obj.get("solid_angle_corr") if obj.get("solid_angle_corr") is not None else True,
|
||||
"high_q_recipA": obj.get("high_q_recipA"),
|
||||
"low_q_recipA": obj.get("low_q_recipA"),
|
||||
"q_spacing": obj.get("q_spacing")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,98 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class BrokerStatus(BaseModel):
|
||||
"""
|
||||
BrokerStatus
|
||||
""" # noqa: E501
|
||||
state: StrictStr
|
||||
progress: Optional[Union[Annotated[float, Field(le=1.0, strict=True, ge=0.0)], Annotated[int, Field(le=1, strict=True, ge=0)]]] = Field(default=None, description="Progress of data collection (only available if receiving is running)")
|
||||
__properties: ClassVar[List[str]] = ["state", "progress"]
|
||||
|
||||
@field_validator('state')
|
||||
def state_validate_enum(cls, value):
|
||||
"""Validates the enum"""
|
||||
if value not in set(['Inactive', 'Idle', 'Busy', 'Measuring', 'Pedestal', 'Error']):
|
||||
raise ValueError("must be one of enum values ('Inactive', 'Idle', 'Busy', 'Measuring', 'Pedestal', 'Error')")
|
||||
return value
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of BrokerStatus from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of BrokerStatus from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"state": obj.get("state"),
|
||||
"progress": obj.get("progress")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,104 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Union
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class CalibrationStatisticsInner(BaseModel):
|
||||
"""
|
||||
CalibrationStatisticsInner
|
||||
""" # noqa: E501
|
||||
module_number: StrictInt
|
||||
storage_cell_number: StrictInt
|
||||
pedestal_g0_mean: Union[StrictFloat, StrictInt]
|
||||
pedestal_g1_mean: Union[StrictFloat, StrictInt]
|
||||
pedestal_g2_mean: Union[StrictFloat, StrictInt]
|
||||
gain_g0_mean: Union[StrictFloat, StrictInt]
|
||||
gain_g1_mean: Union[StrictFloat, StrictInt]
|
||||
gain_g2_mean: Union[StrictFloat, StrictInt]
|
||||
masked_pixels: StrictInt
|
||||
__properties: ClassVar[List[str]] = ["module_number", "storage_cell_number", "pedestal_g0_mean", "pedestal_g1_mean", "pedestal_g2_mean", "gain_g0_mean", "gain_g1_mean", "gain_g2_mean", "masked_pixels"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of CalibrationStatisticsInner from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of CalibrationStatisticsInner from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"module_number": obj.get("module_number"),
|
||||
"storage_cell_number": obj.get("storage_cell_number"),
|
||||
"pedestal_g0_mean": obj.get("pedestal_g0_mean"),
|
||||
"pedestal_g1_mean": obj.get("pedestal_g1_mean"),
|
||||
"pedestal_g2_mean": obj.get("pedestal_g2_mean"),
|
||||
"gain_g0_mean": obj.get("gain_g0_mean"),
|
||||
"gain_g1_mean": obj.get("gain_g1_mean"),
|
||||
"gain_g2_mean": obj.get("gain_g2_mean"),
|
||||
"masked_pixels": obj.get("masked_pixels")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,167 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr, field_validator
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from jfjoch_client.models.dataset_settings_unit_cell import DatasetSettingsUnitCell
|
||||
from jfjoch_client.models.rotation_axis import RotationAxis
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DatasetSettings(BaseModel):
|
||||
"""
|
||||
DatasetSettings
|
||||
""" # noqa: E501
|
||||
images_per_trigger: Optional[Annotated[int, Field(strict=True, ge=1)]] = Field(default=1, description="For standard synchrotron data collection - this is number of images collected per one TTL trigger For XFEL (pulsed source) - this number is ignored and set to 1 For storage cell mode - this number is ignored and set to number of storage cells ")
|
||||
ntrigger: Optional[Annotated[int, Field(strict=True, ge=1)]] = Field(default=1, description="Number of TTL trigger that the detector is expected to receive during data collection ")
|
||||
image_time_us: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=None, description="Image time. If not provided (or zero value) the frame time is assumed as default. Image time must be multiple of frame time; max value is 256 * frame_time. In XFEL mode: summation happens for frames collected with multiple triggers. Ignored for storage cells and if raw data are saved. ")
|
||||
beam_x_pxl: Union[StrictFloat, StrictInt] = Field(description="/entry/detector/beam_center_x in NXmx Beam center in X direction [pixels] ")
|
||||
beam_y_pxl: Union[StrictFloat, StrictInt] = Field(description="/entry/detector/beam_center_y in NXmx Beam center in X direction [pixels] ")
|
||||
detector_distance_mm: Union[Annotated[float, Field(strict=True, ge=0)], Annotated[int, Field(strict=True, ge=0)]] = Field(description="/entry/detector/distance in NXmx Detector distance [mm]")
|
||||
incident_energy_ke_v: Union[Annotated[float, Field(le=500.0, strict=True, ge=0.001)], Annotated[int, Field(le=500, strict=True, ge=1)]] = Field(description="Used to calculate /entry/beam/incident_wavelength in NXmx Incident particle (photon, electron) energy in keV ", alias="incident_energy_keV")
|
||||
file_prefix: Optional[StrictStr] = Field(default='', description="Prefix for filenames. If left empty, no file will be saved.")
|
||||
images_per_file: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=1000, description="Number of files in a single HDF5 data file (0 = write all images to a single data file).")
|
||||
space_group_number: Optional[Annotated[int, Field(le=194, strict=True, ge=0)]] = 0
|
||||
sample_name: Optional[StrictStr] = Field(default='', description="/entry/sample/name in NXmx Sample name ")
|
||||
compression: Optional[StrictStr] = 'bslz4'
|
||||
total_flux: Optional[Union[StrictFloat, StrictInt]] = Field(default=None, description="/entry/beam/total_flux in NXmx Flux incident on beam plane in photons per second. In other words this is the flux integrated over area. [photons/s] ")
|
||||
transmission: Optional[Union[Annotated[float, Field(le=1.0, strict=True, ge=0.0)], Annotated[int, Field(le=1, strict=True, ge=0)]]] = Field(default=None, description="/entry/instrument/attenuator/attenuator_transmission Transmission of attenuator (filter) [no units] ")
|
||||
goniometer: Optional[RotationAxis] = None
|
||||
header_appendix: Optional[Any] = Field(default=None, description="Header appendix, added as user_data/user to start message (can be any valid JSON)")
|
||||
image_appendix: Optional[Any] = Field(default=None, description="Image appendix, added as user_data to image message (can be any valid JSON)")
|
||||
data_reduction_factor_serialmx: Optional[Union[Annotated[float, Field(le=1.0, strict=True, ge=0.0)], Annotated[int, Field(le=1, strict=True, ge=0)]]] = Field(default=1.0, description="Rate at which non-indexed images are accepted to be forwarded to writer. Value of 1.0 (default) means that all images are written. Values below zero mean that non-indexed images will be accepted with a given probability. ")
|
||||
pixel_value_low_threshold: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=None, description="Set all counts lower than the value to zero. When the value is set, negative numbers other than error pixel value are always set to zero. Setting to zero is equivalent to turning the option off. ")
|
||||
run_number: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=None, description="Number of run within an experimental session. Transferred over CBOR stream as \"series ID\", though not saved in HDF5 file. It is highly recommended to keep this number unique for each data collection during experimental series. If not provided, the number will be automatically incremented. ")
|
||||
run_name: Optional[StrictStr] = Field(default=None, description="Unique ID of run. Transferred over CBOR stream as \"unique series ID\", though not saved in HDF5 file. It is highly recommended to keep this name unique for each data collection during experimental series. If not provided, the name will be automatically generated as number + colon + file_prefix. ")
|
||||
experiment_group: Optional[StrictStr] = Field(default=None, description="Name of group owning the data (e.g. p-group or proposal number). Transferred over CBOR stream, though not saved in HDF5 file. ")
|
||||
poisson_compression: Optional[Annotated[int, Field(le=16, strict=True, ge=0)]] = Field(default=None, description="Enable lossy compression of pixel values that preserves Poisson statistics. Requires to provide a numerical factor SQ. Pixel value P will be transformed to round(sqrt(P) * SQ), with rounding to the closest integer. Compression is turned off if the value is missing or it is set to zero. ")
|
||||
write_nxmx_hdf5_master: Optional[StrictBool] = Field(default=True, description="Write NXmx formatted HDF5 master file. Recommended to use for macromolecular crystallography experiments and to turn off for other experiments. ")
|
||||
save_calibration: Optional[StrictBool] = Field(default=None, description="Forward image calibration (at the moment pedestal and pedestal RMS for JUNGFRAU) using the ZeroMQ stream to writer. If parameter is not provided calibration will be saved only if more than 4 images are recorded. ")
|
||||
unit_cell: Optional[DatasetSettingsUnitCell] = None
|
||||
__properties: ClassVar[List[str]] = ["images_per_trigger", "ntrigger", "image_time_us", "beam_x_pxl", "beam_y_pxl", "detector_distance_mm", "incident_energy_keV", "file_prefix", "images_per_file", "space_group_number", "sample_name", "compression", "total_flux", "transmission", "goniometer", "header_appendix", "image_appendix", "data_reduction_factor_serialmx", "pixel_value_low_threshold", "run_number", "run_name", "experiment_group", "poisson_compression", "write_nxmx_hdf5_master", "save_calibration", "unit_cell"]
|
||||
|
||||
@field_validator('compression')
|
||||
def compression_validate_enum(cls, value):
|
||||
"""Validates the enum"""
|
||||
if value is None:
|
||||
return value
|
||||
|
||||
if value not in set(['bslz4', 'bszstd', 'bszstd_rle', 'none']):
|
||||
raise ValueError("must be one of enum values ('bslz4', 'bszstd', 'bszstd_rle', 'none')")
|
||||
return value
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DatasetSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of goniometer
|
||||
if self.goniometer:
|
||||
_dict['goniometer'] = self.goniometer.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of unit_cell
|
||||
if self.unit_cell:
|
||||
_dict['unit_cell'] = self.unit_cell.to_dict()
|
||||
# set to None if header_appendix (nullable) is None
|
||||
# and model_fields_set contains the field
|
||||
if self.header_appendix is None and "header_appendix" in self.model_fields_set:
|
||||
_dict['header_appendix'] = None
|
||||
|
||||
# set to None if image_appendix (nullable) is None
|
||||
# and model_fields_set contains the field
|
||||
if self.image_appendix is None and "image_appendix" in self.model_fields_set:
|
||||
_dict['image_appendix'] = None
|
||||
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DatasetSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"images_per_trigger": obj.get("images_per_trigger") if obj.get("images_per_trigger") is not None else 1,
|
||||
"ntrigger": obj.get("ntrigger") if obj.get("ntrigger") is not None else 1,
|
||||
"image_time_us": obj.get("image_time_us"),
|
||||
"beam_x_pxl": obj.get("beam_x_pxl"),
|
||||
"beam_y_pxl": obj.get("beam_y_pxl"),
|
||||
"detector_distance_mm": obj.get("detector_distance_mm"),
|
||||
"incident_energy_keV": obj.get("incident_energy_keV"),
|
||||
"file_prefix": obj.get("file_prefix") if obj.get("file_prefix") is not None else '',
|
||||
"images_per_file": obj.get("images_per_file") if obj.get("images_per_file") is not None else 1000,
|
||||
"space_group_number": obj.get("space_group_number") if obj.get("space_group_number") is not None else 0,
|
||||
"sample_name": obj.get("sample_name") if obj.get("sample_name") is not None else '',
|
||||
"compression": obj.get("compression") if obj.get("compression") is not None else 'bslz4',
|
||||
"total_flux": obj.get("total_flux"),
|
||||
"transmission": obj.get("transmission"),
|
||||
"goniometer": RotationAxis.from_dict(obj["goniometer"]) if obj.get("goniometer") is not None else None,
|
||||
"header_appendix": obj.get("header_appendix"),
|
||||
"image_appendix": obj.get("image_appendix"),
|
||||
"data_reduction_factor_serialmx": obj.get("data_reduction_factor_serialmx") if obj.get("data_reduction_factor_serialmx") is not None else 1.0,
|
||||
"pixel_value_low_threshold": obj.get("pixel_value_low_threshold"),
|
||||
"run_number": obj.get("run_number"),
|
||||
"run_name": obj.get("run_name"),
|
||||
"experiment_group": obj.get("experiment_group"),
|
||||
"poisson_compression": obj.get("poisson_compression"),
|
||||
"write_nxmx_hdf5_master": obj.get("write_nxmx_hdf5_master") if obj.get("write_nxmx_hdf5_master") is not None else True,
|
||||
"save_calibration": obj.get("save_calibration"),
|
||||
"unit_cell": DatasetSettingsUnitCell.from_dict(obj["unit_cell"]) if obj.get("unit_cell") is not None else None
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,99 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing import Any, ClassVar, Dict, List, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DatasetSettingsUnitCell(BaseModel):
|
||||
"""
|
||||
Units of angstrom and degree
|
||||
""" # noqa: E501
|
||||
a: Union[Annotated[float, Field(strict=True, ge=0)], Annotated[int, Field(strict=True, ge=0)]]
|
||||
b: Union[Annotated[float, Field(strict=True, ge=0)], Annotated[int, Field(strict=True, ge=0)]]
|
||||
c: Union[Annotated[float, Field(strict=True, ge=0)], Annotated[int, Field(strict=True, ge=0)]]
|
||||
alpha: Union[Annotated[float, Field(le=360, strict=True, ge=0)], Annotated[int, Field(le=360, strict=True, ge=0)]]
|
||||
beta: Union[Annotated[float, Field(le=360, strict=True, ge=0)], Annotated[int, Field(le=360, strict=True, ge=0)]]
|
||||
gamma: Union[Annotated[float, Field(le=360, strict=True, ge=0)], Annotated[int, Field(le=360, strict=True, ge=0)]]
|
||||
__properties: ClassVar[List[str]] = ["a", "b", "c", "alpha", "beta", "gamma"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DatasetSettingsUnitCell from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DatasetSettingsUnitCell from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"a": obj.get("a"),
|
||||
"b": obj.get("b"),
|
||||
"c": obj.get("c"),
|
||||
"alpha": obj.get("alpha"),
|
||||
"beta": obj.get("beta"),
|
||||
"gamma": obj.get("gamma")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,130 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from jfjoch_client.models.detector_module import DetectorModule
|
||||
from jfjoch_client.models.detector_type import DetectorType
|
||||
from jfjoch_client.models.standard_detector_geometry import StandardDetectorGeometry
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class Detector(BaseModel):
|
||||
"""
|
||||
Detector
|
||||
""" # noqa: E501
|
||||
description: Annotated[str, Field(min_length=1, strict=True)]
|
||||
serial_number: Annotated[str, Field(min_length=1, strict=True)]
|
||||
type: Optional[DetectorType] = None
|
||||
high_voltage_v: Optional[Annotated[int, Field(le=200, strict=True, ge=0)]] = Field(default=0, alias="high_voltage_V")
|
||||
udp_interface_count: Optional[Annotated[int, Field(le=2, strict=True, ge=1)]] = 1
|
||||
module_sync: Optional[StrictBool] = Field(default=True, description="Use module 0 as master for timing. Only applies to JUNGFRAU detector (this cannot be turned off for EIGER).")
|
||||
sensor_thickness_um: Optional[Union[Annotated[float, Field(strict=True, ge=0)], Annotated[int, Field(strict=True, ge=0)]]] = 320
|
||||
calibration_file: Optional[List[StrictStr]] = Field(default=None, description="Gain file (JUNGFRAU) or trimbit file (EIGER). One entry per module. Either empty or number of module entries. ")
|
||||
hostname: Optional[List[StrictStr]] = Field(default=None, description="Hostname for detector module. One entry per module One entry per module. Either empty or number of module entries. ")
|
||||
sensor_material: Optional[StrictStr] = 'Si'
|
||||
tx_delay: Optional[List[StrictInt]] = None
|
||||
base_data_ipv4_address: Optional[StrictStr] = None
|
||||
standard_geometry: Optional[StandardDetectorGeometry] = None
|
||||
custom_geometry: Optional[List[DetectorModule]] = None
|
||||
mirror_y: Optional[StrictBool] = Field(default=True, description="Mirror detector in Y direction to account for MX convention of (0,0) point in top left corner")
|
||||
__properties: ClassVar[List[str]] = ["description", "serial_number", "type", "high_voltage_V", "udp_interface_count", "module_sync", "sensor_thickness_um", "calibration_file", "hostname", "sensor_material", "tx_delay", "base_data_ipv4_address", "standard_geometry", "custom_geometry", "mirror_y"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of Detector from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of standard_geometry
|
||||
if self.standard_geometry:
|
||||
_dict['standard_geometry'] = self.standard_geometry.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in custom_geometry (list)
|
||||
_items = []
|
||||
if self.custom_geometry:
|
||||
for _item_custom_geometry in self.custom_geometry:
|
||||
if _item_custom_geometry:
|
||||
_items.append(_item_custom_geometry.to_dict())
|
||||
_dict['custom_geometry'] = _items
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of Detector from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"description": obj.get("description"),
|
||||
"serial_number": obj.get("serial_number"),
|
||||
"type": obj.get("type"),
|
||||
"high_voltage_V": obj.get("high_voltage_V") if obj.get("high_voltage_V") is not None else 0,
|
||||
"udp_interface_count": obj.get("udp_interface_count") if obj.get("udp_interface_count") is not None else 1,
|
||||
"module_sync": obj.get("module_sync") if obj.get("module_sync") is not None else True,
|
||||
"sensor_thickness_um": obj.get("sensor_thickness_um") if obj.get("sensor_thickness_um") is not None else 320,
|
||||
"calibration_file": obj.get("calibration_file"),
|
||||
"hostname": obj.get("hostname"),
|
||||
"sensor_material": obj.get("sensor_material") if obj.get("sensor_material") is not None else 'Si',
|
||||
"tx_delay": obj.get("tx_delay"),
|
||||
"base_data_ipv4_address": obj.get("base_data_ipv4_address"),
|
||||
"standard_geometry": StandardDetectorGeometry.from_dict(obj["standard_geometry"]) if obj.get("standard_geometry") is not None else None,
|
||||
"custom_geometry": [DetectorModule.from_dict(_item) for _item in obj["custom_geometry"]] if obj.get("custom_geometry") is not None else None,
|
||||
"mirror_y": obj.get("mirror_y") if obj.get("mirror_y") is not None else True
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,98 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from jfjoch_client.models.detector_list_detectors_inner import DetectorListDetectorsInner
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DetectorList(BaseModel):
|
||||
"""
|
||||
DetectorList
|
||||
""" # noqa: E501
|
||||
detectors: List[DetectorListDetectorsInner]
|
||||
current_id: StrictInt
|
||||
__properties: ClassVar[List[str]] = ["detectors", "current_id"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DetectorList from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in detectors (list)
|
||||
_items = []
|
||||
if self.detectors:
|
||||
for _item_detectors in self.detectors:
|
||||
if _item_detectors:
|
||||
_items.append(_item_detectors.to_dict())
|
||||
_dict['detectors'] = _items
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DetectorList from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"detectors": [DetectorListDetectorsInner.from_dict(_item) for _item in obj["detectors"]] if obj.get("detectors") is not None else None,
|
||||
"current_id": obj.get("current_id")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,103 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DetectorListDetectorsInner(BaseModel):
|
||||
"""
|
||||
DetectorListDetectorsInner
|
||||
""" # noqa: E501
|
||||
id: Annotated[int, Field(strict=True, ge=0)]
|
||||
description: StrictStr
|
||||
serial_number: StrictStr
|
||||
base_ipv4_addr: StrictStr
|
||||
udp_interface_count: StrictInt = Field(description="Number of UDP interfaces per detector module")
|
||||
nmodules: StrictInt
|
||||
width: StrictInt
|
||||
height: StrictInt
|
||||
__properties: ClassVar[List[str]] = ["id", "description", "serial_number", "base_ipv4_addr", "udp_interface_count", "nmodules", "width", "height"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DetectorListDetectorsInner from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DetectorListDetectorsInner from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"id": obj.get("id"),
|
||||
"description": obj.get("description"),
|
||||
"serial_number": obj.get("serial_number"),
|
||||
"base_ipv4_addr": obj.get("base_ipv4_addr"),
|
||||
"udp_interface_count": obj.get("udp_interface_count"),
|
||||
"nmodules": obj.get("nmodules"),
|
||||
"width": obj.get("width"),
|
||||
"height": obj.get("height")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,95 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Union
|
||||
from jfjoch_client.models.detector_module_direction import DetectorModuleDirection
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DetectorModule(BaseModel):
|
||||
"""
|
||||
DetectorModule
|
||||
""" # noqa: E501
|
||||
x0: Union[StrictFloat, StrictInt]
|
||||
y0: Union[StrictFloat, StrictInt]
|
||||
fast_axis: DetectorModuleDirection
|
||||
slow_axis: DetectorModuleDirection
|
||||
__properties: ClassVar[List[str]] = ["x0", "y0", "fast_axis", "slow_axis"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DetectorModule from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DetectorModule from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"x0": obj.get("x0"),
|
||||
"y0": obj.get("y0"),
|
||||
"fast_axis": obj.get("fast_axis"),
|
||||
"slow_axis": obj.get("slow_axis")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class DetectorModuleDirection(str, Enum):
|
||||
"""
|
||||
DetectorModuleDirection
|
||||
"""
|
||||
|
||||
"""
|
||||
allowed enum values
|
||||
"""
|
||||
XP = 'Xp'
|
||||
XN = 'Xn'
|
||||
YP = 'Yp'
|
||||
YN = 'Yn'
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Self:
|
||||
"""Create an instance of DetectorModuleDirection from a JSON string"""
|
||||
return cls(json.loads(json_str))
|
||||
|
||||
|
||||
@@ -1,39 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class DetectorPowerState(str, Enum):
|
||||
"""
|
||||
Power on of ASICs
|
||||
"""
|
||||
|
||||
"""
|
||||
allowed enum values
|
||||
"""
|
||||
POWERON = 'PowerOn'
|
||||
POWEROFF = 'PowerOff'
|
||||
PARTIAL = 'Partial'
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Self:
|
||||
"""Create an instance of DetectorPowerState from a JSON string"""
|
||||
return cls(json.loads(json_str))
|
||||
|
||||
|
||||
@@ -1,88 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DetectorSelection(BaseModel):
|
||||
"""
|
||||
DetectorSelection
|
||||
""" # noqa: E501
|
||||
id: StrictInt
|
||||
__properties: ClassVar[List[str]] = ["id"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DetectorSelection from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DetectorSelection from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"id": obj.get("id")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,120 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from jfjoch_client.models.detector_timing import DetectorTiming
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DetectorSettings(BaseModel):
|
||||
"""
|
||||
DetectorSettings
|
||||
""" # noqa: E501
|
||||
frame_time_us: Annotated[int, Field(strict=True, ge=450)] = Field(description="Interval between consecutive frames.")
|
||||
count_time_us: Optional[StrictInt] = Field(default=None, description="Integration time of the detector. If not provided count time will be set to maximum value for a given frame time.")
|
||||
internal_frame_generator: Optional[StrictBool] = Field(default=False, description="Use internal frame generator in FPGA instead of getting data from a real detector")
|
||||
internal_frame_generator_images: Optional[Annotated[int, Field(le=128, strict=True, ge=1)]] = 1
|
||||
detector_trigger_delay_ns: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=0, description="Delay between TTL trigger and acquisition start [ns]")
|
||||
timing: Optional[DetectorTiming] = DetectorTiming.TRIGGER
|
||||
eiger_threshold_ke_v: Optional[Union[Annotated[float, Field(le=100.0, strict=True, ge=1.0)], Annotated[int, Field(le=100, strict=True, ge=1)]]] = Field(default=None, alias="eiger_threshold_keV")
|
||||
jungfrau_pedestal_g0_frames: Optional[Annotated[int, Field(strict=True, ge=0)]] = 2000
|
||||
jungfrau_pedestal_g1_frames: Optional[Annotated[int, Field(strict=True, ge=0)]] = 300
|
||||
jungfrau_pedestal_g2_frames: Optional[Annotated[int, Field(strict=True, ge=0)]] = 300
|
||||
jungfrau_pedestal_g0_rms_limit: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=100, description="Pixels with pedestal G0 RMS above the threshold are marked as masked pixels")
|
||||
jungfrau_pedestal_min_image_count: Optional[Annotated[int, Field(strict=True, ge=32)]] = Field(default=128, description="Minimum number of collected images for pedestal to consider it viable")
|
||||
jungfrau_storage_cell_count: Optional[Annotated[int, Field(le=16, strict=True, ge=1)]] = 1
|
||||
jungfrau_storage_cell_delay_ns: Optional[Annotated[int, Field(strict=True, ge=2100)]] = Field(default=5000, description="Delay between two storage cells [ns]")
|
||||
jungfrau_fixed_gain_g1: Optional[StrictBool] = Field(default=False, description="Fix gain to G1 (can be useful for storage cells)")
|
||||
jungfrau_use_gain_hg0: Optional[StrictBool] = Field(default=False, description="Use high G0 (for low energy applications)")
|
||||
__properties: ClassVar[List[str]] = ["frame_time_us", "count_time_us", "internal_frame_generator", "internal_frame_generator_images", "detector_trigger_delay_ns", "timing", "eiger_threshold_keV", "jungfrau_pedestal_g0_frames", "jungfrau_pedestal_g1_frames", "jungfrau_pedestal_g2_frames", "jungfrau_pedestal_g0_rms_limit", "jungfrau_pedestal_min_image_count", "jungfrau_storage_cell_count", "jungfrau_storage_cell_delay_ns", "jungfrau_fixed_gain_g1", "jungfrau_use_gain_hg0"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DetectorSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DetectorSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"frame_time_us": obj.get("frame_time_us"),
|
||||
"count_time_us": obj.get("count_time_us"),
|
||||
"internal_frame_generator": obj.get("internal_frame_generator") if obj.get("internal_frame_generator") is not None else False,
|
||||
"internal_frame_generator_images": obj.get("internal_frame_generator_images") if obj.get("internal_frame_generator_images") is not None else 1,
|
||||
"detector_trigger_delay_ns": obj.get("detector_trigger_delay_ns") if obj.get("detector_trigger_delay_ns") is not None else 0,
|
||||
"timing": obj.get("timing") if obj.get("timing") is not None else DetectorTiming.TRIGGER,
|
||||
"eiger_threshold_keV": obj.get("eiger_threshold_keV"),
|
||||
"jungfrau_pedestal_g0_frames": obj.get("jungfrau_pedestal_g0_frames") if obj.get("jungfrau_pedestal_g0_frames") is not None else 2000,
|
||||
"jungfrau_pedestal_g1_frames": obj.get("jungfrau_pedestal_g1_frames") if obj.get("jungfrau_pedestal_g1_frames") is not None else 300,
|
||||
"jungfrau_pedestal_g2_frames": obj.get("jungfrau_pedestal_g2_frames") if obj.get("jungfrau_pedestal_g2_frames") is not None else 300,
|
||||
"jungfrau_pedestal_g0_rms_limit": obj.get("jungfrau_pedestal_g0_rms_limit") if obj.get("jungfrau_pedestal_g0_rms_limit") is not None else 100,
|
||||
"jungfrau_pedestal_min_image_count": obj.get("jungfrau_pedestal_min_image_count") if obj.get("jungfrau_pedestal_min_image_count") is not None else 128,
|
||||
"jungfrau_storage_cell_count": obj.get("jungfrau_storage_cell_count") if obj.get("jungfrau_storage_cell_count") is not None else 1,
|
||||
"jungfrau_storage_cell_delay_ns": obj.get("jungfrau_storage_cell_delay_ns") if obj.get("jungfrau_storage_cell_delay_ns") is not None else 5000,
|
||||
"jungfrau_fixed_gain_g1": obj.get("jungfrau_fixed_gain_g1") if obj.get("jungfrau_fixed_gain_g1") is not None else False,
|
||||
"jungfrau_use_gain_hg0": obj.get("jungfrau_use_gain_hg0") if obj.get("jungfrau_use_gain_hg0") is not None else False
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,41 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class DetectorState(str, Enum):
|
||||
"""
|
||||
Current state of the detector
|
||||
"""
|
||||
|
||||
"""
|
||||
allowed enum values
|
||||
"""
|
||||
IDLE = 'Idle'
|
||||
WAITING = 'Waiting'
|
||||
BUSY = 'Busy'
|
||||
ERROR = 'Error'
|
||||
NOT_CONNECTED = 'Not connected'
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Self:
|
||||
"""Create an instance of DetectorState from a JSON string"""
|
||||
return cls(json.loads(json_str))
|
||||
|
||||
|
||||
@@ -1,100 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from jfjoch_client.models.detector_power_state import DetectorPowerState
|
||||
from jfjoch_client.models.detector_state import DetectorState
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class DetectorStatus(BaseModel):
|
||||
"""
|
||||
DetectorStatus
|
||||
""" # noqa: E501
|
||||
state: DetectorState
|
||||
powerchip: DetectorPowerState
|
||||
server_version: StrictStr = Field(description="Detector server (on read-out boards) version")
|
||||
number_of_triggers_left: StrictInt = Field(description="Remaining triggers to the detector (max of all modules)")
|
||||
fpga_temp_deg_c: List[StrictInt] = Field(description="Temperature of detector FPGAs", alias="fpga_temp_degC")
|
||||
high_voltage_v: List[StrictInt] = Field(description="High voltage for detector modules", alias="high_voltage_V")
|
||||
__properties: ClassVar[List[str]] = ["state", "powerchip", "server_version", "number_of_triggers_left", "fpga_temp_degC", "high_voltage_V"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of DetectorStatus from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of DetectorStatus from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"state": obj.get("state"),
|
||||
"powerchip": obj.get("powerchip"),
|
||||
"server_version": obj.get("server_version"),
|
||||
"number_of_triggers_left": obj.get("number_of_triggers_left"),
|
||||
"fpga_temp_degC": obj.get("fpga_temp_degC"),
|
||||
"high_voltage_V": obj.get("high_voltage_V")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class DetectorTiming(str, Enum):
|
||||
"""
|
||||
DetectorTiming
|
||||
"""
|
||||
|
||||
"""
|
||||
allowed enum values
|
||||
"""
|
||||
AUTO = 'auto'
|
||||
TRIGGER = 'trigger'
|
||||
BURST = 'burst'
|
||||
GATED = 'gated'
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Self:
|
||||
"""Create an instance of DetectorTiming from a JSON string"""
|
||||
return cls(json.loads(json_str))
|
||||
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class DetectorType(str, Enum):
|
||||
"""
|
||||
DetectorType
|
||||
"""
|
||||
|
||||
"""
|
||||
allowed enum values
|
||||
"""
|
||||
EIGER = 'EIGER'
|
||||
JUNGFRAU = 'JUNGFRAU'
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Self:
|
||||
"""Create an instance of DetectorType from a JSON string"""
|
||||
return cls(json.loads(json_str))
|
||||
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class ErrorMessage(BaseModel):
|
||||
"""
|
||||
ErrorMessage
|
||||
""" # noqa: E501
|
||||
msg: StrictStr = Field(description="Human readable message")
|
||||
reason: StrictStr = Field(description="Enumerate field for automated analysis")
|
||||
__properties: ClassVar[List[str]] = ["msg", "reason"]
|
||||
|
||||
@field_validator('reason')
|
||||
def reason_validate_enum(cls, value):
|
||||
"""Validates the enum"""
|
||||
if value not in set(['WrongDAQState', 'Other']):
|
||||
raise ValueError("must be one of enum values ('WrongDAQState', 'Other')")
|
||||
return value
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of ErrorMessage from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of ErrorMessage from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"msg": obj.get("msg"),
|
||||
"reason": obj.get("reason")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,108 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Union
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class FpgaStatusInner(BaseModel):
|
||||
"""
|
||||
FpgaStatusInner
|
||||
""" # noqa: E501
|
||||
pci_dev_id: StrictStr
|
||||
serial_number: StrictStr
|
||||
base_mac_addr: StrictStr
|
||||
eth_link_count: StrictInt
|
||||
eth_link_status: StrictInt
|
||||
power_usage_w: Union[StrictFloat, StrictInt] = Field(alias="power_usage_W")
|
||||
fpga_temp_c: Union[StrictFloat, StrictInt] = Field(alias="fpga_temp_C")
|
||||
hbm_temp_c: Union[StrictFloat, StrictInt] = Field(alias="hbm_temp_C")
|
||||
packets_udp: StrictInt
|
||||
packets_sls: StrictInt
|
||||
idle: StrictBool
|
||||
__properties: ClassVar[List[str]] = ["pci_dev_id", "serial_number", "base_mac_addr", "eth_link_count", "eth_link_status", "power_usage_W", "fpga_temp_C", "hbm_temp_C", "packets_udp", "packets_sls", "idle"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of FpgaStatusInner from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of FpgaStatusInner from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"pci_dev_id": obj.get("pci_dev_id"),
|
||||
"serial_number": obj.get("serial_number"),
|
||||
"base_mac_addr": obj.get("base_mac_addr"),
|
||||
"eth_link_count": obj.get("eth_link_count"),
|
||||
"eth_link_status": obj.get("eth_link_status"),
|
||||
"power_usage_W": obj.get("power_usage_W"),
|
||||
"fpga_temp_C": obj.get("fpga_temp_C"),
|
||||
"hbm_temp_C": obj.get("hbm_temp_C"),
|
||||
"packets_udp": obj.get("packets_udp"),
|
||||
"packets_sls": obj.get("packets_sls"),
|
||||
"idle": obj.get("idle")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,113 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt, field_validator
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class ImageFormatSettings(BaseModel):
|
||||
"""
|
||||
ImageFormatSettings
|
||||
""" # noqa: E501
|
||||
summation: StrictBool = Field(description="Enable summation of images to a given image_time If disabled images are saved according to original detector speed, but image count is adjusted ")
|
||||
geometry_transform: StrictBool = Field(description="Place module read-out into their location on composed detector and extend multipixels ")
|
||||
jungfrau_conversion: StrictBool = Field(description="Convert pixel value in ADU to photon counts/energy Only affects JUNGFRAU detector ")
|
||||
jungfrau_conversion_factor_ke_v: Optional[Union[Annotated[float, Field(le=500.0, strict=True, ge=0.001)], Annotated[int, Field(le=500, strict=True, ge=1)]]] = Field(default=None, description="Used to convert energy deposited into pixel to counts If not provided incident_energy_keV is used ", alias="jungfrau_conversion_factor_keV")
|
||||
bit_depth_image: Optional[StrictInt] = Field(default=None, description="Bit depth of resulting image (it doesn't affect the original detector value) If not provided value is adjusted automatically ")
|
||||
signed_output: Optional[StrictBool] = Field(default=None, description="Controls if pixels have signed output If not provided value is adjusted automatically ")
|
||||
mask_module_edges: StrictBool = Field(description="Mask 1 pixel on the module boundary ")
|
||||
mask_chip_edges: StrictBool = Field(description="Mask multipixels on chip boundary ")
|
||||
__properties: ClassVar[List[str]] = ["summation", "geometry_transform", "jungfrau_conversion", "jungfrau_conversion_factor_keV", "bit_depth_image", "signed_output", "mask_module_edges", "mask_chip_edges"]
|
||||
|
||||
@field_validator('bit_depth_image')
|
||||
def bit_depth_image_validate_enum(cls, value):
|
||||
"""Validates the enum"""
|
||||
if value is None:
|
||||
return value
|
||||
|
||||
if value not in set([16, 32]):
|
||||
raise ValueError("must be one of enum values (16, 32)")
|
||||
return value
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of ImageFormatSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of ImageFormatSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"summation": obj.get("summation"),
|
||||
"geometry_transform": obj.get("geometry_transform"),
|
||||
"jungfrau_conversion": obj.get("jungfrau_conversion"),
|
||||
"jungfrau_conversion_factor_keV": obj.get("jungfrau_conversion_factor_keV"),
|
||||
"bit_depth_image": obj.get("bit_depth_image"),
|
||||
"signed_output": obj.get("signed_output"),
|
||||
"mask_module_edges": obj.get("mask_module_edges") if obj.get("mask_module_edges") is not None else True,
|
||||
"mask_chip_edges": obj.get("mask_chip_edges") if obj.get("mask_chip_edges") is not None else True
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import json
|
||||
from enum import Enum
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class ImagePusherType(str, Enum):
|
||||
"""
|
||||
ImagePusherType
|
||||
"""
|
||||
|
||||
"""
|
||||
allowed enum values
|
||||
"""
|
||||
ZEROMQ = 'ZeroMQ'
|
||||
HDF5 = 'HDF5'
|
||||
CBOR = 'CBOR'
|
||||
NONE = 'None'
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Self:
|
||||
"""Create an instance of ImagePusherType from a JSON string"""
|
||||
return cls(json.loads(json_str))
|
||||
|
||||
|
||||
@@ -1,94 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class InstrumentMetadata(BaseModel):
|
||||
"""
|
||||
Metadata for a measurement instrument
|
||||
""" # noqa: E501
|
||||
source_name: StrictStr
|
||||
source_type: Optional[StrictStr] = Field(default='', description="Type of radiation source. NXmx gives a fixed dictionary, though Jungfraujoch is not enforcing compliance. https://manual.nexusformat.org/classes/base_classes/NXsource.html#nxsource NXsource allows the following: Spallation Neutron Source Pulsed Reactor Neutron Source Reactor Neutron Source Synchrotron X-ray Source Pulsed Muon Source Rotating Anode X-ray Fixed Tube X-ray UV Laser Free-Electron Laser Optical Laser Ion Source UV Plasma Source Metal Jet X-ray ")
|
||||
instrument_name: StrictStr
|
||||
pulsed_source: Optional[StrictBool] = Field(default=False, description="Settings specific to XFEL (e.g., every image has to come from TTL trigger, save pulse ID and event code)")
|
||||
__properties: ClassVar[List[str]] = ["source_name", "source_type", "instrument_name", "pulsed_source"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of InstrumentMetadata from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of InstrumentMetadata from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"source_name": obj.get("source_name"),
|
||||
"source_type": obj.get("source_type") if obj.get("source_type") is not None else '',
|
||||
"instrument_name": obj.get("instrument_name"),
|
||||
"pulsed_source": obj.get("pulsed_source") if obj.get("pulsed_source") is not None else False
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,154 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing_extensions import Annotated
|
||||
from jfjoch_client.models.azim_int_settings import AzimIntSettings
|
||||
from jfjoch_client.models.detector import Detector
|
||||
from jfjoch_client.models.detector_settings import DetectorSettings
|
||||
from jfjoch_client.models.image_format_settings import ImageFormatSettings
|
||||
from jfjoch_client.models.image_pusher_type import ImagePusherType
|
||||
from jfjoch_client.models.instrument_metadata import InstrumentMetadata
|
||||
from jfjoch_client.models.pcie_devices_inner import PcieDevicesInner
|
||||
from jfjoch_client.models.zeromq_preview_settings import ZeromqPreviewSettings
|
||||
from jfjoch_client.models.zeromq_settings import ZeromqSettings
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class JfjochSettings(BaseModel):
|
||||
"""
|
||||
Default settings for Jungfraujoch software. This structure is used to provide default settings using configuration JSON file and is not used in HTTP.
|
||||
""" # noqa: E501
|
||||
pcie: Optional[List[PcieDevicesInner]] = None
|
||||
zeromq: Optional[ZeromqSettings] = None
|
||||
instrument: Optional[InstrumentMetadata] = None
|
||||
detector: List[Detector]
|
||||
detector_settings: Optional[DetectorSettings] = None
|
||||
azim_int: Optional[AzimIntSettings] = None
|
||||
image_format: Optional[ImageFormatSettings] = None
|
||||
image_buffer_mi_b: Optional[Annotated[int, Field(strict=True, ge=128)]] = Field(default=2048, description="Size of internal buffer in MiB for images before they are sent to a stream", alias="image_buffer_MiB")
|
||||
receiver_threads: Optional[Annotated[int, Field(le=512, strict=True, ge=1)]] = Field(default=64, description="Number of threads used by the receiver")
|
||||
numa_policy: Optional[StrictStr] = Field(default=None, description="NUMA policy to bind CPUs")
|
||||
frontend_directory: StrictStr = Field(description="Location of built JavaScript web frontend")
|
||||
image_pusher: ImagePusherType
|
||||
zeromq_preview: Optional[ZeromqPreviewSettings] = None
|
||||
__properties: ClassVar[List[str]] = ["pcie", "zeromq", "instrument", "detector", "detector_settings", "azim_int", "image_format", "image_buffer_MiB", "receiver_threads", "numa_policy", "frontend_directory", "image_pusher", "zeromq_preview"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of JfjochSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in pcie (list)
|
||||
_items = []
|
||||
if self.pcie:
|
||||
for _item_pcie in self.pcie:
|
||||
if _item_pcie:
|
||||
_items.append(_item_pcie.to_dict())
|
||||
_dict['pcie'] = _items
|
||||
# override the default output from pydantic by calling `to_dict()` of zeromq
|
||||
if self.zeromq:
|
||||
_dict['zeromq'] = self.zeromq.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of instrument
|
||||
if self.instrument:
|
||||
_dict['instrument'] = self.instrument.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in detector (list)
|
||||
_items = []
|
||||
if self.detector:
|
||||
for _item_detector in self.detector:
|
||||
if _item_detector:
|
||||
_items.append(_item_detector.to_dict())
|
||||
_dict['detector'] = _items
|
||||
# override the default output from pydantic by calling `to_dict()` of detector_settings
|
||||
if self.detector_settings:
|
||||
_dict['detector_settings'] = self.detector_settings.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of azim_int
|
||||
if self.azim_int:
|
||||
_dict['azim_int'] = self.azim_int.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of image_format
|
||||
if self.image_format:
|
||||
_dict['image_format'] = self.image_format.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of zeromq_preview
|
||||
if self.zeromq_preview:
|
||||
_dict['zeromq_preview'] = self.zeromq_preview.to_dict()
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of JfjochSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"pcie": [PcieDevicesInner.from_dict(_item) for _item in obj["pcie"]] if obj.get("pcie") is not None else None,
|
||||
"zeromq": ZeromqSettings.from_dict(obj["zeromq"]) if obj.get("zeromq") is not None else None,
|
||||
"instrument": InstrumentMetadata.from_dict(obj["instrument"]) if obj.get("instrument") is not None else None,
|
||||
"detector": [Detector.from_dict(_item) for _item in obj["detector"]] if obj.get("detector") is not None else None,
|
||||
"detector_settings": DetectorSettings.from_dict(obj["detector_settings"]) if obj.get("detector_settings") is not None else None,
|
||||
"azim_int": AzimIntSettings.from_dict(obj["azim_int"]) if obj.get("azim_int") is not None else None,
|
||||
"image_format": ImageFormatSettings.from_dict(obj["image_format"]) if obj.get("image_format") is not None else None,
|
||||
"image_buffer_MiB": obj.get("image_buffer_MiB") if obj.get("image_buffer_MiB") is not None else 2048,
|
||||
"receiver_threads": obj.get("receiver_threads") if obj.get("receiver_threads") is not None else 64,
|
||||
"numa_policy": obj.get("numa_policy"),
|
||||
"frontend_directory": obj.get("frontend_directory"),
|
||||
"image_pusher": obj.get("image_pusher") if obj.get("image_pusher") is not None else ImagePusherType.NONE,
|
||||
"zeromq_preview": ZeromqPreviewSettings.from_dict(obj["zeromq_preview"]) if obj.get("zeromq_preview") is not None else None
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,160 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from jfjoch_client.models.broker_status import BrokerStatus
|
||||
from jfjoch_client.models.calibration_statistics_inner import CalibrationStatisticsInner
|
||||
from jfjoch_client.models.detector_list import DetectorList
|
||||
from jfjoch_client.models.detector_settings import DetectorSettings
|
||||
from jfjoch_client.models.detector_status import DetectorStatus
|
||||
from jfjoch_client.models.fpga_status_inner import FpgaStatusInner
|
||||
from jfjoch_client.models.image_format_settings import ImageFormatSettings
|
||||
from jfjoch_client.models.instrument_metadata import InstrumentMetadata
|
||||
from jfjoch_client.models.measurement_statistics import MeasurementStatistics
|
||||
from jfjoch_client.models.spot_finding_settings import SpotFindingSettings
|
||||
from jfjoch_client.models.zeromq_preview_settings import ZeromqPreviewSettings
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class JfjochStatistics(BaseModel):
|
||||
"""
|
||||
Pool statistics for Jungfraujoch to reduce transfers between frontend and jfjoch_broker
|
||||
""" # noqa: E501
|
||||
detector: Optional[DetectorStatus] = None
|
||||
detector_list: Optional[DetectorList] = None
|
||||
detector_settings: Optional[DetectorSettings] = None
|
||||
image_format_settings: Optional[ImageFormatSettings] = None
|
||||
instrument_metadata: Optional[InstrumentMetadata] = None
|
||||
data_processing_settings: Optional[SpotFindingSettings] = None
|
||||
measurement: Optional[MeasurementStatistics] = None
|
||||
broker: Optional[BrokerStatus] = None
|
||||
fpga: Optional[List[FpgaStatusInner]] = None
|
||||
calibration: Optional[List[CalibrationStatisticsInner]] = None
|
||||
zeromq_preview: Optional[ZeromqPreviewSettings] = None
|
||||
__properties: ClassVar[List[str]] = ["detector", "detector_list", "detector_settings", "image_format_settings", "instrument_metadata", "data_processing_settings", "measurement", "broker", "fpga", "calibration", "zeromq_preview"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of JfjochStatistics from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of detector
|
||||
if self.detector:
|
||||
_dict['detector'] = self.detector.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of detector_list
|
||||
if self.detector_list:
|
||||
_dict['detector_list'] = self.detector_list.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of detector_settings
|
||||
if self.detector_settings:
|
||||
_dict['detector_settings'] = self.detector_settings.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of image_format_settings
|
||||
if self.image_format_settings:
|
||||
_dict['image_format_settings'] = self.image_format_settings.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of instrument_metadata
|
||||
if self.instrument_metadata:
|
||||
_dict['instrument_metadata'] = self.instrument_metadata.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of data_processing_settings
|
||||
if self.data_processing_settings:
|
||||
_dict['data_processing_settings'] = self.data_processing_settings.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of measurement
|
||||
if self.measurement:
|
||||
_dict['measurement'] = self.measurement.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of broker
|
||||
if self.broker:
|
||||
_dict['broker'] = self.broker.to_dict()
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in fpga (list)
|
||||
_items = []
|
||||
if self.fpga:
|
||||
for _item_fpga in self.fpga:
|
||||
if _item_fpga:
|
||||
_items.append(_item_fpga.to_dict())
|
||||
_dict['fpga'] = _items
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in calibration (list)
|
||||
_items = []
|
||||
if self.calibration:
|
||||
for _item_calibration in self.calibration:
|
||||
if _item_calibration:
|
||||
_items.append(_item_calibration.to_dict())
|
||||
_dict['calibration'] = _items
|
||||
# override the default output from pydantic by calling `to_dict()` of zeromq_preview
|
||||
if self.zeromq_preview:
|
||||
_dict['zeromq_preview'] = self.zeromq_preview.to_dict()
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of JfjochStatistics from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"detector": DetectorStatus.from_dict(obj["detector"]) if obj.get("detector") is not None else None,
|
||||
"detector_list": DetectorList.from_dict(obj["detector_list"]) if obj.get("detector_list") is not None else None,
|
||||
"detector_settings": DetectorSettings.from_dict(obj["detector_settings"]) if obj.get("detector_settings") is not None else None,
|
||||
"image_format_settings": ImageFormatSettings.from_dict(obj["image_format_settings"]) if obj.get("image_format_settings") is not None else None,
|
||||
"instrument_metadata": InstrumentMetadata.from_dict(obj["instrument_metadata"]) if obj.get("instrument_metadata") is not None else None,
|
||||
"data_processing_settings": SpotFindingSettings.from_dict(obj["data_processing_settings"]) if obj.get("data_processing_settings") is not None else None,
|
||||
"measurement": MeasurementStatistics.from_dict(obj["measurement"]) if obj.get("measurement") is not None else None,
|
||||
"broker": BrokerStatus.from_dict(obj["broker"]) if obj.get("broker") is not None else None,
|
||||
"fpga": [FpgaStatusInner.from_dict(_item) for _item in obj["fpga"]] if obj.get("fpga") is not None else None,
|
||||
"calibration": [CalibrationStatisticsInner.from_dict(_item) for _item in obj["calibration"]] if obj.get("calibration") is not None else None,
|
||||
"zeromq_preview": ZeromqPreviewSettings.from_dict(obj["zeromq_preview"]) if obj.get("zeromq_preview") is not None else None
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,133 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr, field_validator
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class MeasurementStatistics(BaseModel):
|
||||
"""
|
||||
MeasurementStatistics
|
||||
""" # noqa: E501
|
||||
file_prefix: Optional[StrictStr] = None
|
||||
run_number: Optional[StrictInt] = Field(default=None, description="Number of data collection run. This can be either automatically incremented or provided externally for each data collection. ")
|
||||
experiment_group: Optional[StrictStr] = Field(default=None, description="Name of group owning the data (e.g. p-group or proposal number). ")
|
||||
images_expected: Optional[StrictInt] = None
|
||||
images_collected: Optional[StrictInt] = Field(default=None, description="Images collected by the receiver. This number will be lower than images expected if there were issues with data collection performance. ")
|
||||
images_sent: Optional[StrictInt] = Field(default=None, description="Images sent to the writer. The value does not include images discarded by lossy compression filter and images not forwarded due to full ZeroMQ queue. ")
|
||||
images_discarded_lossy_compression: Optional[StrictInt] = Field(default=None, description="Images discarded by the lossy compression filter")
|
||||
max_image_number_sent: Optional[StrictInt] = None
|
||||
collection_efficiency: Optional[Union[Annotated[float, Field(le=1.0, strict=True, ge=0.0)], Annotated[int, Field(le=1, strict=True, ge=0)]]] = None
|
||||
compression_ratio: Optional[Union[Annotated[float, Field(strict=True, ge=0.0)], Annotated[int, Field(strict=True, ge=0)]]] = None
|
||||
cancelled: Optional[StrictBool] = None
|
||||
max_receiver_delay: Optional[StrictInt] = None
|
||||
indexing_rate: Optional[Union[StrictFloat, StrictInt]] = None
|
||||
detector_width: Optional[StrictInt] = None
|
||||
detector_height: Optional[StrictInt] = None
|
||||
detector_pixel_depth: Optional[StrictInt] = None
|
||||
bkg_estimate: Optional[Union[StrictFloat, StrictInt]] = None
|
||||
unit_cell: Optional[StrictStr] = None
|
||||
__properties: ClassVar[List[str]] = ["file_prefix", "run_number", "experiment_group", "images_expected", "images_collected", "images_sent", "images_discarded_lossy_compression", "max_image_number_sent", "collection_efficiency", "compression_ratio", "cancelled", "max_receiver_delay", "indexing_rate", "detector_width", "detector_height", "detector_pixel_depth", "bkg_estimate", "unit_cell"]
|
||||
|
||||
@field_validator('detector_pixel_depth')
|
||||
def detector_pixel_depth_validate_enum(cls, value):
|
||||
"""Validates the enum"""
|
||||
if value is None:
|
||||
return value
|
||||
|
||||
if value not in set([2, 4]):
|
||||
raise ValueError("must be one of enum values (2, 4)")
|
||||
return value
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of MeasurementStatistics from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of MeasurementStatistics from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"file_prefix": obj.get("file_prefix"),
|
||||
"run_number": obj.get("run_number"),
|
||||
"experiment_group": obj.get("experiment_group"),
|
||||
"images_expected": obj.get("images_expected"),
|
||||
"images_collected": obj.get("images_collected"),
|
||||
"images_sent": obj.get("images_sent"),
|
||||
"images_discarded_lossy_compression": obj.get("images_discarded_lossy_compression"),
|
||||
"max_image_number_sent": obj.get("max_image_number_sent"),
|
||||
"collection_efficiency": obj.get("collection_efficiency"),
|
||||
"compression_ratio": obj.get("compression_ratio"),
|
||||
"cancelled": obj.get("cancelled"),
|
||||
"max_receiver_delay": obj.get("max_receiver_delay"),
|
||||
"indexing_rate": obj.get("indexing_rate"),
|
||||
"detector_width": obj.get("detector_width"),
|
||||
"detector_height": obj.get("detector_height"),
|
||||
"detector_pixel_depth": obj.get("detector_pixel_depth"),
|
||||
"bkg_estimate": obj.get("bkg_estimate"),
|
||||
"unit_cell": obj.get("unit_cell")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,90 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class PcieDevicesInner(BaseModel):
|
||||
"""
|
||||
PcieDevicesInner
|
||||
""" # noqa: E501
|
||||
blk: Optional[StrictStr] = Field(default=None, description="Block device name")
|
||||
ipv4: Optional[StrictStr] = Field(default=None, description="IPv4 address of the block device")
|
||||
__properties: ClassVar[List[str]] = ["blk", "ipv4"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of PcieDevicesInner from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of PcieDevicesInner from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"blk": obj.get("blk"),
|
||||
"ipv4": obj.get("ipv4")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,92 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Union
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class Plot(BaseModel):
|
||||
"""
|
||||
x and y coordinates for plotting, it is OK to assume that both arrays have the same size; layout is optimized for Plotly
|
||||
""" # noqa: E501
|
||||
title: StrictStr
|
||||
x: List[Union[StrictFloat, StrictInt]]
|
||||
y: List[Union[StrictFloat, StrictInt]]
|
||||
__properties: ClassVar[List[str]] = ["title", "x", "y"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of Plot from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of Plot from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"title": obj.get("title") if obj.get("title") is not None else '',
|
||||
"x": obj.get("x"),
|
||||
"y": obj.get("y")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,98 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from jfjoch_client.models.plot import Plot
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class Plots(BaseModel):
|
||||
"""
|
||||
Plots
|
||||
""" # noqa: E501
|
||||
title: Optional[StrictStr] = None
|
||||
plot: List[Plot]
|
||||
__properties: ClassVar[List[str]] = ["title", "plot"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of Plots from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in plot (list)
|
||||
_items = []
|
||||
if self.plot:
|
||||
for _item_plot in self.plot:
|
||||
if _item_plot:
|
||||
_items.append(_item_plot.to_dict())
|
||||
_dict['plot'] = _items
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of Plots from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"title": obj.get("title"),
|
||||
"plot": [Plot.from_dict(_item) for _item in obj["plot"]] if obj.get("plot") is not None else None
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,101 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class PreviewSettings(BaseModel):
|
||||
"""
|
||||
Settings for JPEG rendering of preview images
|
||||
""" # noqa: E501
|
||||
saturation: Annotated[int, Field(le=65535, strict=True, ge=0)] = Field(description="Saturation value to set contrast in the preview image")
|
||||
show_spots: Optional[StrictBool] = Field(default=True, description="Show spot finding results on the image")
|
||||
show_roi: Optional[StrictBool] = Field(default=False, description="Show ROI areas on the image")
|
||||
jpeg_quality: Optional[Annotated[int, Field(le=100, strict=True, ge=0)]] = Field(default=100, description="Quality of JPEG image (100 - highest; 0 - lowest)")
|
||||
show_indexed: Optional[StrictBool] = Field(default=False, description="Preview indexed images only")
|
||||
show_user_mask: Optional[StrictBool] = Field(default=False, description="Show user mask")
|
||||
resolution_ring: Optional[Union[Annotated[float, Field(le=100.0, strict=True, ge=0.1)], Annotated[int, Field(le=100, strict=True, ge=1)]]] = 0.1
|
||||
__properties: ClassVar[List[str]] = ["saturation", "show_spots", "show_roi", "jpeg_quality", "show_indexed", "show_user_mask", "resolution_ring"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of PreviewSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of PreviewSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"saturation": obj.get("saturation"),
|
||||
"show_spots": obj.get("show_spots") if obj.get("show_spots") is not None else True,
|
||||
"show_roi": obj.get("show_roi") if obj.get("show_roi") is not None else False,
|
||||
"jpeg_quality": obj.get("jpeg_quality") if obj.get("jpeg_quality") is not None else 100,
|
||||
"show_indexed": obj.get("show_indexed") if obj.get("show_indexed") is not None else False,
|
||||
"show_user_mask": obj.get("show_user_mask") if obj.get("show_user_mask") is not None else False,
|
||||
"resolution_ring": obj.get("resolution_ring") if obj.get("resolution_ring") is not None else 0.1
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class RoiBox(BaseModel):
|
||||
"""
|
||||
Box ROI
|
||||
""" # noqa: E501
|
||||
name: Annotated[str, Field(min_length=1, strict=True)] = Field(description="Name for the ROI; used in the plots")
|
||||
min_x_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Lower bound (inclusive) in X coordinate for the box")
|
||||
max_x_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Upper bound (inclusive) in X coordinate for the box")
|
||||
min_y_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Lower bound (inclusive) in Y coordinate for the box")
|
||||
max_y_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Upper bound (inclusive) in Y coordinate for the box")
|
||||
__properties: ClassVar[List[str]] = ["name", "min_x_pxl", "max_x_pxl", "min_y_pxl", "max_y_pxl"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of RoiBox from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of RoiBox from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"name": obj.get("name"),
|
||||
"min_x_pxl": obj.get("min_x_pxl"),
|
||||
"max_x_pxl": obj.get("max_x_pxl"),
|
||||
"min_y_pxl": obj.get("min_y_pxl"),
|
||||
"max_y_pxl": obj.get("max_y_pxl")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing_extensions import Annotated
|
||||
from jfjoch_client.models.roi_box import RoiBox
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class RoiBoxList(BaseModel):
|
||||
"""
|
||||
List of box ROIs
|
||||
""" # noqa: E501
|
||||
rois: Optional[Annotated[List[RoiBox], Field(max_length=32)]] = None
|
||||
__properties: ClassVar[List[str]] = ["rois"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of RoiBoxList from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in rois (list)
|
||||
_items = []
|
||||
if self.rois:
|
||||
for _item_rois in self.rois:
|
||||
if _item_rois:
|
||||
_items.append(_item_rois.to_dict())
|
||||
_dict['rois'] = _items
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of RoiBoxList from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"rois": [RoiBox.from_dict(_item) for _item in obj["rois"]] if obj.get("rois") is not None else None
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,95 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class RoiCircle(BaseModel):
|
||||
"""
|
||||
Circular ROI
|
||||
""" # noqa: E501
|
||||
name: Annotated[str, Field(min_length=1, strict=True)] = Field(description="Name for the ROI; used in the plots")
|
||||
center_x_pxl: Union[StrictFloat, StrictInt] = Field(description="X coordinate of center of the circle [pixels]")
|
||||
center_y_pxl: Union[StrictFloat, StrictInt] = Field(description="Y coordinate of center of the circle [pixels]")
|
||||
radius_pxl: Union[Annotated[float, Field(strict=True, gt=0.0)], Annotated[int, Field(strict=True, gt=0)]] = Field(description="Radius of the circle [pixels]")
|
||||
__properties: ClassVar[List[str]] = ["name", "center_x_pxl", "center_y_pxl", "radius_pxl"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of RoiCircle from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of RoiCircle from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"name": obj.get("name"),
|
||||
"center_x_pxl": obj.get("center_x_pxl"),
|
||||
"center_y_pxl": obj.get("center_y_pxl"),
|
||||
"radius_pxl": obj.get("radius_pxl")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing import Any, ClassVar, Dict, List
|
||||
from typing_extensions import Annotated
|
||||
from jfjoch_client.models.roi_circle import RoiCircle
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class RoiCircleList(BaseModel):
|
||||
"""
|
||||
List of circular ROIs
|
||||
""" # noqa: E501
|
||||
rois: Annotated[List[RoiCircle], Field(max_length=32)]
|
||||
__properties: ClassVar[List[str]] = ["rois"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of RoiCircleList from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
# override the default output from pydantic by calling `to_dict()` of each item in rois (list)
|
||||
_items = []
|
||||
if self.rois:
|
||||
for _item_rois in self.rois:
|
||||
if _item_rois:
|
||||
_items.append(_item_rois.to_dict())
|
||||
_dict['rois'] = _items
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of RoiCircleList from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"rois": [RoiCircle.from_dict(_item) for _item in obj["rois"]] if obj.get("rois") is not None else None
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,95 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class RotationAxis(BaseModel):
|
||||
"""
|
||||
Definition of a crystal rotation axis
|
||||
""" # noqa: E501
|
||||
name: Optional[Annotated[str, Field(min_length=1, strict=True)]] = Field(default='omega', description="Name of rotation axis (e.g., omega, phi)")
|
||||
step: Union[StrictFloat, StrictInt] = Field(description="Angle step in degrees")
|
||||
start: Optional[Union[StrictFloat, StrictInt]] = Field(default=0, description="Start angle in degrees")
|
||||
vector: Annotated[List[Union[StrictFloat, StrictInt]], Field(min_length=3, max_length=3)] = Field(description="Rotation axis")
|
||||
__properties: ClassVar[List[str]] = ["name", "step", "start", "vector"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of RotationAxis from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of RotationAxis from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"name": obj.get("name") if obj.get("name") is not None else 'omega',
|
||||
"step": obj.get("step"),
|
||||
"start": obj.get("start") if obj.get("start") is not None else 0,
|
||||
"vector": obj.get("vector")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,109 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Union
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class SpotFindingSettings(BaseModel):
|
||||
"""
|
||||
SpotFindingSettings
|
||||
""" # noqa: E501
|
||||
enable: StrictBool = Field(description="Enable spot finding. This is temporary setting, i.e. can be changed anytime during data collection. Even if disabled spot finding information will still be send and written, though always with zero spots. ")
|
||||
indexing: StrictBool = Field(description="Enable indexing. This is temporary setting, i.e. can be changed anytime during data collection. ")
|
||||
filter_powder_rings: Optional[StrictBool] = Field(default=False, description="Filter spots which form powder rings (e.g., ice rings)")
|
||||
min_spot_count_powder_ring: Optional[Annotated[int, Field(strict=True, ge=5)]] = Field(default=None, description="Minimum number of spots to consider a thin resolution shell (0.01 A^-1) a powder ring and filter out.")
|
||||
signal_to_noise_threshold: Union[Annotated[float, Field(strict=True, ge=0)], Annotated[int, Field(strict=True, ge=0)]]
|
||||
photon_count_threshold: Annotated[int, Field(strict=True, ge=0)]
|
||||
min_pix_per_spot: Annotated[int, Field(strict=True, ge=1)]
|
||||
max_pix_per_spot: Annotated[int, Field(strict=True, ge=1)]
|
||||
high_resolution_limit: Union[StrictFloat, StrictInt]
|
||||
low_resolution_limit: Union[StrictFloat, StrictInt]
|
||||
indexing_tolerance: Union[Annotated[float, Field(le=1.0, strict=True, ge=0.0)], Annotated[int, Field(le=1, strict=True, ge=0)]] = Field(description="Acceptance tolerance for spots after the indexing run - the larger the number, the more spots will be accepted")
|
||||
__properties: ClassVar[List[str]] = ["enable", "indexing", "filter_powder_rings", "min_spot_count_powder_ring", "signal_to_noise_threshold", "photon_count_threshold", "min_pix_per_spot", "max_pix_per_spot", "high_resolution_limit", "low_resolution_limit", "indexing_tolerance"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of SpotFindingSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of SpotFindingSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"enable": obj.get("enable") if obj.get("enable") is not None else True,
|
||||
"indexing": obj.get("indexing") if obj.get("indexing") is not None else True,
|
||||
"filter_powder_rings": obj.get("filter_powder_rings") if obj.get("filter_powder_rings") is not None else False,
|
||||
"min_spot_count_powder_ring": obj.get("min_spot_count_powder_ring"),
|
||||
"signal_to_noise_threshold": obj.get("signal_to_noise_threshold"),
|
||||
"photon_count_threshold": obj.get("photon_count_threshold"),
|
||||
"min_pix_per_spot": obj.get("min_pix_per_spot"),
|
||||
"max_pix_per_spot": obj.get("max_pix_per_spot"),
|
||||
"high_resolution_limit": obj.get("high_resolution_limit"),
|
||||
"low_resolution_limit": obj.get("low_resolution_limit"),
|
||||
"indexing_tolerance": obj.get("indexing_tolerance")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,95 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class StandardDetectorGeometry(BaseModel):
|
||||
"""
|
||||
Regular rectangular geometry, first module is in the bottom left corner of the detector
|
||||
""" # noqa: E501
|
||||
nmodules: Annotated[int, Field(strict=True, ge=1)] = Field(description="Number of modules in the detector")
|
||||
gap_x: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=8, description="Gap size in X direction [pixels]")
|
||||
gap_y: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=36, description="Gap size in Y direction [pixels]")
|
||||
modules_in_row: Optional[Annotated[int, Field(strict=True, ge=1)]] = Field(default=1, description="Number of modules in one row")
|
||||
__properties: ClassVar[List[str]] = ["nmodules", "gap_x", "gap_y", "modules_in_row"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of StandardDetectorGeometry from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of StandardDetectorGeometry from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"nmodules": obj.get("nmodules"),
|
||||
"gap_x": obj.get("gap_x") if obj.get("gap_x") is not None else 8,
|
||||
"gap_y": obj.get("gap_y") if obj.get("gap_y") is not None else 36,
|
||||
"modules_in_row": obj.get("modules_in_row") if obj.get("modules_in_row") is not None else 1
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,92 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class ZeromqPreviewSettings(BaseModel):
|
||||
"""
|
||||
ZeromqPreviewSettings
|
||||
""" # noqa: E501
|
||||
enabled: StrictBool = Field(description="ZeroMQ preview socket is enabled.")
|
||||
period_ms: StrictInt = Field(description="Period for generating preview image sent to the ZeroMQ interface in milliseconds. Default is 1 second. If set to zero, all images will be sent ZeroMQ (should be used only in case of relatively slow data collection). This has no effect on HTTP based preview, which updates always at rate of 1 second. ")
|
||||
socket_address: Optional[StrictStr] = Field(default=None, description="PUB ZeroMQ socket for preview images. This socket operates at a reduced frame rate. Images are serialized using CBOR. Address follows ZeroMQ convention for sockets - in practice ipc://<socket file> and tpc://<IP address>:<port> sockets are OK. 0.0.0.0 instead of IP address is accepted and means listening on all network interfaces. ")
|
||||
__properties: ClassVar[List[str]] = ["enabled", "period_ms", "socket_address"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of ZeromqPreviewSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of ZeromqPreviewSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"enabled": obj.get("enabled") if obj.get("enabled") is not None else True,
|
||||
"period_ms": obj.get("period_ms") if obj.get("period_ms") is not None else 1000,
|
||||
"socket_address": obj.get("socket_address")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,95 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
import pprint
|
||||
import re # noqa: F401
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr
|
||||
from typing import Any, ClassVar, Dict, List, Optional
|
||||
from typing_extensions import Annotated
|
||||
from typing import Optional, Set
|
||||
from typing_extensions import Self
|
||||
|
||||
class ZeromqSettings(BaseModel):
|
||||
"""
|
||||
ZeroMQ configuration for Jungfraujoch software. This structure is used to provide default settings using configuration JSON file and is not used in HTTP.
|
||||
""" # noqa: E501
|
||||
send_watermark: Optional[Annotated[int, Field(le=16384, strict=True, ge=2)]] = Field(default=100, description="Watermark for ZeroMQ send queue (number of outstanding messages queued on Jungfraujoch server per queue)")
|
||||
send_buffer_size: Optional[StrictInt] = Field(default=None, description="Send buffer size for ZeroMQ socket")
|
||||
image_socket: Optional[List[StrictStr]] = Field(default=None, description="PUSH ZeroMQ socket for images. In case multiple sockets are provided, images are streamed over multiple sockets. Images are serialized using CBOR. Address follows ZeroMQ convention for sockets - in practice ipc://<socket file> and tpc://<IP address>:<port> sockets are OK. 0.0.0.0 instead of IP address is accepted and means listening on all network interfaces. ")
|
||||
writer_notification_socket: Optional[StrictStr] = Field(default=None, description="PULL ZeroMQ socket for notifications from writer that it finished operation. This allows Jungfraujoch to operate in a synchronous manner, with end of acquisition being also end of writing. Address follows ZeroMQ convention for sockets - in practice ipc://<socket file> and tpc://<IP address>:<port> sockets are OK. 0.0.0.0 instead of IP address should be avoided, as this socket address is forwarded to the writer process via START ZerOMQ message and in case of multiple ineterfaces the address might be ambigous. Using * (star) instead of port number is allowed and it means a random free port number. ")
|
||||
__properties: ClassVar[List[str]] = ["send_watermark", "send_buffer_size", "image_socket", "writer_notification_socket"]
|
||||
|
||||
model_config = ConfigDict(
|
||||
populate_by_name=True,
|
||||
validate_assignment=True,
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
|
||||
def to_str(self) -> str:
|
||||
"""Returns the string representation of the model using alias"""
|
||||
return pprint.pformat(self.model_dump(by_alias=True))
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Returns the JSON representation of the model using alias"""
|
||||
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
||||
return json.dumps(self.to_dict())
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, json_str: str) -> Optional[Self]:
|
||||
"""Create an instance of ZeromqSettings from a JSON string"""
|
||||
return cls.from_dict(json.loads(json_str))
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Return the dictionary representation of the model using alias.
|
||||
|
||||
This has the following differences from calling pydantic's
|
||||
`self.model_dump(by_alias=True)`:
|
||||
|
||||
* `None` is only added to the output dict for nullable fields that
|
||||
were set at model initialization. Other fields with value `None`
|
||||
are ignored.
|
||||
"""
|
||||
excluded_fields: Set[str] = set([
|
||||
])
|
||||
|
||||
_dict = self.model_dump(
|
||||
by_alias=True,
|
||||
exclude=excluded_fields,
|
||||
exclude_none=True,
|
||||
)
|
||||
return _dict
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
||||
"""Create an instance of ZeromqSettings from a dict"""
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
if not isinstance(obj, dict):
|
||||
return cls.model_validate(obj)
|
||||
|
||||
_obj = cls.model_validate({
|
||||
"send_watermark": obj.get("send_watermark") if obj.get("send_watermark") is not None else 100,
|
||||
"send_buffer_size": obj.get("send_buffer_size"),
|
||||
"image_socket": obj.get("image_socket"),
|
||||
"writer_notification_socket": obj.get("writer_notification_socket")
|
||||
})
|
||||
return _obj
|
||||
|
||||
|
||||
@@ -1,258 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
import io
|
||||
import json
|
||||
import re
|
||||
import ssl
|
||||
|
||||
import urllib3
|
||||
|
||||
from jfjoch_client.exceptions import ApiException, ApiValueError
|
||||
|
||||
SUPPORTED_SOCKS_PROXIES = {"socks5", "socks5h", "socks4", "socks4a"}
|
||||
RESTResponseType = urllib3.HTTPResponse
|
||||
|
||||
|
||||
def is_socks_proxy_url(url):
|
||||
if url is None:
|
||||
return False
|
||||
split_section = url.split("://")
|
||||
if len(split_section) < 2:
|
||||
return False
|
||||
else:
|
||||
return split_section[0].lower() in SUPPORTED_SOCKS_PROXIES
|
||||
|
||||
|
||||
class RESTResponse(io.IOBase):
|
||||
|
||||
def __init__(self, resp) -> None:
|
||||
self.response = resp
|
||||
self.status = resp.status
|
||||
self.reason = resp.reason
|
||||
self.data = None
|
||||
|
||||
def read(self):
|
||||
if self.data is None:
|
||||
self.data = self.response.data
|
||||
return self.data
|
||||
|
||||
def getheaders(self):
|
||||
"""Returns a dictionary of the response headers."""
|
||||
return self.response.headers
|
||||
|
||||
def getheader(self, name, default=None):
|
||||
"""Returns a given response header."""
|
||||
return self.response.headers.get(name, default)
|
||||
|
||||
|
||||
class RESTClientObject:
|
||||
|
||||
def __init__(self, configuration) -> None:
|
||||
# urllib3.PoolManager will pass all kw parameters to connectionpool
|
||||
# https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/poolmanager.py#L75 # noqa: E501
|
||||
# https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/connectionpool.py#L680 # noqa: E501
|
||||
# Custom SSL certificates and client certificates: http://urllib3.readthedocs.io/en/latest/advanced-usage.html # noqa: E501
|
||||
|
||||
# cert_reqs
|
||||
if configuration.verify_ssl:
|
||||
cert_reqs = ssl.CERT_REQUIRED
|
||||
else:
|
||||
cert_reqs = ssl.CERT_NONE
|
||||
|
||||
pool_args = {
|
||||
"cert_reqs": cert_reqs,
|
||||
"ca_certs": configuration.ssl_ca_cert,
|
||||
"cert_file": configuration.cert_file,
|
||||
"key_file": configuration.key_file,
|
||||
}
|
||||
if configuration.assert_hostname is not None:
|
||||
pool_args['assert_hostname'] = (
|
||||
configuration.assert_hostname
|
||||
)
|
||||
|
||||
if configuration.retries is not None:
|
||||
pool_args['retries'] = configuration.retries
|
||||
|
||||
if configuration.tls_server_name:
|
||||
pool_args['server_hostname'] = configuration.tls_server_name
|
||||
|
||||
|
||||
if configuration.socket_options is not None:
|
||||
pool_args['socket_options'] = configuration.socket_options
|
||||
|
||||
if configuration.connection_pool_maxsize is not None:
|
||||
pool_args['maxsize'] = configuration.connection_pool_maxsize
|
||||
|
||||
# https pool manager
|
||||
self.pool_manager: urllib3.PoolManager
|
||||
|
||||
if configuration.proxy:
|
||||
if is_socks_proxy_url(configuration.proxy):
|
||||
from urllib3.contrib.socks import SOCKSProxyManager
|
||||
pool_args["proxy_url"] = configuration.proxy
|
||||
pool_args["headers"] = configuration.proxy_headers
|
||||
self.pool_manager = SOCKSProxyManager(**pool_args)
|
||||
else:
|
||||
pool_args["proxy_url"] = configuration.proxy
|
||||
pool_args["proxy_headers"] = configuration.proxy_headers
|
||||
self.pool_manager = urllib3.ProxyManager(**pool_args)
|
||||
else:
|
||||
self.pool_manager = urllib3.PoolManager(**pool_args)
|
||||
|
||||
def request(
|
||||
self,
|
||||
method,
|
||||
url,
|
||||
headers=None,
|
||||
body=None,
|
||||
post_params=None,
|
||||
_request_timeout=None
|
||||
):
|
||||
"""Perform requests.
|
||||
|
||||
:param method: http request method
|
||||
:param url: http request url
|
||||
:param headers: http request headers
|
||||
:param body: request json body, for `application/json`
|
||||
:param post_params: request post parameters,
|
||||
`application/x-www-form-urlencoded`
|
||||
and `multipart/form-data`
|
||||
:param _request_timeout: timeout setting for this request. If one
|
||||
number provided, it will be total request
|
||||
timeout. It can also be a pair (tuple) of
|
||||
(connection, read) timeouts.
|
||||
"""
|
||||
method = method.upper()
|
||||
assert method in [
|
||||
'GET',
|
||||
'HEAD',
|
||||
'DELETE',
|
||||
'POST',
|
||||
'PUT',
|
||||
'PATCH',
|
||||
'OPTIONS'
|
||||
]
|
||||
|
||||
if post_params and body:
|
||||
raise ApiValueError(
|
||||
"body parameter cannot be used with post_params parameter."
|
||||
)
|
||||
|
||||
post_params = post_params or {}
|
||||
headers = headers or {}
|
||||
|
||||
timeout = None
|
||||
if _request_timeout:
|
||||
if isinstance(_request_timeout, (int, float)):
|
||||
timeout = urllib3.Timeout(total=_request_timeout)
|
||||
elif (
|
||||
isinstance(_request_timeout, tuple)
|
||||
and len(_request_timeout) == 2
|
||||
):
|
||||
timeout = urllib3.Timeout(
|
||||
connect=_request_timeout[0],
|
||||
read=_request_timeout[1]
|
||||
)
|
||||
|
||||
try:
|
||||
# For `POST`, `PUT`, `PATCH`, `OPTIONS`, `DELETE`
|
||||
if method in ['POST', 'PUT', 'PATCH', 'OPTIONS', 'DELETE']:
|
||||
|
||||
# no content type provided or payload is json
|
||||
content_type = headers.get('Content-Type')
|
||||
if (
|
||||
not content_type
|
||||
or re.search('json', content_type, re.IGNORECASE)
|
||||
):
|
||||
request_body = None
|
||||
if body is not None:
|
||||
request_body = json.dumps(body)
|
||||
r = self.pool_manager.request(
|
||||
method,
|
||||
url,
|
||||
body=request_body,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
preload_content=False
|
||||
)
|
||||
elif content_type == 'application/x-www-form-urlencoded':
|
||||
r = self.pool_manager.request(
|
||||
method,
|
||||
url,
|
||||
fields=post_params,
|
||||
encode_multipart=False,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
preload_content=False
|
||||
)
|
||||
elif content_type == 'multipart/form-data':
|
||||
# must del headers['Content-Type'], or the correct
|
||||
# Content-Type which generated by urllib3 will be
|
||||
# overwritten.
|
||||
del headers['Content-Type']
|
||||
# Ensures that dict objects are serialized
|
||||
post_params = [(a, json.dumps(b)) if isinstance(b, dict) else (a,b) for a, b in post_params]
|
||||
r = self.pool_manager.request(
|
||||
method,
|
||||
url,
|
||||
fields=post_params,
|
||||
encode_multipart=True,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
preload_content=False
|
||||
)
|
||||
# Pass a `string` parameter directly in the body to support
|
||||
# other content types than JSON when `body` argument is
|
||||
# provided in serialized form.
|
||||
elif isinstance(body, str) or isinstance(body, bytes):
|
||||
r = self.pool_manager.request(
|
||||
method,
|
||||
url,
|
||||
body=body,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
preload_content=False
|
||||
)
|
||||
elif headers['Content-Type'] == 'text/plain' and isinstance(body, bool):
|
||||
request_body = "true" if body else "false"
|
||||
r = self.pool_manager.request(
|
||||
method,
|
||||
url,
|
||||
body=request_body,
|
||||
preload_content=False,
|
||||
timeout=timeout,
|
||||
headers=headers)
|
||||
else:
|
||||
# Cannot generate the request from given parameters
|
||||
msg = """Cannot prepare a request message for provided
|
||||
arguments. Please check that your arguments match
|
||||
declared content type."""
|
||||
raise ApiException(status=0, reason=msg)
|
||||
# For `GET`, `HEAD`
|
||||
else:
|
||||
r = self.pool_manager.request(
|
||||
method,
|
||||
url,
|
||||
fields={},
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
preload_content=False
|
||||
)
|
||||
except urllib3.exceptions.SSLError as e:
|
||||
msg = "\n".join([type(e).__name__, str(e)])
|
||||
raise ApiException(status=0, reason=msg)
|
||||
|
||||
return RESTResponse(r)
|
||||
@@ -1,71 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "jfjoch_client"
|
||||
version = "1.0.0-rc.23"
|
||||
description = "Jungfraujoch"
|
||||
authors = ["Filip Leonarski (Paul Scherrer Institute) <filip.leonarski@psi.ch>"]
|
||||
license = "NoLicense"
|
||||
readme = "README.md"
|
||||
repository = "https://github.com/jungfraujoch/jungfraujoch"
|
||||
keywords = ["OpenAPI", "OpenAPI-Generator", "Jungfraujoch"]
|
||||
include = ["jfjoch_client/py.typed"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.7"
|
||||
|
||||
urllib3 = ">= 1.25.3"
|
||||
python-dateutil = ">=2.8.2"
|
||||
pydantic = ">=2"
|
||||
typing-extensions = ">=4.7.1"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
pytest = ">=7.2.1"
|
||||
tox = ">=3.9.0"
|
||||
flake8 = ">=4.0.0"
|
||||
types-python-dateutil = ">=2.8.19.14"
|
||||
mypy = "1.4.1"
|
||||
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.pylint.'MESSAGES CONTROL']
|
||||
extension-pkg-whitelist = "pydantic"
|
||||
|
||||
[tool.mypy]
|
||||
files = [
|
||||
"jfjoch_client",
|
||||
#"test", # auto-generated tests
|
||||
"tests", # hand-written tests
|
||||
]
|
||||
# TODO: enable "strict" once all these individual checks are passing
|
||||
# strict = true
|
||||
|
||||
# List from: https://mypy.readthedocs.io/en/stable/existing_code.html#introduce-stricter-options
|
||||
warn_unused_configs = true
|
||||
warn_redundant_casts = true
|
||||
warn_unused_ignores = true
|
||||
|
||||
## Getting these passing should be easy
|
||||
strict_equality = true
|
||||
strict_concatenate = true
|
||||
|
||||
## Strongly recommend enabling this one as soon as you can
|
||||
check_untyped_defs = true
|
||||
|
||||
## These shouldn't be too much additional work, but may be tricky to
|
||||
## get passing if you use a lot of untyped libraries
|
||||
disallow_subclassing_any = true
|
||||
disallow_untyped_decorators = true
|
||||
disallow_any_generics = true
|
||||
|
||||
### These next few are various gradations of forcing use of type annotations
|
||||
#disallow_untyped_calls = true
|
||||
#disallow_incomplete_defs = true
|
||||
#disallow_untyped_defs = true
|
||||
#
|
||||
### This one isn't too hard to get passing, but return on investment is lower
|
||||
#no_implicit_reexport = true
|
||||
#
|
||||
### This one can be tricky to get passing if you use a lot of untyped libraries
|
||||
#warn_return_any = true
|
||||
@@ -1,5 +0,0 @@
|
||||
python_dateutil >= 2.5.3
|
||||
setuptools >= 21.0.0
|
||||
urllib3 >= 1.25.3, < 2.1.0
|
||||
pydantic >= 2
|
||||
typing-extensions >= 4.7.1
|
||||
@@ -1,2 +0,0 @@
|
||||
[flake8]
|
||||
max-line-length=99
|
||||
@@ -1,50 +0,0 @@
|
||||
# coding: utf-8
|
||||
|
||||
"""
|
||||
Jungfraujoch
|
||||
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
|
||||
The version of the OpenAPI document: 1.0.0-rc.23
|
||||
Contact: filip.leonarski@psi.ch
|
||||
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
||||
|
||||
Do not edit the class manually.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
from setuptools import setup, find_packages # noqa: H301
|
||||
|
||||
# To install the library, run the following
|
||||
#
|
||||
# python setup.py install
|
||||
#
|
||||
# prerequisite: setuptools
|
||||
# http://pypi.python.org/pypi/setuptools
|
||||
NAME = "jfjoch-client"
|
||||
VERSION = "1.0.0-rc.23"
|
||||
PYTHON_REQUIRES = ">=3.7"
|
||||
REQUIRES = [
|
||||
"urllib3 >= 1.25.3, < 2.1.0",
|
||||
"python-dateutil",
|
||||
"pydantic >= 2",
|
||||
"typing-extensions >= 4.7.1",
|
||||
]
|
||||
|
||||
setup(
|
||||
name=NAME,
|
||||
version=VERSION,
|
||||
description="Jungfraujoch",
|
||||
author="Filip Leonarski (Paul Scherrer Institute)",
|
||||
author_email="filip.leonarski@psi.ch",
|
||||
url="",
|
||||
keywords=["OpenAPI", "OpenAPI-Generator", "Jungfraujoch"],
|
||||
install_requires=REQUIRES,
|
||||
packages=find_packages(exclude=["test", "tests"]),
|
||||
include_package_data=True,
|
||||
long_description_content_type='text/markdown',
|
||||
long_description="""\
|
||||
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
||||
""", # noqa: E501
|
||||
package_data={"jfjoch_client": ["py.typed"]},
|
||||
)
|
||||
Reference in New Issue
Block a user