frappy/frappy_psi/attocube.py
Markus Zolliker db29776dd5 reworked attocube
- step_mode: soft closed loop, stepwise, reading encoder after a delay
- calib_steps command to determine step size

Change-Id: I27bdffb4d564ac9c55a6473704ac2de6ad92bac8
2024-03-25 16:47:13 +01:00

343 lines
12 KiB
Python

# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# *****************************************************************************
import sys
import time
import threading
from frappy.core import Drivable, Parameter, Command, Property, \
ERROR, WARN, BUSY, IDLE, nopoll, Limit, TupleOf
# from frappy.features import HasSimpleOffset
from frappy.datatypes import IntRange, FloatRange, StringType, BoolType
from frappy.errors import BadValueError
sys.path.append('/home/l_samenv/Documents/anc350/Linux64/userlib/lib')
from PyANC350v4 import Positioner
class Stopped(RuntimeError):
"""thread was stopped"""
class DriveInfo:
def __init__(self, value, target, status=(BUSY, 'changed target')):
self.pos = value
self.direction = -1 if target < value else 1
self.target = target
self.status = status
self.thread = None
self.statusbits = ''
self.output = False
self.sensor_connected = False
class Axis(Drivable):
axis = Property('axis number', IntRange(0, 2), 0)
value = Parameter('axis position', FloatRange(unit='deg'))
frequency = Parameter('frequency', FloatRange(1, unit='Hz'), readonly=False)
amplitude = Parameter('amplitude', FloatRange(0, unit='V'), readonly=False)
gear = Parameter('gear factor', FloatRange(), readonly=False, value=1)
tolerance = Parameter('positioning tolerance', FloatRange(0, unit='$'),
readonly=False, default=0.01)
output = Parameter('enable output', BoolType(), readonly=False)
info = Parameter('axis info', StringType())
statusbits = Parameter('status bits', StringType())
step_mode = Parameter('step mode (soft closed loop)', BoolType(),
default=False, readonly=False, group='step_mode')
maxtry = Parameter('max. number of move tries', IntRange(),
default=5, readonly=False, group='step_mode')
steps_fwd = Parameter('forward steps / main unit', FloatRange(0),
default=0, readonly=False, group='step_mode')
steps_bwd = Parameter('backward steps / main unit', FloatRange(0),
default=0, readonly=False, group='step_mode')
delay = Parameter('delay between tries within loop', FloatRange(0),
readonly=False, default=0.05, group='step_mode')
prop = Parameter('factor for control loop', FloatRange(0, 1),
readonly=False, default=0.8, group='step_mode')
target_min = Limit()
target_max = Limit()
fast_interval = 0.25
_hw = None
_scale = 1 # scale for custom units
SCALES = {'deg': 1, 'm': 1, 'mm': 1000, 'um': 1000000, 'µm': 1000000}
_thread = None
_moving_since = 0
_output = False
_sensor_connected = False
_status = IDLE, ''
_statusbits = None
def initModule(self):
super().initModule()
self._stopped = threading.Event()
# TODO: catch timeout
self._hw = Positioner()
def write_gear(self, value):
self._scale = self.SCALES[self.parameters['value'].datatype.unit] * self.gear
return value
def initialReads(self):
self.read_info()
super().initialReads()
def _get_status(self):
"""get axis status
- update _output and _sensor_connected
- return <moving flag>, <error flag>, <reason>
<moving flag> is True whn moving
<in_error> is True when in error
<reason> is an error text, when in error, 'at target' or '' otherwise
"""
statusbits = self._hw.getAxisStatus(self.axis)
self._sensor_connected, self._output, moving, at_target, fwd_stuck, bwd_stuck, error = statusbits
self._statusbits = statusbits
if error:
return ERROR, 'other error'
if bwd_stuck:
return ERROR, 'end of travel backward'
if bwd_stuck:
return ERROR, 'end of travel forward'
if self._moving_since:
if time.time() < self._moving_since + 1:
return BUSY, 'started'
if at_target:
self.setFastPoll(False)
self._moving_since = 0
return IDLE, 'at target'
if moving and self._output:
return BUSY, 'moving'
if not self._output:
return WARN, 'switched output off by unknown reason'
return WARN, 'switched moving off by unknown reason'
return IDLE, ''
def check_value(self, value, direction):
"""check if value allows moving in current direction"""
if direction > 0:
if value > self.target_max:
raise BadValueError('above upper limit')
elif value < self.target_min:
raise BadValueError('below lower limit')
def read_status(self):
status = self._get_status()
self.statusbits = ''.join(k for k, v in zip('SOMTFBE', self._statusbits) if v)
if self.step_mode:
return self._status
return status
def _wait(self, delay):
if self._stopped.wait(delay):
raise Stopped()
def _read_pos(self):
poslist = []
for i in range(9):
if i:
self._wait(0.001)
poslist.append(self._hw.getPosition(self.axis) * self._scale)
self._poslist = sorted(poslist)
return self._poslist[len(poslist) // 2] # median
def read_value(self):
if self._thread:
return self.value
return self._read_pos()
def read_frequency(self):
return self._hw.getFrequency(self.axis)
def write_frequency(self, value):
self._hw.setFrequency(self.axis, value)
return self._hw.getFrequency(self.axis)
def read_amplitude(self):
return self._hw.getAmplitude(self.axis)
def write_amplitude(self, value):
self._hw.setAmplitude(self.axis, value)
return self._hw.getAmplitude(self.axis)
def write_output(self, value):
if self._thread:
if not value:
self.stop()
else:
self._hw.setAxisOutput(self.axis, enable=value, autoDisable=0)
self._output = value
return value
def read_output(self):
return self._output
def _stop_thread(self):
if self._thread:
self._thread.join()
def _run_drive(self, target):
self.value = self._read_pos()
self.status = self._status = BUSY, 'drive by steps'
cnt = self.maxtry
prev = 0
tol = self.tolerance
while True:
dif = target - self.value
if target > self._poslist[2] + tol: # 78th percentile
steps = max(1, min(dif, (dif + tol) * self.prop) * self.steps_fwd)
elif target < self._poslist[-3] - tol: # 22th percentile
steps = min(-1, max(dif, (dif - tol) * self.prop) * self.steps_bwd)
else:
self._status = IDLE, 'in tolerance'
self.read_status()
return
if cnt <= 0:
self._status = ERROR, 'too many tries'
self.read_status()
return
if abs(steps) > prev * 0.7:
cnt -= 1
prev = abs(steps)
self._move_steps(steps)
def _thread_wrapper(self, func, *args):
try:
func(*args)
except Stopped as e:
self._status = IDLE, str(e)
except Exception as e:
self._status = ERROR, f'{type(e).__name__} - {e}'
finally:
self._hw.setAxisOutput(self.axis, enable=0, autoDisable=0)
self.setFastPoll(False)
self._thread = None
def _start_thread(self, *args):
thread = threading.Thread(target=self._thread_wrapper, args=args)
self._thread = thread
thread.start()
def write_target(self, target):
self._stop_thread()
self._hw.setTargetRange(self.axis, self.tolerance / self._scale)
if self.step_mode:
self.status = BUSY, 'changed target'
self._start_thread(self._run_drive, target)
else:
self.setFastPoll(True, 0.25)
self._hw.setTargetPosition(self.axis, target / self._scale)
self._hw.setAxisOutput(self.axis, enable=0, autoDisable=0)
self._hw.startAutoMove(self.axis, enable=1, relative=0)
self._moving_since = time.time()
self.status = self._get_status()
return target
@Command()
def stop(self):
self._stopped.set()
self._stop_thread()
self._status = IDLE, 'stopped'
self.read_status()
@Command(IntRange())
def move(self, value):
"""relative move by number of steps"""
self.check_value(self.value, value)
self._start_thread(self._run_move, value)
def _move_steps(self, steps):
steps = round(steps)
if not steps:
return
previous = self._read_pos()
self._hw.setAxisOutput(self.axis, enable=1, autoDisable=0)
# wait for output is really on
for i in range(100):
self._wait(0.001)
self._get_status()
if self._output:
break
else:
raise ValueError('can not switch on output')
for i in range(abs(steps)):
if not self._thread:
raise Stopped('stopped')
self._hw.startSingleStep(self.axis, steps < 0)
self._wait(1 / self.frequency)
self._get_status()
if not self._output and i:
steps = i
self._step_size = 0
break
self._wait(self.delay)
self.value = pos = self._read_pos()
if self._output:
self._step_size = (pos - previous) / steps
def _run_move(self, steps):
self.setFastPoll(True, self.fast_interval)
self._move_steps(steps)
@Command(IntRange(0))
def calib_steps(self, delta):
"""relative move by number of steps"""
self._stop_thread()
self._start_thread(self._run_calib, delta)
def _run_calib(self, steps):
self.target = self.value = self._read_pos()
maxfwd = 0
maxbwd = 0
cntfwd = 0
cntbwd = 0
for i in range(10):
if self.value < self.target:
self._move_steps(steps)
self._move_steps(steps)
while self.value < self.target:
self._move_steps(steps)
if self._step_size:
maxfwd = max(maxfwd, self._step_size)
cntfwd += 1
else:
self._move_steps(-steps)
self._move_steps(-steps)
while self.value > self.target:
self._move_steps(-steps)
if self._step_size:
maxbwd = max(maxbwd, self._step_size)
cntbwd += 1
if cntfwd >= 3 and cntbwd >= 3:
self.steps_fwd = 1 / maxfwd
self.steps_bwd = 1 / maxbwd
self._run_drive()
self._status = IDLE, 'calib step size done'
break
else:
self._status = WARN, 'calib step size failed'
@nopoll
def read_info(self):
"""read info from controller"""
cap = self._hw.measureCapacitance(self.axis) * 1e9
axistype = ['linear', 'gonio', 'rotator'][self._hw.getActuatorType(self.axis)]
return '%s %s %.3gnF' % (self._hw.getActuatorName(self.axis), axistype, cap)