1 Commits
1.4.1 ... 1.0.1

Author SHA1 Message Date
847f40970f Bugfix for 1.0 2025-06-17 16:32:59 +02:00
10 changed files with 558 additions and 399 deletions

View File

@@ -1,24 +0,0 @@
name: Test And Build
on: [push]
jobs:
Lint:
runs-on: linepics
steps:
- name: checkout repo
uses: actions/checkout@v4
- name: cppcheck
run: cppcheck --std=c++17 --addon=cert --addon=misc --error-exitcode=1 src/*.cpp
- name: formatting
run: clang-format --style=file --Werror --dry-run src/*.cpp
Build:
runs-on: linepics
steps:
- name: checkout repo
uses: actions/checkout@v4
with:
submodules: 'true'
- run: |
sed -i 's/ARCH_FILTER=.*/ARCH_FILTER=linux%/' Makefile
echo -e "\nIGNORE_SUBMODULES += sinqmotor" >> Makefile
make install

48
.gitlab-ci.yml Normal file
View File

@@ -0,0 +1,48 @@
default:
image: docker.psi.ch:5000/sinqdev/sinqepics:latest
stages:
- lint
- build
- test
cppcheck:
stage: lint
script:
- cppcheck --std=c++17 --addon=cert --addon=misc --suppress=cert-STR07-C --error-exitcode=1 src/*.cpp
artifacts:
expire_in: 1 week
tags:
- sinq
formatting:
stage: lint
script:
- clang-format --style=file --Werror --dry-run src/*.cpp
artifacts:
expire_in: 1 week
tags:
- sinq
build_module:
stage: build
script:
- export SINQMOTOR_VERSION="$(grep 'sinqMotor_VERSION=' Makefile | cut -d= -f2)"
- git clone --depth 1 --branch "${SINQMOTOR_VERSION}" https://gitlab-ci-token:${CI_JOB_TOKEN}@git.psi.ch/sinq-epics-modules/sinqmotor.git
- pushd sinqmotor
- sed -i 's/ARCH_FILTER=.*/ARCH_FILTER=linux%/' Makefile
- echo "LIBVERSION=${SINQMOTOR_VERSION}" >> Makefile
- make install
- popd
- sed -i 's/ARCH_FILTER=.*/ARCH_FILTER=linux%/' Makefile
- echo "LIBVERSION=${CI_COMMIT_TAG:-0.0.1}" >> Makefile
- make install
- cp -rT "/ioc/modules/masterMacs/$(ls -U /ioc/modules/masterMacs/ | head -1)" "./masterMacs-${CI_COMMIT_TAG:-$CI_COMMIT_SHORT_SHA}"
artifacts:
name: "masterMacs-${CI_COMMIT_TAG:-$CI_COMMIT_SHORT_SHA}"
paths:
- "masterMacs-${CI_COMMIT_TAG:-$CI_COMMIT_SHORT_SHA}/*"
expire_in: 1 week
when: always
tags:
- sinq

View File

@@ -23,7 +23,6 @@ SOURCES += src/masterMacsController.cpp
# Store the record files
TEMPLATES += sinqMotor/db/asynRecord.db
TEMPLATES += sinqMotor/db/sinqMotor.db
TEMPLATES += db/masterMacs.db
# This file registers the motor-specific functions in the IOC shell.
DBDS += sinqMotor/src/sinqMotor.dbd

View File

@@ -55,11 +55,11 @@ setMaxSubsequentTimeouts("$(NAME)", 20);
setThresholdComTimeout("$(NAME)", 100, 1);
# Parametrize the EPICS record database with the substitution file named after the MCU.
epicsEnvSet("SINQDBPATH","$(masterMacs_DB)/sinqMotor.db")
epicsEnvSet("SINQDBPATH","$(sinqMotor_DB)/sinqMotor.db")
dbLoadTemplate("$(TOP)/$(NAME).substitutions", "INSTR=$(INSTR)$(NAME):,CONTROLLER=$(NAME)")
epicsEnvSet("SINQDBPATH","$(masterMacs_DB)/masterMacs.db")
dbLoadTemplate("$(TOP)/$(NAME).substitutions", "INSTR=$(INSTR)$(NAME):,CONTROLLER=$(NAME)")
dbLoadRecords("$(masterMacs_DB)/asynRecord.db","P=$(INSTR)$(NAME),PORT=$(ASYN_PORT)")
dbLoadRecords("$(sinqMotor_DB)/asynRecord.db","P=$(INSTR)$(NAME),PORT=$(ASYN_PORT)")
```
### Versioning

View File

@@ -1,7 +0,0 @@
# Call the nodeReset function of the corresponding masterMacsAxis.
# This record is coupled to the parameter library via nodeReset_ -> NODE_RESET.
record(longout, "$(INSTR)$(M):NodeReset") {
field(DTYP, "asynInt32")
field(OUT, "@asyn($(CONTROLLER),$(AXIS),1) NODE_RESET")
field(PINI, "NO")
}

View File

@@ -19,6 +19,7 @@ struct masterMacsAxisImpl {
std::bitset<16> axisStatus;
std::bitset<16> axisError;
double lastSetSpeed;
bool waitForHandshake;
time_t timeAtHandshake;
bool needInit = true;
@@ -121,6 +122,7 @@ masterMacsAxis::masterMacsAxis(masterMacsController *pC, int axisNo)
pMasterMacsA_ = std::make_unique<masterMacsAxisImpl>((masterMacsAxisImpl){
.axisStatus = std::bitset<16>(0),
.axisError = std::bitset<16>(0),
.lastSetSpeed = 0.0,
.waitForHandshake = false,
.timeAtHandshake = 0,
.targetReachedUninitialized = true,
@@ -260,6 +262,11 @@ asynStatus masterMacsAxis::init() {
__PRETTY_FUNCTION__, __LINE__);
}
// Cache the motor speed. If this value differs from the one in the motor
// record at the start of a movement, the motor record value is sent to
// MasterMACS.
pMasterMacsA_->lastSetSpeed = motorVelocity;
// Store the motor position in the parameter library
pl_status = setMotorPosition(motorPosition);
if (pl_status != asynSuccess) {
@@ -356,8 +363,14 @@ asynStatus masterMacsAxis::doPoll(bool *moving) {
}
if (timedOut) {
setAxisParamChecked(this, motorMessageText,
"Timed out while waiting for a handshake");
pl_status =
setStringParam(pC_->motorMessageText(),
"Timed out while waiting for a handshake");
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorMessageText_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
}
pC_->read(axisNo_, 86, response);
@@ -381,15 +394,32 @@ asynStatus masterMacsAxis::doPoll(bool *moving) {
// poll. This is already part of the movement procedure.
*moving = true;
setAxisParamChecked(this, motorStatusMoving, *moving);
setAxisParamChecked(this, motorStatusDone, !(*moving));
pl_status = setIntegerParam(pC_->motorStatusMoving(), *moving);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status,
"motorStatusMoving_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
pl_status = setIntegerParam(pC_->motorStatusDone(), !(*moving));
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusDone_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
return asynSuccess;
}
}
// Motor resolution from parameter library
getAxisParamChecked(this, motorRecResolution, &motorRecResolution);
pl_status = pC_->getDoubleParam(axisNo_, pC_->motorRecResolution(),
&motorRecResolution);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorRecResolution_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
// Read the previous motor position
pl_status = motorPosition(&previousPosition);
@@ -432,181 +462,195 @@ asynStatus masterMacsAxis::doPoll(bool *moving) {
Read out the error if either a fault condition status flag has been set or
if a movement has just ended.
*/
if (faultConditionSet() || !(*moving)) {
rw_status = readAxisError();
}
msgPrintControlKey keyError = msgPrintControlKey(
pC_->portName, axisNo_, __PRETTY_FUNCTION__, __LINE__);
/*
A communication error is a special case. If a communication between
controller and axis error occurred, all subsequent errors are ignored,
since this information is not reliable.
*/
if (communicationError()) {
if (pC_->getMsgPrintControl().shouldBePrinted(keyError, true,
pC_->pasynUser())) {
asynPrint(pC_->pasynUser(), ASYN_TRACE_ERROR,
"Controller \"%s\", axis %d => %s, line "
"%d\nCommunication error.%s\n",
pC_->portName, axisNo_, __PRETTY_FUNCTION__, __LINE__,
pC_->getMsgPrintControl().getSuffix());
}
setAxisParamChecked(this, motorMessageText,
"Communication error between PC and motor "
"controller. Please call the support.");
poll_status = asynError;
} else {
// This buffer must be initialized to zero because we build the
// error message by appending strings.
char errorMessage[pC_->MAXBUF_] = {0};
char shellMessage[pC_->MAXBUF_] = {0};
// Concatenate all other errors
if (shortCircuit()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Short circuit fault.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Short circuit error. Please call the support.");
poll_status = asynError;
}
if (encoderError()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Encoder error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Encoder error. Please call the support.");
poll_status = asynError;
}
if (followingError()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Maximum callowed following error exceeded.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Maximum allowed following error exceeded.Check if "
"movement range is blocked. Otherwise please call the "
"support.");
poll_status = asynError;
}
if (feedbackError()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Feedback error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Feedback error. Please call the support.");
poll_status = asynError;
}
if (faultConditionSet() || !(*moving)) {
rw_status = readAxisError();
/*
Either the software limits or the end switches of the controller
have been hit. Since the EPICS limits are derived from the software
limits and are a little bit smaller, these error cases can only
happen if either the axis has an incremental encoder which is not
properly homed or if a bug occured.
*/
if (positiveLimitSwitch() || negativeLimitSwitch() ||
positiveSoftwareLimit() || negativeSoftwareLimit()) {
// Distinction for developers
if (positiveLimitSwitch()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Positive limit switch.");
}
if (negativeLimitSwitch()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Negative limit switch.");
}
if (positiveSoftwareLimit()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Positive software limit.");
}
if (negativeSoftwareLimit()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Negative software limit.");
}
// Generic error message for user
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Software limits or end switch hit. Try homing the motor, "
"moving in the opposite direction or check the SPS for "
"errors (if available). Otherwise please call the "
"support.");
poll_status = asynError;
}
if (overCurrent()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Overcurrent error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Overcurrent error. Please call the support.");
poll_status = asynError;
}
if (overTemperature()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Overtemperature error.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Overtemperature error. Please call the support.");
poll_status = asynError;
}
if (overVoltage()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Overvoltage error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Overvoltage error. Please call the support.");
poll_status = asynError;
}
if (underVoltage()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Undervoltage error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Undervoltage error. Please call the support.");
poll_status = asynError;
}
if (stoFault()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"STO input is on disable state.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"STO fault. Please call the support.");
poll_status = asynError;
}
if (strlen(shellMessage) > 0) {
A communication error is a special case. If a communication between
controller and axis error occurred, all subsequent errors are ignored,
since this information is not reliable.
*/
if (communicationError()) {
if (pC_->getMsgPrintControl().shouldBePrinted(keyError, true,
pC_->pasynUser())) {
asynPrint(pC_->pasynUser(), ASYN_TRACE_ERROR,
"Controller \"%s\", axis %d => %s, line "
"%d\n%s%s\n",
"%d\nCommunication error.%s\n",
pC_->portName, axisNo_, __PRETTY_FUNCTION__, __LINE__,
shellMessage, pC_->getMsgPrintControl().getSuffix());
pC_->getMsgPrintControl().getSuffix());
}
pl_status =
setStringParam(pC_->motorMessageText(),
"Communication error between PC and motor "
"controller. Please call the support.");
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorMessageText_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
poll_status = asynError;
} else {
// This buffer must be initialized to zero because we build the
// error message by appending strings.
char errorMessage[pC_->MAXBUF_] = {0};
char shellMessage[pC_->MAXBUF_] = {0};
// Concatenate all other errors
if (shortCircuit()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Short circuit fault.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Short circuit error. Please call the support.");
poll_status = asynError;
}
if (encoderError()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Encoder error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Encoder error. Please call the support.");
poll_status = asynError;
}
if (followingError()) {
appendErrorMessage(
shellMessage, sizeof(shellMessage),
"Maximum callowed following error exceeded.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Maximum allowed following error exceeded.Check if "
"movement range is blocked. Otherwise please call the "
"support.");
poll_status = asynError;
}
if (feedbackError()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Feedback error.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"Feedback error. Please call the support.");
poll_status = asynError;
}
/*
Either the software limits or the end switches of the controller
have been hit. Since the EPICS limits are derived from the software
limits and are a little bit smaller, these error cases can only
happen if either the axis has an incremental encoder which is not
properly homed or if a bug occured.
*/
if (positiveLimitSwitch() || negativeLimitSwitch() ||
positiveSoftwareLimit() || negativeSoftwareLimit()) {
// Distinction for developers
if (positiveLimitSwitch()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Positive limit switch.");
}
if (negativeLimitSwitch()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Negative limit switch.");
}
if (positiveSoftwareLimit()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Positive software limit.");
}
if (negativeSoftwareLimit()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Negative software limit.");
}
// Generic error message for user
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Software limits or end switch hit. Try homing the motor, "
"moving in the opposite direction or check the SPS for "
"errors (if available). Otherwise please call the "
"support.");
poll_status = asynError;
}
if (overCurrent()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Overcurrent error.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Overcurrent error. Please call the support.");
poll_status = asynError;
}
if (overTemperature()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Overtemperature error.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Overtemperature error. Please call the support.");
poll_status = asynError;
}
if (overVoltage()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Overvoltage error.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Overvoltage error. Please call the support.");
poll_status = asynError;
}
if (underVoltage()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"Undervoltage error.");
appendErrorMessage(
errorMessage, sizeof(errorMessage),
"Undervoltage error. Please call the support.");
poll_status = asynError;
}
if (stoFault()) {
appendErrorMessage(shellMessage, sizeof(shellMessage),
"STO input is on disable state.");
appendErrorMessage(errorMessage, sizeof(errorMessage),
"STO fault. Please call the support.");
poll_status = asynError;
}
if (strlen(shellMessage) > 0) {
if (pC_->getMsgPrintControl().shouldBePrinted(
keyError, true, pC_->pasynUser())) {
asynPrint(pC_->pasynUser(), ASYN_TRACE_ERROR,
"Controller \"%s\", axis %d => %s, line "
"%d\n%s%s\n",
pC_->portName, axisNo_, __PRETTY_FUNCTION__,
__LINE__, shellMessage,
pC_->getMsgPrintControl().getSuffix());
}
}
pl_status = setStringParam(pC_->motorMessageText(), errorMessage);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorMessageText_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
}
setAxisParamChecked(this, motorMessageText, errorMessage);
}
// No error has been detected -> Reset the error count
if (poll_status == asynSuccess) {
} else {
pC_->getMsgPrintControl().resetCount(keyError, pC_->pasynUser());
}
@@ -645,18 +689,40 @@ asynStatus masterMacsAxis::doPoll(bool *moving) {
directly, but need to shrink them a bit. In this case, we're shrinking
them by 0.1 mm or 0.1 degree (depending on the axis type) on both sides.
*/
getAxisParamChecked(this, motorLimitsOffset, &limitsOffset);
pl_status = pC_->getDoubleParam(axisNo_, pC_->motorLimitsOffset(),
&limitsOffset);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorLimitsOffset_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
highLimit = highLimit - limitsOffset;
lowLimit = lowLimit + limitsOffset;
setAxisParamChecked(this, motorHighLimitFromDriver, highLimit);
setAxisParamChecked(this, motorLowLimitFromDriver, lowLimit);
pl_status = pC_->setDoubleParam(
axisNo_, pC_->motorHighLimitFromDriver(), highLimit);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(
pl_status, "motorHighLimitFromDriver_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
pl_status = pC_->setDoubleParam(axisNo_, pC_->motorLowLimitFromDriver(),
lowLimit);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorLowLimit_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
}
// Update the enable PV
setAxisParamChecked(this, motorEnableRBV,
readyToBeSwitchedOn() && switchedOn());
pl_status = setIntegerParam(pC_->motorEnableRBV(),
readyToBeSwitchedOn() && switchedOn());
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorEnableRBV_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
if (*moving) {
// If the axis is moving, evaluate the movement direction
@@ -669,11 +735,32 @@ asynStatus masterMacsAxis::doPoll(bool *moving) {
// Update the parameter library
if (hasError) {
setAxisParamChecked(this, motorStatusProblem, true);
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusProblem_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
}
pl_status = setIntegerParam(pC_->motorStatusMoving(), *moving);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusMoving_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
pl_status = setIntegerParam(pC_->motorStatusDone(), !(*moving));
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusDone_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
pl_status = setIntegerParam(pC_->motorStatusDirection(), direction);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusDirection_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
setAxisParamChecked(this, motorStatusMoving, *moving);
setAxisParamChecked(this, motorStatusDone, !(*moving));
setAxisParamChecked(this, motorStatusDirection, direction);
pl_status = setMotorPosition(currentPosition);
if (pl_status != asynSuccess) {
@@ -688,7 +775,10 @@ asynStatus masterMacsAxis::doMove(double position, int relative,
double acceleration) {
// Status of read-write-operations of ASCII commands to the controller
asynStatus status = asynSuccess;
asynStatus rw_status = asynSuccess;
// Status of parameter library operations
asynStatus pl_status = asynSuccess;
char value[pC_->MAXBUF_];
double motorCoordinatesPosition = 0.0;
@@ -699,8 +789,19 @@ asynStatus masterMacsAxis::doMove(double position, int relative,
// =========================================================================
getAxisParamChecked(this, motorEnableRBV, &enabled);
getAxisParamChecked(this, motorRecResolution, &motorRecResolution);
pl_status = pC_->getIntegerParam(axisNo_, pC_->motorEnableRBV(), &enabled);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "enableMotorRBV_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
pl_status = pC_->getDoubleParam(axisNo_, pC_->motorRecResolution(),
&motorRecResolution);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorRecResolution_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
if (enabled == 0) {
asynPrint(pC_->pasynUser(), ASYN_TRACE_ERROR,
@@ -720,24 +821,42 @@ asynStatus masterMacsAxis::doMove(double position, int relative,
pC_->portName, axisNo_, __PRETTY_FUNCTION__, __LINE__, position);
// Check if the speed is allowed to be changed
getAxisParamChecked(this, motorCanSetSpeed, &motorCanSetSpeed);
pl_status = pC_->getIntegerParam(axisNo_, pC_->motorCanSetSpeed(),
&motorCanSetSpeed);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorCanSetSpeed_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
// Initialize the movement handshake
status = pC_->write(axisNo_, 86, "0");
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
return status;
rw_status = pC_->write(axisNo_, 86, "0");
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusProblem_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
return rw_status;
}
// Set the new motor speed, if the user is allowed to do so and if the
// motor speed changed since the last move command.
if (motorCanSetSpeed != 0) {
if (motorCanSetSpeed != 0 && pMasterMacsA_->lastSetSpeed != motorVelocity) {
pMasterMacsA_->lastSetSpeed = motorVelocity;
snprintf(value, sizeof(value), "%lf", motorVelocity);
status = pC_->write(axisNo_, 05, value);
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
return status;
rw_status = pC_->write(axisNo_, 05, value);
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status,
"motorStatusProblem_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
return rw_status;
}
asynPrint(pC_->pasynUser(), ASYN_TRACE_FLOW,
@@ -749,10 +868,15 @@ asynStatus masterMacsAxis::doMove(double position, int relative,
// Set the target position
snprintf(value, sizeof(value), "%lf", motorCoordinatesPosition);
status = pC_->write(axisNo_, 02, value);
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
return status;
rw_status = pC_->write(axisNo_, 02, value);
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusProblem_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
return rw_status;
}
// If the motor has just been enabled, use Enable
@@ -764,13 +888,18 @@ asynStatus masterMacsAxis::doMove(double position, int relative,
// Start the move
if (relative) {
status = pC_->write(axisNo_, 00, "2", timeout);
rw_status = pC_->write(axisNo_, 00, "2", timeout);
} else {
status = pC_->write(axisNo_, 00, "1", timeout);
rw_status = pC_->write(axisNo_, 00, "1", timeout);
}
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
return status;
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusProblem_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
return rw_status;
}
// In the next poll, we will check if the handshake has been performed in a
@@ -784,61 +913,60 @@ asynStatus masterMacsAxis::doMove(double position, int relative,
return asynError;
}
return status;
return rw_status;
}
asynStatus masterMacsAxis::stop(double acceleration) {
asynStatus status = pC_->write(axisNo_, 00, "8");
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
// Status of read-write-operations of ASCII commands to the controller
asynStatus rw_status = asynSuccess;
// Status of parameter library operations
asynStatus pl_status = asynSuccess;
// =========================================================================
rw_status = pC_->write(axisNo_, 00, "8");
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusProblem_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
}
// Reset the driver to idle state and move out of the handshake wait loop,
// if we're currently inside it.
pMasterMacsA_->waitForHandshake = false;
return status;
return rw_status;
}
asynStatus masterMacsAxis::doReset() {
// Status of read-write-operations of ASCII commands to the controller
asynStatus rw_status = asynSuccess;
asynStatus status = asynSuccess;
// Status of parameter library operations
asynStatus pl_status = asynSuccess;
// Reset the controller ("node reset")
status = pC_->write(axisNo_, 16, "");
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
// =========================================================================
rw_status = pC_->write(axisNo_, 17, "");
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorStatusProblem_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
}
// Move out of the handshake wait loop, if we're currently inside it.
// Reset the driver to idle state and move out of the handshake wait loop,
// if we're currently inside it.
pMasterMacsA_->waitForHandshake = false;
// Disable the axis
return enable(false);
}
asynStatus masterMacsAxis::nodeReset() {
asynStatus status = asynSuccess;
// Reset any errors in the controller. Since the node reset results in a
// power cycle, we use the corresponding timeout.
status = pC_->write(axisNo_, 17, "", PowerCycleTimeout);
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
}
// Move out of the handshake wait loop, if we're currently inside it.
pMasterMacsA_->waitForHandshake = false;
// Reinitialize the axis
status = masterMacsAxis::init();
if (status != asynSuccess) {
return status;
}
bool moving = false;
return forcedPoll(&moving);
return rw_status;
}
/*
@@ -847,25 +975,41 @@ Home the axis. On absolute encoder systems, this is a no-op
asynStatus masterMacsAxis::doHome(double min_velocity, double max_velocity,
double acceleration, int forwards) {
// Status of read-write-operations of ASCII commands to the controller
asynStatus rw_status = asynSuccess;
// Status of parameter library operations
asynStatus pl_status = asynSuccess;
char response[pC_->MAXBUF_] = {0};
// =========================================================================
getAxisParamChecked(this, encoderType, &response);
pl_status = pC_->getStringParam(axisNo_, pC_->encoderType(),
sizeof(response), response);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "encoderType_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
// Only send the home command if the axis has an incremental encoder
if (strcmp(response, IncrementalEncoder) == 0) {
// Initialize the movement handshake
asynStatus status = pC_->write(axisNo_, 86, "0");
if (status != asynSuccess) {
setAxisParamChecked(this, motorStatusProblem, true);
return status;
rw_status = pC_->write(axisNo_, 86, "0");
if (rw_status != asynSuccess) {
pl_status = setIntegerParam(pC_->motorStatusProblem(), true);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status,
"motorStatusProblem_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
return rw_status;
}
status = pC_->write(axisNo_, 00, "9");
if (status != asynSuccess) {
return status;
rw_status = pC_->write(axisNo_, 00, "9");
if (rw_status != asynSuccess) {
return rw_status;
}
// In the next poll, we will check if the handshake has been performed
@@ -883,6 +1027,12 @@ Read the encoder type and update the parameter library accordingly
*/
asynStatus masterMacsAxis::readEncoderType() {
// Status of read-write-operations of ASCII commands to the controller
asynStatus rw_status = asynSuccess;
// Status of parameter library operations
asynStatus pl_status = asynSuccess;
char command[pC_->MAXBUF_] = {0};
char response[pC_->MAXBUF_] = {0};
int nvals = 0;
@@ -891,9 +1041,9 @@ asynStatus masterMacsAxis::readEncoderType() {
// =========================================================================
// Check if this is an absolute encoder
asynStatus status = pC_->read(axisNo_, 60, response);
if (status != asynSuccess) {
return status;
rw_status = pC_->read(axisNo_, 60, response);
if (rw_status != asynSuccess) {
return rw_status;
}
nvals = sscanf(response, "%d", &encoder_id);
@@ -909,18 +1059,28 @@ asynStatus masterMacsAxis::readEncoderType() {
2=SSI (Absolute encoder with BiSS interface)
*/
if (encoder_id == 0) {
setAxisParamChecked(this, encoderType, IncrementalEncoder);
pl_status = setStringParam(pC_->encoderType(), IncrementalEncoder);
} else {
setAxisParamChecked(this, encoderType, AbsoluteEncoder);
pl_status = setStringParam(pC_->encoderType(), AbsoluteEncoder);
}
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "encoderType_", axisNo_,
__PRETTY_FUNCTION__, __LINE__);
}
return asynSuccess;
}
asynStatus masterMacsAxis::enable(bool on) {
int timeout_enable_disable = 2;
char msg[pC_->MAXBUF_];
char value[pC_->MAXBUF_];
// Status of read-write-operations of ASCII commands to the controller
asynStatus rw_status = asynSuccess;
// Status of parameter library operations
asynStatus pl_status = asynSuccess;
// =========================================================================
@@ -950,8 +1110,14 @@ asynStatus masterMacsAxis::enable(bool on) {
"idle and can therefore not be disabled.\n",
pC_->portName, axisNo_, __PRETTY_FUNCTION__, __LINE__);
setAxisParamChecked(this, motorMessageText,
"Axis cannot be disabled while it is moving.");
pl_status =
setStringParam(pC_->motorMessageText(),
"Axis cannot be disabled while it is moving.");
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorMessageText_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
return asynError;
}
@@ -969,7 +1135,7 @@ asynStatus masterMacsAxis::enable(bool on) {
}
// Enable / disable the axis if it is not moving
snprintf(msg, sizeof(msg), "%d", on);
snprintf(value, sizeof(value), "%d", on);
asynPrint(pC_->pasynUser(), ASYN_TRACE_FLOW,
"Controller \"%s\", axis %d => %s, line %d:\n%s axis.\n",
pC_->portName, axisNo_, __PRETTY_FUNCTION__, __LINE__,
@@ -984,9 +1150,9 @@ asynStatus masterMacsAxis::enable(bool on) {
timeout = PowerCycleTimeout;
}
asynStatus status = pC_->write(axisNo_, 04, msg, timeout);
if (status != asynSuccess) {
return status;
rw_status = pC_->write(axisNo_, 04, value, timeout);
if (rw_status != asynSuccess) {
return rw_status;
}
// Query the axis status every few milliseconds until the axis has been
@@ -996,15 +1162,15 @@ asynStatus masterMacsAxis::enable(bool on) {
// Read the axis status
usleep(100000);
status = readAxisStatus();
if (status != asynSuccess) {
return status;
rw_status = readAxisStatus();
if (rw_status != asynSuccess) {
return rw_status;
}
if (switchedOn() == on) {
bool moving = false;
// Perform a poll to update the parameter library
forcedPoll(&moving);
poll(&moving);
return asynSuccess;
}
}
@@ -1018,10 +1184,14 @@ asynStatus masterMacsAxis::enable(bool on) {
on ? "enable" : "disable", timeout_enable_disable);
// Output message to user
snprintf(msg, sizeof(msg), "Failed to %s within %d seconds",
snprintf(value, sizeof(value), "Failed to %s within %d seconds",
on ? "enable" : "disable", timeout_enable_disable);
setAxisParamChecked(this, motorMessageText, msg);
pl_status = setStringParam(pC_->motorMessageText(), value);
if (pl_status != asynSuccess) {
return pC_->paramLibAccessFailed(pl_status, "motorMessageText_",
axisNo_, __PRETTY_FUNCTION__,
__LINE__);
}
return asynError;
}

View File

@@ -1,12 +1,16 @@
#ifndef masterMacsAXIS_H
#define masterMacsAXIS_H
#include "masterMacsController.h"
#include "sinqAxis.h"
#include <memory>
struct HIDDEN masterMacsAxisImpl;
// Forward declaration of the controller class to resolve the cyclic dependency
// between the controller and the axis .h-file. See
// https://en.cppreference.com/w/cpp/language/class.
class masterMacsController;
class HIDDEN masterMacsAxis : public sinqAxis {
struct masterMacsAxisImpl;
class masterMacsAxis : public sinqAxis {
public:
/**
* @brief Construct a new masterMacsAxis
@@ -75,27 +79,12 @@ class HIDDEN masterMacsAxis : public sinqAxis {
*/
asynStatus doReset();
/**
* @brief Performs a "node reset" on the axis as defined in the CANopen
* standard
*
* A "node reset" is a factory reset on the axis which completely deletes
* all configured information (e.g. limits or speed) from the axis. The
* MasterMACS controller then reapplies the initial configuration to this
* axis. It can therefore be seen as a "hard" version of the normal error
* reset performed by the `doReset` method.
*
* @return asynStatus
*/
asynStatus nodeReset();
/**
* @brief Readout of some values from the controller at IOC startup
*
* The following steps are performed:
* - Read out the motor status, motor position, velocity and
* acceleration from the MCU and store this information in the parameter
* library.
* - Read out the motor status, motor position, velocity and acceleration
* from the MCU and store this information in the parameter library.
* - Set the enable PV accordint to the initial status of the axis.
*
* @return asynStatus
@@ -111,8 +100,8 @@ class HIDDEN masterMacsAxis : public sinqAxis {
asynStatus enable(bool on);
/**
* @brief Read the encoder type (incremental or absolute) for this axis
* from the MCU and store the information in the PV ENCODER_TYPE.
* @brief Read the encoder type (incremental or absolute) for this axis from
* the MCU and store the information in the PV ENCODER_TYPE.
*
* @return asynStatus
*/
@@ -127,21 +116,17 @@ class HIDDEN masterMacsAxis : public sinqAxis {
bool needInit();
/**
* @brief Instruct the axis to run its init() function during the next
* poll
* @brief Instruct the axis to run its init() function during the next poll
*
* @param needInit
*/
void setNeedInit(bool needInit);
/**
* @brief Return a pointer to the axis controller
*/
virtual masterMacsController *pController() override { return pC_; };
asynStatus readConfig();
/**
* @brief Read the Master MACS status with the xR10 command and store
* the result in axisStatus_
* @brief Read the Master MACS status with the xR10 command and store the
* result in axisStatus_
*
*/
asynStatus readAxisStatus();
@@ -219,8 +204,8 @@ class HIDDEN masterMacsAxis : public sinqAxis {
bool powerEnabled();
/**
* @brief Read the Master MACS status with the xR10 command and store
* the result in axisStatus_
* @brief Read the Master MACS status with the xR10 command and store the
* result in axisStatus_
*
*/
asynStatus readAxisError();

View File

@@ -14,9 +14,6 @@
struct masterMacsControllerImpl {
double comTimeout;
// Indices of additional ParamLib entries
int nodeReset;
};
/**
@@ -71,20 +68,6 @@ masterMacsController::masterMacsController(const char *portName,
.comTimeout = comTimeout,
});
// =========================================================================
// Create additional parameter library entries
status =
createParam("NODE_RESET", asynParamInt32, &pMasterMacsC_->nodeReset);
if (status != asynSuccess) {
asynPrint(this->pasynUser(), ASYN_TRACE_ERROR,
"Controller \"%s\" => %s, line %d\nFATAL ERROR (creating a "
"parameter failed with %s).\nTerminating IOC",
portName, __PRETTY_FUNCTION__, __LINE__,
stringifyAsynStatus(status));
exit(-1);
}
// =========================================================================
/*
@@ -137,22 +120,6 @@ masterMacsAxis *masterMacsController::getMasterMacsAxis(int axisNo) {
return dynamic_cast<masterMacsAxis *>(asynAxis);
}
asynStatus masterMacsController::writeInt32(asynUser *pasynUser,
epicsInt32 value) {
int function = pasynUser->reason;
// =====================================================================
masterMacsAxis *axis = getMasterMacsAxis(pasynUser);
// Handle custom PVs
if (function == nodeReset()) {
return axis->nodeReset();
} else {
return sinqController::writeInt32(pasynUser, value);
}
}
asynStatus masterMacsController::read(int axisNo, int tcpCmd, char *response,
double comTimeout) {
return writeRead(axisNo, tcpCmd, NULL, response);
@@ -169,6 +136,7 @@ asynStatus masterMacsController::writeRead(int axisNo, int tcpCmd,
// Definition of local variables.
asynStatus status = asynSuccess;
asynStatus pl_status = asynSuccess;
char fullCommand[MAXBUF_] = {0};
char fullResponse[MAXBUF_] = {0};
char drvMessageText[MAXBUF_] = {0};
@@ -287,7 +255,7 @@ asynStatus masterMacsController::writeRead(int axisNo, int tcpCmd,
// Log the overall status (communication successfull or not)
if (status == asynSuccess) {
setAxisParamChecked(axis, motorStatusCommsError, false);
pl_status = axis->setIntegerParam(this->motorStatusCommsError_, 0);
} else {
/*
@@ -306,12 +274,35 @@ asynStatus masterMacsController::writeRead(int axisNo, int tcpCmd,
the user with different error messages if more than one error
ocurred before an error-free communication
*/
getAxisParamChecked(axis, motorStatusProblem, &motorStatusProblem);
pl_status =
getIntegerParam(axisNo, motorStatusProblem_, &motorStatusProblem);
if (pl_status != asynSuccess) {
return paramLibAccessFailed(pl_status, "motorStatusProblem", axisNo,
__PRETTY_FUNCTION__, __LINE__);
}
if (motorStatusProblem == 0) {
setAxisParamChecked(axis, motorMessageText, drvMessageText);
setAxisParamChecked(axis, motorStatusProblem, true);
setAxisParamChecked(axis, motorStatusCommsError, false);
pl_status =
axis->setStringParam(motorMessageText(), drvMessageText);
if (pl_status != asynSuccess) {
return paramLibAccessFailed(pl_status, "motorMessageText",
axisNo, __PRETTY_FUNCTION__,
__LINE__);
}
pl_status = axis->setIntegerParam(motorStatusProblem_, 1);
if (pl_status != asynSuccess) {
return paramLibAccessFailed(pl_status, "motorStatusProblem",
axisNo, __PRETTY_FUNCTION__,
__LINE__);
}
pl_status = axis->setIntegerParam(motorStatusProblem_, 1);
if (pl_status != asynSuccess) {
return paramLibAccessFailed(pl_status, "motorStatusCommsError_",
axisNo, __PRETTY_FUNCTION__,
__LINE__);
}
}
}
@@ -341,13 +332,12 @@ asynStatus masterMacsController::parseResponse(
msgPrintControlKey parseKey =
msgPrintControlKey(portName, axisNo, __PRETTY_FUNCTION__, __LINE__);
masterMacsAxis *axis = getMasterMacsAxis(axisNo);
if (axis == nullptr) {
return asynError;
}
// Was the motor previously connected?
getAxisParamChecked(axis, motorConnected, &prevConnected);
status = getIntegerParam(axisNo, motorConnected(), &prevConnected);
if (status != asynSuccess) {
return paramLibAccessFailed(status, "motorConnected", axisNo,
__PRETTY_FUNCTION__, __LINE__);
}
// We don't use strlen here since the C string terminator 0x00
// occurs in the middle of the char array.
@@ -371,7 +361,16 @@ asynStatus masterMacsController::parseResponse(
"connected.\n",
portName, axisNo, __PRETTY_FUNCTION__, __LINE__);
setAxisParamChecked(axis, motorConnected, true);
masterMacsAxis *axis = getMasterMacsAxis(axisNo);
if (axis == nullptr) {
return asynError;
}
status = axis->setIntegerParam(motorConnected(), 1);
if (status != asynSuccess) {
return paramLibAccessFailed(status, "motorConnected",
axisNo, __PRETTY_FUNCTION__,
__LINE__);
}
status = callParamCallbacks();
if (status != asynSuccess) {
asynPrint(this->pasynUserSelf, ASYN_TRACE_ERROR,
@@ -399,7 +398,16 @@ asynStatus masterMacsController::parseResponse(
"disconnected.\n",
portName, axisNo, __PRETTY_FUNCTION__, __LINE__);
setAxisParamChecked(axis, motorConnected, false);
masterMacsAxis *axis = getMasterMacsAxis(axisNo);
if (axis == nullptr) {
return asynError;
}
status = axis->setIntegerParam(motorConnected(), 0);
if (status != asynSuccess) {
return paramLibAccessFailed(status, "motorConnected",
axisNo, __PRETTY_FUNCTION__,
__LINE__);
}
status = callParamCallbacks();
if (status != asynSuccess) {
asynPrint(this->pasynUserSelf, ASYN_TRACE_ERROR,
@@ -492,8 +500,6 @@ asynStatus masterMacsController::readInt32(asynUser *pasynUser,
double masterMacsController::comTimeout() { return pMasterMacsC_->comTimeout; }
int masterMacsController::nodeReset() { return pMasterMacsC_->nodeReset; }
/***************************************************************************/
/** The following functions are C-wrappers, and can be called directly from
* iocsh */

View File

@@ -8,18 +8,14 @@
#ifndef masterMacsController_H
#define masterMacsController_H
#include "masterMacsAxis.h"
#include "sinqAxis.h"
#include "sinqController.h"
#include <memory>
// Forward declaration of the controller class to resolve the cyclic dependency
// between the controller and the axis .h-file. See
// https://en.cppreference.com/w/cpp/language/class.
class HIDDEN masterMacsAxis;
struct masterMacsControllerImpl;
struct HIDDEN masterMacsControllerImpl;
class HIDDEN masterMacsController : public sinqController {
class masterMacsController : public sinqController {
public:
/**
@@ -65,17 +61,6 @@ class HIDDEN masterMacsController : public sinqController {
*/
masterMacsAxis *getMasterMacsAxis(int axisNo);
/**
* @brief Overloaded function of sinqController
*
* The function is overloaded to allow resetting the node
*
* @param pasynUser Specify the axis via the asynUser
* @param value New value
* @return asynStatus
*/
virtual asynStatus writeInt32(asynUser *pasynUser, epicsInt32 value);
/**
* @brief Send a command to the hardware (S mode)
*
@@ -152,9 +137,6 @@ class HIDDEN masterMacsController : public sinqController {
*/
double comTimeout();
// Accessors for additional PVs
int nodeReset();
private:
std::unique_ptr<masterMacsControllerImpl> pMasterMacsC_;
};