Files
Jungfraujoch/python-client/jfjoch_client/models/calibration_statistics_inner.py
2024-10-23 19:03:09 +02:00

105 lines
3.7 KiB
Python

# coding: utf-8
"""
Jungfraujoch
API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
The version of the OpenAPI document: 1.0.0-rc.23
Contact: filip.leonarski@psi.ch
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from pydantic import BaseModel, ConfigDict, StrictFloat, StrictInt
from typing import Any, ClassVar, Dict, List, Union
from typing import Optional, Set
from typing_extensions import Self
class CalibrationStatisticsInner(BaseModel):
"""
CalibrationStatisticsInner
""" # noqa: E501
module_number: StrictInt
storage_cell_number: StrictInt
pedestal_g0_mean: Union[StrictFloat, StrictInt]
pedestal_g1_mean: Union[StrictFloat, StrictInt]
pedestal_g2_mean: Union[StrictFloat, StrictInt]
gain_g0_mean: Union[StrictFloat, StrictInt]
gain_g1_mean: Union[StrictFloat, StrictInt]
gain_g2_mean: Union[StrictFloat, StrictInt]
masked_pixels: StrictInt
__properties: ClassVar[List[str]] = ["module_number", "storage_cell_number", "pedestal_g0_mean", "pedestal_g1_mean", "pedestal_g2_mean", "gain_g0_mean", "gain_g1_mean", "gain_g2_mean", "masked_pixels"]
model_config = ConfigDict(
populate_by_name=True,
validate_assignment=True,
protected_namespaces=(),
)
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Optional[Self]:
"""Create an instance of CalibrationStatisticsInner from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
"""
excluded_fields: Set[str] = set([
])
_dict = self.model_dump(
by_alias=True,
exclude=excluded_fields,
exclude_none=True,
)
return _dict
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
"""Create an instance of CalibrationStatisticsInner from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate({
"module_number": obj.get("module_number"),
"storage_cell_number": obj.get("storage_cell_number"),
"pedestal_g0_mean": obj.get("pedestal_g0_mean"),
"pedestal_g1_mean": obj.get("pedestal_g1_mean"),
"pedestal_g2_mean": obj.get("pedestal_g2_mean"),
"gain_g0_mean": obj.get("gain_g0_mean"),
"gain_g1_mean": obj.get("gain_g1_mean"),
"gain_g2_mean": obj.get("gain_g2_mean"),
"masked_pixels": obj.get("masked_pixels")
})
return _obj