Files
aare/python/tests/test_Interpolation.py

147 lines
7.2 KiB
Python

# SPDX-License-Identifier: MPL-2.0
import pytest
import numpy as np
import boost_histogram as bh
import pickle
from scipy.stats import multivariate_normal
from aare import Interpolator, calculate_eta2
from aare._aare import ClusterVector_Cluster2x2d, Cluster2x2d, Cluster3x3d, ClusterVector_Cluster3x3d
from conftest import test_data_path
pixel_width = 1e-4
values = np.arange(0.5*pixel_width, 0.1, pixel_width)
num_pixels = values.size
X, Y = np.meshgrid(values, values)
data_points = np.stack([X.ravel(), Y.ravel()], axis=1)
variance = 10*pixel_width
covariance_matrix = np.array([[variance, 0],[0, variance]])
def create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points):
gaussian = multivariate_normal(mean=mean, cov=covariance_matrix)
probability_values = gaussian.pdf(data_points)
return (probability_values.reshape(X.shape)).round() #python bindings only support frame types of uint16_t
def create_2x2cluster_from_frame(frame, pixels_per_superpixel):
return Cluster2x2d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum()], dtype=np.float64))
def create_3x3cluster_from_frame(frame, pixels_per_superpixel):
return Cluster3x3d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[0:pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[pixels_per_superpixel:2*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, pixels_per_superpixel:2*pixels_per_superpixel].sum(),
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum()], dtype=np.float64))
def calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.2, 1.2), bin_edges_y = bh.axis.Regular(100, -0.2, 1.2), cluster_2x2 = True):
hist = bh.Histogram(
bin_edges_x,
bin_edges_y, bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
for _ in range(0, num_frames):
mean_x = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
mean_y = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
frame = create_photon_hit_with_gaussian_distribution(np.array([mean_x, mean_y]), variance, data_points)
cluster = None
if cluster_2x2:
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
else:
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
eta2 = calculate_eta2(cluster)
hist.fill(eta2.x, eta2.y, eta2.sum)
return hist
@pytest.mark.withdata
def test_interpolation_of_2x2_cluster(test_data_path):
"""Test Interpolation of 2x2 cluster from Photon hit with Gaussian Distribution"""
#TODO maybe better to compute in test instead of loading - depends on eta
"""
filename = test_data_path/"eta_distributions"/"eta_distribution_2x2cluster_gaussian.pkl"
with open(filename, "rb") as f:
eta_distribution = pickle.load(f)
"""
num_frames = 1000
pixels_per_superpixel = int(num_pixels*0.5)
random_number_generator = np.random.default_rng(42)
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.1, 0.6), bin_edges_y = bh.axis.Regular(100, -0.1, 0.6))
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
#actual photon hit
mean = 1.2*pixels_per_superpixel*pixel_width
mean = np.array([mean, mean])
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
cluster = create_2x2cluster_from_frame(frame, pixels_per_superpixel)
clustervec = ClusterVector_Cluster2x2d()
clustervec.push_back(cluster)
interpolated_photon = interpolation.interpolate(clustervec)
assert interpolated_photon.size == 1
cluster_center = 1.5*pixels_per_superpixel*pixel_width
scaled_photon_hit = (interpolated_photon[0][0]*pixels_per_superpixel*pixel_width, interpolated_photon[0][1]*pixels_per_superpixel*pixel_width)
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
@pytest.mark.withdata
def test_interpolation_of_3x3_cluster(test_data_path):
"""Test Interpolation of 3x3 Cluster from Photon hit with Gaussian Distribution"""
#TODO maybe better to compute in test instead of loading - depends on eta
"""
filename = test_data_path/"eta_distributions"/"eta_distribution_3x3cluster_gaussian.pkl"
with open(filename, "rb") as f:
eta_distribution = pickle.load(f)
"""
num_frames = 1000
pixels_per_superpixel = int(num_pixels/3)
random_number_generator = np.random.default_rng(42)
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.1, 1.1), bin_edges_y = bh.axis.Regular(100, -0.1, 1.1), cluster_2x2 = False)
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
#actual photon hit
mean_x = (1 + 0.8)*pixels_per_superpixel*pixel_width
mean_y = (1 + 0.2)*pixels_per_superpixel*pixel_width
mean = np.array([mean_x, mean_y])
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
clustervec = ClusterVector_Cluster3x3d()
clustervec.push_back(cluster)
interpolated_photon = interpolation.interpolate(clustervec)
assert interpolated_photon.size == 1
cluster_center = 1.5*pixels_per_superpixel*pixel_width
scaled_photon_hit = (interpolated_photon[0][0]*pixels_per_superpixel*pixel_width, interpolated_photon[0][1]*pixels_per_superpixel*pixel_width)
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))