1 Commits

Author SHA1 Message Date
Erik Fröjdh
9bf21244b0 added custom io for my302 2025-11-27 17:17:43 +01:00
45 changed files with 448 additions and 746 deletions

View File

@@ -1,12 +1,5 @@
# Release notes
## head
### New Features:
- Expanding 24 to 32 bit data
- Decoding digital data from Mythen 302
- added ``transform_eta_values``. Function transforms :math:`\eta` to uniform spatial coordinates. Should only be used for easier debugging.
### 2025.11.21

View File

@@ -12,19 +12,15 @@ set(SPHINX_SOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src)
set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR})
file(GLOB_RECURSE SPHINX_SOURCE_FILES
CONFIGURE_DEPENDS
RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}/src"
"${CMAKE_CURRENT_SOURCE_DIR}/src/*.rst"
)
file(GLOB SPHINX_SOURCE_FILES CONFIGURE_DEPENDS "src/*.rst")
foreach(relpath IN LISTS SPHINX_SOURCE_FILES)
set(src "${CMAKE_CURRENT_SOURCE_DIR}/src/${relpath}")
set(dst "${SPHINX_BUILD}/src/${relpath}")
message(STATUS "Copying ${src} to ${dst}")
configure_file("${src}" "${dst}" COPYONLY)
endforeach()
foreach(filename ${SPHINX_SOURCE_FILES})
get_filename_component(fname ${filename} NAME)
message(STATUS "Copying ${filename} to ${SPHINX_BUILD}/src/${fname}")
configure_file(${filename} "${SPHINX_BUILD}/src/${fname}")
endforeach(filename ${SPHINX_SOURCE_FILES})
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.3 KiB

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 13 KiB

View File

@@ -1,43 +1,12 @@
.. _Interpolation_C++API:
Interpolation
==============
The Interpolation class implements the :math:`\eta`-interpolation method.
This interpolation technique is based on charge sharing: for detected photon hits (e.g. clusters), it refines the estimated photon hit using information from neighboring pixels.
Interpolation class for :math:`\eta` Interpolation.
The method relies on the so-called :math:`\eta`-functions, which describe the relationship between the energy measured in the central cluster pixel (the initially estimated photon hit) and the energies measured in its neighboring pixels.
Depending on how much energy each neighboring pixel receives relative to the central pixel, the estimated photon hit is shifted toward that neighbor by a certain offset to the actual photon hit position in the pixel :math:`(x, y)`.
The mapping between the :math:`\eta` values and the corresponding spatial photon position :math:`(x,y)` can be viewed as an optimal transport problem.
One can readily compute the probability distribution :math:`P_{\eta}` of the :math:`\eta` values by forming a 2D histogram.
However, the probability distribution :math:`P_{x,y}` of the true photon positions is generally unknown unless the detector is illuminated uniformly (i.e. under flat-field conditions).
In a flat-field, the photon positions are uniformly distributed.
With this assumption, the problem reduces to determining a transport map :math:`T:(\eta_x,\eta_y) \rightarrow (x,y)`, that pushes forward the distribution of :math:`(\eta_x, \eta_y)` to the known uniform distribution of photon positions of a flatfield.
The map :math:`T` is given by:
.. math::
\begin{align*}
T_1: & F_{x}^{-1} F_{\eta_x|\eta_y} \\
T_2: & F_{y}^{-1} F_{\eta_y|\eta_x},
\end{align*}
where :math:`F_{\eta_x|\eta_y}` and :math:`F_{\eta_y|\eta_x}` are the conditional cumulative distribution functions e.g. :math:`F_{\eta_x|\eta_y}(\eta_x', \eta_y') = P_{\eta_x, \eta_y}(\eta_x \leq \eta_x' | \eta_y = \eta_y')`.
And :math:`F_{x}` and :math:`F_{y}` are the cumulative distribution functions of :math:`x` and :math:`y`. Note as :math:`x` and :math:`y` are uniformly distributed :math:`F_{x}` and :math:`F_{y}` are the identity functions. The map :math:`T` thus simplifies to
.. math::
\begin{align*}
T_1: & F_{\eta_x|\eta_y} \\
T_2: & F_{\eta_y|\eta_x}.
\end{align*}
Note that for the implementation :math:`P_{\eta}` is not only a distribution of :math:`\eta_x`, :math:`\eta_y` but also of the estimated photon energy :math:`e`.
The energy level correlates slightly with the z-depth. Higher z-depth leads to more charge sharing and a different :math:`\eta` distribution. Thus we create a mapping :math:`T` for each energy level.
The Interpolator class provides methods to interpolate the positions of photons based on their :math:`\eta` values.
.. warning::
The interpolation might lead to erroneous photon positions for clusters at the boarders of a frame. Make sure to filter out such cases.
:math:`\eta`-Functions:
---------------------------
@@ -52,8 +21,6 @@ The energy level correlates slightly with the z-depth. Higher z-depth leads to m
Supported are the following :math:`\eta`-functions:
:math:`\eta`-Function on 2x2 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta2x2.png
:target: ../figures/Eta2x2.png
@@ -67,18 +34,11 @@ Supported are the following :math:`\eta`-functions:
{\color{green}{\eta_y}} = \frac{Q_{1,1}}{Q_{0,1} + Q_{1,1}}
\end{equation*}
The :math:`\eta` values can range between 0,1. Note they only range between 0,1 because the position of the center pixel (red) can change.
If the center pixel is in the bottom left pixel :math:`\eta_x` will be close to zero. If the center pixel is in the bottom right pixel :math:`\eta_y` will be close to 1.
One can apply this :math:`\eta` not only on 2x2 clusters but on clusters with any size. Then the 2x2 subcluster with maximum energy is choosen and the :math:`\eta` function applied on the subcluster.
.. doxygenfunction:: aare::calculate_eta2(const ClusterVector<ClusterType>&)
.. doxygenfunction:: aare::calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
Full :math:`\eta`-Function on 2x2 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta2x2Full.png
:target: ../figures/Eta2x2Full.png
:width: 650px
@@ -87,20 +47,15 @@ Full :math:`\eta`-Function on 2x2 Clusters:
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{0,1} + Q_{1,1}}{\sum_i^{1}\sum_j^{1}Q_{i,j}} \quad \quad
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_i^{1}\sum_j^{1}Q_{i,j}}
{\color{blue}{\eta_x}} = \frac{Q_{0,1} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}} \quad \quad
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}}
\end{equation*}
The :math:`\eta` values can range between 0,1. Note they only range between 0,1 because the position of the center pixel (red) can change.
If the center pixel is in the bottom left pixel :math:`\eta_x` will be close to zero. If the center pixel is in the bottom right pixel :math:`\eta_y` will be close to 1.
.. doxygenfunction:: aare::calculate_full_eta2(const ClusterVector<ClusterType>&)
.. doxygenfunction:: aare::calculate_full_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
Full :math:`\eta`-Function on 3x3 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta3x3.png
:target: ../figures/Eta3x3.png
:width: 650px
@@ -109,18 +64,13 @@ Full :math:`\eta`-Function on 3x3 Clusters:
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{\sum_{i=0}^{2} Q_{i,2} - \sum_{i=0}^{2} Q_{i,0}}{\sum_{i=0}^{2}\sum_{j=0}^{2} Q_{i,j}} \quad \quad
{\color{green}{\eta_y}} = \frac{\sum_{j=0}^{2} Q_{2,j} - \sum_{j=0}^{2} Q_{0,j}}{\sum_{i=0}^{2}\sum_{j=0}^{2} Q_{i,j}}
{\color{blue}{\eta_x}} = \frac{\sum_{i}^{3} Q_{i,2} - \sum_{i}^{3} Q_{i,0}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}} \quad \quad
{\color{green}{\eta_y}} = \frac{\sum_{j}^{3} Q_{2,j} - \sum_{j}^{3} Q_{0,j}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}}
\end{equation*}
The :math:`\eta` values can range between -0.5,0.5.
.. doxygenfunction:: aare::calculate_eta3(const ClusterVector<Cluster<T, 3,3, CoordType>>&)
.. doxygenfunction:: aare::calculate_eta3(const ClusterVector<ClusterType>&)
.. doxygenfunction:: aare::calculate_eta3(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
Cross :math:`\eta`-Function on 3x3 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenfunction:: aare::calculate_eta3(const Cluster<T, 3, 3, CoordType>&)
.. image:: ../figures/Eta3x3Cross.png
:target: ../figures/Eta3x3Cross.png
@@ -130,28 +80,20 @@ Cross :math:`\eta`-Function on 3x3 Clusters:
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,2}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{2,1}}
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,0}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{1,2}}
\end{equation*}
The :math:`\eta` values can range between -0.5,0.5.
.. doxygenfunction:: aare::calculate_cross_eta3(const ClusterVector<Cluster<T, 3,3, CoordType>>&)
.. doxygenfunction:: aare::calculate_cross_eta3(const ClusterVector<ClusterType>&)
.. doxygenfunction:: aare::calculate_cross_eta3(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
.. doxygenfunction:: aare::calculate_cross_eta3(const Cluster<T, 3, 3, CoordType>&)
Interpolation class:
---------------------
.. warning::
The interpolation might lead to erroneous photon positions for clusters at the borders of a frame. Make sure to filter out such cases.
.. Warning::
Make sure to use the same :math:`\eta`-function during interpolation as given by the joint :math:`\eta`-distribution passed to the constructor.
.. Note::
Make sure to use resonable energy bins, when constructing the joint distribution. If data is too sparse for a given energy the interpolation will lead to erreneous results.
.. doxygenclass:: aare::Interpolator
:members:
:undoc-members:

View File

@@ -22,14 +22,21 @@ AARE
.. toctree::
:caption: Python API
:maxdepth: 3
:hidden:
:maxdepth: 1
pyFile
pycalibration
python/cluster/index
python/file/index
pyFit
pyCtbRawFile
pyClusterFile
pyClusterVector
pyCluster
pyInterpolation
pyJungfrauDataFile
pyRawFile
pyRawMasterFile
pyVarClusterFinder
pyFit
.. toctree::

11
docs/src/pyCtbRawFile.rst Normal file
View File

@@ -0,0 +1,11 @@
CtbRawFile
============
.. py:currentmodule:: aare
.. autoclass:: CtbRawFile
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

View File

@@ -0,0 +1,94 @@
Interpolation
==============
Interpolation class for :math:`\eta` Interpolation.
The Interpolator class provides methods to interpolate the positions of photons based on their :math:`\eta` values.
.. warning::
The interpolation might lead to erroneous photon positions for clusters at the boarders of a frame. Make sure to filter out such cases.
Below is an example of the Eta class of type ``double``. Supported are ``Etaf`` of type ``float`` and ``Etai`` of type ``int``.
.. autoclass:: aare._aare.Etad
:members:
:private-members:
.. note::
The corner value ``c`` is only relevant when one uses ``calculate_eta_2`` or ``calculate_full_eta2``. Otherwise its default value is ``cTopLeft``.
Supported are the following :math:`\eta`-functions:
.. py:currentmodule:: aare
.. image:: ../figures/Eta2x2.png
:target: ../figures/Eta2x2.png
:width: 650px
:align: center
:alt: Eta2x2
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{1,1}}{Q_{1,0} + Q_{1,1}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{1,1}}{Q_{0,1} + Q_{1,1}}
\end{equation*}
.. autofunction:: calculate_eta2
.. image:: ../figures/Eta2x2Full.png
:target: ../figures/Eta2x2Full.png
:width: 650px
:align: center
:alt: Eta2x2 Full
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{0,1} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}} \quad \quad
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}}
\end{equation*}
.. autofunction:: calculate_full_eta2
.. image:: ../figures/Eta3x3.png
:target: ../figures/Eta3x3.png
:width: 650px
:align: center
:alt: Eta3x3
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{\sum_{i}^{3} Q_{i,2} - \sum_{i}^{3} Q_{i,0}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}} \quad \quad
{\color{green}{\eta_y}} = \frac{\sum_{j}^{3} Q_{2,j} - \sum_{j}^{3} Q_{0,j}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}}
\end{equation*}
.. autofunction:: calculate_eta3
.. image:: ../figures/Eta3x3Cross.png
:target: ../figures/Eta3x3Cross.png
:width: 650px
:align: center
:alt: Cross Eta3x3
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,0}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{1,2}}
\end{equation*}
.. autofunction:: calculate_cross_eta3
Interpolation class for :math:`\eta`-Interpolation
----------------------------------------------------
.. Warning::
Make sure to use the same :math:`\eta`-function during interpolation as given by the joint :math:`\eta`-distribution passed to the constructor.
.. py:currentmodule:: aare
.. autoclass:: Interpolator
:special-members: __init__
:members:
:undoc-members:
:inherited-members:

View File

@@ -1,11 +0,0 @@
Cluster & Interpolation
==========================
.. toctree::
:caption: Cluster & Interpolation
:maxdepth: 1
pyCluster
pyClusterVector
pyInterpolation
pyVarClusterFinder

View File

@@ -1,124 +0,0 @@
Interpolation
==============
The Interpolation class implements the :math:`\eta`-interpolation method.
This interpolation technique is based on charge sharing: for detected photon hits (e.g. clusters), it refines the estimated photon hit using information from neighboring pixels.
See :ref:`Interpolation_C++API` for a more elaborate documentation and explanation of the method.
:math:`\eta`-Functions:
--------------------------
Below is an example of the Eta class of type ``double``. Supported are ``Etaf`` of type ``float`` and ``Etai`` of type ``int``.
.. autoclass:: aare._aare.Etad
:members:
:private-members:
.. note::
The corner value ``c`` is only relevant when one uses ``calculate_eta_2`` or ``calculate_full_eta2``. Otherwise its default value is ``cTopLeft``.
Supported are the following :math:`\eta`-functions:
:math:`\eta`-Function on 2x2 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. py:currentmodule:: aare
.. image:: ../../../figures/Eta2x2.png
:target: ../../../figures/Eta2x2.png
:width: 650px
:align: center
:alt: Eta2x2
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{1,1}}{Q_{1,0} + Q_{1,1}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{1,1}}{Q_{0,1} + Q_{1,1}}
\end{equation*}
The :math:`\eta` values can range between 0,1. Note they only range between 0,1 because the position of the center pixel (red) can change.
If the center pixel is in the bottom left pixel :math:`\eta_x` will be close to zero. If the center pixel is in the bottom right pixel :math:`\eta_y` will be close to 1.
.. autofunction:: calculate_eta2
Full :math:`\eta`-Function on 2x2 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../../../figures/Eta2x2Full.png
:target: ../../../figures/Eta2x2Full.png
:width: 650px
:align: center
:alt: Eta2x2 Full
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{0,1} + Q_{1,1}}{\sum_{i=0}^{1}\sum_{j=0}^{1}Q_{i,j}} \quad \quad
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_{i=0}^{1}\sum_{j=0}^{1}Q_{i,j}}
\end{equation*}
The :math:`\eta` values can range between 0,1. Note they only range between 0,1 because the position of the center pixel (red) can change.
If the center pixel is in the bottom left pixel :math:`\eta_x` will be close to zero. If the center pixel is in the bottom right pixel :math:`\eta_y` will be close to 1.
.. autofunction:: calculate_full_eta2
Full :math:`\eta`-Function on 3x3 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../../../figures/Eta3x3.png
:target: ../../../figures/Eta3x3.png
:width: 650px
:align: center
:alt: Eta3x3
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{\sum_{i=0}^{2} Q_{i,2} - \sum_{i=0}^{2} Q_{i,0}}{\sum_{i=0}^{2}\sum_{j}^{3} Q_{i,j}} \quad \quad
{\color{green}{\eta_y}} = \frac{\sum_{j=0}^{2} Q_{2,j} - \sum_{j=0}^{2} Q_{0,j}}{\sum_{i=0}^{2}\sum_{j}^{3} Q_{i,j}}
\end{equation*}
The :math:`\eta` values can range between -0.5,0.5.
.. autofunction:: calculate_eta3
Cross :math:`\eta`-Function on 3x3 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../../../figures/Eta3x3Cross.png
:target: ../../../figures/Eta3x3Cross.png
:width: 650px
:align: center
:alt: Cross Eta3x3
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,2}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{2,1}}
\end{equation*}
The :math:`\eta` values can range between -0.5,0.5.
.. autofunction:: calculate_cross_eta3
Interpolation class for :math:`\eta`-Interpolation
----------------------------------------------------
.. Warning::
Make sure to use the same :math:`\eta`-function during interpolation as given by the joint :math:`\eta`-distribution passed to the constructor.
.. Warning::
The interpolation might lead to erroneous photon positions for clusters at the boarders of a frame. Make sure to filter out such cases.
.. Note::
Make sure to use resonable energy bins, when constructing the joint distribution. If data is too sparse for a given energy the interpolation will lead to erreneous results.
.. py:currentmodule:: aare
.. autoclass:: Interpolator
:special-members: __init__
:members:
:undoc-members:
:inherited-members:

View File

@@ -1,14 +0,0 @@
File I/O
===================
.. toctree::
:caption: File I/O
:maxdepth: 1
pyClusterFile
pyCtbRawFile
pyFile
pyJungfrauDataFile
pyRawFile
pyRawMasterFile
pyTransform

View File

@@ -1,25 +0,0 @@
CtbRawFile
============
Read analog, digital and transceiver samples from a raw file containing
data from the Chip Test Board. Uses :mod:`aare.transform` to decode the
data into a format that the user can work with.
.. code:: python
import aare
from aare.transform import Mythen302Transform
my302 = Mythen302Transform(offset = 4)
with aare.CtbRawFile(fname, transform = my302) as f:
for header, data in f:
#do something with the data
.. py:currentmodule:: aare
.. autoclass:: CtbRawFile
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

View File

@@ -1,27 +0,0 @@
Transform
===================
The transform module takes data read by :class:`aare.CtbRawFile` and decodes it
to a useful image format. Depending on detector it supports both analog
and digital samples.
For convenience the following transform objects are defined with a short name
.. code:: python
moench05 = Moench05Transform()
moench05_1g = Moench05Transform1g()
moench05_old = Moench05TransformOld()
matterhorn02 = Matterhorn02Transform()
adc_sar_04_64to16 = AdcSar04Transform64to16()
adc_sar_05_64to16 = AdcSar05Transform64to16()
.. py:currentmodule:: aare
.. automodule:: aare.transform
:members:
:undoc-members:
:private-members:
:special-members: __call__
:show-inheritance:
:inherited-members:

View File

@@ -29,8 +29,7 @@ template <typename T> struct Eta2 {
double x{};
/// @brief eta in y direction
double y{};
/// @brief index of subcluster with highest energy value (given as corner
/// relative to cluster center)
/// @brief index of subcluster given as corner relative to cluster center
corner c{0};
/// @brief photon energy (cluster sum)
T sum{};

View File

@@ -17,27 +17,11 @@ struct Photon {
double energy;
};
struct Coordinate2D {
double x{};
double y{};
};
class Interpolator {
/**
* @brief
* marginal CDF of eta_x (if rosenblatt applied), conditional
* CDF of eta_x conditioned on eta_y
* value at (i, j, e): F(eta_x[i] |
*eta_y[j], energy[e])
*/
// marginal CDF of eta_x (if rosenblatt applied), conditional
// CDF of eta_x conditioned on eta_y
NDArray<double, 3> m_ietax;
/**
* @brief
* conditional CDF of eta_y conditioned on eta_x
* value at (i,j,e): F(eta_y[j] | eta_x[i], energy[e])
*/
// conditional CDF of eta_y conditioned on eta_x
NDArray<double, 3> m_ietay;
NDArray<double, 1> m_etabinsx;
@@ -47,11 +31,11 @@ class Interpolator {
public:
/**
* @brief Constructor for the Interpolator class
* @param etacube joint distribution of etaX, etaY and photon energy (note
* first dimension is etaX, second etaY, third photon energy)
* @param etacube joint distribution of etaX, etaY and photon energy
* @param xbins bin edges for etaX
* @param ybins bin edges for etaY
* @param ebins bin edges for photon energy
* @note note first dimension is etaX, second etaY, third photon energy
*/
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins);
@@ -69,8 +53,8 @@ class Interpolator {
* @brief transforms the joint eta distribution of etaX and etaY to the two
* independant uniform distributions based on the Roseblatt transform for
* each energy level
* @param etacube joint distribution of etaX, etaY and photon energy (first
* dimension is etaX, second etaY, third photon energy)
* @param etacube joint distribution of etaX, etaY and photon energy
* @note note first dimension is etaX, second etaY, third photon energy
*/
void rosenblatttransform(NDView<double, 3> etacube);
@@ -85,24 +69,25 @@ class Interpolator {
* calculate_eta2
* @return interpolated photons (photon positions are given as double but
* following row column format e.g. x=0, y=0 means top row and first column
* of frame) (An interpolated photon position of (1.5, 2.5) corresponds to
* an estimated photon hit at the pixel center of pixel (1,2))
* of frame)
*/
template <auto EtaFunction = calculate_eta2, typename ClusterType,
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
std::vector<Photon>
interpolate(const ClusterVector<ClusterType> &clusters) const;
/**
* @brief transforms the eta values to uniform coordinates based on the CDF
* ieta_x and ieta_y
* @tparam eta Eta to transform
* @return uniform coordinates {x,y}
*/
template <typename T>
Coordinate2D transform_eta_values(const Eta2<T> &eta) const;
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
private:
/**
* @brief implements underlying interpolation logic based on EtaFunction
* Type
* @tparam EtaFunction Function object that calculates desired eta default:
* @param u: transformed photon position in x between [0,1]
* @param v: transformed photon position in y between [0,1]
* @param c: corner of eta
*/
template <auto EtaFunction, typename ClusterType>
void interpolation_logic(Photon &photon, const double u, const double v,
const corner c = corner::cTopLeft);
/**
* @brief bilinear interpolation of the transformed eta values
* @param ix index of etaX bin
@@ -113,14 +98,13 @@ class Interpolator {
template <typename T>
std::pair<double, double>
bilinear_interpolation(const size_t ix, const size_t iy, const size_t ie,
const Eta2<T> &eta) const;
const Eta2<T> &eta);
};
template <typename T>
std::pair<double, double>
Interpolator::bilinear_interpolation(const size_t ix, const size_t iy,
const size_t ie,
const Eta2<T> &eta) const {
const size_t ie, const Eta2<T> &eta) {
auto next_index_y = static_cast<ssize_t>(iy + 1) >= m_ietax.shape(1)
? m_ietax.shape(1) - 1
: iy + 1;
@@ -160,28 +144,9 @@ Interpolator::bilinear_interpolation(const size_t ix, const size_t iy,
return {ietax_interpolated, ietay_interpolated};
}
template <typename T>
Coordinate2D Interpolator::transform_eta_values(const Eta2<T> &eta) const {
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, static_cast<double>(eta.sum));
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
// TODO: bilinear interpolation only works if all bins have a size > 1 -
// otherwise bilinear interpolation with zero values which skew the
// results
// TODO: maybe trim the bins at the edges with zero values beforehand
// auto [ietax_interpolated, ietay_interpolated] =
// bilinear_interpolation(ix, iy, ie, eta);
return Coordinate2D{m_ietax(ix, iy, ie), m_ietay(ix, iy, ie)};
}
template <auto EtaFunction, typename ClusterType, typename Enable>
std::vector<Photon>
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) const {
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
@@ -194,21 +159,55 @@ Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) const {
photon.y = cluster.y;
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
auto uniform_coordinates = transform_eta_values(eta);
// std::cout << "eta.x: " << eta.x << " eta.y: " << eta.y << std::endl;
// Finding the index of the last element that is smaller
// should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
// std::cout << "ix: " << ix << " iy: " << iy << std::endl;
// TODO: bilinear interpolation only works if all bins have a size > 1 -
// otherwise bilinear interpolation with zero values which skew the
// results
// TODO: maybe trim the bins at the edges with zero values beforehand
// auto [ietax_interpolated, ietay_interpolated] =
// bilinear_interpolation(ix, iy, ie, eta);
double ietax_interpolated = m_ietax(ix, iy, ie);
double ietay_interpolated = m_ietay(ix, iy, ie);
interpolation_logic<EtaFunction, ClusterType>(
photon, ietax_interpolated, ietay_interpolated, eta.c);
photons.push_back(photon);
}
return photons;
}
template <auto EtaFunction, typename ClusterType>
void Interpolator::interpolation_logic(Photon &photon, const double u,
const double v, const corner c) {
// std::cout << "u: " << u << " v: " << v << std::endl;
// TODO: try to call this with std::is_same_v and have it constexpr if
// possible
if (EtaFunction == &calculate_eta2<typename ClusterType::value_type,
ClusterType::cluster_size_x,
ClusterType::cluster_size_y,
typename ClusterType::coord_type> ||
EtaFunction ==
&calculate_full_eta2<typename ClusterType::value_type,
EtaFunction == &calculate_full_eta2<typename ClusterType::value_type,
ClusterType::cluster_size_x,
ClusterType::cluster_size_y,
typename ClusterType::coord_type>) {
double dX{}, dY{};
// TODO: could also chaneg the sign of the eta calculation
switch (eta.c) {
switch (c) {
case corner::cTopLeft:
dX = -1.0;
dY = -1.0;
@@ -226,21 +225,14 @@ Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) const {
dY = 0.0;
break;
}
photon.x = photon.x + 0.5 + uniform_coordinates.x +
dX; // use pixel center + 0.5
photon.y =
photon.y + 0.5 + uniform_coordinates.y +
photon.x = photon.x + 0.5 + u + dX; // use pixel center + 0.5
photon.y = photon.y + 0.5 + v +
dY; // eta2 calculates the ratio between bottom and sum of
// bottom and top shift by 1 add eta value correctly
} else {
photon.x += uniform_coordinates.x;
photon.y += uniform_coordinates.y;
photon.x += u;
photon.y += v;
}
photons.push_back(photon);
}
return photons;
}
} // namespace aare

View File

@@ -1,12 +1,11 @@
// SPDX-License-Identifier: MPL-2.0
#pragma once
#include "aare/defs.hpp"
#include <aare/NDView.hpp>
#include <cstdint>
#include <vector>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input);
uint16_t adc_sar_04_decode64to16(uint64_t input);
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input,
@@ -14,25 +13,6 @@ void adc_sar_05_decode64to16(NDView<uint64_t, 2> input,
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input,
NDView<uint16_t, 2> output);
/**
* @brief Called with a 32 bit unsigned integer, shift by offset
* and then return the lower 24 bits as an 32 bit integer
* @param input 32-ibt input value
* @param offset (should be in range 0-7 to allow for full 24 bits)
* @return uint32_t
*/
uint32_t mask32to24bits(uint32_t input, BitOffset offset={});
/**
* @brief Expand 24 bit values in a 8bit buffer to 32bit unsigned integers
* Used for detectors with 24bit counters in combination with CTB
*
* @param input View of the 24 bit data as uint8_t (no 24bit native data type exists)
* @param output Destination of the expanded data (32bit, unsigned)
* @param offset Offset within the first byte to where the data starts (0-7 bits)
*/
void expand24to32bit(NDView<uint8_t,1> input, NDView<uint32_t,1> output, BitOffset offset={});
/**
* @brief Apply custom weights to a 16-bit input value. Will sum up
* weights[i]**i for each bit i that is set in the input value.

View File

@@ -372,15 +372,4 @@ constexpr uint16_t ADC_MASK =
*/
template <> DACIndex StringTo(const std::string &arg);
class BitOffset{
uint8_t m_offset{};
public:
BitOffset() = default;
explicit BitOffset(uint32_t offset);
uint8_t value() const {return m_offset;}
bool operator==(const BitOffset& other) const;
bool operator<(const BitOffset& other) const;
};
} // namespace aare

View File

@@ -39,6 +39,8 @@ set( PYTHON_FILES
aare/transform.py
aare/ScanParameters.py
aare/utils.py
aare/experimental/__init__.py
aare/experimental/custom_io.py
)

View File

View File

@@ -0,0 +1,58 @@
import numpy as np
n_counters = 64*3
bitfield_size = 64
header_dt = [('frameNumber',np.uint64),
('expLength',np.uint32),
('packetNumber', np.uint32),
('bunchId', np.uint64),
('timestamp', np.uint64),
('modId', np.uint16),
('row', np.uint16),
('col', np.uint16),
('reserved', np.uint16),
('debug', np.uint32),
('roundRNumber', np.uint16),
('detType', np.uint8),
('version', np.uint8)]
def ExtractBits(raw_data, dr=24, bits = (17,6)):
bits = np.uint64(bits)
data = np.zeros(0, dtype = np.uint64)
for bit in bits:
tmp = (raw_data >> bit) & np.uint64(1)
data = np.hstack((data, tmp))
#Shift the bits to the righ place
for i in np.arange(dr, dtype = np.uint64):
data[i::dr] = data[i::dr] << i
data = data.reshape(data.size//dr, dr)
return data.sum(axis = 1)
def read_my302_file(fname, dr=24, bits = (17,6),
offset=48, tail = 72, n_frames=1):
header = np.zeros(n_frames, header_dt)
data = np.zeros((n_frames, n_counters), dtype = np.uint64)
with open(fname, 'rb') as f:
for i in range(n_frames):
header[i], raw_data = _read_my302_frame(f, offset, tail, dr)
data[i] = ExtractBits(raw_data, dr=dr, bits = bits)
return header, data
def _read_my302_frame(f, offset, tail, dr):
header = np.fromfile(f, count=1, dtype = header_dt)
f.seek(bitfield_size+offset, 1)
data = np.fromfile(f, count = int(n_counters*dr/2), dtype = np.uint64)
f.seek(tail, 1)
return header, data

View File

@@ -49,43 +49,6 @@ class Matterhorn02Transform:
else:
return np.take(data.view(np.uint16), self.pixel_map[0:counters])
class Mythen302Transform:
"""
Transform Mythen 302 test chip data from a buffer of bytes (uint8_t)
to a uint32 numpy array of [64,3] representing channels and counters.
Assumes data taken with rx_dbitlist 17 6, rx_dbitreorder 1 and Digital
Samples = 2310 [(64x3x24)/2 + some extra]
.. note::
The offset is in number of bits 0-7
"""
_n_channels = 64
_n_counters = 3
def __init__(self, offset=4):
self.offset = offset
def __call__(self, data : np.ndarray):
"""
Transform buffer of data to a [64,3] np.ndarray of uint32.
Parameters
----------
data : np.ndarray
Expected dtype: uint8
Returns
----------
image : np.ndarray
uint32 array of size 64, 3
"""
res = _aare.decode_my302(data, self.offset)
res = res.reshape(
Mythen302Transform._n_channels, Mythen302Transform._n_counters
)
return res
#on import generate the pixel maps to avoid doing it every time
moench05 = Moench05Transform()

View File

@@ -96,69 +96,6 @@ void define_ctb_raw_file_io_bindings(py::module &m) {
return output;
});
m.def("expand24to32bit",
[](py::array_t<uint8_t, py::array::c_style | py::array::forcecast>
&input, uint32_t offset){
aare::BitOffset bitoff(offset);
py::buffer_info buf = input.request();
constexpr uint32_t bytes_per_channel = 3; //24 bit
py::array_t<uint32_t> output(buf.size/bytes_per_channel);
NDView<uint8_t, 1> input_view(input.mutable_data(),
{input.size()});
NDView<uint32_t, 1> output_view(output.mutable_data(),
{output.size()});
aare::expand24to32bit(input_view, output_view, bitoff);
return output;
});
m.def("decode_my302",
[](py::array_t<uint8_t, py::array::c_style | py::array::forcecast>
&input, uint32_t offset){
// Physical layout of the chip
constexpr size_t channels = 64;
constexpr size_t counters = 3;
constexpr size_t bytes_per_channel = 3; //24 bit
constexpr int n_outputs = 2;
ssize_t expected_size = channels*counters*bytes_per_channel;
//If whe have an offset we need one extra byte per output
aare::BitOffset bitoff(offset);
if(bitoff.value())
expected_size += n_outputs;
if (input.size() != expected_size) {
throw std::runtime_error(
fmt::format("{} Expected an input size of {} bytes. Called "
"with input size of {}",
LOCATION, expected_size, input.size()));
}
py::buffer_info buf = input.request();
py::array_t<uint32_t> output(channels * counters);
for (int i = 0; i!=n_outputs; ++i){
auto step = input.size()/n_outputs;
auto out_step = output.size()/n_outputs;
NDView<uint8_t, 1> input_view(input.mutable_data()+step*i,
{input.size()/n_outputs});
NDView<uint32_t, 1> output_view(output.mutable_data()+out_step*i,
{output.size()/n_outputs});
aare::expand24to32bit(input_view, output_view, bitoff);
}
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",

View File

@@ -48,19 +48,6 @@ void register_interpolate(py::class_<aare::Interpolator> &interpolator,
docstring.c_str(), py::arg("cluster_vector"));
}
template <typename Type>
void register_transform_eta_values(
py::class_<aare::Interpolator> &interpolator) {
interpolator.def(
"transform_eta_values",
[](Interpolator &self, const Eta2<Type> &eta) {
auto uniform_coord = self.transform_eta_values(eta);
return py::make_tuple(uniform_coord.x, uniform_coord.y);
},
R"(eta.x eta.y transformed to uniform coordinates based on CDF ietax, ietay)",
py::arg("Eta"));
}
void define_interpolation_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
@@ -153,10 +140,6 @@ void define_interpolation_bindings(py::module &m) {
REGISTER_INTERPOLATOR_ETA2(float, 2, 2, uint16_t);
REGISTER_INTERPOLATOR_ETA2(double, 2, 2, uint16_t);
register_transform_eta_values<int>(interpolator);
register_transform_eta_values<float>(interpolator);
register_transform_eta_values<double>(interpolator);
// TODO! Evaluate without converting to double
m.def(
"hej",

View File

@@ -10,13 +10,13 @@
#include "bind_ClusterFinderMT.hpp"
#include "bind_ClusterVector.hpp"
#include "bind_Eta.hpp"
#include "bind_Interpolator.hpp"
#include "bind_calibration.hpp"
// TODO! migrate the other names
#include "ctb_raw_file.hpp"
#include "file.hpp"
#include "fit.hpp"
#include "interpolation.hpp"
#include "jungfrau_data_file.hpp"
#include "pedestal.hpp"
#include "pixel_map.hpp"

View File

@@ -44,18 +44,13 @@ def test_Interpolator():
etacube = np.zeros(shape=[29, 29, 19], dtype=np.float64)
interpolator = _aare.Interpolator(etacube, xbins, ybins, ebins)
assert interpolator.get_ietax().shape == (29,29,19)
assert interpolator.get_ietay().shape == (29,29,19)
assert interpolator.get_ietax().shape == (30,30,20)
assert interpolator.get_ietay().shape == (30,30,20)
clustervector = _aare.ClusterVector_Cluster3x3i()
cluster = _aare.Cluster3x3i(1,1, np.ones(9, dtype=np.int32))
clustervector.push_back(cluster)
[u,v] = interpolator.transform_eta_values(_aare.Etai())
assert u == 0
assert v == 0
interpolated_photons = interpolator.interpolate(clustervector)
assert interpolated_photons.size == 1

View File

@@ -0,0 +1,146 @@
# SPDX-License-Identifier: MPL-2.0
import pytest
import numpy as np
import boost_histogram as bh
import pickle
from scipy.stats import multivariate_normal
from aare import Interpolator, calculate_eta2
from aare._aare import ClusterVector_Cluster2x2d, Cluster2x2d, Cluster3x3d, ClusterVector_Cluster3x3d
from conftest import test_data_path
pixel_width = 1e-4
values = np.arange(0.5*pixel_width, 0.1, pixel_width)
num_pixels = values.size
X, Y = np.meshgrid(values, values)
data_points = np.stack([X.ravel(), Y.ravel()], axis=1)
variance = 10*pixel_width
covariance_matrix = np.array([[variance, 0],[0, variance]])
def create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points):
gaussian = multivariate_normal(mean=mean, cov=covariance_matrix)
probability_values = gaussian.pdf(data_points)
return (probability_values.reshape(X.shape)).round() #python bindings only support frame types of uint16_t
def create_2x2cluster_from_frame(frame, pixels_per_superpixel):
return Cluster2x2d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum()], dtype=np.float64))
def create_3x3cluster_from_frame(frame, pixels_per_superpixel):
return Cluster3x3d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum()], dtype=np.float64))
def calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.2, 1.2), bin_edges_y = bh.axis.Regular(100, -0.2, 1.2), cluster_2x2 = True):
hist = bh.Histogram(
bin_edges_x,
bin_edges_y, bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
for _ in range(0, num_frames):
mean_x = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
mean_y = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
frame = create_photon_hit_with_gaussian_distribution(np.array([mean_x, mean_y]), variance, data_points)
cluster = None
if cluster_2x2:
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
else:
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
eta2 = calculate_eta2(cluster)
hist.fill(eta2.x, eta2.y, eta2.sum)
return hist
@pytest.mark.withdata
def test_interpolation_of_2x2_cluster(test_data_path):
"""Test Interpolation of 2x2 cluster from Photon hit with Gaussian Distribution"""
#TODO maybe better to compute in test instead of loading - depends on eta
"""
filename = test_data_path/"eta_distributions"/"eta_distribution_2x2cluster_gaussian.pkl"
with open(filename, "rb") as f:
eta_distribution = pickle.load(f)
"""
num_frames = 1000
pixels_per_superpixel = int(num_pixels*0.5)
random_number_generator = np.random.default_rng(42)
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.1, 0.6), bin_edges_y = bh.axis.Regular(100, -0.1, 0.6))
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
#actual photon hit
mean = 1.2*pixels_per_superpixel*pixel_width
mean = np.array([mean, mean])
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
clustervec = ClusterVector_Cluster2x2d()
clustervec.push_back(cluster)
interpolated_photon = interpolation.interpolate(clustervec)
assert interpolated_photon.size == 1
cluster_center = 1.5*pixels_per_superpixel*pixel_width
scaled_photon_hit = (interpolated_photon[0][0]*pixels_per_superpixel*pixel_width, interpolated_photon[0][1]*pixels_per_superpixel*pixel_width)
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
@pytest.mark.withdata
def test_interpolation_of_3x3_cluster(test_data_path):
"""Test Interpolation of 3x3 Cluster from Photon hit with Gaussian Distribution"""
#TODO maybe better to compute in test instead of loading - depends on eta
"""
filename = test_data_path/"eta_distributions"/"eta_distribution_3x3cluster_gaussian.pkl"
with open(filename, "rb") as f:
eta_distribution = pickle.load(f)
"""
num_frames = 1000
pixels_per_superpixel = int(num_pixels/3)
random_number_generator = np.random.default_rng(42)
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.1, 1.1), bin_edges_y = bh.axis.Regular(100, -0.1, 1.1), cluster_2x2 = False)
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
#actual photon hit
mean_x = (1 + 0.8)*pixels_per_superpixel*pixel_width
mean_y = (1 + 0.2)*pixels_per_superpixel*pixel_width
mean = np.array([mean_x, mean_y])
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
clustervec = ClusterVector_Cluster3x3d()
clustervec.push_back(cluster)
interpolated_photon = interpolation.interpolate(clustervec)
assert interpolated_photon.size == 1
cluster_center = 1.5*pixels_per_superpixel*pixel_width
scaled_photon_hit = (interpolated_photon[0][0]*pixels_per_superpixel*pixel_width, interpolated_photon[0][1]*pixels_per_superpixel*pixel_width)
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))

View File

@@ -5,6 +5,8 @@ import pytest
import pytest_check as check
import numpy as np
import boost_histogram as bh
import pickle
from scipy.stats import multivariate_normal
from aare import Interpolator, calculate_eta2, calculate_cross_eta3, calculate_full_eta2, calculate_eta3
from aare import ClusterFile

View File

@@ -61,6 +61,7 @@ void CtbRawFile::find_subfiles() {
while (std::filesystem::exists(m_master.data_fname(0, m_num_subfiles)))
m_num_subfiles++;
fmt::print("Found {} subfiles\n", m_num_subfiles);
}
void CtbRawFile::open_data_file(size_t subfile_index) {

View File

@@ -20,7 +20,7 @@ Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
m_ietax = NDArray<double, 3>(etacube);
m_ietay = NDArray<double, 3>(etacube);
// TODO: etacube should have different strides energy should come first
// prefix sum - conditional CDF
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {

View File

@@ -5,7 +5,6 @@
#include <iostream>
#include <numeric>
#include <vector>
#include <cstddef>
using aare::NDView;
using aare::Shape;
@@ -261,11 +260,3 @@ TEST_CASE("Create a view over a vector") {
REQUIRE(v[0] == 0);
REQUIRE(v[11] == 11);
}
TEST_CASE("NDView over byte"){
std::vector<std::byte> buf(5);
auto v = aare::make_view(buf);
REQUIRE(v.shape()[0] == 5);
REQUIRE(v[0] == std::byte{0});
}

View File

@@ -1,6 +1,5 @@
// SPDX-License-Identifier: MPL-2.0
#include "aare/decode.hpp"
#include <fmt/format.h>
#include <cmath>
namespace aare {
@@ -106,49 +105,4 @@ void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output,
}
}
uint32_t mask32to24bits(uint32_t input, BitOffset offset){
constexpr uint32_t mask24bits{0xFFFFFF};
return (input >> offset.value()) & mask24bits;
}
void expand24to32bit(NDView<uint8_t,1> input, NDView<uint32_t,1> output, BitOffset bit_offset){
ssize_t bytes_per_channel = 3; //24bit
ssize_t min_input_size = output.size()*bytes_per_channel;
//if we have an offset we need one more byte in the input data
if (bit_offset.value())
min_input_size += 1;
if (input.size() < min_input_size)
throw std::runtime_error(fmt::format(
"{} Mismatch between input and output size. Output "
"size of {} with bit offset {} requires an input of at least {} "
"bytes. Called with input size: {} output size: {}",
LOCATION, output.size(), bit_offset.value(), min_input_size, input.size(), output.size()));
auto* in = input.data();
if(bit_offset.value()){
//If there is a bit_offset we copy 4 bytes and then
//mask out the correct ones.
for (auto& v : output){
uint32_t val{};
std::memcpy(&val, in, sizeof(val));
v = mask32to24bits(val, bit_offset);
in += bytes_per_channel;
}
}else{
//If there is no offset we can directly copy the bits
//without masking
for (auto& v : output){
uint32_t val{};
std::memcpy(&val, in, 3);
v = val;
in += bytes_per_channel;
}
}
}
} // namespace aare

View File

@@ -7,8 +7,6 @@
using Catch::Matchers::WithinAbs;
#include <vector>
using aare::BitOffset;
TEST_CASE("test_adc_sar_05_decode64to16") {
uint64_t input = 0;
uint16_t output = aare::adc_sar_05_decode64to16(input);
@@ -74,93 +72,3 @@ TEST_CASE("test_apply_custom_weights") {
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(6.34, 0.001));
}
TEST_CASE("Mask 32 bit unsigned integer to 24 bit"){
//any number less than 2**24 (16777216) should be the same
CHECK(aare::mask32to24bits(0)==0);
CHECK(aare::mask32to24bits(19)==19);
CHECK(aare::mask32to24bits(29875)==29875);
CHECK(aare::mask32to24bits(1092177)==1092177);
CHECK(aare::mask32to24bits(0xFFFF)==0xFFFF);
CHECK(aare::mask32to24bits(0xFFFFFFFF)==0xFFFFFF);
// Offset specifies that the should ignore 0-7 bits
// at the start
CHECK(aare::mask32to24bits(0xFFFF, BitOffset(4))==0xFFF);
CHECK(aare::mask32to24bits(0xFF0000d9)==0xd9);
CHECK(aare::mask32to24bits(0xFF000d9F, BitOffset(4))==0xF000d9);
CHECK(aare::mask32to24bits(16777217)==1);
CHECK(aare::mask32to24bits(15,BitOffset(7))==0);
//Highest bit set to 1 should just be excluded
//lowest 4 bits set to 1
CHECK(aare::mask32to24bits(0x8000000f,BitOffset(7))==0);
}
TEST_CASE("Expand container with 24 bit data to 32"){
{
uint8_t buffer[] = {
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
aare::NDView<uint8_t, 1> input(&buffer[0], {9});
aare::NDArray<uint32_t, 1> out({3});
aare::expand24to32bit(input, out.view());
CHECK(out(0) == 0);
CHECK(out(1) == 0);
CHECK(out(2) == 0);
}
{
uint8_t buffer[] = {
0x0F, 0x00, 0x00,
0xFF, 0x00, 0x00,
0xFF, 0xFF, 0xFF,
};
aare::NDView<uint8_t, 1> input(&buffer[0], {9});
aare::NDArray<uint32_t, 1> out({3});
aare::expand24to32bit(input, out.view());
CHECK(out(0) == 0xF);
CHECK(out(1) == 0xFF);
CHECK(out(2) == 0xFFFFFF);
}
{
uint8_t buffer[] = {
0x00, 0x00, 0xFF,
0xFF, 0xFF, 0x00,
0x00, 0xFF, 0x00,
};
aare::NDView<uint8_t, 1> input(&buffer[0], {9});
aare::NDArray<uint32_t, 1> out({3});
aare::expand24to32bit(input, out.view());
CHECK(out(0) == 0xFF0000);
CHECK(out(1) == 0xFFFF);
CHECK(out(2) == 0xFF00);
REQUIRE_THROWS(aare::expand24to32bit(input, out.view(), BitOffset(4)));
}
{
//For use with offset we need an extra byte
uint8_t buffer[] = {
0x00, 0x00, 0xFF,
0xFF, 0xFF, 0x00,
0x00, 0xFF, 0x00, 0x00
};
aare::NDView<uint8_t, 1> input(&buffer[0], {10});
aare::NDArray<uint32_t, 1> out({3}); //still output.size == 3
aare::expand24to32bit(input, out.view(), BitOffset(4));
CHECK(out(0) == 0xFFF000);
CHECK(out(1) == 0xFFF);
CHECK(out(2) == 0xFF0);
}
}

View File

@@ -298,22 +298,4 @@ template <> DACIndex StringTo(const std::string &arg) {
"\"");
}
BitOffset::BitOffset(uint32_t offset){
if (offset>7)
throw std::runtime_error(fmt::format("{} BitOffset needs to be <8: Called with {}", LOCATION, offset));
m_offset = static_cast<uint8_t>(offset);
}
bool BitOffset::operator==(const BitOffset& other) const {
return m_offset == other.m_offset;
}
bool BitOffset::operator<(const BitOffset& other) const {
return m_offset < other.m_offset;
}
} // namespace aare

View File

@@ -83,28 +83,6 @@ TEST_CASE("DynamicCluster creation") {
REQUIRE(c2.data() != nullptr);
}
TEST_CASE("Basic ops on BitOffset"){
REQUIRE_THROWS(aare::BitOffset(10));
aare::BitOffset offset(5);
REQUIRE(offset.value()==5);
aare::BitOffset offset2;
REQUIRE(offset2.value()==0);
aare::BitOffset offset3(offset);
REQUIRE(offset3.value()==5);
REQUIRE(offset==offset3);
//Now assign offset to offset2 which should get the value 5
offset2 = offset;
REQUIRE(offset2.value()==5);
REQUIRE(offset2==offset);
}
// TEST_CASE("cluster set and get data") {
// aare::DynamicCluster c2(33, 44, aare::Dtype(typeid(double)));