mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-14 16:27:14 +02:00
Compare commits
14 Commits
main
...
angle_cali
Author | SHA1 | Date | |
---|---|---|---|
c35f4a7746 | |||
ba8778cf44 | |||
6bc8b0c4a7 | |||
1369bc780e | |||
9cfe1ac5e6 | |||
6f4cc219b7 | |||
0d5c6fed61 | |||
54f76100c2 | |||
e04bf6be30 | |||
bd0ff3d7da | |||
df1335529c | |||
b94be4cbe8 | |||
6328369ce9 | |||
67b94eefb0 |
6
.github/workflows/build_and_deploy_conda.yml
vendored
6
.github/workflows/build_and_deploy_conda.yml
vendored
@ -1,9 +1,9 @@
|
||||
name: Build pkgs and deploy if on main
|
||||
|
||||
on:
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
9
.github/workflows/build_docs.yml
vendored
9
.github/workflows/build_docs.yml
vendored
@ -2,10 +2,7 @@ name: Build the package using cmake then documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
push:
|
||||
|
||||
|
||||
permissions:
|
||||
@ -43,7 +40,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_PYTHON_BINDINGS=ON -DAARE_DOCS=ON
|
||||
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
|
||||
make -j 2
|
||||
make docs
|
||||
|
||||
@ -58,7 +55,7 @@ jobs:
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
runs-on: ubuntu-latest
|
||||
needs: build
|
||||
if: (github.event_name == 'release' && github.event.action == 'published') || (github.event_name == 'workflow_dispatch' )
|
||||
if: github.ref == 'refs/heads/main'
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
|
@ -62,6 +62,7 @@ option(AARE_FETCH_CATCH "Use FetchContent to download catch2" ON)
|
||||
option(AARE_FETCH_JSON "Use FetchContent to download nlohmann::json" ON)
|
||||
option(AARE_FETCH_ZMQ "Use FetchContent to download libzmq" ON)
|
||||
option(AARE_FETCH_LMFIT "Use FetchContent to download lmfit" ON)
|
||||
option(AARE_FETCH_HDF5 "Use FetchContent to download hdf5-devel" OFF)
|
||||
|
||||
|
||||
#Convenience option to use system libraries only (no FetchContent)
|
||||
@ -73,15 +74,13 @@ if(AARE_SYSTEM_LIBRARIES)
|
||||
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
|
||||
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
|
||||
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
|
||||
set(AARE_FETCH_HDF5 OFF CACHE BOOL "Disabled FetchContent for hdf5" FORCE)
|
||||
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
|
||||
# on conda-forge
|
||||
endif()
|
||||
|
||||
if(AARE_VERBOSE)
|
||||
add_compile_definitions(AARE_VERBOSE)
|
||||
add_compile_definitions(AARE_LOG_LEVEL=aare::logDEBUG5)
|
||||
else()
|
||||
add_compile_definitions(AARE_LOG_LEVEL=aare::logERROR)
|
||||
endif()
|
||||
|
||||
if(AARE_CUSTOM_ASSERT)
|
||||
@ -93,7 +92,6 @@ if(AARE_BENCHMARKS)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
if(AARE_FETCH_LMFIT)
|
||||
@ -223,6 +221,23 @@ else()
|
||||
find_package(nlohmann_json 3.11.3 REQUIRED)
|
||||
endif()
|
||||
|
||||
if(AARE_FETCH_HDF5)
|
||||
message(FATAL_ERROR "Fetching HDF5 via FetchContent is not supported here. Please install it via your system.
|
||||
For Ubuntu: sudo apt install libhdf5-dev
|
||||
For Red Hat: sudo dnf install hdf5-devel
|
||||
For MacOS: brew install hdf5")
|
||||
else()
|
||||
find_package(HDF5 QUIET COMPONENTS CXX)
|
||||
if (HDF5_FOUND)
|
||||
message(STATUS "Found HDF5: ${HDF5_INCLUDE_DIRS}")
|
||||
else()
|
||||
message(FATAL_ERROR "HDF5 was NOT found! Please install it via your system
|
||||
For Ubuntu: sudo apt install libhdf5-dev
|
||||
For Red Hat: sudo dnf install hdf5-devel
|
||||
For MacOS: brew install hdf5")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
# If conda build, always set lib dir to 'lib'
|
||||
@ -335,10 +350,6 @@ if(AARE_ASAN)
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if(AARE_TESTS)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
@ -348,6 +359,7 @@ endif()
|
||||
###------------------------------------------------------------------------------------------
|
||||
|
||||
set(PUBLICHEADERS
|
||||
include/aare/AngleCalibration.hpp
|
||||
include/aare/ArrayExpr.hpp
|
||||
include/aare/CalculateEta.hpp
|
||||
include/aare/Cluster.hpp
|
||||
@ -362,10 +374,14 @@ set(PUBLICHEADERS
|
||||
include/aare/Fit.hpp
|
||||
include/aare/FileInterface.hpp
|
||||
include/aare/FilePtr.hpp
|
||||
include/aare/FlatField.hpp
|
||||
include/aare/Frame.hpp
|
||||
include/aare/GainMap.hpp
|
||||
include/aare/geo_helpers.hpp
|
||||
include/aare/Hdf5FileReader.hpp
|
||||
include/aare/JungfrauDataFile.hpp
|
||||
include/aare/MythenDetectorSpecifications.hpp
|
||||
include/aare/MythenFileReader.hpp
|
||||
include/aare/NDArray.hpp
|
||||
include/aare/NDView.hpp
|
||||
include/aare/NumpyFile.hpp
|
||||
@ -381,6 +397,7 @@ set(PUBLICHEADERS
|
||||
|
||||
|
||||
set(SourceFiles
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/AngleCalibration.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/CtbRawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.cpp
|
||||
@ -398,6 +415,7 @@ set(SourceFiles
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
|
||||
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/ifstream_helpers.cpp
|
||||
)
|
||||
@ -416,6 +434,7 @@ target_link_libraries(
|
||||
PUBLIC
|
||||
fmt::fmt
|
||||
nlohmann_json::nlohmann_json
|
||||
HDF5::HDF5
|
||||
${STD_FS_LIB} # from helpers.cmake
|
||||
PRIVATE
|
||||
aare_compiler_flags
|
||||
@ -436,12 +455,14 @@ endif()
|
||||
if(AARE_TESTS)
|
||||
set(TestSources
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/AngleCalibration.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Hdf5FileReader.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
|
||||
@ -452,10 +473,10 @@ if(AARE_TESTS)
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinderMT.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/MythenFileReader.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.test.cpp
|
||||
|
||||
)
|
||||
|
22
RELEASE.md
22
RELEASE.md
@ -1,22 +0,0 @@
|
||||
# Release notes
|
||||
|
||||
|
||||
### head
|
||||
|
||||
Features:
|
||||
|
||||
- Cluster finder now works with 5x5, 7x7 and 9x9 clusters
|
||||
|
||||
|
||||
### 2025.05.22
|
||||
|
||||
Features:
|
||||
|
||||
- Added scurve fitting
|
||||
|
||||
Bugfixes:
|
||||
|
||||
- Fixed crash when opening raw files with large number of data files
|
||||
|
||||
|
||||
|
@ -41,8 +41,8 @@ BENCHMARK_F(ClusterFixture, Calculate2x2Eta)(benchmark::State &st) {
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture, CalculateGeneralEtaFor2x2Cluster)
|
||||
(benchmark::State &st) {
|
||||
BENCHMARK_F(ClusterFixture,
|
||||
CalculateGeneralEtaFor2x2Cluster)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 2, 2>(cluster_2x2);
|
||||
@ -59,8 +59,8 @@ BENCHMARK_F(ClusterFixture, Calculate3x3Eta)(benchmark::State &st) {
|
||||
}
|
||||
|
||||
// almost takes double the time
|
||||
BENCHMARK_F(ClusterFixture, CalculateGeneralEtaFor3x3Cluster)
|
||||
(benchmark::State &st) {
|
||||
BENCHMARK_F(ClusterFixture,
|
||||
CalculateGeneralEtaFor3x3Cluster)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2<int, 3, 3>(cluster_3x3);
|
||||
|
@ -1,132 +1,136 @@
|
||||
#include "aare/NDArray.hpp"
|
||||
#include <benchmark/benchmark.h>
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
|
||||
using aare::NDArray;
|
||||
|
||||
constexpr ssize_t size = 1024;
|
||||
class TwoArrays : public benchmark::Fixture {
|
||||
public:
|
||||
NDArray<int, 2> a{{size, size}, 0};
|
||||
NDArray<int, 2> b{{size, size}, 0};
|
||||
void SetUp(::benchmark::State &state) {
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
for (uint32_t j = 0; j < size; j++) {
|
||||
a(i, j) = i * j + 1;
|
||||
b(i, j) = i * j + 1;
|
||||
}
|
||||
}
|
||||
public:
|
||||
NDArray<int,2> a{{size,size},0};
|
||||
NDArray<int,2> b{{size,size},0};
|
||||
void SetUp(::benchmark::State& state) {
|
||||
for(uint32_t i = 0; i < size; i++){
|
||||
for(uint32_t j = 0; j < size; j++){
|
||||
a(i, j)= i*j+1;
|
||||
b(i, j)= i*j+1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
// }
|
||||
};
|
||||
|
||||
BENCHMARK_F(TwoArrays, AddWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a + b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
|
||||
|
||||
|
||||
BENCHMARK_F(TwoArrays, AddWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a+b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, AddWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, AddWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, SubtractWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a - b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, SubtractWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a-b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, SubtractWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) - b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, SubtractWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) - b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a * b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a*b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, MultiplyWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, DivideWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a / b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, DivideWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a/b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, DivideWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) / b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, DivideWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) / b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, FourAddWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a + b + a + b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, FourAddWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a+b+a+b;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, FourAddWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i) + a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, FourAddWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) + b(i) + a(i) + b(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithOperator)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res = a * a + b / a;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithOperator)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res = a*a+b/a;
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithIndex)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int, 2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * a(i) + b(i) / a(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
BENCHMARK_F(TwoArrays, MultiplyAddDivideWithIndex)(benchmark::State& st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
NDArray<int,2> res(a.shape());
|
||||
for (uint32_t i = 0; i < a.size(); i++) {
|
||||
res(i) = a(i) * a(i) + b(i) / a(i);
|
||||
}
|
||||
benchmark::DoNotOptimize(res);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_MAIN();
|
@ -4,5 +4,4 @@ ClusterFile
|
||||
.. doxygenclass:: aare::ClusterFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
:private-members:
|
@ -1,47 +0,0 @@
|
||||
****************
|
||||
Philosophy
|
||||
****************
|
||||
|
||||
|
||||
Fast code with a simple interface
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Aare should be fast and efficient, but also easy to use. We strive to keep a simple interface that feels intuitive.
|
||||
Internally we use C++ for performance and the ability to integrate the library in other programs, but we see most
|
||||
users using the Python interface.
|
||||
|
||||
Live at head
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
As a user of the library you should be able to, and is expected to, use the latest version. Bug fixes will rarely be backported
|
||||
to older releases. By upgrading frequently you will benefit from the latest features and minimize the effort to maintain your scripts/code
|
||||
by doing several small upgrades instead of one big upgrade.
|
||||
|
||||
API
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We aim to keep the API stable and only break it for good reasons. But specially now in the early stages of development
|
||||
the API will change. On those occasions it will be clearly stated in the release notes. However, the norm should be a
|
||||
backward compatible API.
|
||||
|
||||
Documentation
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Being a library it is important to have a well documented API. We use Doxygen to generate the C++ documentation
|
||||
and Sphinx for the Python part. Breathe is used to integrate the two into one Sphinx html site. The documentation is built
|
||||
automatically on release by the CI and published to GitHub pages. In addition to the generated API documentation,
|
||||
certain classes might need more descriptions of the usage. This is then placed in the .rst files in the docs/src directory.
|
||||
|
||||
.. attention::
|
||||
|
||||
The code should be well documented, but using descriptive names is more important. In the same spirit
|
||||
if a function is called `getNumberOfFrames()` you don't need to write a comment saying that it gets the
|
||||
number of frames.
|
||||
|
||||
|
||||
Dependencies
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Deployment in the scientific community is often tricky. Either due to old OS versions or the lack of package managers.
|
||||
We strive to keep the dependencies to a minimum and will vendor some libraries to simplify deployment even though it comes
|
||||
at a cost of build time.
|
@ -2,21 +2,18 @@ Requirements
|
||||
==============================================
|
||||
|
||||
- C++17 compiler (gcc 8/clang 7)
|
||||
- CMake 3.15+
|
||||
- CMake 3.14+
|
||||
|
||||
**Internally used libraries**
|
||||
|
||||
.. note ::
|
||||
|
||||
To save compile time some of the dependencies can also be picked up from the system/conda environment by specifying:
|
||||
These can also be picked up from the system/conda environment by specifying:
|
||||
-DAARE_SYSTEM_LIBRARIES=ON during the cmake configuration.
|
||||
|
||||
To simplify deployment we build and statically link a few libraries.
|
||||
|
||||
- fmt
|
||||
- lmfit - https://jugit.fz-juelich.de/mlz/lmfit
|
||||
- nlohmann_json
|
||||
- pybind11
|
||||
- fmt
|
||||
- nlohmann_json
|
||||
- ZeroMQ
|
||||
|
||||
**Extra dependencies for building documentation**
|
||||
|
@ -1,86 +0,0 @@
|
||||
****************
|
||||
Workflow
|
||||
****************
|
||||
|
||||
This page describes how we develop aare.
|
||||
|
||||
GitHub centric
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We use GitHub for all development. Issues and pull requests provide a platform for collaboration as well
|
||||
as a record of the development process. Even if we discuss things in person, we record the outcome in an issue.
|
||||
If a particular implementation is chosen over another, the reason should be recorded in the pull request.
|
||||
|
||||
|
||||
Branches
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We aim for an as lightweight branching strategy as possible. Short-lived feature branches are merged back into main.
|
||||
The main branch is expected to always be in a releasable state. A release is simply a tag on main which provides a
|
||||
reference and triggers the CI to build the release artifacts (conda, pypi etc.). For large features consider merging
|
||||
smaller chunks into main as they are completed, rather than waiting for the entire feature to be finished. Worst case
|
||||
make sure your feature branch merges with main regularly to avoid large merge conflicts later on.
|
||||
|
||||
.. note::
|
||||
|
||||
The main branch is expected to always work. Feel free to pull from main instead of sticking to a
|
||||
release
|
||||
|
||||
|
||||
Releases
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Release early, release often. As soon as "enough" new features have been implemented, a release is created.
|
||||
A release should not be a big thing, rather a routine part of development that does not require any special person or
|
||||
unfamiliar steps.
|
||||
|
||||
|
||||
|
||||
Checklists for deployment
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**Feature:**
|
||||
|
||||
#. Create a new issue for the feature (label feature)
|
||||
#. Create a new branch from main.
|
||||
#. Implement the feature including test and documentation
|
||||
#. Add the feature to RELEASE.md under head
|
||||
#. Create a pull request linked to the issue
|
||||
#. Code is reviewed by at least one other person
|
||||
#. Once approved, the branch is merged into main
|
||||
|
||||
|
||||
**BugFix:**
|
||||
|
||||
Essentially the same as for a feature, if possible start with
|
||||
a failing test that demonstrates the bug.
|
||||
|
||||
#. Create a new issue for the bug (label bug)
|
||||
#. Create a new branch from main.
|
||||
#. **Write a test that fails for the bug**
|
||||
#. Implement the fix
|
||||
#. **Run the test to ensure it passes**
|
||||
#. Add the bugfix to RELEASE.md under head
|
||||
#. Create a pull request linked to the issue.
|
||||
#. Code is reviewed by at least one other person
|
||||
#. Once approved, the branch is merged into main
|
||||
|
||||
**Release:**
|
||||
|
||||
#. Once "enough" new features have been implemented, a release is created
|
||||
#. Update RELEASE.md with the tag of the release and verify that it is complete
|
||||
#. Create the release in GitHub describing the new features and bug fixes
|
||||
#. CI makes magic
|
||||
|
||||
|
||||
**Update documentation only:**
|
||||
|
||||
.. attention::
|
||||
|
||||
It's possible to update the documentation without changing the code, but take
|
||||
care since the docs will reflect the code in main and not the latest release.
|
||||
|
||||
#. Create a PR to main with the documentation changes
|
||||
#. Create a pull request linked to the issue.
|
||||
#. Code is reviewed by at least one other person
|
||||
#. Once merged you can manually trigger the CI workflow for documentation
|
@ -63,6 +63,4 @@ AARE
|
||||
:caption: Developer
|
||||
:maxdepth: 3
|
||||
|
||||
Philosophy
|
||||
Workflow
|
||||
Tests
|
@ -2,24 +2,9 @@
|
||||
ClusterFile
|
||||
============
|
||||
|
||||
|
||||
The :class:`ClusterFile` class is the main interface to read and write clusters in aare. Unfortunately the
|
||||
old file format does not include metadata like the cluster size and the data type. This means that the
|
||||
user has to know this information from other sources. Specifying the wrong cluster size or data type
|
||||
will lead to garbage data being read.
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: ClusterFile
|
||||
:members:
|
||||
:undoc-members:
|
||||
:inherited-members:
|
||||
|
||||
|
||||
Below is the API of the ClusterFile_Cluster3x3i but all variants share the same API.
|
||||
|
||||
.. autoclass:: aare._aare.ClusterFile_Cluster3x3i
|
||||
:special-members: __init__
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
@ -2,10 +2,8 @@ ClusterVector
|
||||
================
|
||||
|
||||
The ClusterVector, holds clusters from the ClusterFinder. Since it is templated
|
||||
in C++ we use a suffix indicating the type of cluster it holds. The suffix follows
|
||||
the same pattern as for ClusterFile i.e. ``ClusterVector_Cluster3x3i``
|
||||
for a vector holding 3x3 integer clusters.
|
||||
|
||||
in C++ we use a suffix indicating the data type in python. The suffix is
|
||||
``_i`` for integer, ``_f`` for float, and ``_d`` for double.
|
||||
|
||||
At the moment the functionality from python is limited and it is not supported
|
||||
to push_back clusters to the vector. The intended use case is to pass it to
|
||||
@ -28,8 +26,7 @@ C++ functions that support the ClusterVector or to view it as a numpy array.
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: aare._aare.ClusterVector_Cluster3x3i
|
||||
:special-members: __init__
|
||||
.. autoclass:: ClusterVector_i
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
@ -5,12 +5,9 @@ dependencies:
|
||||
- anaconda-client
|
||||
- conda-build
|
||||
- doxygen
|
||||
- sphinx
|
||||
- sphinx=7.1.2
|
||||
- breathe
|
||||
- sphinx_rtd_theme
|
||||
- furo
|
||||
- zeromq
|
||||
- pybind11
|
||||
- numpy
|
||||
- matplotlib
|
||||
|
||||
|
164
include/aare/AngleCalibration.hpp
Normal file
164
include/aare/AngleCalibration.hpp
Normal file
@ -0,0 +1,164 @@
|
||||
#pragma once
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "FlatField.hpp"
|
||||
#include "MythenDetectorSpecifications.hpp"
|
||||
#include "MythenFileReader.hpp"
|
||||
#include "NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
using parameters =
|
||||
std::tuple<std::vector<double>, std::vector<double>, std::vector<double>>;
|
||||
|
||||
class AngleCalibration {
|
||||
|
||||
public:
|
||||
AngleCalibration(
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector_,
|
||||
std::shared_ptr<FlatField> flat_field_,
|
||||
std::shared_ptr<MythenFileReader> mythen_file_reader_);
|
||||
|
||||
/** set the histogram bin width [degrees] */
|
||||
void set_histogram_bin_width(double bin_width);
|
||||
|
||||
double get_histogram_bin_width() const;
|
||||
|
||||
ssize_t get_new_num_bins() const;
|
||||
|
||||
/** reads the historical Detector Group (DG) parameters from file **/
|
||||
void read_initial_calibration_from_file(const std::string &filename);
|
||||
|
||||
std::vector<double> get_centers() const;
|
||||
std::vector<double> get_conversions() const;
|
||||
|
||||
std::vector<double> get_offsets() const;
|
||||
|
||||
NDView<double, 1> get_new_photon_counts() const;
|
||||
|
||||
NDView<double, 1> get_new_statistical_errors() const;
|
||||
|
||||
/** converts DG parameters to easy EE parameters e.g.geometric
|
||||
* parameters */
|
||||
parameters convert_to_EE_parameters() const;
|
||||
|
||||
std::tuple<double, double, double>
|
||||
convert_to_EE_parameters(const size_t module_index) const;
|
||||
|
||||
std::tuple<double, double, double>
|
||||
convert_to_EE_parameters(const double center, const double conversion,
|
||||
const double offset) const;
|
||||
|
||||
/** converts DG parameters to BC parameters e.g. best computing
|
||||
* parameters */
|
||||
parameters convert_to_BC_parameters() const;
|
||||
|
||||
/**
|
||||
* calculates new histogram with fixed sized angle bins
|
||||
* for several acquisitions at different detector angles for given frame
|
||||
* indices
|
||||
* @param start_frame_index, end_frame_index gives range of frames
|
||||
*/
|
||||
void
|
||||
calculate_fixed_bin_angle_width_histogram(const size_t start_frame_index,
|
||||
const size_t end_frame_index);
|
||||
|
||||
void write_to_file(const std::string &filename,
|
||||
const bool store_nonzero_bins = false,
|
||||
const std::filesystem::path &filepath =
|
||||
std::filesystem::current_path()) const;
|
||||
|
||||
/** calculates diffraction angle from EE module parameters (used in
|
||||
* Beer's Law)
|
||||
* @param strip_index local strip index of module
|
||||
*/
|
||||
double diffraction_angle_from_EE_parameters(
|
||||
const double module_center_distance, const double normal_distance,
|
||||
const double angle, const size_t strip_index,
|
||||
const double distance_to_strip = 0) const;
|
||||
|
||||
/** calculates diffraction angle from EE module parameters (used in
|
||||
* Beer's Law)
|
||||
* @param center module center
|
||||
* @param conversion module conversion
|
||||
* @param offset module offset
|
||||
* @param strip_index local strip index of module
|
||||
* @param distance_to_strip distance to strip given by strip_index and
|
||||
* module -> note needs to be small enough to be in the respective module
|
||||
*/
|
||||
double diffraction_angle_from_DG_parameters(
|
||||
const double center, const double conversion, const double offset,
|
||||
const size_t strip_index, const double distance_to_strip = 0) const;
|
||||
|
||||
/** calculated the strip width expressed as angle [degrees]
|
||||
* @param strip_index local strip index of module
|
||||
*/
|
||||
double angular_strip_width_from_DG_parameters(
|
||||
const double center, const double conversion, const double offset,
|
||||
const size_t local_strip_index) const;
|
||||
|
||||
double angular_strip_width_from_EE_parameters(
|
||||
const double module_center_distance, const double normal_distance,
|
||||
const double angle, const size_t local_strip_index) const;
|
||||
|
||||
protected:
|
||||
/** converts global strip index to local strip index of that module */
|
||||
size_t global_to_local_strip_index_conversion(
|
||||
const size_t global_strip_index) const;
|
||||
|
||||
/**
|
||||
* redistributes photon counts with of histogram using one bin per strip
|
||||
* to histogram with fixed size angle bins
|
||||
* @param frame MythenFrame storing data from image
|
||||
* @param bin_counts accumulate new photon counts
|
||||
* @param new_statistical_weights accumulate new statistical weights
|
||||
* @param new_errors accumulate new_errors
|
||||
*/
|
||||
void redistribute_photon_counts_to_fixed_angle_bins(
|
||||
const MythenFrame &frame, NDView<double, 1> bin_counts,
|
||||
NDView<double, 1> new_statistical_weights, NDView<double, 1> new_errors,
|
||||
NDView<double, 1> inverse_nromalized_flatfield) const;
|
||||
|
||||
private:
|
||||
// TODO: Design maybe have a struct with three vectors, store all three
|
||||
// sets of parameters as member variables
|
||||
|
||||
// TODO: check if interpretation and units are correct
|
||||
// historical DG parameters
|
||||
// TODO change to NDArray
|
||||
std::vector<double> centers; // orthogonal projection of sample onto
|
||||
// detector (given in strip number) [mm]
|
||||
// D/pitch
|
||||
std::vector<double> conversions; // pitch/(normal distance from sample
|
||||
// to detector (R)) [mm]
|
||||
// //used for easy conversion
|
||||
std::vector<double>
|
||||
offsets; // position of strip zero relative to sample [degrees] phi
|
||||
// - 180/pi*D/R TODO: expected an arcsin(D/R)?
|
||||
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector;
|
||||
|
||||
std::shared_ptr<FlatField> flat_field;
|
||||
|
||||
NDArray<double, 1> new_photon_counts;
|
||||
NDArray<double, 1> new_photon_count_errors;
|
||||
|
||||
double histogram_bin_width = 0.0036; // [degrees]
|
||||
|
||||
ssize_t num_bins{};
|
||||
|
||||
std::shared_ptr<MythenFileReader>
|
||||
mythen_file_reader; // TODO replace by FileInterface ptr
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,9 +1,10 @@
|
||||
#pragma once
|
||||
#include "aare/defs.hpp"
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <cstddef>
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
@ -14,9 +15,7 @@ template <typename E, ssize_t Ndim> class ArrayExpr {
|
||||
auto operator[](size_t i) const { return static_cast<E const &>(*this)[i]; }
|
||||
auto operator()(size_t i) const { return static_cast<E const &>(*this)[i]; }
|
||||
auto size() const { return static_cast<E const &>(*this).size(); }
|
||||
std::array<ssize_t, Ndim> shape() const {
|
||||
return static_cast<E const &>(*this).shape();
|
||||
}
|
||||
std::array<ssize_t, Ndim> shape() const { return static_cast<E const &>(*this).shape(); }
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
@ -48,7 +47,7 @@ class ArraySub : public ArrayExpr<ArraySub<A, B, Ndim>, Ndim> {
|
||||
};
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>, Ndim> {
|
||||
class ArrayMul : public ArrayExpr<ArrayMul<A, B, Ndim>,Ndim> {
|
||||
const A &arr1_;
|
||||
const B &arr2_;
|
||||
|
||||
@ -75,13 +74,15 @@ class ArrayDiv : public ArrayExpr<ArrayDiv<A, B, Ndim>, Ndim> {
|
||||
std::array<ssize_t, Ndim> shape() const { return arr1_.shape(); }
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator+(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayAdd<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
template <typename A, typename B, ssize_t Ndim>
|
||||
auto operator-(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
auto operator-(const ArrayExpr<A,Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArraySub<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
@ -95,4 +96,6 @@ auto operator/(const ArrayExpr<A, Ndim> &arr1, const ArrayExpr<B, Ndim> &arr2) {
|
||||
return ArrayDiv<ArrayExpr<A, Ndim>, ArrayExpr<B, Ndim>, Ndim>(arr1, arr2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -17,8 +17,7 @@ template <class ItemType> class CircularFifo {
|
||||
|
||||
public:
|
||||
CircularFifo() : CircularFifo(100){};
|
||||
CircularFifo(uint32_t size)
|
||||
: fifo_size(size), free_slots(size + 1), filled_slots(size + 1) {
|
||||
CircularFifo(uint32_t size) : fifo_size(size), free_slots(size + 1), filled_slots(size + 1) {
|
||||
|
||||
// TODO! how do we deal with alignment for writing? alignas???
|
||||
// Do we give the user a chance to provide memory locations?
|
||||
@ -56,8 +55,7 @@ template <class ItemType> class CircularFifo {
|
||||
|
||||
bool try_pop_free(ItemType &v) { return free_slots.read(v); }
|
||||
|
||||
ItemType pop_value(std::chrono::nanoseconds wait,
|
||||
std::atomic<bool> &stopped) {
|
||||
ItemType pop_value(std::chrono::nanoseconds wait, std::atomic<bool> &stopped) {
|
||||
ItemType v;
|
||||
while (!filled_slots.read(v) && !stopped) {
|
||||
std::this_thread::sleep_for(wait);
|
||||
|
@ -5,8 +5,6 @@
|
||||
#include "aare/GainMap.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/logger.hpp"
|
||||
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <optional>
|
||||
@ -371,14 +369,10 @@ ClusterFile<ClusterType, Enable>::read_frame_without_cut() {
|
||||
"Could not read number of clusters");
|
||||
}
|
||||
|
||||
LOG(logDEBUG1) << "Reading " << n_clusters << " clusters from frame "
|
||||
<< frame_number;
|
||||
|
||||
ClusterVector<ClusterType> clusters(n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
clusters.resize(n_clusters);
|
||||
|
||||
LOG(logDEBUG1) << "clusters.item_size(): " << clusters.item_size();
|
||||
clusters.resize(n_clusters);
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
|
@ -21,7 +21,7 @@ class ClusterFileSink {
|
||||
|
||||
void process() {
|
||||
m_stopped = false;
|
||||
LOG(logDEBUG) << "ClusterFileSink started";
|
||||
fmt::print("ClusterFileSink started\n");
|
||||
while (!m_stop_requested || !m_source->isEmpty()) {
|
||||
if (ClusterVector<ClusterType> *clusters = m_source->frontPtr();
|
||||
clusters != nullptr) {
|
||||
@ -41,16 +41,13 @@ class ClusterFileSink {
|
||||
std::this_thread::sleep_for(m_default_wait);
|
||||
}
|
||||
}
|
||||
LOG(logDEBUG) << "ClusterFileSink stopped";
|
||||
fmt::print("ClusterFileSink stopped\n");
|
||||
m_stopped = true;
|
||||
}
|
||||
|
||||
public:
|
||||
ClusterFileSink(ClusterFinderMT<ClusterType, uint16_t, double> *source,
|
||||
const std::filesystem::path &fname) {
|
||||
LOG(logDEBUG) << "ClusterFileSink: "
|
||||
<< "source: " << source->sink()
|
||||
<< ", file: " << fname.string();
|
||||
m_source = source->sink();
|
||||
m_thread = std::thread(&ClusterFileSink::process, this);
|
||||
m_file.open(fname, std::ios::binary);
|
||||
|
@ -38,11 +38,7 @@ class ClusterFinder {
|
||||
: m_image_size(image_size), m_nSigma(nSigma),
|
||||
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
|
||||
c3(sqrt(ClusterSizeX * ClusterSizeY)),
|
||||
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {
|
||||
LOG(logDEBUG) << "ClusterFinder: "
|
||||
<< "image_size: " << image_size[0] << "x" << image_size[1]
|
||||
<< ", nSigma: " << nSigma << ", capacity: " << capacity;
|
||||
}
|
||||
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {};
|
||||
|
||||
void push_pedestal_frame(NDView<FRAME_TYPE, 2> frame) {
|
||||
m_pedestal.push(frame);
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/logger.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
@ -124,12 +123,6 @@ class ClusterFinderMT {
|
||||
size_t capacity = 2000, size_t n_threads = 3)
|
||||
: m_n_threads(n_threads) {
|
||||
|
||||
LOG(logDEBUG1) << "ClusterFinderMT: "
|
||||
<< "image_size: " << image_size[0] << "x"
|
||||
<< image_size[1] << ", nSigma: " << nSigma
|
||||
<< ", capacity: " << capacity
|
||||
<< ", n_threads: " << n_threads;
|
||||
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
m_cluster_finders.push_back(
|
||||
std::make_unique<
|
||||
|
@ -133,9 +133,9 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
*/
|
||||
size_t capacity() const { return m_data.capacity(); }
|
||||
|
||||
auto begin() const { return m_data.begin(); }
|
||||
const auto begin() const { return m_data.begin(); }
|
||||
|
||||
auto end() const { return m_data.end(); }
|
||||
const auto end() const { return m_data.end(); }
|
||||
|
||||
/**
|
||||
* @brief Return the size in bytes of a single cluster
|
||||
|
@ -1,27 +1,27 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
|
||||
namespace aare {
|
||||
namespace aare{
|
||||
|
||||
class CtbRawFile {
|
||||
|
||||
class CtbRawFile{
|
||||
RawMasterFile m_master;
|
||||
std::ifstream m_file;
|
||||
size_t m_current_frame{0};
|
||||
size_t m_current_subfile{0};
|
||||
size_t m_num_subfiles{0};
|
||||
|
||||
public:
|
||||
public:
|
||||
CtbRawFile(const std::filesystem::path &fname);
|
||||
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
void read_into(std::byte *image_buf, DetectorHeader* header = nullptr);
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
|
||||
// in the specific class we can expose more functionality
|
||||
|
||||
@ -29,13 +29,13 @@ class CtbRawFile {
|
||||
size_t frames_in_file() const;
|
||||
|
||||
RawMasterFile master() const;
|
||||
|
||||
private:
|
||||
private:
|
||||
void find_subfiles();
|
||||
size_t sub_file_index(size_t frame_index) const {
|
||||
return frame_index / m_master.max_frames_per_file();
|
||||
}
|
||||
void open_data_file(size_t subfile_index);
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
||||
}
|
@ -6,37 +6,31 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
// The format descriptor is a single character that specifies the type of the
|
||||
// data
|
||||
// The format descriptor is a single character that specifies the type of the data
|
||||
// - python documentation: https://docs.python.org/3/c-api/arg.html#numbers
|
||||
// - py::format_descriptor<T>::format() (in pybind11) does not return the same
|
||||
// format as
|
||||
// - py::format_descriptor<T>::format() (in pybind11) does not return the same format as
|
||||
// written in python.org documentation.
|
||||
// - numpy also doesn't use the same format. and also numpy associates the
|
||||
// format
|
||||
// with variable bitdepth types. (e.g. long is int64 on linux64 and int32 on
|
||||
// win64) https://numpy.org/doc/stable/reference/arrays.scalars.html
|
||||
// - numpy also doesn't use the same format. and also numpy associates the format
|
||||
// with variable bitdepth types. (e.g. long is int64 on linux64 and int32 on win64)
|
||||
// https://numpy.org/doc/stable/reference/arrays.scalars.html
|
||||
//
|
||||
// github issue discussing this:
|
||||
// https://github.com/pybind/pybind11/issues/1908#issuecomment-658358767
|
||||
//
|
||||
// [IN LINUX] the difference is for int64 (long) and uint64 (unsigned long). The
|
||||
// format descriptor is 'q' and 'Q' respectively and in the documentation it is
|
||||
// 'l' and 'k'.
|
||||
// [IN LINUX] the difference is for int64 (long) and uint64 (unsigned long). The format
|
||||
// descriptor is 'q' and 'Q' respectively and in the documentation it is 'l' and 'k'.
|
||||
|
||||
// in practice numpy doesn't seem to care when reading buffer info: the library
|
||||
// interprets 'q' or 'l' as int64 and 'Q' or 'L' as uint64.
|
||||
// for this reason we decided to use the same format descriptor as pybind to
|
||||
// avoid any further discrepancies.
|
||||
// for this reason we decided to use the same format descriptor as pybind to avoid
|
||||
// any further discrepancies.
|
||||
|
||||
// in the following order:
|
||||
// int8, uint8, int16, uint16, int32, uint32, int64, uint64, float, double
|
||||
const char DTYPE_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i',
|
||||
'I', 'q', 'Q', 'f', 'd'};
|
||||
const char DTYPE_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i', 'I', 'q', 'Q', 'f', 'd'};
|
||||
|
||||
// on linux64 & apple
|
||||
const char NUMPY_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i',
|
||||
'I', 'l', 'L', 'f', 'd'};
|
||||
const char NUMPY_FORMAT_DSC[] = {'b', 'B', 'h', 'H', 'i', 'I', 'l', 'L', 'f', 'd'};
|
||||
/**
|
||||
* @brief enum class to define the endianess of the system
|
||||
*/
|
||||
@ -58,29 +52,12 @@ enum class endian {
|
||||
*/
|
||||
class Dtype {
|
||||
public:
|
||||
enum TypeIndex {
|
||||
INT8,
|
||||
UINT8,
|
||||
INT16,
|
||||
UINT16,
|
||||
INT32,
|
||||
UINT32,
|
||||
INT64,
|
||||
UINT64,
|
||||
FLOAT,
|
||||
DOUBLE,
|
||||
ERROR,
|
||||
NONE
|
||||
};
|
||||
enum TypeIndex { INT8, UINT8, INT16, UINT16, INT32, UINT32, INT64, UINT64, FLOAT, DOUBLE, ERROR, NONE };
|
||||
|
||||
uint8_t bitdepth() const;
|
||||
size_t bytes() const;
|
||||
std::string format_descr() const {
|
||||
return std::string(1, DTYPE_FORMAT_DSC[static_cast<int>(m_type)]);
|
||||
}
|
||||
std::string numpy_descr() const {
|
||||
return std::string(1, NUMPY_FORMAT_DSC[static_cast<int>(m_type)]);
|
||||
}
|
||||
std::string format_descr() const { return std::string(1, DTYPE_FORMAT_DSC[static_cast<int>(m_type)]); }
|
||||
std::string numpy_descr() const { return std::string(1, NUMPY_FORMAT_DSC[static_cast<int>(m_type)]); }
|
||||
|
||||
explicit Dtype(const std::type_info &t);
|
||||
explicit Dtype(std::string_view sv);
|
||||
|
@ -5,12 +5,12 @@
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief RAII File class for reading, and in the future potentially writing
|
||||
* image files in various formats. Minimal generic interface. For specail
|
||||
* fuctions plase use the RawFile or NumpyFile classes directly. Wraps
|
||||
* FileInterface to abstract the underlying file format
|
||||
* @note **frame_number** refers the the frame number sent by the detector while
|
||||
* **frame_index** is the position of the frame in the file
|
||||
* @brief RAII File class for reading, and in the future potentially writing
|
||||
* image files in various formats. Minimal generic interface. For specail fuctions
|
||||
* plase use the RawFile or NumpyFile classes directly.
|
||||
* Wraps FileInterface to abstract the underlying file format
|
||||
* @note **frame_number** refers the the frame number sent by the detector while **frame_index**
|
||||
* is the position of the frame in the file
|
||||
*/
|
||||
class File {
|
||||
std::unique_ptr<FileInterface> file_impl;
|
||||
@ -25,46 +25,42 @@ class File {
|
||||
* @throws std::invalid_argument if the file mode is not supported
|
||||
*
|
||||
*/
|
||||
File(const std::filesystem::path &fname, const std::string &mode = "r",
|
||||
const FileConfig &cfg = {});
|
||||
|
||||
/**Since the object is responsible for managing the file we disable copy
|
||||
* construction */
|
||||
File(File const &other) = delete;
|
||||
File(const std::filesystem::path &fname, const std::string &mode="r", const FileConfig &cfg = {});
|
||||
|
||||
/**Since the object is responsible for managing the file we disable copy construction */
|
||||
File(File const &other) = delete;
|
||||
|
||||
/**The same goes for copy assignment */
|
||||
File &operator=(File const &other) = delete;
|
||||
File& operator=(File const &other) = delete;
|
||||
|
||||
File(File &&other) noexcept;
|
||||
File &operator=(File &&other) noexcept;
|
||||
File& operator=(File &&other) noexcept;
|
||||
~File() = default;
|
||||
|
||||
// void close(); //!< close the file
|
||||
|
||||
Frame
|
||||
read_frame(); //!< read one frame from the file at the current position
|
||||
Frame read_frame(size_t frame_index); //!< read one frame at the position
|
||||
//!< given by frame number
|
||||
std::vector<Frame> read_n(size_t n_frames); //!< read n_frames from the file
|
||||
//!< at the current position
|
||||
|
||||
Frame read_frame(); //!< read one frame from the file at the current position
|
||||
Frame read_frame(size_t frame_index); //!< read one frame at the position given by frame number
|
||||
std::vector<Frame> read_n(size_t n_frames); //!< read n_frames from the file at the current position
|
||||
|
||||
void read_into(std::byte *image_buf);
|
||||
void read_into(std::byte *image_buf, size_t n_frames);
|
||||
|
||||
size_t frame_number(); //!< get the frame number at the current position
|
||||
size_t frame_number(
|
||||
size_t frame_index); //!< get the frame number at the given frame index
|
||||
size_t bytes_per_frame() const;
|
||||
size_t pixels_per_frame() const;
|
||||
size_t bytes_per_pixel() const;
|
||||
|
||||
size_t frame_number(); //!< get the frame number at the current position
|
||||
size_t frame_number(size_t frame_index); //!< get the frame number at the given frame index
|
||||
size_t bytes_per_frame() const;
|
||||
size_t pixels_per_frame() const;
|
||||
size_t bytes_per_pixel() const;
|
||||
size_t bitdepth() const;
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
void seek(size_t frame_index); //!< seek to the given frame index
|
||||
size_t tell() const; //!< get the frame index of the file pointer
|
||||
size_t total_frames() const;
|
||||
size_t rows() const;
|
||||
size_t cols() const;
|
||||
|
||||
DetectorType detector_type() const;
|
||||
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -20,10 +20,8 @@ struct FileConfig {
|
||||
uint64_t rows{};
|
||||
uint64_t cols{};
|
||||
bool operator==(const FileConfig &other) const {
|
||||
return dtype == other.dtype && rows == other.rows &&
|
||||
cols == other.cols && geometry == other.geometry &&
|
||||
detector_type == other.detector_type &&
|
||||
max_frames_per_file == other.max_frames_per_file;
|
||||
return dtype == other.dtype && rows == other.rows && cols == other.cols && geometry == other.geometry &&
|
||||
detector_type == other.detector_type && max_frames_per_file == other.max_frames_per_file;
|
||||
}
|
||||
bool operator!=(const FileConfig &other) const { return !(*this == other); }
|
||||
|
||||
@ -34,11 +32,8 @@ struct FileConfig {
|
||||
int max_frames_per_file{};
|
||||
size_t total_frames{};
|
||||
std::string to_string() const {
|
||||
return "{ dtype: " + dtype.to_string() +
|
||||
", rows: " + std::to_string(rows) +
|
||||
", cols: " + std::to_string(cols) +
|
||||
", geometry: " + geometry.to_string() +
|
||||
", detector_type: " + ToString(detector_type) +
|
||||
return "{ dtype: " + dtype.to_string() + ", rows: " + std::to_string(rows) + ", cols: " + std::to_string(cols) +
|
||||
", geometry: " + geometry.to_string() + ", detector_type: " + ToString(detector_type) +
|
||||
", max_frames_per_file: " + std::to_string(max_frames_per_file) +
|
||||
", total_frames: " + std::to_string(total_frames) + " }";
|
||||
}
|
||||
@ -47,8 +42,7 @@ struct FileConfig {
|
||||
/**
|
||||
* @brief FileInterface class to define the interface for file operations
|
||||
* @note parent class for NumpyFile and RawFile
|
||||
* @note all functions are pure virtual and must be implemented by the derived
|
||||
* classes
|
||||
* @note all functions are pure virtual and must be implemented by the derived classes
|
||||
*/
|
||||
class FileInterface {
|
||||
public:
|
||||
@ -70,20 +64,17 @@ class FileInterface {
|
||||
* @param n_frames number of frames to read
|
||||
* @return vector of frames
|
||||
*/
|
||||
virtual std::vector<Frame>
|
||||
read_n(size_t n_frames) = 0; // Is this the right interface?
|
||||
virtual std::vector<Frame> read_n(size_t n_frames) = 0; // Is this the right interface?
|
||||
|
||||
/**
|
||||
* @brief read one frame from the file at the current position and store it
|
||||
* in the provided buffer
|
||||
* @brief read one frame from the file at the current position and store it in the provided buffer
|
||||
* @param image_buf buffer to store the frame
|
||||
* @return void
|
||||
*/
|
||||
virtual void read_into(std::byte *image_buf) = 0;
|
||||
|
||||
/**
|
||||
* @brief read n_frames from the file at the current position and store them
|
||||
* in the provided buffer
|
||||
* @brief read n_frames from the file at the current position and store them in the provided buffer
|
||||
* @param image_buf buffer to store the frames
|
||||
* @param n_frames number of frames to read
|
||||
* @return void
|
||||
@ -143,6 +134,7 @@ class FileInterface {
|
||||
*/
|
||||
virtual size_t bitdepth() const = 0;
|
||||
|
||||
|
||||
virtual DetectorType detector_type() const = 0;
|
||||
|
||||
// function to query the data type of the file
|
||||
|
@ -12,7 +12,7 @@ class FilePtr {
|
||||
|
||||
public:
|
||||
FilePtr() = default;
|
||||
FilePtr(const std::filesystem::path &fname, const std::string &mode);
|
||||
FilePtr(const std::filesystem::path& fname, const std::string& mode);
|
||||
FilePtr(const FilePtr &) = delete; // we don't want a copy
|
||||
FilePtr &operator=(const FilePtr &) = delete; // since we handle a resource
|
||||
FilePtr(FilePtr &&other);
|
||||
|
@ -23,19 +23,16 @@ NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par);
|
||||
|
||||
} // namespace func
|
||||
|
||||
|
||||
/**
|
||||
* @brief Estimate the initial parameters for a Gaussian fit
|
||||
*/
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y);
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y);
|
||||
|
||||
static constexpr int DEFAULT_NUM_THREADS = 4;
|
||||
|
||||
@ -46,6 +43,7 @@ static constexpr int DEFAULT_NUM_THREADS = 4;
|
||||
*/
|
||||
NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel. Data layout [row, col, values]
|
||||
* @param x x values
|
||||
@ -56,6 +54,9 @@ NDArray<double, 1> fit_gaus(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian with error estimates
|
||||
* @param x x values
|
||||
@ -66,7 +67,7 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
*/
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2);
|
||||
double& chi2);
|
||||
|
||||
/**
|
||||
* @brief Fit a 1D Gaussian to each pixel with error estimates. Data layout
|
||||
@ -79,8 +80,9 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
* @param n_threads number of threads to use
|
||||
*/
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out, int n_threads = DEFAULT_NUM_THREADS);
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads = DEFAULT_NUM_THREADS
|
||||
);
|
||||
|
||||
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y);
|
||||
|
||||
@ -88,33 +90,26 @@ NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2);
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
|
||||
// TODO! not sure we need to offer the different version in C++
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out, int n_threads = DEFAULT_NUM_THREADS);
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,NDView<double, 2> chi2_out,
|
||||
int n_threads = DEFAULT_NUM_THREADS);
|
||||
|
||||
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
|
||||
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y);
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2);
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads);
|
||||
} // namespace aare
|
112
include/aare/FlatField.hpp
Normal file
112
include/aare/FlatField.hpp
Normal file
@ -0,0 +1,112 @@
|
||||
|
||||
/**
|
||||
* stores flatfield for angle calibration
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
|
||||
#include "MythenDetectorSpecifications.hpp"
|
||||
#include "NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
// TODO maybe template now its uint32
|
||||
class FlatField {
|
||||
|
||||
public:
|
||||
FlatField(std::shared_ptr<MythenDetectorSpecifications> mythen_detector_)
|
||||
: mythen_detector(mythen_detector_) {
|
||||
|
||||
flat_field = NDArray<uint32_t, 1>(
|
||||
std::array<ssize_t, 1>{mythen_detector->num_strips()}, 0);
|
||||
}
|
||||
|
||||
void read_flatfield_from_file(const std::string &filename) {
|
||||
|
||||
std::string word;
|
||||
uint32_t strip_number{};
|
||||
|
||||
try {
|
||||
std::ifstream file(filename, std::ios_base::in);
|
||||
if (!file.good()) {
|
||||
throw std::logic_error("file does not exist");
|
||||
}
|
||||
|
||||
std::stringstream file_buffer;
|
||||
file_buffer << file.rdbuf();
|
||||
|
||||
while (file_buffer >> word) {
|
||||
|
||||
strip_number = std::stoi(word);
|
||||
|
||||
file_buffer >> word;
|
||||
if (!mythen_detector->get_bad_channels()[strip_number])
|
||||
flat_field[strip_number] = std::stod(word);
|
||||
}
|
||||
|
||||
file.close();
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "Error: " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
NDView<uint32_t, 1> get_flatfield() const { return flat_field.view(); }
|
||||
|
||||
double calculate_mean(double tolerance = 0.001) const {
|
||||
auto [sum, count] = std::accumulate(
|
||||
flat_field.begin(), flat_field.end(),
|
||||
std::make_pair<double, ssize_t>(0.0, 0),
|
||||
[&tolerance](std::pair<double, ssize_t> acc, const auto &element) {
|
||||
return element == 0 ? acc
|
||||
: std::make_pair(acc.first + element,
|
||||
acc.second + 1);
|
||||
});
|
||||
|
||||
return sum / count;
|
||||
}
|
||||
|
||||
NDArray<double, 1>
|
||||
inverse_normalized_flatfield(double tolerance = 0.001) const {
|
||||
double mean = calculate_mean(tolerance);
|
||||
|
||||
NDArray<double, 1> inverse_normalized_flatfield(flat_field.shape());
|
||||
|
||||
for (ssize_t i = 0; i < flat_field.size(); ++i) {
|
||||
inverse_normalized_flatfield[i] =
|
||||
(flat_field[i] <= tolerance ? 0.0 : mean / flat_field[i]);
|
||||
if (inverse_normalized_flatfield[i] < tolerance)
|
||||
mythen_detector->get_bad_channels()[i] = true;
|
||||
}
|
||||
|
||||
return inverse_normalized_flatfield; // TODO: better to have a copy in
|
||||
// this context but unneccessary
|
||||
// for angle calibration code
|
||||
// maybe provide inplace and copy option
|
||||
// maybe store as member variable access with view
|
||||
}
|
||||
|
||||
NDArray<double, 1> normalized_flatfield(double tolerance = 0.001) const {
|
||||
double mean = calculate_mean(tolerance);
|
||||
|
||||
NDArray<double, 1> normalized_flatfield(flat_field.shape());
|
||||
|
||||
for (ssize_t i = 0; i < flat_field.size(); ++i) {
|
||||
normalized_flatfield[i] = (flat_field[i] == flat_field[i] / mean);
|
||||
if (normalized_flatfield[i] < tolerance)
|
||||
mythen_detector->get_bad_channels()[i] = true;
|
||||
}
|
||||
return normalized_flatfield;
|
||||
}
|
||||
|
||||
private:
|
||||
NDArray<uint32_t, 1> flat_field; // TODO: should be 2d
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector;
|
||||
};
|
||||
} // namespace aare
|
@ -19,7 +19,7 @@ class Frame {
|
||||
uint32_t m_cols;
|
||||
Dtype m_dtype;
|
||||
std::byte *m_data;
|
||||
// TODO! Add frame number?
|
||||
//TODO! Add frame number?
|
||||
|
||||
public:
|
||||
/**
|
||||
@ -39,7 +39,7 @@ class Frame {
|
||||
* @param dtype data type of the pixels
|
||||
*/
|
||||
Frame(const std::byte *bytes, uint32_t rows, uint32_t cols, Dtype dtype);
|
||||
~Frame() { delete[] m_data; };
|
||||
~Frame(){ delete[] m_data; };
|
||||
|
||||
/** @warning Copy is disabled to ensure performance when passing
|
||||
* frames around. Can discuss enabling it.
|
||||
@ -52,6 +52,7 @@ class Frame {
|
||||
Frame &operator=(Frame &&other) noexcept;
|
||||
Frame(Frame &&other) noexcept;
|
||||
|
||||
|
||||
Frame clone() const; //<- Explicit copy
|
||||
|
||||
uint32_t rows() const;
|
||||
@ -92,7 +93,7 @@ class Frame {
|
||||
if (row >= m_rows || col >= m_cols) {
|
||||
throw std::out_of_range("Invalid row or column index");
|
||||
}
|
||||
// TODO! add tests then reimplement using pixel_ptr
|
||||
//TODO! add tests then reimplement using pixel_ptr
|
||||
T data;
|
||||
std::memcpy(&data, m_data + (row * m_cols + col) * m_dtype.bytes(),
|
||||
m_dtype.bytes());
|
||||
@ -101,9 +102,9 @@ class Frame {
|
||||
/**
|
||||
* @brief Return an NDView of the frame. This is the preferred way to access
|
||||
* data in the frame.
|
||||
*
|
||||
*
|
||||
* @tparam T type of the pixels
|
||||
* @return NDView<T, 2>
|
||||
* @return NDView<T, 2>
|
||||
*/
|
||||
template <typename T> NDView<T, 2> view() {
|
||||
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
|
||||
@ -112,7 +113,7 @@ class Frame {
|
||||
return NDView<T, 2>(data, shape);
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* @brief Copy the frame data into a new NDArray. This is a deep copy.
|
||||
*/
|
||||
template <typename T> NDArray<T> image() {
|
||||
|
212
include/aare/Hdf5FileReader.hpp
Normal file
212
include/aare/Hdf5FileReader.hpp
Normal file
@ -0,0 +1,212 @@
|
||||
/************************************************
|
||||
* @file HD5FFileReader.hpp
|
||||
* @short HDF5FileReader based on H5File object
|
||||
***********************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Frame.hpp"
|
||||
#include "NDArray.hpp"
|
||||
#include <H5Cpp.h>
|
||||
#include <array>
|
||||
#include <cxxabi.h>
|
||||
#include <optional>
|
||||
|
||||
namespace aare {
|
||||
|
||||
// return std::type_info
|
||||
inline const std::type_info &deduce_cpp_type(const H5::DataType datatype) {
|
||||
if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_UINT8.getId())) {
|
||||
return typeid(uint8_t);
|
||||
} else if (H5Tequal(datatype.getId(),
|
||||
H5::PredType::NATIVE_UINT16.getId())) {
|
||||
return typeid(uint16_t);
|
||||
} else if (H5Tequal(datatype.getId(),
|
||||
H5::PredType::NATIVE_UINT32.getId())) {
|
||||
return typeid(uint32_t);
|
||||
} else if (H5Tequal(datatype.getId(),
|
||||
H5::PredType::NATIVE_UINT64.getId())) {
|
||||
return typeid(uint64_t);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_INT8.getId())) {
|
||||
return typeid(int8_t);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_INT16.getId())) {
|
||||
return typeid(int16_t);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_INT32.getId())) {
|
||||
return typeid(int32_t);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_INT64.getId())) {
|
||||
return typeid(int64_t);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_INT.getId())) {
|
||||
return typeid(int);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::IEEE_F64LE.getId())) {
|
||||
return typeid(double);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::IEEE_F32LE.getId())) {
|
||||
return typeid(float);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_FLOAT.getId())) {
|
||||
return typeid(float);
|
||||
} else if (H5Tequal(datatype.getId(),
|
||||
H5::PredType::NATIVE_DOUBLE.getId())) {
|
||||
return typeid(float);
|
||||
} else if (H5Tequal(datatype.getId(), H5::PredType::NATIVE_CHAR.getId()) &&
|
||||
datatype.getId() == H5::PredType::NATIVE_CHAR.getId()) {
|
||||
return typeid(char);
|
||||
} else {
|
||||
throw std::runtime_error("c++ type cannot be deduced");
|
||||
}
|
||||
}
|
||||
|
||||
struct Subset {
|
||||
std::vector<hsize_t> shape;
|
||||
std::vector<hsize_t> offset; // index where data subset should start
|
||||
};
|
||||
|
||||
class HDF5Dataset {
|
||||
|
||||
public:
|
||||
HDF5Dataset(const std::string &datasetname_, const H5::DataSet dataset_)
|
||||
: datasetname(datasetname_), dataset(dataset_) {
|
||||
datatype = dataset.getDataType();
|
||||
|
||||
cpp_type = &deduce_cpp_type(datatype);
|
||||
|
||||
dataspace = dataset.getSpace();
|
||||
rank = dataspace.getSimpleExtentNdims(); // number of dimensions
|
||||
|
||||
shape.resize(rank);
|
||||
dataspace.getSimpleExtentDims(shape.data(), nullptr);
|
||||
}
|
||||
|
||||
hsize_t get_shape(ssize_t index) const { return shape[index]; }
|
||||
|
||||
std::vector<hsize_t> get_shape() const { return shape; }
|
||||
|
||||
H5::DataType get_datatype() const { return datatype; }
|
||||
|
||||
const std::type_info *get_cpp_type() const { return cpp_type; }
|
||||
|
||||
/**
|
||||
* Reads subset of dataset into the buffer
|
||||
* e.g. to read one 2d frame pass Subset({shape[1], shape[2]}, {frame_index,
|
||||
* 0,0})
|
||||
*/
|
||||
void
|
||||
read_into_buffer(std::byte *buffer,
|
||||
std::optional<const Subset> subset = std::nullopt) const {
|
||||
|
||||
if (subset) {
|
||||
// TODO treat scalar cases
|
||||
if (static_cast<ssize_t>(subset->offset.size()) != rank) {
|
||||
throw std::runtime_error("provide an offset for" +
|
||||
std::to_string(rank) + "dimensions");
|
||||
}
|
||||
for (ssize_t i = 0; i < rank; ++i) {
|
||||
hsize_t size =
|
||||
i < rank - static_cast<ssize_t>(subset->shape.size())
|
||||
? 0
|
||||
: subset->shape[i - (rank - subset->shape.size())];
|
||||
if ((size + subset->offset[i]) > shape[i]) {
|
||||
throw std::runtime_error(
|
||||
"subset is too large or offset is out of bounds");
|
||||
}
|
||||
}
|
||||
|
||||
H5::DataSpace memspace(static_cast<int>(subset->shape.size()),
|
||||
subset->shape.data());
|
||||
|
||||
dataspace.selectHyperslab(H5S_SELECT_SET, subset->shape.data(),
|
||||
subset->offset.data());
|
||||
dataset.read(buffer, datatype, memspace, dataspace);
|
||||
} else {
|
||||
dataset.read(buffer, datatype);
|
||||
}
|
||||
}
|
||||
|
||||
Frame store_as_frame() const {
|
||||
uint32_t rows{}, cols{};
|
||||
if (rank == 1) {
|
||||
rows = 1;
|
||||
// TODO overflow
|
||||
cols = static_cast<uint32_t>(shape[0]);
|
||||
} else if (rank == 2) {
|
||||
rows = static_cast<uint32_t>(shape[0]);
|
||||
cols = static_cast<uint32_t>(shape[1]);
|
||||
} else {
|
||||
throw std::runtime_error("Frame only supports 2d images");
|
||||
}
|
||||
|
||||
Frame frame(rows, cols, Dtype(*cpp_type));
|
||||
|
||||
read_into_buffer(frame.data());
|
||||
|
||||
return frame;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t NDim>
|
||||
NDArray<T, NDim> store_as_ndarray() const {
|
||||
if (NDim != rank) {
|
||||
std::cout
|
||||
<< "Warning: dataset dimension and array dimension mismatch"
|
||||
<< std::endl; // TODO: replace with log - still valid if we
|
||||
// want subset
|
||||
}
|
||||
if (typeid(T) != *cpp_type) {
|
||||
std::cout << "Warning: dataset and array type mismatch"
|
||||
<< std::endl;
|
||||
}
|
||||
std::array<ssize_t, NDim> array_shape{};
|
||||
std::transform(
|
||||
shape.begin(), shape.end(), array_shape.begin(),
|
||||
[](const auto dim) { return static_cast<ssize_t>(dim); });
|
||||
|
||||
aare::NDArray<T, NDim> dataset_array(array_shape);
|
||||
|
||||
read_into_buffer(reinterpret_cast<std::byte *>(dataset_array.data()));
|
||||
|
||||
return dataset_array;
|
||||
}
|
||||
|
||||
// getMemDataSize()
|
||||
|
||||
private:
|
||||
std::string datasetname{};
|
||||
H5::DataSet dataset;
|
||||
H5::DataSpace dataspace;
|
||||
H5::DataType datatype;
|
||||
const std::type_info *cpp_type;
|
||||
ssize_t rank{};
|
||||
std::vector<hsize_t> shape{};
|
||||
};
|
||||
|
||||
class HDF5FileReader {
|
||||
|
||||
public:
|
||||
HDF5FileReader() = default;
|
||||
|
||||
void open_file(const std::string &filename_) {
|
||||
filename = filename_;
|
||||
try {
|
||||
file = H5::H5File(filename, H5F_ACC_RDONLY);
|
||||
} catch (H5::Exception &e) {
|
||||
std::cerr << "Error: " << e.getDetailMsg() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void close_file() { file.close(); }
|
||||
|
||||
HDF5Dataset get_dataset(const std::string &dataset_name) const {
|
||||
H5::DataSet dataset;
|
||||
try {
|
||||
dataset = file.openDataSet(dataset_name);
|
||||
} catch (H5::Exception &e) {
|
||||
std::cerr << "Error: " << e.getDetailMsg() << std::endl;
|
||||
}
|
||||
|
||||
// TODO use optional to handle error
|
||||
return HDF5Dataset(dataset_name, dataset);
|
||||
}
|
||||
|
||||
private:
|
||||
std::string filename{};
|
||||
H5::H5File file;
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -51,7 +51,7 @@ Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
@ -99,7 +99,7 @@ Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
photon.energy = eta.sum;
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
|
@ -3,113 +3,104 @@
|
||||
#include <filesystem>
|
||||
#include <vector>
|
||||
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/FilePtr.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/FileInterface.hpp"
|
||||
namespace aare {
|
||||
|
||||
struct JungfrauDataHeader {
|
||||
|
||||
struct JungfrauDataHeader{
|
||||
uint64_t framenum;
|
||||
uint64_t bunchid;
|
||||
};
|
||||
|
||||
class JungfrauDataFile : public FileInterface {
|
||||
|
||||
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
|
||||
size_t
|
||||
m_cols{}; //!< number of columns in the image, from find_frame_size();
|
||||
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
|
||||
size_t m_cols{}; //!< number of columns in the image, from find_frame_size();
|
||||
size_t m_bytes_per_frame{}; //!< number of bytes per frame excluding header
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non
|
||||
//!< zero file
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with
|
||||
//!< reference to all files)
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non zero file
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with reference to all files)
|
||||
|
||||
std::vector<size_t>
|
||||
m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
std::vector<size_t> m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
std::filesystem::path m_path; //!< path to the files
|
||||
std::string m_base_name; //!< base name used for formatting file names
|
||||
|
||||
FilePtr m_fp; //!< RAII wrapper for a FILE*
|
||||
FilePtr m_fp; //!< RAII wrapper for a FILE*
|
||||
|
||||
|
||||
using pixel_type = uint16_t;
|
||||
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
|
||||
static constexpr size_t n_digits_in_file_index =
|
||||
6; //!< to format file names
|
||||
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
|
||||
static constexpr size_t n_digits_in_file_index = 6; //!< to format file names
|
||||
|
||||
public:
|
||||
JungfrauDataFile(const std::filesystem::path &fname);
|
||||
|
||||
std::string base_name()
|
||||
const; //!< get the base name of the file (without path and extension)
|
||||
size_t bytes_per_frame() override;
|
||||
size_t pixels_per_frame() override;
|
||||
size_t bytes_per_pixel() const;
|
||||
std::string base_name() const; //!< get the base name of the file (without path and extension)
|
||||
size_t bytes_per_frame() override;
|
||||
size_t pixels_per_frame() override;
|
||||
size_t bytes_per_pixel() const;
|
||||
size_t bitdepth() const override;
|
||||
void seek(size_t frame_index)
|
||||
override; //!< seek to the given frame index (note not byte offset)
|
||||
size_t tell() override; //!< get the frame index of the file pointer
|
||||
void seek(size_t frame_index) override; //!< seek to the given frame index (note not byte offset)
|
||||
size_t tell() override; //!< get the frame index of the file pointer
|
||||
size_t total_frames() const override;
|
||||
size_t rows() const override;
|
||||
size_t cols() const override;
|
||||
std::array<ssize_t, 2> shape() const;
|
||||
size_t n_files() const; //!< get the number of files in the series.
|
||||
std::array<ssize_t,2> shape() const;
|
||||
size_t n_files() const; //!< get the number of files in the series.
|
||||
|
||||
// Extra functions needed for FileInterface
|
||||
Frame read_frame() override;
|
||||
Frame read_frame(size_t frame_number) override;
|
||||
std::vector<Frame> read_n(size_t n_frames = 0) override;
|
||||
std::vector<Frame> read_n(size_t n_frames=0) override;
|
||||
void read_into(std::byte *image_buf) override;
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
size_t frame_number(size_t frame_index) override;
|
||||
DetectorType detector_type() const override;
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is
|
||||
* responsible for allocating the buffer)
|
||||
* @brief Read a single frame from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
|
||||
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
|
||||
*/
|
||||
void read_into(std::byte *image_buf, JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Read a multiple frames from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is
|
||||
* responsible for allocating the buffer)
|
||||
* @brief Read a multiple frames from the file into the given buffer.
|
||||
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
|
||||
* @param n_frames number of frames to read
|
||||
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
|
||||
*/
|
||||
void read_into(std::byte *image_buf, size_t n_frames,
|
||||
JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
void read_into(std::byte *image_buf, size_t n_frames, JungfrauDataHeader *header = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Read a single frame from the file into the given NDArray
|
||||
* @param image NDArray to read the frame into.
|
||||
*/
|
||||
void read_into(NDArray<uint16_t> *image,
|
||||
JungfrauDataHeader *header = nullptr);
|
||||
void read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header = nullptr);
|
||||
|
||||
JungfrauDataHeader read_header();
|
||||
std::filesystem::path current_file() const {
|
||||
return fpath(m_current_file_index + m_offset);
|
||||
}
|
||||
std::filesystem::path current_file() const { return fpath(m_current_file_index+m_offset); }
|
||||
|
||||
private:
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Find the size of the frame in the file. (256x256, 256x1024,
|
||||
* 512x1024)
|
||||
* @brief Find the size of the frame in the file. (256x256, 256x1024, 512x1024)
|
||||
* @param fname path to the file
|
||||
* @throws std::runtime_error if the file is empty or the size cannot be
|
||||
* determined
|
||||
* @throws std::runtime_error if the file is empty or the size cannot be determined
|
||||
*/
|
||||
void find_frame_size(const std::filesystem::path &fname);
|
||||
void find_frame_size(const std::filesystem::path &fname);
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t frame_index) const;
|
||||
};
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t frame_index) const;
|
||||
|
||||
|
||||
};
|
||||
|
||||
} // namespace aare
|
150
include/aare/MythenDetectorSpecifications.hpp
Normal file
150
include/aare/MythenDetectorSpecifications.hpp
Normal file
@ -0,0 +1,150 @@
|
||||
#pragma once
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
|
||||
#include "NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
class MythenDetectorSpecifications {
|
||||
|
||||
public:
|
||||
// TODO: constructor that reads from a config file
|
||||
|
||||
MythenDetectorSpecifications() {
|
||||
num_strips_ = max_modules_ * strips_per_module_;
|
||||
|
||||
num_connected_modules_ = max_modules_;
|
||||
|
||||
bad_channels =
|
||||
NDArray<bool, 1>(std::array<ssize_t, 1>{num_strips_}, false);
|
||||
|
||||
connected_modules = NDArray<bool, 1>(
|
||||
std::array<ssize_t, 1>{static_cast<ssize_t>(max_modules_)}, true);
|
||||
}
|
||||
|
||||
MythenDetectorSpecifications(const size_t max_modules,
|
||||
const double exposure_time,
|
||||
const double bloffset)
|
||||
: max_modules_(max_modules), exposure_time_(exposure_time),
|
||||
bloffset_(bloffset) {
|
||||
num_strips_ = max_modules_ * strips_per_module_;
|
||||
|
||||
num_connected_modules_ = max_modules_;
|
||||
|
||||
bad_channels =
|
||||
NDArray<bool, 1>(std::array<ssize_t, 1>{num_strips_}, false);
|
||||
|
||||
connected_modules = NDArray<bool, 1>(
|
||||
std::array<ssize_t, 1>{static_cast<ssize_t>(max_modules_)}, true);
|
||||
}
|
||||
|
||||
void read_bad_channels_from_file(const std::string &filename) {
|
||||
std::string line;
|
||||
|
||||
try {
|
||||
std::ifstream file(filename, std::ios_base::in);
|
||||
if (!file.good()) {
|
||||
throw std::logic_error("file does not exist");
|
||||
}
|
||||
|
||||
while (std::getline(file, line)) {
|
||||
std::size_t pos = line.find("-");
|
||||
|
||||
if (pos == std::string::npos) {
|
||||
bad_channels(std::stoi(line)) = true;
|
||||
} else {
|
||||
size_t line_size = line.size();
|
||||
for (int i = std::stoi(line.substr(0, pos));
|
||||
i <= std::stoi(line.substr(pos + 1, line_size - pos));
|
||||
++i)
|
||||
bad_channels(i) = true;
|
||||
}
|
||||
}
|
||||
|
||||
file.close();
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "Error: " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void read_unconnected_modules_from_file(const std::string &filename) {
|
||||
std::string line;
|
||||
|
||||
try {
|
||||
std::ifstream file(filename, std::ios_base::in);
|
||||
if (!file.good()) {
|
||||
throw std::logic_error("file does not exist");
|
||||
}
|
||||
|
||||
std::stringstream file_buffer;
|
||||
file_buffer << file.rdbuf();
|
||||
|
||||
file_buffer >> line;
|
||||
num_connected_modules_ -= std::stoi(line);
|
||||
|
||||
while (file_buffer >> line) {
|
||||
size_t module = std::stoi(line);
|
||||
connected_modules[module] = false;
|
||||
for (size_t i = module * strips_per_module_;
|
||||
i < (module + 1) * strips_per_module_; ++i)
|
||||
bad_channels[i] = true;
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "Error: " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
NDView<bool, 1> get_bad_channels() const { return bad_channels.view(); }
|
||||
|
||||
NDView<bool, 1> get_connected_modules() const {
|
||||
return connected_modules.view();
|
||||
}
|
||||
|
||||
static constexpr double pitch() { return pitch_; }
|
||||
|
||||
static constexpr size_t strips_per_module() { return strips_per_module_; }
|
||||
|
||||
size_t max_modules() const { return max_modules_; }
|
||||
|
||||
double exposure_time() const { return exposure_time_; }
|
||||
|
||||
double bloffset() const { return bloffset_; }
|
||||
|
||||
double dtt0() const { return dtt0_; }
|
||||
|
||||
static constexpr double min_angle() { return min_angle_; }
|
||||
|
||||
static constexpr double max_angle() { return max_angle_; }
|
||||
|
||||
ssize_t num_strips() const { return num_strips_; }
|
||||
|
||||
private:
|
||||
static constexpr size_t strips_per_module_ = 1280;
|
||||
static constexpr double pitch_ = 0.05; // strip width [mm]
|
||||
static constexpr double min_angle_ =
|
||||
-180.0; // maybe shoudnt be static but configurable
|
||||
static constexpr double max_angle_ = 180.0;
|
||||
static constexpr double dtt0_ =
|
||||
0.0; // No idea what this is - probably configurable
|
||||
|
||||
size_t max_modules_ = 48;
|
||||
|
||||
double exposure_time_ = 5.0; // TODO: could read from acquired file but
|
||||
// maybe should be configurable
|
||||
double bloffset_ = 1.532; // what is this? detector offset relative to what?
|
||||
|
||||
size_t num_connected_modules_{};
|
||||
|
||||
ssize_t num_strips_{};
|
||||
|
||||
NDArray<bool, 1> bad_channels;
|
||||
NDArray<bool, 1> connected_modules; // connected modules
|
||||
};
|
||||
|
||||
} // namespace aare
|
82
include/aare/MythenFileReader.hpp
Normal file
82
include/aare/MythenFileReader.hpp
Normal file
@ -0,0 +1,82 @@
|
||||
/************************************************
|
||||
* @file MythenFileReader.hpp
|
||||
* @short minimal file reader to read mythen files
|
||||
***********************************************/
|
||||
|
||||
#include <bitset>
|
||||
#include <filesystem>
|
||||
#include <string>
|
||||
|
||||
#include "Hdf5FileReader.hpp"
|
||||
#include "NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
struct MythenFrame {
|
||||
NDArray<uint32_t, 1> photon_counts;
|
||||
double detector_angle{};
|
||||
// double reference_intensity{}; not needed
|
||||
std::array<uint8_t, 3> channel_mask{};
|
||||
};
|
||||
|
||||
/** minimal version for a mythen file reader */
|
||||
class MythenFileReader : public HDF5FileReader {
|
||||
|
||||
public:
|
||||
MythenFileReader(const std::filesystem::path &file_path_,
|
||||
const std::string &file_prefix_)
|
||||
: m_base_path(file_path_), file_prefix(file_prefix_) {};
|
||||
|
||||
MythenFrame read_frame(ssize_t frame_index) {
|
||||
// TODO not a good design fixed number of digits in file name for frame
|
||||
// number -> pad with zeros
|
||||
// not even sure if files have the same name
|
||||
std::string current_file_name =
|
||||
m_base_path / (file_prefix + std::to_string(frame_index) + ".h5");
|
||||
|
||||
MythenFrame frame;
|
||||
open_file(current_file_name);
|
||||
|
||||
auto dataset_photon_count =
|
||||
get_dataset("/entry/instrument/detector/data");
|
||||
|
||||
frame.photon_counts =
|
||||
dataset_photon_count.store_as_ndarray<uint32_t, 1>();
|
||||
|
||||
++frame.photon_counts; // Why though?
|
||||
|
||||
auto dataset_detector_angle =
|
||||
get_dataset("/entry/instrument/NDAttributes/DetectorAngle");
|
||||
|
||||
dataset_detector_angle.read_into_buffer(
|
||||
reinterpret_cast<std::byte *>(&frame.detector_angle));
|
||||
|
||||
auto dataset_channel_number =
|
||||
get_dataset("/entry/instrument/NDAttributes/CounterMask");
|
||||
|
||||
uint8_t channel_number;
|
||||
|
||||
dataset_channel_number.read_into_buffer(
|
||||
reinterpret_cast<std::byte *>(&channel_number));
|
||||
|
||||
std::bitset<3> binary_channel_numbers(channel_number); // 1 0 0
|
||||
|
||||
// binary_channel_numbers.flip(); // TODO not sure where most
|
||||
// significant
|
||||
// bit is ask Anna again
|
||||
|
||||
frame.channel_mask = std::array<uint8_t, 3>{binary_channel_numbers[0],
|
||||
binary_channel_numbers[1],
|
||||
binary_channel_numbers[2]};
|
||||
|
||||
close_file();
|
||||
|
||||
return frame;
|
||||
}
|
||||
|
||||
private:
|
||||
std::filesystem::path m_base_path{};
|
||||
std::string file_prefix{};
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -33,7 +33,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
* @brief Default constructor. Will construct an empty NDArray.
|
||||
*
|
||||
*/
|
||||
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr){};
|
||||
NDArray() : shape_(), strides_(c_strides<Ndim>(shape_)), data_(nullptr) {};
|
||||
|
||||
/**
|
||||
* @brief Construct a new NDArray object with a given shape.
|
||||
@ -139,6 +139,9 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
|
||||
|
||||
NDArray<bool, Ndim> operator>(const NDArray &other);
|
||||
|
||||
bool equals(const NDArray<T, Ndim> &other,
|
||||
const T tolerance = std::numeric_limits<T>::epsilon()) const;
|
||||
|
||||
bool operator==(const NDArray &other) const;
|
||||
bool operator!=(const NDArray &other) const;
|
||||
|
||||
@ -380,6 +383,7 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
|
||||
result *= value;
|
||||
return result;
|
||||
}
|
||||
|
||||
// template <typename T, ssize_t Ndim> void NDArray<T, Ndim>::Print() {
|
||||
// if (shape_[0] < 20 && shape_[1] < 20)
|
||||
// Print_all();
|
||||
@ -422,7 +426,7 @@ template <typename T, ssize_t Ndim>
|
||||
void save(NDArray<T, Ndim> &img, std::string &pathname) {
|
||||
std::ofstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
f.write(img.buffer(), img.size() * sizeof(T));
|
||||
f.write(reinterpret_cast<char *>(img.buffer()), img.size() * sizeof(T));
|
||||
f.close();
|
||||
}
|
||||
|
||||
@ -432,9 +436,38 @@ NDArray<T, Ndim> load(const std::string &pathname,
|
||||
NDArray<T, Ndim> img{shape};
|
||||
std::ifstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
f.read(img.buffer(), img.size() * sizeof(T));
|
||||
f.read(reinterpret_cast<char *>(img.buffer()), img.size() * sizeof(T));
|
||||
f.close();
|
||||
return img;
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim = 1>
|
||||
NDArray<T, Ndim> load_non_binary_file(const std::string &filename,
|
||||
const std::array<ssize_t, Ndim> shape) {
|
||||
std::string word;
|
||||
NDArray<T, Ndim> array(shape);
|
||||
try {
|
||||
std::ifstream file(filename, std::ios_base::in);
|
||||
if (!file.good()) {
|
||||
throw std::logic_error("file does not exist");
|
||||
}
|
||||
|
||||
std::stringstream file_buffer;
|
||||
file_buffer << file.rdbuf();
|
||||
|
||||
ssize_t counter = 0;
|
||||
while (file_buffer >> word && counter < size) {
|
||||
array[counter] = static_cast<T>(
|
||||
std::stod(word)); // TODO change for different Types
|
||||
++counter;
|
||||
}
|
||||
|
||||
file.close();
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "Error: " << e.what() << std::endl;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -6,6 +6,7 @@
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
#include <functional>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
@ -105,6 +106,20 @@ class NDView : public ArrayExpr<NDView<T, Ndim>, Ndim> {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool equals(const NDView<T, Ndim> &other, const T tolerance) const {
|
||||
if (shape_ != other.shape_)
|
||||
return false;
|
||||
|
||||
using SignedT = typename make_signed<T>::type;
|
||||
|
||||
for (uint32_t i = 0; i != size_; ++i)
|
||||
if (std::abs(static_cast<SignedT>(buffer_[i]) -
|
||||
static_cast<SignedT>(other.buffer_[i])) > tolerance)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
NDView &operator+=(const T val) { return elemenwise(val, std::plus<T>()); }
|
||||
NDView &operator-=(const T val) { return elemenwise(val, std::minus<T>()); }
|
||||
NDView &operator*=(const T val) {
|
||||
@ -206,4 +221,12 @@ template <typename T> NDView<T, 1> make_view(std::vector<T> &vec) {
|
||||
return NDView<T, 1>(vec.data(), {static_cast<ssize_t>(vec.size())});
|
||||
}
|
||||
|
||||
template <typename T, ssize_t Ndim>
|
||||
void save(NDView<T, Ndim> img, const std::string &pathname) {
|
||||
std::ofstream f;
|
||||
f.open(pathname, std::ios::binary);
|
||||
f.write(reinterpret_cast<char *>(img.data()), img.size() * sizeof(T));
|
||||
f.close();
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -1,8 +1,9 @@
|
||||
#pragma once
|
||||
#include "aare/Dtype.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/NumpyHelpers.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
|
||||
#include <filesystem>
|
||||
#include <iostream>
|
||||
@ -10,12 +11,13 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief NumpyFile class to read and write numpy files
|
||||
* @note derived from FileInterface
|
||||
* @note implements all the pure virtual functions from FileInterface
|
||||
* @note documentation for the functions can also be found in the FileInterface
|
||||
* class
|
||||
* @note documentation for the functions can also be found in the FileInterface class
|
||||
*/
|
||||
class NumpyFile : public FileInterface {
|
||||
|
||||
@ -26,35 +28,26 @@ class NumpyFile : public FileInterface {
|
||||
* @param mode file mode (r, w)
|
||||
* @param cfg file configuration
|
||||
*/
|
||||
explicit NumpyFile(const std::filesystem::path &fname,
|
||||
const std::string &mode = "r", FileConfig cfg = {});
|
||||
explicit NumpyFile(const std::filesystem::path &fname, const std::string &mode = "r", FileConfig cfg = {});
|
||||
|
||||
void write(Frame &frame);
|
||||
Frame read_frame() override { return get_frame(this->current_frame++); }
|
||||
Frame read_frame(size_t frame_number) override {
|
||||
return get_frame(frame_number);
|
||||
}
|
||||
Frame read_frame(size_t frame_number) override { return get_frame(frame_number); }
|
||||
|
||||
std::vector<Frame> read_n(size_t n_frames) override;
|
||||
void read_into(std::byte *image_buf) override {
|
||||
return get_frame_into(this->current_frame++, image_buf);
|
||||
}
|
||||
void read_into(std::byte *image_buf) override { return get_frame_into(this->current_frame++, image_buf); }
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
size_t frame_number(size_t frame_index) override { return frame_index; };
|
||||
size_t bytes_per_frame() override;
|
||||
size_t pixels_per_frame() override;
|
||||
void seek(size_t frame_number) override {
|
||||
this->current_frame = frame_number;
|
||||
}
|
||||
void seek(size_t frame_number) override { this->current_frame = frame_number; }
|
||||
size_t tell() override { return this->current_frame; }
|
||||
size_t total_frames() const override { return m_header.shape[0]; }
|
||||
size_t rows() const override { return m_header.shape[1]; }
|
||||
size_t cols() const override { return m_header.shape[2]; }
|
||||
size_t bitdepth() const override { return m_header.dtype.bitdepth(); }
|
||||
|
||||
DetectorType detector_type() const override {
|
||||
return DetectorType::Unknown;
|
||||
}
|
||||
DetectorType detector_type() const override { return DetectorType::Unknown; }
|
||||
|
||||
/**
|
||||
* @brief get the data type of the numpy file
|
||||
@ -77,8 +70,7 @@ class NumpyFile : public FileInterface {
|
||||
template <typename T, size_t NDim> NDArray<T, NDim> load() {
|
||||
NDArray<T, NDim> arr(make_shape<NDim>(m_header.shape));
|
||||
if (fseek(fp, static_cast<long>(header_size), SEEK_SET)) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Error seeking to the start of the data");
|
||||
throw std::runtime_error(LOCATION + "Error seeking to the start of the data");
|
||||
}
|
||||
size_t rc = fread(arr.data(), sizeof(T), arr.size(), fp);
|
||||
if (rc != static_cast<size_t>(arr.size())) {
|
||||
@ -86,20 +78,16 @@ class NumpyFile : public FileInterface {
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDView<TYPENAME, Ndim> &frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDView<TYPENAME, Ndim> &frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDArray<TYPENAME, Ndim> &frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDArray<TYPENAME, Ndim> &frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDView<TYPENAME, Ndim> &&frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDView<TYPENAME, Ndim> &&frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
template <typename A, typename TYPENAME, A Ndim>
|
||||
void write(NDArray<TYPENAME, Ndim> &&frame) {
|
||||
template <typename A, typename TYPENAME, A Ndim> void write(NDArray<TYPENAME, Ndim> &&frame) {
|
||||
write_impl(frame.data(), frame.total_bytes());
|
||||
}
|
||||
|
||||
|
@ -40,18 +40,15 @@ bool parse_bool(const std::string &in);
|
||||
|
||||
std::string get_value_from_map(const std::string &mapstr);
|
||||
|
||||
std::unordered_map<std::string, std::string>
|
||||
parse_dict(std::string in, const std::vector<std::string> &keys);
|
||||
std::unordered_map<std::string, std::string> parse_dict(std::string in, const std::vector<std::string> &keys);
|
||||
|
||||
template <typename T, size_t N>
|
||||
bool in_array(T val, const std::array<T, N> &arr) {
|
||||
template <typename T, size_t N> bool in_array(T val, const std::array<T, N> &arr) {
|
||||
return std::find(std::begin(arr), std::end(arr), val) != std::end(arr);
|
||||
}
|
||||
bool is_digits(const std::string &str);
|
||||
|
||||
aare::Dtype parse_descr(std::string typestring);
|
||||
size_t write_header(const std::filesystem::path &fname,
|
||||
const NumpyHeader &header);
|
||||
size_t write_header(const std::filesystem::path &fname, const NumpyHeader &header);
|
||||
size_t write_header(std::ostream &out, const NumpyHeader &header);
|
||||
|
||||
} // namespace NumpyHelpers
|
||||
|
@ -18,15 +18,15 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
|
||||
uint32_t m_samples;
|
||||
NDArray<uint32_t, 2> m_cur_samples;
|
||||
|
||||
// TODO! in case of int needs to be changed to uint64_t
|
||||
|
||||
//TODO! in case of int needs to be changed to uint64_t
|
||||
NDArray<SUM_TYPE, 2> m_sum;
|
||||
NDArray<SUM_TYPE, 2> m_sum2;
|
||||
|
||||
// Cache mean since it is used over and over in the ClusterFinder
|
||||
// This optimization is related to the access pattern of the ClusterFinder
|
||||
// Relies on having more reads than pushes to the pedestal
|
||||
NDArray<SUM_TYPE, 2> m_mean;
|
||||
//Cache mean since it is used over and over in the ClusterFinder
|
||||
//This optimization is related to the access pattern of the ClusterFinder
|
||||
//Relies on having more reads than pushes to the pedestal
|
||||
NDArray<SUM_TYPE, 2> m_mean;
|
||||
|
||||
public:
|
||||
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
|
||||
@ -42,7 +42,9 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
}
|
||||
~Pedestal() = default;
|
||||
|
||||
NDArray<SUM_TYPE, 2> mean() { return m_mean; }
|
||||
NDArray<SUM_TYPE, 2> mean() {
|
||||
return m_mean;
|
||||
}
|
||||
|
||||
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
|
||||
return m_mean(row, col);
|
||||
@ -69,6 +71,8 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
return variance_array;
|
||||
}
|
||||
|
||||
|
||||
|
||||
NDArray<SUM_TYPE, 2> std() {
|
||||
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
@ -79,6 +83,8 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
return standard_deviation_array;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void clear() {
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
@ -86,12 +92,16 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_mean = 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void clear(const uint32_t row, const uint32_t col) {
|
||||
m_sum(row, col) = 0;
|
||||
m_sum2(row, col) = 0;
|
||||
m_cur_samples(row, col) = 0;
|
||||
m_mean(row, col) = 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <typename T> void push(NDView<T, 2> frame) {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
@ -112,7 +122,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
/**
|
||||
* Push but don't update the cached mean. Speeds up the process
|
||||
* when initializing the pedestal.
|
||||
*
|
||||
*
|
||||
*/
|
||||
template <typename T> void push_no_update(NDView<T, 2> frame) {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
@ -130,6 +140,9 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T> void push(Frame &frame) {
|
||||
assert(frame.rows() == static_cast<size_t>(m_rows) &&
|
||||
frame.cols() == static_cast<size_t>(m_cols));
|
||||
@ -157,8 +170,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_samples;
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
|
||||
}
|
||||
// Since we just did a push we know that m_cur_samples(row, col) is at
|
||||
// least 1
|
||||
//Since we just did a push we know that m_cur_samples(row, col) is at least 1
|
||||
m_mean(row, col) = m_sum(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
|
||||
@ -171,8 +183,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
m_cur_samples(row, col)++;
|
||||
} else {
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_cur_samples(row, col);
|
||||
m_sum2(row, col) +=
|
||||
val * val - m_sum2(row, col) / m_cur_samples(row, col);
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
}
|
||||
|
||||
@ -180,16 +191,19 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
* @brief Update the mean of the pedestal. This is used after having done
|
||||
* push_no_update. It is not necessary to call this function after push.
|
||||
*/
|
||||
void update_mean() { m_mean = m_sum / m_cur_samples; }
|
||||
void update_mean(){
|
||||
m_mean = m_sum / m_cur_samples;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void push_fast(const uint32_t row, const uint32_t col, const T val_) {
|
||||
// Assume we reached the steady state where all pixels have
|
||||
// m_samples samples
|
||||
template<typename T>
|
||||
void push_fast(const uint32_t row, const uint32_t col, const T val_){
|
||||
//Assume we reached the steady state where all pixels have
|
||||
//m_samples samples
|
||||
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
|
||||
m_sum(row, col) += val - m_sum(row, col) / m_samples;
|
||||
m_sum2(row, col) += val * val - m_sum2(row, col) / m_samples;
|
||||
m_mean(row, col) = m_sum(row, col) / m_samples;
|
||||
}
|
||||
|
||||
};
|
||||
} // namespace aare
|
@ -1,7 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
@ -10,11 +10,11 @@ NDArray<ssize_t, 2> GenerateMoench05PixelMap();
|
||||
NDArray<ssize_t, 2> GenerateMoench05PixelMap1g();
|
||||
NDArray<ssize_t, 2> GenerateMoench05PixelMapOld();
|
||||
|
||||
// Matterhorn02
|
||||
NDArray<ssize_t, 2> GenerateMH02SingleCounterPixelMap();
|
||||
//Matterhorn02
|
||||
NDArray<ssize_t, 2>GenerateMH02SingleCounterPixelMap();
|
||||
NDArray<ssize_t, 3> GenerateMH02FourCounterPixelMap();
|
||||
|
||||
// Eiger
|
||||
NDArray<ssize_t, 2> GenerateEigerFlipRowsPixelMap();
|
||||
//Eiger
|
||||
NDArray<ssize_t, 2>GenerateEigerFlipRowsPixelMap();
|
||||
|
||||
} // namespace aare
|
@ -18,9 +18,9 @@
|
||||
// @author Jordan DeLong (delong.j@fb.com)
|
||||
|
||||
// Changes made by PSD Detector Group:
|
||||
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size
|
||||
// = 128; from folly/lang/Align.h Changed extension to .hpp Changed namespace to
|
||||
// aare
|
||||
// Copied: Line 34 constexpr std::size_t hardware_destructive_interference_size = 128; from folly/lang/Align.h
|
||||
// Changed extension to .hpp
|
||||
// Changed namespace to aare
|
||||
|
||||
#pragma once
|
||||
|
||||
@ -45,14 +45,15 @@ template <class T> struct ProducerConsumerQueue {
|
||||
ProducerConsumerQueue(const ProducerConsumerQueue &) = delete;
|
||||
ProducerConsumerQueue &operator=(const ProducerConsumerQueue &) = delete;
|
||||
|
||||
ProducerConsumerQueue(ProducerConsumerQueue &&other) {
|
||||
|
||||
ProducerConsumerQueue(ProducerConsumerQueue &&other){
|
||||
size_ = other.size_;
|
||||
records_ = other.records_;
|
||||
other.records_ = nullptr;
|
||||
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
|
||||
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other) {
|
||||
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other){
|
||||
size_ = other.size_;
|
||||
records_ = other.records_;
|
||||
other.records_ = nullptr;
|
||||
@ -60,17 +61,16 @@ template <class T> struct ProducerConsumerQueue {
|
||||
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
|
||||
return *this;
|
||||
}
|
||||
|
||||
ProducerConsumerQueue() : ProducerConsumerQueue(2){};
|
||||
|
||||
|
||||
ProducerConsumerQueue():ProducerConsumerQueue(2){};
|
||||
// size must be >= 2.
|
||||
//
|
||||
// Also, note that the number of usable slots in the queue at any
|
||||
// given time is actually (size-1), so if you start with an empty queue,
|
||||
// isFull() will return true after size-1 insertions.
|
||||
explicit ProducerConsumerQueue(uint32_t size)
|
||||
: size_(size),
|
||||
records_(static_cast<T *>(std::malloc(sizeof(T) * size))),
|
||||
readIndex_(0), writeIndex_(0) {
|
||||
: size_(size), records_(static_cast<T *>(std::malloc(sizeof(T) * size))), readIndex_(0), writeIndex_(0) {
|
||||
assert(size >= 2);
|
||||
if (!records_) {
|
||||
throw std::bad_alloc();
|
||||
@ -154,8 +154,7 @@ template <class T> struct ProducerConsumerQueue {
|
||||
}
|
||||
|
||||
bool isEmpty() const {
|
||||
return readIndex_.load(std::memory_order_acquire) ==
|
||||
writeIndex_.load(std::memory_order_acquire);
|
||||
return readIndex_.load(std::memory_order_acquire) == writeIndex_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
bool isFull() const {
|
||||
@ -176,8 +175,7 @@ template <class T> struct ProducerConsumerQueue {
|
||||
// be removing items concurrently).
|
||||
// * It is undefined to call this from any other thread.
|
||||
size_t sizeGuess() const {
|
||||
int ret = writeIndex_.load(std::memory_order_acquire) -
|
||||
readIndex_.load(std::memory_order_acquire);
|
||||
int ret = writeIndex_.load(std::memory_order_acquire) - readIndex_.load(std::memory_order_acquire);
|
||||
if (ret < 0) {
|
||||
ret += size_;
|
||||
}
|
||||
@ -194,7 +192,7 @@ template <class T> struct ProducerConsumerQueue {
|
||||
// const uint32_t size_;
|
||||
uint32_t size_;
|
||||
// T *const records_;
|
||||
T *records_;
|
||||
T* records_;
|
||||
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex readIndex_;
|
||||
alignas(hardware_destructive_interference_size) AtomicIndex writeIndex_;
|
||||
|
@ -1,10 +1,11 @@
|
||||
#pragma once
|
||||
#include "aare/FileInterface.hpp"
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/Frame.hpp"
|
||||
#include "aare/NDArray.hpp" //for pixel map
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
|
||||
#include <optional>
|
||||
|
||||
namespace aare {
|
||||
@ -29,11 +30,22 @@ struct ModuleConfig {
|
||||
* Consider using that unless you need raw file specific functionality.
|
||||
*/
|
||||
class RawFile : public FileInterface {
|
||||
std::vector<std::unique_ptr<RawSubFile>> m_subfiles;
|
||||
size_t n_subfiles{}; //f0,f1...fn
|
||||
size_t n_subfile_parts{}; // d0,d1...dn
|
||||
//TODO! move to vector of SubFile instead of pointers
|
||||
std::vector<std::vector<RawSubFile *>> subfiles; //subfiles[f0,f1...fn][d0,d1...dn]
|
||||
// std::vector<xy> positions;
|
||||
|
||||
ModuleConfig cfg{0, 0};
|
||||
|
||||
RawMasterFile m_master;
|
||||
|
||||
size_t m_current_frame{};
|
||||
size_t m_current_subfile{};
|
||||
|
||||
// std::vector<ModuleGeometry> m_module_pixel_0;
|
||||
// size_t m_rows{};
|
||||
// size_t m_cols{};
|
||||
|
||||
DetectorGeometry m_geometry;
|
||||
|
||||
public:
|
||||
@ -44,7 +56,7 @@ class RawFile : public FileInterface {
|
||||
|
||||
*/
|
||||
RawFile(const std::filesystem::path &fname, const std::string &mode = "r");
|
||||
virtual ~RawFile() override = default;
|
||||
virtual ~RawFile() override;
|
||||
|
||||
Frame read_frame() override;
|
||||
Frame read_frame(size_t frame_number) override;
|
||||
@ -52,10 +64,10 @@ class RawFile : public FileInterface {
|
||||
void read_into(std::byte *image_buf) override;
|
||||
void read_into(std::byte *image_buf, size_t n_frames) override;
|
||||
|
||||
// TODO! do we need to adapt the API?
|
||||
//TODO! do we need to adapt the API?
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header);
|
||||
void read_into(std::byte *image_buf, size_t n_frames,
|
||||
DetectorHeader *header);
|
||||
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header);
|
||||
|
||||
|
||||
size_t frame_number(size_t frame_index) override;
|
||||
size_t bytes_per_frame() override;
|
||||
@ -68,21 +80,24 @@ class RawFile : public FileInterface {
|
||||
size_t cols() const override;
|
||||
size_t bitdepth() const override;
|
||||
xy geometry();
|
||||
size_t n_modules() const;
|
||||
|
||||
size_t n_mod() const;
|
||||
|
||||
RawMasterFile master() const;
|
||||
|
||||
|
||||
|
||||
DetectorType detector_type() const override;
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
* @brief read the frame at the given frame index into the image buffer
|
||||
* @param frame_number frame number to read
|
||||
* @param image_buf buffer to store the frame
|
||||
*/
|
||||
|
||||
void get_frame_into(size_t frame_index, std::byte *frame_buffer,
|
||||
DetectorHeader *header = nullptr);
|
||||
void get_frame_into(size_t frame_index, std::byte *frame_buffer, DetectorHeader *header = nullptr);
|
||||
|
||||
|
||||
/**
|
||||
* @brief get the frame at the given frame index
|
||||
@ -91,6 +106,8 @@ class RawFile : public FileInterface {
|
||||
*/
|
||||
Frame get_frame(size_t frame_index);
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief read the header of the file
|
||||
* @param fname path to the data subfile
|
||||
@ -98,8 +115,12 @@ class RawFile : public FileInterface {
|
||||
*/
|
||||
static DetectorHeader read_header(const std::filesystem::path &fname);
|
||||
|
||||
// void update_geometry_with_roi();
|
||||
int find_number_of_subfiles();
|
||||
|
||||
void open_subfiles();
|
||||
void find_geometry();
|
||||
};
|
||||
|
||||
|
||||
} // namespace aare
|
@ -45,7 +45,7 @@ class ScanParameters {
|
||||
int m_start = 0;
|
||||
int m_stop = 0;
|
||||
int m_step = 0;
|
||||
// TODO! add settleTime, requires string to time conversion
|
||||
//TODO! add settleTime, requires string to time conversion
|
||||
|
||||
public:
|
||||
ScanParameters(const std::string &par);
|
||||
@ -61,6 +61,7 @@ class ScanParameters {
|
||||
void increment_stop();
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief Class for parsing a master file either in our .json format or the old
|
||||
* .raw format
|
||||
@ -100,6 +101,7 @@ class RawMasterFile {
|
||||
|
||||
std::optional<ROI> m_roi;
|
||||
|
||||
|
||||
public:
|
||||
RawMasterFile(const std::filesystem::path &fpath);
|
||||
|
||||
@ -119,7 +121,6 @@ class RawMasterFile {
|
||||
|
||||
size_t total_frames_expected() const;
|
||||
xy geometry() const;
|
||||
size_t n_modules() const;
|
||||
|
||||
std::optional<size_t> analog_samples() const;
|
||||
std::optional<size_t> digital_samples() const;
|
||||
@ -127,8 +128,10 @@ class RawMasterFile {
|
||||
std::optional<size_t> number_of_rows() const;
|
||||
std::optional<uint8_t> quad() const;
|
||||
|
||||
|
||||
std::optional<ROI> roi() const;
|
||||
|
||||
|
||||
ScanParameters scan_parameters() const;
|
||||
|
||||
private:
|
||||
|
@ -10,34 +10,23 @@
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
* @brief Class to read a singe subfile written in .raw format. Used from
|
||||
* RawFile to read the entire detector. Can be used directly to read part of the
|
||||
* image.
|
||||
* @brief Class to read a singe subfile written in .raw format. Used from RawFile to read
|
||||
* the entire detector. Can be used directly to read part of the image.
|
||||
*/
|
||||
class RawSubFile {
|
||||
protected:
|
||||
std::ifstream m_file;
|
||||
DetectorType m_detector_type;
|
||||
size_t m_bitdepth;
|
||||
std::filesystem::path m_path; //!< path to the subfile
|
||||
std::string m_base_name; //!< base name used for formatting file names
|
||||
size_t m_offset{}; //!< file index of the first file, allow starting at non
|
||||
//!< zero file
|
||||
size_t m_total_frames{}; //!< total number of frames in the series of files
|
||||
std::filesystem::path m_fname;
|
||||
size_t m_rows{};
|
||||
size_t m_cols{};
|
||||
size_t m_bytes_per_frame{};
|
||||
|
||||
int m_module_index{};
|
||||
size_t m_current_file_index{}; //!< The index of the open file
|
||||
size_t m_current_frame_index{}; //!< The index of the current frame (with
|
||||
//!< reference to all files)
|
||||
std::vector<size_t>
|
||||
m_last_frame_in_file{}; //!< Used for seeking to the correct file
|
||||
|
||||
size_t m_num_frames{};
|
||||
uint32_t m_pos_row{};
|
||||
uint32_t m_pos_col{};
|
||||
|
||||
|
||||
|
||||
std::optional<NDArray<ssize_t, 2>> m_pixel_map;
|
||||
|
||||
public:
|
||||
@ -51,14 +40,12 @@ class RawSubFile {
|
||||
* @throws std::invalid_argument if the detector,type pair is not supported
|
||||
*/
|
||||
RawSubFile(const std::filesystem::path &fname, DetectorType detector,
|
||||
size_t rows, size_t cols, size_t bitdepth, uint32_t pos_row = 0,
|
||||
uint32_t pos_col = 0);
|
||||
size_t rows, size_t cols, size_t bitdepth, uint32_t pos_row = 0, uint32_t pos_col = 0);
|
||||
|
||||
~RawSubFile() = default;
|
||||
/**
|
||||
* @brief Seek to the given frame number
|
||||
* @note Puts the file pointer at the start of the header, not the start of
|
||||
* the data
|
||||
* @note Puts the file pointer at the start of the header, not the start of the data
|
||||
* @param frame_index frame position in file to seek to
|
||||
* @throws std::runtime_error if the frame number is out of range
|
||||
*/
|
||||
@ -66,30 +53,26 @@ class RawSubFile {
|
||||
size_t tell();
|
||||
|
||||
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
|
||||
void read_into(std::byte *image_buf, size_t n_frames,
|
||||
DetectorHeader *header = nullptr);
|
||||
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header= nullptr);
|
||||
void get_part(std::byte *buffer, size_t frame_index);
|
||||
|
||||
|
||||
void read_header(DetectorHeader *header);
|
||||
|
||||
|
||||
size_t rows() const;
|
||||
size_t cols() const;
|
||||
|
||||
|
||||
size_t frame_number(size_t frame_index);
|
||||
|
||||
size_t bytes_per_frame() const { return m_bytes_per_frame; }
|
||||
size_t pixels_per_frame() const { return m_rows * m_cols; }
|
||||
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
|
||||
|
||||
size_t frames_in_file() const { return m_total_frames; }
|
||||
size_t frames_in_file() const { return m_num_frames; }
|
||||
|
||||
private:
|
||||
template <typename T> void read_with_map(std::byte *image_buf);
|
||||
private:
|
||||
template <typename T>
|
||||
void read_with_map(std::byte *image_buf);
|
||||
|
||||
void parse_fname(const std::filesystem::path &fname);
|
||||
void scan_files();
|
||||
void open_file(size_t file_index);
|
||||
std::filesystem::path fpath(size_t file_index) const;
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -38,13 +38,11 @@ template <typename T> class VarClusterFinder {
|
||||
bool use_noise_map = false;
|
||||
int peripheralThresholdFactor_ = 5;
|
||||
int current_label;
|
||||
const std::array<int, 4> di{
|
||||
{0, -1, -1, -1}}; // row ### 8-neighbour by scaning from left to right
|
||||
const std::array<int, 4> dj{
|
||||
{-1, -1, 0, 1}}; // col ### 8-neighbour by scaning from top to bottom
|
||||
const std::array<int, 4> di{{0, -1, -1, -1}}; // row ### 8-neighbour by scaning from left to right
|
||||
const std::array<int, 4> dj{{-1, -1, 0, 1}}; // col ### 8-neighbour by scaning from top to bottom
|
||||
const std::array<int, 8> di_{{0, 0, -1, 1, -1, 1, -1, 1}}; // row
|
||||
const std::array<int, 8> dj_{{-1, 1, 0, 0, 1, -1, -1, 1}}; // col
|
||||
std::map<int, int> child; // heirachy: key: child; val: parent
|
||||
std::map<int, int> child; // heirachy: key: child; val: parent
|
||||
std::unordered_map<int, Hit> h_size;
|
||||
std::vector<Hit> hits;
|
||||
// std::vector<std::vector<int16_t>> row
|
||||
@ -52,8 +50,7 @@ template <typename T> class VarClusterFinder {
|
||||
|
||||
public:
|
||||
VarClusterFinder(Shape<2> shape, T threshold)
|
||||
: shape_(shape), labeled_(shape, 0), peripheral_labeled_(shape, 0),
|
||||
binary_(shape), threshold_(threshold) {
|
||||
: shape_(shape), labeled_(shape, 0), peripheral_labeled_(shape, 0), binary_(shape), threshold_(threshold) {
|
||||
hits.reserve(2000);
|
||||
}
|
||||
|
||||
@ -63,9 +60,7 @@ template <typename T> class VarClusterFinder {
|
||||
noiseMap = noise_map;
|
||||
use_noise_map = true;
|
||||
}
|
||||
void set_peripheralThresholdFactor(int factor) {
|
||||
peripheralThresholdFactor_ = factor;
|
||||
}
|
||||
void set_peripheralThresholdFactor(int factor) { peripheralThresholdFactor_ = factor; }
|
||||
void find_clusters(NDView<T, 2> img);
|
||||
void find_clusters_X(NDView<T, 2> img);
|
||||
void rec_FillHit(int clusterIndex, int i, int j);
|
||||
@ -149,8 +144,7 @@ template <typename T> int VarClusterFinder<T>::check_neighbours(int i, int j) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void VarClusterFinder<T>::find_clusters(NDView<T, 2> img) {
|
||||
template <typename T> void VarClusterFinder<T>::find_clusters(NDView<T, 2> img) {
|
||||
original_ = img;
|
||||
labeled_ = 0;
|
||||
peripheral_labeled_ = 0;
|
||||
@ -162,8 +156,7 @@ void VarClusterFinder<T>::find_clusters(NDView<T, 2> img) {
|
||||
store_clusters();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void VarClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
|
||||
template <typename T> void VarClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
|
||||
original_ = img;
|
||||
int clusterIndex = 0;
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
@ -182,8 +175,7 @@ void VarClusterFinder<T>::find_clusters_X(NDView<T, 2> img) {
|
||||
h_size.clear();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void VarClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
template <typename T> void VarClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
// printf("original_(%d, %d)=%f\n", i, j, original_(i,j));
|
||||
// printf("h_size[%d].size=%d\n", clusterIndex, h_size[clusterIndex].size);
|
||||
if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE) {
|
||||
@ -211,15 +203,11 @@ void VarClusterFinder<T>::rec_FillHit(int clusterIndex, int i, int j) {
|
||||
} else {
|
||||
// if (h_size[clusterIndex].size < MAX_CLUSTER_SIZE){
|
||||
// h_size[clusterIndex].size += 1;
|
||||
// h_size[clusterIndex].rows[h_size[clusterIndex].size] =
|
||||
// row; h_size[clusterIndex].cols[h_size[clusterIndex].size]
|
||||
// = col;
|
||||
// h_size[clusterIndex].enes[h_size[clusterIndex].size] =
|
||||
// original_(row, col);
|
||||
// h_size[clusterIndex].rows[h_size[clusterIndex].size] = row;
|
||||
// h_size[clusterIndex].cols[h_size[clusterIndex].size] = col;
|
||||
// h_size[clusterIndex].enes[h_size[clusterIndex].size] = original_(row, col);
|
||||
// }// ? weather to include peripheral pixels
|
||||
original_(row, col) =
|
||||
0; // remove peripheral pixels, to avoid potential influence
|
||||
// for pedestal updating
|
||||
original_(row, col) = 0; // remove peripheral pixels, to avoid potential influence for pedestal updating
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -287,8 +275,8 @@ template <typename T> void VarClusterFinder<T>::store_clusters() {
|
||||
for (int i = 0; i < shape_[0]; ++i) {
|
||||
for (int j = 0; j < shape_[1]; ++j) {
|
||||
if (labeled_(i, j) != 0 || false
|
||||
// (i-1 >= 0 and labeled_(i-1, j) != 0) or // another circle of
|
||||
// peripheral pixels (j-1 >= 0 and labeled_(i, j-1) != 0) or
|
||||
// (i-1 >= 0 and labeled_(i-1, j) != 0) or // another circle of peripheral pixels
|
||||
// (j-1 >= 0 and labeled_(i, j-1) != 0) or
|
||||
// (i+1 < shape_[0] and labeled_(i+1, j) != 0) or
|
||||
// (j+1 < shape_[1] and labeled_(i, j+1) != 0)
|
||||
) {
|
||||
|
@ -1,9 +1,9 @@
|
||||
|
||||
#pragma once
|
||||
#include <aare/NDArray.hpp>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <vector>
|
||||
#include <aare/NDArray.hpp>
|
||||
|
||||
namespace aare {
|
||||
/**
|
||||
@ -15,24 +15,26 @@ namespace aare {
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the last element that is smaller than val
|
||||
*
|
||||
*
|
||||
*/
|
||||
template <typename T>
|
||||
size_t last_smaller(const T *first, const T *last, T val) {
|
||||
for (auto iter = first + 1; iter != last; ++iter) {
|
||||
size_t last_smaller(const T* first, const T* last, T val) {
|
||||
for (auto iter = first+1; iter != last; ++iter) {
|
||||
if (*iter >= val) {
|
||||
return std::distance(first, iter - 1);
|
||||
return std::distance(first, iter-1);
|
||||
}
|
||||
}
|
||||
return std::distance(first, last - 1);
|
||||
return std::distance(first, last-1);
|
||||
}
|
||||
|
||||
template <typename T> size_t last_smaller(const NDArray<T, 1> &arr, T val) {
|
||||
template <typename T>
|
||||
size_t last_smaller(const NDArray<T, 1>& arr, T val) {
|
||||
return last_smaller(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T> size_t last_smaller(const std::vector<T> &vec, T val) {
|
||||
return last_smaller(vec.data(), vec.data() + vec.size(), val);
|
||||
template <typename T>
|
||||
size_t last_smaller(const std::vector<T>& vec, T val) {
|
||||
return last_smaller(vec.data(), vec.data()+vec.size(), val);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -46,67 +48,64 @@ template <typename T> size_t last_smaller(const std::vector<T> &vec, T val) {
|
||||
* @return index of the first element that is larger than val
|
||||
*/
|
||||
template <typename T>
|
||||
size_t first_larger(const T *first, const T *last, T val) {
|
||||
size_t first_larger(const T* first, const T* last, T val) {
|
||||
for (auto iter = first; iter != last; ++iter) {
|
||||
if (*iter > val) {
|
||||
return std::distance(first, iter);
|
||||
}
|
||||
}
|
||||
return std::distance(first, last - 1);
|
||||
return std::distance(first, last-1);
|
||||
}
|
||||
|
||||
template <typename T> size_t first_larger(const NDArray<T, 1> &arr, T val) {
|
||||
template <typename T>
|
||||
size_t first_larger(const NDArray<T, 1>& arr, T val) {
|
||||
return first_larger(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T> size_t first_larger(const std::vector<T> &vec, T val) {
|
||||
return first_larger(vec.data(), vec.data() + vec.size(), val);
|
||||
template <typename T>
|
||||
size_t first_larger(const std::vector<T>& vec, T val) {
|
||||
return first_larger(vec.data(), vec.data()+vec.size(), val);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Index of the nearest element to val.
|
||||
* Requires a sorted array. If there is no difference it takes the first
|
||||
* element.
|
||||
* Requires a sorted array. If there is no difference it takes the first element.
|
||||
* @param first iterator to the first element
|
||||
* @param last iterator to the last element
|
||||
* @param val value to compare
|
||||
* @return index of the nearest element
|
||||
*/
|
||||
template <typename T>
|
||||
size_t nearest_index(const T *first, const T *last, T val) {
|
||||
auto iter = std::min_element(first, last, [val](T a, T b) {
|
||||
size_t nearest_index(const T* first, const T* last, T val) {
|
||||
auto iter = std::min_element(first, last,
|
||||
[val](T a, T b) {
|
||||
return std::abs(a - val) < std::abs(b - val);
|
||||
});
|
||||
return std::distance(first, iter);
|
||||
}
|
||||
|
||||
template <typename T> size_t nearest_index(const NDArray<T, 1> &arr, T val) {
|
||||
template <typename T>
|
||||
size_t nearest_index(const NDArray<T, 1>& arr, T val) {
|
||||
return nearest_index(arr.begin(), arr.end(), val);
|
||||
}
|
||||
|
||||
template <typename T> size_t nearest_index(const std::vector<T> &vec, T val) {
|
||||
return nearest_index(vec.data(), vec.data() + vec.size(), val);
|
||||
template <typename T>
|
||||
size_t nearest_index(const std::vector<T>& vec, T val) {
|
||||
return nearest_index(vec.data(), vec.data()+vec.size(), val);
|
||||
}
|
||||
|
||||
template <typename T, size_t N>
|
||||
size_t nearest_index(const std::array<T, N> &arr, T val) {
|
||||
return nearest_index(arr.data(), arr.data() + arr.size(), val);
|
||||
size_t nearest_index(const std::array<T,N>& arr, T val) {
|
||||
return nearest_index(arr.data(), arr.data()+arr.size(), val);
|
||||
}
|
||||
|
||||
template <typename T> std::vector<T> cumsum(const std::vector<T> &vec) {
|
||||
template <typename T>
|
||||
std::vector<T> cumsum(const std::vector<T>& vec) {
|
||||
std::vector<T> result(vec.size());
|
||||
std::partial_sum(vec.begin(), vec.end(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename Container> bool all_equal(const Container &c) {
|
||||
if (!c.empty() &&
|
||||
std::all_of(begin(c), end(c),
|
||||
[c](const typename Container::value_type &element) {
|
||||
return element == c.front();
|
||||
}))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,27 +1,26 @@
|
||||
#pragma once
|
||||
|
||||
#include <aare/NDView.hpp>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <aare/NDView.hpp>
|
||||
namespace aare {
|
||||
|
||||
|
||||
uint16_t adc_sar_05_decode64to16(uint64_t input);
|
||||
uint16_t adc_sar_04_decode64to16(uint64_t input);
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input,
|
||||
NDView<uint16_t, 2> output);
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input,
|
||||
NDView<uint16_t, 2> output);
|
||||
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
|
||||
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Apply custom weights to a 16-bit input value. Will sum up
|
||||
* weights[i]**i for each bit i that is set in the input value.
|
||||
* @brief Apply custom weights to a 16-bit input value. Will sum up weights[i]**i
|
||||
* for each bit i that is set in the input value.
|
||||
* @throws std::out_of_range if weights.size() < 16
|
||||
* @param input 16-bit input value
|
||||
* @param weights vector of weights, size must be less than or equal to 16
|
||||
*/
|
||||
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights);
|
||||
|
||||
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output,
|
||||
const NDView<double, 1> weights);
|
||||
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double, 1> weights);
|
||||
|
||||
} // namespace aare
|
||||
|
@ -9,6 +9,7 @@
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <type_traits>
|
||||
#include <variant>
|
||||
#include <vector>
|
||||
|
||||
@ -199,8 +200,6 @@ struct DetectorGeometry {
|
||||
int module_gap_row{};
|
||||
int module_gap_col{};
|
||||
std::vector<ModuleGeometry> module_pixel_0;
|
||||
|
||||
auto size() const { return module_pixel_0.size(); }
|
||||
};
|
||||
|
||||
struct ROI {
|
||||
@ -260,4 +259,12 @@ template <> FrameDiscardPolicy StringTo(const std::string & /*mode*/);
|
||||
|
||||
using DataTypeVariants = std::variant<uint16_t, uint32_t>;
|
||||
|
||||
template <typename T, bool = std::is_integral_v<T>> struct make_signed {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <typename T> struct make_signed<T, true> {
|
||||
using type = std::make_signed_t<T>;
|
||||
};
|
||||
|
||||
} // namespace aare
|
@ -1,15 +1,16 @@
|
||||
#pragma once
|
||||
#include "aare/RawMasterFile.hpp" //ROI refactor away
|
||||
#include "aare/defs.hpp"
|
||||
namespace aare {
|
||||
#include "aare/RawMasterFile.hpp" //ROI refactor away
|
||||
namespace aare{
|
||||
|
||||
/**
|
||||
* @brief Update the detector geometry given a region of interest
|
||||
*
|
||||
* @param geo
|
||||
* @param roi
|
||||
* @return DetectorGeometry
|
||||
*
|
||||
* @param geo
|
||||
* @param roi
|
||||
* @return DetectorGeometry
|
||||
*/
|
||||
DetectorGeometry update_geometry_with_roi(DetectorGeometry geo, ROI roi);
|
||||
|
||||
|
||||
} // namespace aare
|
@ -1,141 +0,0 @@
|
||||
#pragma once
|
||||
/*Utility to log to console*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <sys/time.h>
|
||||
|
||||
namespace aare {
|
||||
|
||||
#define RED "\x1b[31m"
|
||||
#define GREEN "\x1b[32m"
|
||||
#define YELLOW "\x1b[33m"
|
||||
#define BLUE "\x1b[34m"
|
||||
#define MAGENTA "\x1b[35m"
|
||||
#define CYAN "\x1b[36m"
|
||||
#define GRAY "\x1b[37m"
|
||||
#define DARKGRAY "\x1b[30m"
|
||||
|
||||
#define BG_BLACK "\x1b[48;5;232m"
|
||||
#define BG_RED "\x1b[41m"
|
||||
#define BG_GREEN "\x1b[42m"
|
||||
#define BG_YELLOW "\x1b[43m"
|
||||
#define BG_BLUE "\x1b[44m"
|
||||
#define BG_MAGENTA "\x1b[45m"
|
||||
#define BG_CYAN "\x1b[46m"
|
||||
#define RESET "\x1b[0m"
|
||||
#define BOLD "\x1b[1m"
|
||||
|
||||
enum TLogLevel {
|
||||
logERROR,
|
||||
logWARNING,
|
||||
logINFOBLUE,
|
||||
logINFOGREEN,
|
||||
logINFORED,
|
||||
logINFOCYAN,
|
||||
logINFOMAGENTA,
|
||||
logINFO,
|
||||
logDEBUG, // constructors, destructors etc. should still give too much
|
||||
// output
|
||||
logDEBUG1,
|
||||
logDEBUG2,
|
||||
logDEBUG3,
|
||||
logDEBUG4,
|
||||
logDEBUG5
|
||||
};
|
||||
|
||||
// Compiler should optimize away anything below this value
|
||||
#ifndef AARE_LOG_LEVEL
|
||||
#define AARE_LOG_LEVEL \
|
||||
"LOG LEVEL NOT SET IN CMAKE" // This is configured in the main
|
||||
// CMakeLists.txt
|
||||
#endif
|
||||
|
||||
#define __AT__ \
|
||||
std::string(__FILE__) + std::string("::") + std::string(__func__) + \
|
||||
std::string("(): ")
|
||||
#define __SHORT_FORM_OF_FILE__ \
|
||||
(strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
|
||||
#define __SHORT_AT__ \
|
||||
std::string(__SHORT_FORM_OF_FILE__) + std::string("::") + \
|
||||
std::string(__func__) + std::string("(): ")
|
||||
|
||||
class Logger {
|
||||
std::ostringstream os;
|
||||
TLogLevel m_level = AARE_LOG_LEVEL;
|
||||
|
||||
public:
|
||||
Logger() = default;
|
||||
explicit Logger(TLogLevel level) : m_level(level){};
|
||||
~Logger() {
|
||||
// output in the destructor to allow for << syntax
|
||||
os << RESET << '\n';
|
||||
std::clog << os.str() << std::flush; // Single write
|
||||
}
|
||||
|
||||
static TLogLevel &
|
||||
ReportingLevel() { // singelton eeh TODO! Do we need a runtime option?
|
||||
static TLogLevel reportingLevel = logDEBUG5;
|
||||
return reportingLevel;
|
||||
}
|
||||
|
||||
// Danger this buffer need as many elements as TLogLevel
|
||||
static const char *Color(TLogLevel level) noexcept {
|
||||
static const char *const colors[] = {
|
||||
RED BOLD, YELLOW BOLD, BLUE, GREEN, RED, CYAN, MAGENTA,
|
||||
RESET, RESET, RESET, RESET, RESET, RESET, RESET};
|
||||
// out of bounds
|
||||
if (level < 0 || level >= sizeof(colors) / sizeof(colors[0])) {
|
||||
return RESET;
|
||||
}
|
||||
return colors[level];
|
||||
}
|
||||
|
||||
// Danger this buffer need as many elements as TLogLevel
|
||||
static std::string ToString(TLogLevel level) {
|
||||
static const char *const buffer[] = {
|
||||
"ERROR", "WARNING", "INFO", "INFO", "INFO",
|
||||
"INFO", "INFO", "INFO", "DEBUG", "DEBUG1",
|
||||
"DEBUG2", "DEBUG3", "DEBUG4", "DEBUG5"};
|
||||
// out of bounds
|
||||
if (level < 0 || level >= sizeof(buffer) / sizeof(buffer[0])) {
|
||||
return "UNKNOWN";
|
||||
}
|
||||
return buffer[level];
|
||||
}
|
||||
|
||||
std::ostringstream &Get() {
|
||||
os << Color(m_level) << "- " << Timestamp() << " " << ToString(m_level)
|
||||
<< ": ";
|
||||
return os;
|
||||
}
|
||||
|
||||
static std::string Timestamp() {
|
||||
constexpr size_t buffer_len = 12;
|
||||
char buffer[buffer_len];
|
||||
time_t t;
|
||||
::time(&t);
|
||||
tm r;
|
||||
strftime(buffer, buffer_len, "%X", localtime_r(&t, &r));
|
||||
buffer[buffer_len - 1] = '\0';
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, nullptr);
|
||||
constexpr size_t result_len = 100;
|
||||
char result[result_len];
|
||||
snprintf(result, result_len, "%s.%03ld", buffer,
|
||||
static_cast<long>(tv.tv_usec) / 1000);
|
||||
result[result_len - 1] = '\0';
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// TODO! Do we need to keep the runtime option?
|
||||
#define LOG(level) \
|
||||
if (level > AARE_LOG_LEVEL) \
|
||||
; \
|
||||
else if (level > aare::Logger::ReportingLevel()) \
|
||||
; \
|
||||
else \
|
||||
aare::Logger(level).Get()
|
||||
|
||||
} // namespace aare
|
@ -4,9 +4,9 @@
|
||||
#include <string>
|
||||
namespace aare {
|
||||
|
||||
/**
|
||||
/**
|
||||
* @brief Get the error message from an ifstream object
|
||||
*/
|
||||
*/
|
||||
std::string ifstream_error_msg(std::ifstream &ifs);
|
||||
|
||||
} // namespace aare
|
@ -1,18 +1,18 @@
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename F>
|
||||
void RunInParallel(F func, const std::vector<std::pair<int, int>> &tasks) {
|
||||
// auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
std::vector<std::thread> threads;
|
||||
for (auto &task : tasks) {
|
||||
threads.push_back(std::thread(func, task.first, task.second));
|
||||
template<typename F>
|
||||
void RunInParallel(F func, const std::vector<std::pair<int, int>>& tasks) {
|
||||
// auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
std::vector<std::thread> threads;
|
||||
for (auto &task : tasks) {
|
||||
threads.push_back(std::thread(func, task.first, task.second));
|
||||
}
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
for (auto &thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
}
|
||||
} // namespace aare
|
@ -1,39 +1,22 @@
|
||||
from . import _aare
|
||||
|
||||
from ._aare import ClusterFinder_Cluster3x3i, ClusterFinder_Cluster2x2i, ClusterFinderMT_Cluster3x3i, ClusterFinderMT_Cluster2x2i, ClusterCollector_Cluster3x3i, ClusterCollector_Cluster2x2i
|
||||
|
||||
|
||||
from ._aare import ClusterFileSink_Cluster3x3i, ClusterFileSink_Cluster2x2i
|
||||
import numpy as np
|
||||
|
||||
_supported_cluster_sizes = [(2,2), (3,3), (5,5), (7,7), (9,9),]
|
||||
|
||||
def _type_to_char(dtype):
|
||||
if dtype == np.int32:
|
||||
return 'i'
|
||||
elif dtype == np.float32:
|
||||
return 'f'
|
||||
elif dtype == np.float64:
|
||||
return 'd'
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32, np.float32, and np.float64 are supported.")
|
||||
|
||||
def _get_class(name, cluster_size, dtype):
|
||||
"""
|
||||
Helper function to get the class based on the name, cluster size, and dtype.
|
||||
"""
|
||||
try:
|
||||
class_name = f"{name}_Cluster{cluster_size[0]}x{cluster_size[1]}{_type_to_char(dtype)}"
|
||||
cls = getattr(_aare, class_name)
|
||||
except AttributeError:
|
||||
raise ValueError(f"Unsupported combination of type and cluster size: {dtype}/{cluster_size} when requesting {class_name}")
|
||||
return cls
|
||||
|
||||
|
||||
|
||||
def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
|
||||
"""
|
||||
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
|
||||
the templated ClusterFinder in C++.
|
||||
"""
|
||||
cls = _get_class("ClusterFinder", cluster_size, dtype)
|
||||
return cls(image_size, n_sigma=n_sigma, capacity=capacity)
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterFinder_Cluster3x3i(image_size, n_sigma = n_sigma, capacity=capacity)
|
||||
elif dtype == np.int32 and cluster_size == (2,2):
|
||||
return ClusterFinder_Cluster2x2i(image_size, n_sigma = n_sigma, capacity=capacity)
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
|
||||
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
|
||||
@ -42,9 +25,15 @@ def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5,
|
||||
the templated ClusterFinderMT in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFinderMT", cluster_size, dtype)
|
||||
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads)
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterFinderMT_Cluster3x3i(image_size, n_sigma = n_sigma,
|
||||
capacity = capacity, n_threads = n_threads)
|
||||
elif dtype == np.int32 and cluster_size == (2,2):
|
||||
return ClusterFinderMT_Cluster2x2i(image_size, n_sigma = n_sigma,
|
||||
capacity = capacity, n_threads = n_threads)
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
|
||||
def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
|
||||
@ -53,8 +42,14 @@ def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
|
||||
the templated ClusterCollector in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterCollector", cluster_size, dtype)
|
||||
return cls(clusterfindermt)
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterCollector_Cluster3x3i(clusterfindermt)
|
||||
elif dtype == np.int32 and cluster_size == (2,2):
|
||||
return ClusterCollector_Cluster2x2i(clusterfindermt)
|
||||
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):
|
||||
"""
|
||||
@ -62,26 +57,11 @@ def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):
|
||||
the templated ClusterCollector in C++.
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFileSink", clusterfindermt.cluster_size, dtype)
|
||||
return cls(clusterfindermt, cluster_file)
|
||||
|
||||
|
||||
def ClusterFile(fname, cluster_size=(3,3), dtype=np.int32, chunk_size = 1000):
|
||||
"""
|
||||
Factory function to create a ClusterFile object. Provides a cleaner syntax for
|
||||
the templated ClusterFile in C++.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from aare import ClusterFile
|
||||
|
||||
with ClusterFile("clusters.clust", cluster_size=(3,3), dtype=np.int32) as cf:
|
||||
# cf is now a ClusterFile_Cluster3x3i object but you don't need to know that.
|
||||
for clusters in cf:
|
||||
# Loop over clusters in chunks of 1000
|
||||
# The type of clusters will be a ClusterVector_Cluster3x3i in this case
|
||||
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFile", cluster_size, dtype)
|
||||
return cls(fname, chunk_size=chunk_size)
|
||||
if dtype == np.int32 and clusterfindermt.cluster_size == (3,3):
|
||||
return ClusterFileSink_Cluster3x3i(clusterfindermt, cluster_file)
|
||||
elif dtype == np.int32 and clusterfindermt.cluster_size == (2,2):
|
||||
return ClusterFileSink_Cluster2x2i(clusterfindermt, cluster_file)
|
||||
|
||||
else:
|
||||
#TODO! add the other formats
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
@ -5,12 +5,13 @@ from . import _aare
|
||||
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
|
||||
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarClusterFinder
|
||||
from ._aare import DetectorType
|
||||
from ._aare import ClusterFile_Cluster3x3i as ClusterFile
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
|
||||
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, ClusterFileSink, ClusterFile
|
||||
from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, ClusterFileSink
|
||||
from .ClusterVector import ClusterVector
|
||||
|
||||
|
||||
|
@ -1,89 +1,79 @@
|
||||
import sys
|
||||
sys.path.append('/home/l_msdetect/erik/aare/build')
|
||||
|
||||
from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
from aare import RawSubFile, DetectorType, RawFile
|
||||
|
||||
from pathlib import Path
|
||||
path = Path("/home/l_msdetect/erik/data/aare-test-data/raw/jungfrau/")
|
||||
f = RawSubFile(path/"jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16)
|
||||
|
||||
# f = RawFile(path/"jungfrau_single_master_0.json")
|
||||
|
||||
|
||||
# from aare._aare import ClusterVector_i, Interpolator
|
||||
|
||||
# import pickle
|
||||
# import numpy as np
|
||||
# import matplotlib.pyplot as plt
|
||||
# import boost_histogram as bh
|
||||
# import torch
|
||||
# import math
|
||||
# import time
|
||||
import pickle
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import boost_histogram as bh
|
||||
import torch
|
||||
import math
|
||||
import time
|
||||
|
||||
|
||||
|
||||
# def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
# """
|
||||
# Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
# The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
# res in one dimesion.
|
||||
# """
|
||||
# x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
# x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
# return 1 / (2*math.pi*sigma**2) * \
|
||||
# torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
|
||||
"""
|
||||
Generate a 2D gaussian as position mx, my, with sigma=sigma.
|
||||
The gaussian is placed on a 2x2 pixel matrix with resolution
|
||||
res in one dimesion.
|
||||
"""
|
||||
x = torch.linspace(0, pixel_size*grid_size, res)
|
||||
x,y = torch.meshgrid(x,x, indexing="ij")
|
||||
return 1 / (2*math.pi*sigma**2) * \
|
||||
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
|
||||
|
||||
# scale = 1000 #Scale factor when converting to integer
|
||||
# pixel_size = 25 #um
|
||||
# grid = 2
|
||||
# resolution = 100
|
||||
# sigma_um = 10
|
||||
# xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
# ticks = [0, 25, 50]
|
||||
scale = 1000 #Scale factor when converting to integer
|
||||
pixel_size = 25 #um
|
||||
grid = 2
|
||||
resolution = 100
|
||||
sigma_um = 10
|
||||
xa = np.linspace(0,grid*pixel_size,resolution)
|
||||
ticks = [0, 25, 50]
|
||||
|
||||
# hit = np.array((20,20))
|
||||
# etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
hit = np.array((20,20))
|
||||
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
|
||||
|
||||
# local_resolution = 99
|
||||
# grid_size = 3
|
||||
# xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
# t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
# pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
# pixels = pixels.numpy()
|
||||
# pixels = (pixels*scale).astype(np.int32)
|
||||
# v = ClusterVector_i(3,3)
|
||||
# v.push_back(1,1, pixels)
|
||||
local_resolution = 99
|
||||
grid_size = 3
|
||||
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
|
||||
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
|
||||
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
|
||||
pixels = pixels.numpy()
|
||||
pixels = (pixels*scale).astype(np.int32)
|
||||
v = ClusterVector_i(3,3)
|
||||
v.push_back(1,1, pixels)
|
||||
|
||||
# with open(etahist_fname, "rb") as f:
|
||||
# hist = pickle.load(f)
|
||||
# eta = hist.view().copy()
|
||||
# etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
# etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
# ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
# p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
with open(etahist_fname, "rb") as f:
|
||||
hist = pickle.load(f)
|
||||
eta = hist.view().copy()
|
||||
etabinsx = np.array(hist.axes.edges.T[0].flat)
|
||||
etabinsy = np.array(hist.axes.edges.T[1].flat)
|
||||
ebins = np.array(hist.axes.edges.T[2].flat)
|
||||
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
|
||||
|
||||
|
||||
|
||||
|
||||
# #Generate the hit
|
||||
#Generate the hit
|
||||
|
||||
|
||||
|
||||
|
||||
# tmp = p.interpolate(v)
|
||||
# print(f'tmp:{tmp}')
|
||||
# pos = np.array((tmp['x'], tmp['y']))*25
|
||||
tmp = p.interpolate(v)
|
||||
print(f'tmp:{tmp}')
|
||||
pos = np.array((tmp['x'], tmp['y']))*25
|
||||
|
||||
|
||||
# print(pixels)
|
||||
# fig, ax = plt.subplots(figsize = (7,7))
|
||||
# ax.pcolormesh(xaxis, xaxis, t)
|
||||
# ax.plot(*pos, 'o')
|
||||
# ax.set_xticks([0,25,50,75])
|
||||
# ax.set_yticks([0,25,50,75])
|
||||
# ax.set_xlim(0,75)
|
||||
# ax.set_ylim(0,75)
|
||||
# ax.grid()
|
||||
# print(f'{hit=}')
|
||||
# print(f'{pos=}')
|
||||
print(pixels)
|
||||
fig, ax = plt.subplots(figsize = (7,7))
|
||||
ax.pcolormesh(xaxis, xaxis, t)
|
||||
ax.plot(*pos, 'o')
|
||||
ax.set_xticks([0,25,50,75])
|
||||
ax.set_yticks([0,25,50,75])
|
||||
ax.set_xlim(0,75)
|
||||
ax.set_ylim(0,75)
|
||||
ax.grid()
|
||||
print(f'{hit=}')
|
||||
print(f'{pos=}')
|
@ -1,64 +0,0 @@
|
||||
#include "aare/Cluster.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <fmt/format.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_Cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
|
||||
m, class_name.c_str(), py::buffer_protocol())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
auto r = data.template unchecked<1>(); // no bounds checks
|
||||
for (py::ssize_t i = 0; i < data.size(); ++i) {
|
||||
cluster.data[i] = r(i);
|
||||
}
|
||||
return cluster;
|
||||
}));
|
||||
|
||||
/*
|
||||
//TODO! Review if to keep or not
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
c.data); // TODO dont iterate over centers!!!
|
||||
|
||||
});
|
||||
*/
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,44 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterCollector(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
|
||||
.def("stop", &ClusterCollector<ClusterType>::stop)
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterCollector<ClusterType> &self) {
|
||||
auto v = new std::vector<ClusterVector<ClusterType>>(
|
||||
self.steal_clusters());
|
||||
return v; // TODO change!!!
|
||||
},
|
||||
py::return_value_policy::take_ownership);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,37 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFileSink(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
|
||||
const std::filesystem::path &>())
|
||||
.def("stop", &ClusterFileSink<ClusterType>::stop);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,77 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFinder(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly(
|
||||
"pedestal",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly(
|
||||
"noise",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
bool realloc_same_capacity) {
|
||||
ClusterVector<ClusterType> clusters =
|
||||
self.steal_clusters(realloc_same_capacity);
|
||||
return clusters;
|
||||
},
|
||||
py::arg("realloc_same_capacity") = false)
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -1,81 +0,0 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFinderMT(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0)
|
||||
.def_property_readonly(
|
||||
"cluster_size",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self) {
|
||||
return py::make_tuple(ClusterSizeX, ClusterSizeY);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
|
||||
.def(
|
||||
"pedestal",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},
|
||||
py::arg("thread_index") = 0)
|
||||
.def(
|
||||
"noise",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},
|
||||
py::arg("thread_index") = 0);
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -44,11 +44,10 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
auto *vec = new std::vector<Type>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Type>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2", [](ClusterVector<ClusterType> &self){
|
||||
auto *vec = new std::vector<Type>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
@ -102,6 +101,4 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
|
||||
return hitmap;
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
}
|
211
python/src/cluster.hpp
Normal file
211
python/src/cluster.hpp
Normal file
@ -0,0 +1,211 @@
|
||||
#include "aare/ClusterCollector.hpp"
|
||||
#include "aare/ClusterFileSink.hpp"
|
||||
#include "aare/ClusterFinder.hpp"
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
#include "aare/Pedestal.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
#include <filesystem>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using pd_type = double;
|
||||
|
||||
using namespace aare;
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
void define_cluster(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Cluster{}", typestr);
|
||||
|
||||
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
|
||||
m, class_name.c_str(), py::buffer_protocol())
|
||||
|
||||
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
|
||||
py::buffer_info buf_info = data.request();
|
||||
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
|
||||
cluster.x = x;
|
||||
cluster.y = y;
|
||||
auto r = data.template unchecked<1>(); // no bounds checks
|
||||
for (py::ssize_t i = 0; i < data.size(); ++i) {
|
||||
cluster.data[i] = r(i);
|
||||
}
|
||||
return cluster;
|
||||
}));
|
||||
|
||||
/*
|
||||
.def_property(
|
||||
"data",
|
||||
[](ClusterType &c) -> py::array {
|
||||
return py::array(py::buffer_info(
|
||||
c.data, sizeof(Type),
|
||||
py::format_descriptor<Type>::format(), // Type
|
||||
// format
|
||||
1, // Number of dimensions
|
||||
{static_cast<ssize_t>(ClusterSizeX *
|
||||
ClusterSizeY)}, // Shape (flattened)
|
||||
{sizeof(Type)} // Stride (step size between elements)
|
||||
));
|
||||
},
|
||||
[](ClusterType &c, py::array_t<Type> arr) {
|
||||
py::buffer_info buf_info = arr.request();
|
||||
Type *ptr = static_cast<Type *>(buf_info.ptr);
|
||||
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
|
||||
c.data); // TODO dont iterate over centers!!!
|
||||
|
||||
});
|
||||
*/
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_finder_mt_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinderMT_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
|
||||
py::arg("image_size"), py::arg("n_sigma") = 5.0,
|
||||
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0)
|
||||
.def_property_readonly("cluster_size", [](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self){
|
||||
return py::make_tuple(ClusterSizeX, ClusterSizeY);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinderMT<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def("sync", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::sync)
|
||||
.def("stop", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::stop)
|
||||
.def("start", &ClusterFinderMT<ClusterType, uint16_t, pd_type>::start)
|
||||
.def(
|
||||
"pedestal",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal(thread_index);
|
||||
return return_image_data(pd);
|
||||
},
|
||||
py::arg("thread_index") = 0)
|
||||
.def(
|
||||
"noise",
|
||||
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
|
||||
size_t thread_index) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise(thread_index);
|
||||
return return_image_data(arr);
|
||||
},
|
||||
py::arg("thread_index") = 0);
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_collector_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterCollector_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterCollector<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *>())
|
||||
.def("stop", &ClusterCollector<ClusterType>::stop)
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterCollector<ClusterType> &self) {
|
||||
auto v = new std::vector<ClusterVector<ClusterType>>(
|
||||
self.steal_clusters());
|
||||
return v; // TODO change!!!
|
||||
},
|
||||
py::return_value_policy::take_ownership);
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_file_sink_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFileSink_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFileSink<ClusterType>>(m, class_name.c_str())
|
||||
.def(py::init<ClusterFinderMT<ClusterType, uint16_t, double> *,
|
||||
const std::filesystem::path &>())
|
||||
.def("stop", &ClusterFileSink<ClusterType>::stop);
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_cluster_finder_bindings(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("ClusterFinder_{}", typestr);
|
||||
|
||||
using ClusterType = Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
|
||||
m, class_name.c_str())
|
||||
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
|
||||
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
|
||||
.def("push_pedestal_frame",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.push_pedestal_frame(view);
|
||||
})
|
||||
.def("clear_pedestal",
|
||||
&ClusterFinder<ClusterType, uint16_t, pd_type>::clear_pedestal)
|
||||
.def_property_readonly(
|
||||
"pedestal",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto pd = new NDArray<pd_type, 2>{};
|
||||
*pd = self.pedestal();
|
||||
return return_image_data(pd);
|
||||
})
|
||||
.def_property_readonly(
|
||||
"noise",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self) {
|
||||
auto arr = new NDArray<pd_type, 2>{};
|
||||
*arr = self.noise();
|
||||
return return_image_data(arr);
|
||||
})
|
||||
.def(
|
||||
"steal_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
bool realloc_same_capacity) {
|
||||
ClusterVector<ClusterType> clusters =
|
||||
self.steal_clusters(realloc_same_capacity);
|
||||
return clusters;
|
||||
},
|
||||
py::arg("realloc_same_capacity") = false)
|
||||
.def(
|
||||
"find_clusters",
|
||||
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
|
||||
py::array_t<uint16_t> frame, uint64_t frame_number) {
|
||||
auto view = make_view_2d(frame);
|
||||
self.find_clusters(view, frame_number);
|
||||
return;
|
||||
},
|
||||
py::arg(), py::arg("frame_number") = 0);
|
||||
}
|
||||
#pragma GCC diagnostic pop
|
@ -21,7 +21,8 @@ using namespace ::aare;
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void define_ClusterFile(py::module &m, const std::string &typestr) {
|
||||
void define_cluster_file_io_bindings(py::module &m,
|
||||
const std::string &typestr) {
|
||||
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
@ -38,20 +39,19 @@ void define_ClusterFile(py::module &m, const std::string &typestr) {
|
||||
self.read_clusters(n_clusters));
|
||||
return v;
|
||||
},
|
||||
py::return_value_policy::take_ownership, py::arg("n_clusters"))
|
||||
py::return_value_policy::take_ownership)
|
||||
.def("read_frame",
|
||||
[](ClusterFile<ClusterType> &self) {
|
||||
auto v = new ClusterVector<ClusterType>(self.read_frame());
|
||||
return v;
|
||||
})
|
||||
.def("set_roi", &ClusterFile<ClusterType>::set_roi,
|
||||
py::arg("roi"))
|
||||
.def("set_roi", &ClusterFile<ClusterType>::set_roi)
|
||||
.def(
|
||||
"set_noise_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<int32_t> noise_map) {
|
||||
auto view = make_view_2d(noise_map);
|
||||
self.set_noise_map(view);
|
||||
}, py::arg("noise_map"))
|
||||
})
|
||||
|
||||
.def("set_gain_map",
|
||||
[](ClusterFile<ClusterType> &self, py::array_t<double> gain_map) {
|
@ -6,8 +6,8 @@
|
||||
#include "aare/RawMasterFile.hpp"
|
||||
#include "aare/RawSubFile.hpp"
|
||||
|
||||
#include "aare/decode.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
#include "aare/decode.hpp"
|
||||
// #include "aare/fClusterFileV2.hpp"
|
||||
|
||||
#include "np_helper.hpp"
|
||||
@ -26,103 +26,95 @@ using namespace ::aare;
|
||||
|
||||
void define_ctb_raw_file_io_bindings(py::module &m) {
|
||||
|
||||
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
if (input.ndim() != 2) {
|
||||
throw std::runtime_error(
|
||||
"Only 2D arrays are supported at this moment");
|
||||
}
|
||||
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
|
||||
// Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0),
|
||||
input.shape(1) /
|
||||
static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
if(input.ndim() != 2){
|
||||
throw std::runtime_error("Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
// Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(
|
||||
reinterpret_cast<uint64_t *>(input.mutable_data()),
|
||||
{output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(),
|
||||
{output.shape(0), output.shape(1)});
|
||||
//Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
adc_sar_05_decode64to16(input_view, output_view);
|
||||
//Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_05_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
|
||||
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
|
||||
|
||||
if(input.ndim() != 2){
|
||||
throw std::runtime_error("Only 2D arrays are supported at this moment");
|
||||
}
|
||||
|
||||
//Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
|
||||
//Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(reinterpret_cast<uint64_t*>(input.mutable_data()), {output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(), {output.shape(0), output.shape(1)});
|
||||
|
||||
adc_sar_04_decode64to16(input_view, output_view);
|
||||
|
||||
return output;
|
||||
});
|
||||
|
||||
m.def(
|
||||
"apply_custom_weights",
|
||||
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
&weights) {
|
||||
|
||||
|
||||
// Create new array with same shape as the input array (uninitialized values)
|
||||
py::buffer_info buf = input.request();
|
||||
py::array_t<double> output(buf.shape);
|
||||
|
||||
// Use NDViews to call into the C++ library
|
||||
auto weights_view = make_view_1d(weights);
|
||||
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
|
||||
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
|
||||
|
||||
apply_custom_weights(input_view, output_view, weights_view);
|
||||
return output;
|
||||
});
|
||||
|
||||
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
||||
if (input.ndim() != 2) {
|
||||
throw std::runtime_error(
|
||||
"Only 2D arrays are supported at this moment");
|
||||
}
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
size_t image_size = self.image_size_in_bytes();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(1);
|
||||
shape.push_back(image_size);
|
||||
|
||||
// Create a 2D output array with the same shape as the input
|
||||
std::vector<ssize_t> shape{input.shape(0),
|
||||
input.shape(1) /
|
||||
static_cast<ssize_t>(bits_per_byte)};
|
||||
py::array_t<uint16_t> output(shape);
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
|
||||
// Create a view of the input and output arrays
|
||||
NDView<uint64_t, 2> input_view(
|
||||
reinterpret_cast<uint64_t *>(input.mutable_data()),
|
||||
{output.shape(0), output.shape(1)});
|
||||
NDView<uint16_t, 2> output_view(output.mutable_data(),
|
||||
{output.shape(0), output.shape(1)});
|
||||
// always read bytes
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
|
||||
adc_sar_04_decode64to16(input_view, output_view);
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return output;
|
||||
});
|
||||
return py::make_tuple(header, image);
|
||||
})
|
||||
.def("seek", &CtbRawFile::seek)
|
||||
.def("tell", &CtbRawFile::tell)
|
||||
.def("master", &CtbRawFile::master)
|
||||
|
||||
m.def("apply_custom_weights",
|
||||
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast>
|
||||
&input,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
&weights) {
|
||||
// Create new array with same shape as the input array
|
||||
// (uninitialized values)
|
||||
py::buffer_info buf = input.request();
|
||||
py::array_t<double> output(buf.shape);
|
||||
.def_property_readonly("image_size_in_bytes",
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
|
||||
// Use NDViews to call into the C++ library
|
||||
auto weights_view = make_view_1d(weights);
|
||||
NDView<uint16_t, 1> input_view(input.mutable_data(),
|
||||
{input.size()});
|
||||
NDView<double, 1> output_view(output.mutable_data(),
|
||||
{output.size()});
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
|
||||
apply_custom_weights(input_view, output_view, weights_view);
|
||||
return output;
|
||||
});
|
||||
|
||||
py::class_<CtbRawFile>(m, "CtbRawFile")
|
||||
.def(py::init<const std::filesystem::path &>())
|
||||
.def("read_frame",
|
||||
[](CtbRawFile &self) {
|
||||
size_t image_size = self.image_size_in_bytes();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(1);
|
||||
shape.push_back(image_size);
|
||||
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
|
||||
// always read bytes
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
})
|
||||
.def("seek", &CtbRawFile::seek)
|
||||
.def("tell", &CtbRawFile::tell)
|
||||
.def("master", &CtbRawFile::master)
|
||||
|
||||
.def_property_readonly("image_size_in_bytes",
|
||||
&CtbRawFile::image_size_in_bytes)
|
||||
|
||||
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
||||
}
|
||||
|
@ -20,13 +20,17 @@
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
|
||||
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
void define_file_io_bindings(py::module &m) {
|
||||
|
||||
|
||||
py::enum_<DetectorType>(m, "DetectorType")
|
||||
.value("Jungfrau", DetectorType::Jungfrau)
|
||||
.value("Eiger", DetectorType::Eiger)
|
||||
@ -37,10 +41,13 @@ void define_file_io_bindings(py::module &m) {
|
||||
.value("ChipTestBoard", DetectorType::ChipTestBoard)
|
||||
.value("Unknown", DetectorType::Unknown);
|
||||
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(DetectorHeader, frameNumber, expLength, packetNumber,
|
||||
bunchId, timestamp, modId, row, column, reserved,
|
||||
debug, roundRNumber, detType, version, packetMask);
|
||||
|
||||
|
||||
|
||||
py::class_<File>(m, "File")
|
||||
.def(py::init([](const std::filesystem::path &fname) {
|
||||
return File(fname, "r", {});
|
||||
@ -105,18 +112,45 @@ void define_file_io_bindings(py::module &m) {
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
})
|
||||
.def("read_n",
|
||||
[](File &self, size_t n_frames) {
|
||||
// adjust for actual frames left in the file
|
||||
n_frames =
|
||||
std::min(n_frames, self.total_frames() - self.tell());
|
||||
if (n_frames == 0) {
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
|
||||
.def("read_n", [](File &self, size_t n_frames) {
|
||||
//adjust for actual frames left in the file
|
||||
n_frames = std::min(n_frames, self.total_frames()-self.tell());
|
||||
if(n_frames == 0){
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
|
||||
|
||||
py::array image;
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames);
|
||||
return image;
|
||||
})
|
||||
.def("__enter__", [](File &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](File &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](File &self) { return &self; })
|
||||
.def("__next__", [](File &self) {
|
||||
|
||||
try{
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
@ -125,41 +159,14 @@ void define_file_io_bindings(py::module &m) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames);
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
})
|
||||
.def("__enter__", [](File &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](File &self, const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
// self.close();
|
||||
})
|
||||
.def("__iter__", [](File &self) { return &self; })
|
||||
.def("__next__", [](File &self) {
|
||||
try {
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
py::array image;
|
||||
std::vector<ssize_t> shape;
|
||||
shape.reserve(2);
|
||||
shape.push_back(self.rows());
|
||||
shape.push_back(self.cols());
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
} else if (item_size == 2) {
|
||||
image = py::array_t<uint16_t>(shape);
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(
|
||||
reinterpret_cast<std::byte *>(image.mutable_data()));
|
||||
return image;
|
||||
} catch (std::runtime_error &e) {
|
||||
}catch(std::runtime_error &e){
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
py::class_<FileConfig>(m, "FileConfig")
|
||||
.def(py::init<>())
|
||||
.def_readwrite("rows", &FileConfig::rows)
|
||||
@ -176,6 +183,8 @@ void define_file_io_bindings(py::module &m) {
|
||||
return "<FileConfig: " + a.to_string() + ">";
|
||||
});
|
||||
|
||||
|
||||
|
||||
py::class_<ScanParameters>(m, "ScanParameters")
|
||||
.def(py::init<const std::string &>())
|
||||
.def(py::init<const ScanParameters &>())
|
||||
@ -186,6 +195,7 @@ void define_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("stop", &ScanParameters::stop)
|
||||
.def_property_readonly("step", &ScanParameters::step);
|
||||
|
||||
|
||||
py::class_<ROI>(m, "ROI")
|
||||
.def(py::init<>())
|
||||
.def(py::init<ssize_t, ssize_t, ssize_t, ssize_t>(), py::arg("xmin"),
|
||||
@ -194,21 +204,23 @@ void define_file_io_bindings(py::module &m) {
|
||||
.def_readwrite("xmax", &ROI::xmax)
|
||||
.def_readwrite("ymin", &ROI::ymin)
|
||||
.def_readwrite("ymax", &ROI::ymax)
|
||||
.def("__str__",
|
||||
[](const ROI &self) {
|
||||
return fmt::format("ROI: xmin: {} xmax: {} ymin: {} ymax: {}",
|
||||
self.xmin, self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__repr__",
|
||||
[](const ROI &self) {
|
||||
return fmt::format(
|
||||
"<ROI: xmin: {} xmax: {} ymin: {} ymax: {}>", self.xmin,
|
||||
self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__str__", [](const ROI& self){
|
||||
return fmt::format("ROI: xmin: {} xmax: {} ymin: {} ymax: {}", self.xmin, self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__repr__", [](const ROI& self){
|
||||
return fmt::format("<ROI: xmin: {} xmax: {} ymin: {} ymax: {}>", self.xmin, self.xmax, self.ymin, self.ymax);
|
||||
})
|
||||
.def("__iter__", [](const ROI &self) {
|
||||
return py::make_iterator(&self.xmin, &self.ymax + 1); // NOLINT
|
||||
return py::make_iterator(&self.xmin, &self.ymax+1); //NOLINT
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
// py::class_<ClusterHeader>(m, "ClusterHeader")
|
||||
// .def(py::init<>())
|
||||
|
@ -9,6 +9,7 @@
|
||||
namespace py = pybind11;
|
||||
using namespace pybind11::literals;
|
||||
|
||||
|
||||
void define_fit_bindings(py::module &m) {
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
@ -60,8 +61,7 @@ void define_fit_bindings(py::module &m) {
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y =
|
||||
new NDArray<double, 1>{aare::func::scurve(x_view, par_view)};
|
||||
auto y = new NDArray<double, 1>{aare::func::scurve(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
@ -82,8 +82,7 @@ void define_fit_bindings(py::module &m) {
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> par) {
|
||||
auto x_view = make_view_1d(x);
|
||||
auto par_view = make_view_1d(par);
|
||||
auto y =
|
||||
new NDArray<double, 1>{aare::func::scurve2(x_view, par_view)};
|
||||
auto y = new NDArray<double, 1>{aare::func::scurve2(x_view, par_view)};
|
||||
return return_image_data(y);
|
||||
},
|
||||
R"(
|
||||
@ -140,6 +139,7 @@ n_threads : int, optional
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast> y_err,
|
||||
int n_threads) {
|
||||
|
||||
if (y.ndim() == 3) {
|
||||
// Allocate memory for the output
|
||||
// Need to have pointers to allow python to manage
|
||||
@ -173,6 +173,7 @@ n_threads : int, optional
|
||||
auto y_view_err = make_view_1d(y_err);
|
||||
auto x_view = make_view_1d(x);
|
||||
|
||||
|
||||
double chi2 = 0;
|
||||
aare::fit_gaus(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
@ -247,10 +248,11 @@ n_threads : int, optional
|
||||
aare::fit_pol1(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
@ -287,7 +289,7 @@ n_threads : int, optional
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
//=========
|
||||
//=========
|
||||
m.def(
|
||||
"fit_scurve",
|
||||
[](py::array_t<double, py::array::c_style | py::array::forcecast> x,
|
||||
@ -331,12 +333,13 @@ n_threads : int, optional
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({2});
|
||||
auto par_err = new NDArray<double, 1>({2});
|
||||
@ -348,7 +351,7 @@ n_threads : int, optional
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
@ -372,6 +375,7 @@ n_threads : int, optional
|
||||
The number of threads to use. Default is 4.
|
||||
)",
|
||||
py::arg("x"), py::arg("y"), py::arg("y_err"), py::arg("n_threads") = 4);
|
||||
|
||||
|
||||
m.def(
|
||||
"fit_scurve2",
|
||||
@ -416,12 +420,13 @@ n_threads : int, optional
|
||||
auto chi2 = new NDArray<double, 2>({y.shape(0), y.shape(1)});
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
par_err->view(), chi2->view(), n_threads);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = return_image_data(chi2),
|
||||
"Ndf"_a = y.shape(2) - 2);
|
||||
|
||||
|
||||
} else if (y.ndim() == 1) {
|
||||
auto par = new NDArray<double, 1>({6});
|
||||
auto par_err = new NDArray<double, 1>({6});
|
||||
@ -433,7 +438,7 @@ n_threads : int, optional
|
||||
double chi2 = 0;
|
||||
|
||||
aare::fit_scurve2(x_view, y_view, y_view_err, par->view(),
|
||||
par_err->view(), chi2);
|
||||
par_err->view(), chi2);
|
||||
return py::dict("par"_a = return_image_data(par),
|
||||
"par_err"_a = return_image_data(par_err),
|
||||
"chi2"_a = chi2, "Ndf"_a = y.size() - 2);
|
||||
|
@ -21,7 +21,10 @@ using namespace ::aare;
|
||||
|
||||
auto read_dat_frame(JungfrauDataFile &self) {
|
||||
py::array_t<JungfrauDataHeader> header(1);
|
||||
py::array_t<uint16_t> image({self.rows(), self.cols()});
|
||||
py::array_t<uint16_t> image({
|
||||
self.rows(),
|
||||
self.cols()
|
||||
});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
header.mutable_data());
|
||||
@ -37,7 +40,9 @@ auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
|
||||
}
|
||||
|
||||
py::array_t<JungfrauDataHeader> header(n_frames);
|
||||
py::array_t<uint16_t> image({n_frames, self.rows(), self.cols()});
|
||||
py::array_t<uint16_t> image({
|
||||
n_frames, self.rows(),
|
||||
self.cols()});
|
||||
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames, header.mutable_data());
|
||||
|
@ -1,26 +1,22 @@
|
||||
// Files with bindings to the different classes
|
||||
|
||||
// New style file naming
|
||||
#include "bind_Cluster.hpp"
|
||||
#include "bind_ClusterCollector.hpp"
|
||||
#include "bind_ClusterFile.hpp"
|
||||
#include "bind_ClusterFileSink.hpp"
|
||||
#include "bind_ClusterFinder.hpp"
|
||||
#include "bind_ClusterFinderMT.hpp"
|
||||
//New style file naming
|
||||
#include "bind_ClusterVector.hpp"
|
||||
|
||||
// TODO! migrate the other names
|
||||
//TODO! migrate the other names
|
||||
#include "cluster.hpp"
|
||||
#include "cluster_file.hpp"
|
||||
#include "ctb_raw_file.hpp"
|
||||
#include "file.hpp"
|
||||
#include "fit.hpp"
|
||||
#include "interpolation.hpp"
|
||||
#include "jungfrau_data_file.hpp"
|
||||
#include "pedestal.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "raw_sub_file.hpp"
|
||||
#include "raw_master_file.hpp"
|
||||
#include "raw_file.hpp"
|
||||
#include "pixel_map.hpp"
|
||||
#include "var_cluster.hpp"
|
||||
#include "pedestal.hpp"
|
||||
#include "jungfrau_data_file.hpp"
|
||||
|
||||
// Pybind stuff
|
||||
#include <pybind11/pybind11.h>
|
||||
@ -28,26 +24,6 @@
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
/* MACRO that defines Cluster bindings for a specific size and type
|
||||
|
||||
T - Storage type of the cluster data (int, float, double)
|
||||
N - Number of rows in the cluster
|
||||
M - Number of columns in the cluster
|
||||
U - Type of the pixel data (e.g., uint16_t)
|
||||
TYPE_CODE - A character representing the type code (e.g., 'i' for int, 'd' for
|
||||
double, 'f' for float)
|
||||
|
||||
*/
|
||||
#define DEFINE_CLUSTER_BINDINGS(T, N, M, U, TYPE_CODE) \
|
||||
define_ClusterFile<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterVector<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterFinder<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterFinderMT<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterFileSink<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterCollector<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_Cluster<T, N, M, U>(m, #N "x" #M #TYPE_CODE); \
|
||||
register_calculate_eta<T, N, M, U>(m);
|
||||
|
||||
PYBIND11_MODULE(_aare, m) {
|
||||
define_file_io_bindings(m);
|
||||
define_raw_file_io_bindings(m);
|
||||
@ -62,23 +38,59 @@ PYBIND11_MODULE(_aare, m) {
|
||||
define_interpolation_bindings(m);
|
||||
define_jungfrau_data_file_io_bindings(m);
|
||||
|
||||
DEFINE_CLUSTER_BINDINGS(int, 3, 3, uint16_t, i);
|
||||
DEFINE_CLUSTER_BINDINGS(double, 3, 3, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(float, 3, 3, uint16_t, f);
|
||||
define_cluster_file_io_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_file_io_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_file_io_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_file_io_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_file_io_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
define_cluster_file_io_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
|
||||
DEFINE_CLUSTER_BINDINGS(int, 2, 2, uint16_t, i);
|
||||
DEFINE_CLUSTER_BINDINGS(double, 2, 2, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(float, 2, 2, uint16_t, f);
|
||||
define_ClusterVector<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_ClusterVector<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_ClusterVector<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_ClusterVector<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_ClusterVector<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_ClusterVector<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
DEFINE_CLUSTER_BINDINGS(int, 5, 5, uint16_t, i);
|
||||
DEFINE_CLUSTER_BINDINGS(double, 5, 5, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(float, 5, 5, uint16_t, f);
|
||||
define_cluster_finder_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_finder_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_finder_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_finder_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_finder_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_cluster_finder_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
DEFINE_CLUSTER_BINDINGS(int, 7, 7, uint16_t, i);
|
||||
DEFINE_CLUSTER_BINDINGS(double, 7, 7, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(float, 7, 7, uint16_t, f);
|
||||
define_cluster_finder_mt_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_finder_mt_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_finder_mt_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_finder_mt_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_finder_mt_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_cluster_finder_mt_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
DEFINE_CLUSTER_BINDINGS(int, 9, 9, uint16_t, i);
|
||||
DEFINE_CLUSTER_BINDINGS(double, 9, 9, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(float, 9, 9, uint16_t, f);
|
||||
define_cluster_file_sink_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_file_sink_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_file_sink_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_file_sink_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_file_sink_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
define_cluster_file_sink_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
|
||||
define_cluster_collector_bindings<int, 3, 3, uint16_t>(m, "Cluster3x3i");
|
||||
define_cluster_collector_bindings<double, 3, 3, uint16_t>(m, "Cluster3x3f");
|
||||
define_cluster_collector_bindings<float, 3, 3, uint16_t>(m, "Cluster3x3d");
|
||||
define_cluster_collector_bindings<int, 2, 2, uint16_t>(m, "Cluster2x2i");
|
||||
define_cluster_collector_bindings<double, 2, 2, uint16_t>(m, "Cluster2x2f");
|
||||
define_cluster_collector_bindings<float, 2, 2, uint16_t>(m, "Cluster2x2d");
|
||||
|
||||
define_cluster<int, 3, 3, uint16_t>(m, "3x3i");
|
||||
define_cluster<float, 3, 3, uint16_t>(m, "3x3f");
|
||||
define_cluster<double, 3, 3, uint16_t>(m, "3x3d");
|
||||
define_cluster<int, 2, 2, uint16_t>(m, "2x2i");
|
||||
define_cluster<float, 2, 2, uint16_t>(m, "2x2f");
|
||||
define_cluster<double, 2, 2, uint16_t>(m, "2x2d");
|
||||
|
||||
register_calculate_eta<int, 3, 3, uint16_t>(m);
|
||||
register_calculate_eta<float, 3, 3, uint16_t>(m);
|
||||
register_calculate_eta<double, 3, 3, uint16_t>(m);
|
||||
register_calculate_eta<int, 2, 2, uint16_t>(m);
|
||||
register_calculate_eta<float, 2, 2, uint16_t>(m);
|
||||
register_calculate_eta<double, 2, 2, uint16_t>(m);
|
||||
}
|
||||
|
@ -9,8 +9,7 @@
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
template <typename SUM_TYPE>
|
||||
void define_pedestal_bindings(py::module &m, const std::string &name) {
|
||||
template <typename SUM_TYPE> void define_pedestal_bindings(py::module &m, const std::string &name) {
|
||||
py::class_<Pedestal<SUM_TYPE>>(m, name.c_str())
|
||||
.def(py::init<int, int, int>())
|
||||
.def(py::init<int, int>())
|
||||
@ -20,18 +19,16 @@ void define_pedestal_bindings(py::module &m, const std::string &name) {
|
||||
*mea = self.mean();
|
||||
return return_image_data(mea);
|
||||
})
|
||||
.def("variance",
|
||||
[](Pedestal<SUM_TYPE> &self) {
|
||||
auto var = new NDArray<SUM_TYPE, 2>{};
|
||||
*var = self.variance();
|
||||
return return_image_data(var);
|
||||
})
|
||||
.def("std",
|
||||
[](Pedestal<SUM_TYPE> &self) {
|
||||
auto std = new NDArray<SUM_TYPE, 2>{};
|
||||
*std = self.std();
|
||||
return return_image_data(std);
|
||||
})
|
||||
.def("variance", [](Pedestal<SUM_TYPE> &self) {
|
||||
auto var = new NDArray<SUM_TYPE, 2>{};
|
||||
*var = self.variance();
|
||||
return return_image_data(var);
|
||||
})
|
||||
.def("std", [](Pedestal<SUM_TYPE> &self) {
|
||||
auto std = new NDArray<SUM_TYPE, 2>{};
|
||||
*std = self.std();
|
||||
return return_image_data(std);
|
||||
})
|
||||
.def("clear", py::overload_cast<>(&Pedestal<SUM_TYPE>::clear))
|
||||
.def_property_readonly("rows", &Pedestal<SUM_TYPE>::rows)
|
||||
.def_property_readonly("cols", &Pedestal<SUM_TYPE>::cols)
|
||||
@ -42,19 +39,14 @@ void define_pedestal_bindings(py::module &m, const std::string &name) {
|
||||
[&](Pedestal<SUM_TYPE> &pedestal) {
|
||||
return Pedestal<SUM_TYPE>(pedestal);
|
||||
})
|
||||
// TODO! add push for other data types
|
||||
.def("push",
|
||||
[](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t> &f) {
|
||||
auto v = make_view_2d(f);
|
||||
pedestal.push(v);
|
||||
})
|
||||
.def(
|
||||
"push_no_update",
|
||||
[](Pedestal<SUM_TYPE> &pedestal,
|
||||
py::array_t<uint16_t, py::array::c_style> &f) {
|
||||
auto v = make_view_2d(f);
|
||||
pedestal.push_no_update(v);
|
||||
},
|
||||
py::arg().noconvert())
|
||||
//TODO! add push for other data types
|
||||
.def("push", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t> &f) {
|
||||
auto v = make_view_2d(f);
|
||||
pedestal.push(v);
|
||||
})
|
||||
.def("push_no_update", [](Pedestal<SUM_TYPE> &pedestal, py::array_t<uint16_t, py::array::c_style> &f) {
|
||||
auto v = make_view_2d(f);
|
||||
pedestal.push_no_update(v);
|
||||
}, py::arg().noconvert())
|
||||
.def("update_mean", &Pedestal<SUM_TYPE>::update_mean);
|
||||
}
|
@ -1,46 +1,41 @@
|
||||
#include "aare/PixelMap.hpp"
|
||||
#include "np_helper.hpp"
|
||||
|
||||
|
||||
#include <cstdint>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
using namespace::aare;
|
||||
|
||||
|
||||
void define_pixel_map_bindings(py::module &m) {
|
||||
m.def("GenerateMoench03PixelMap",
|
||||
[]() {
|
||||
auto ptr = new NDArray<ssize_t, 2>(GenerateMoench03PixelMap());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMoench05PixelMap",
|
||||
[]() {
|
||||
auto ptr = new NDArray<ssize_t, 2>(GenerateMoench05PixelMap());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMoench05PixelMap1g",
|
||||
[]() {
|
||||
auto ptr =
|
||||
new NDArray<ssize_t, 2>(GenerateMoench05PixelMap1g());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMoench05PixelMapOld",
|
||||
[]() {
|
||||
auto ptr =
|
||||
new NDArray<ssize_t, 2>(GenerateMoench05PixelMapOld());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMH02SingleCounterPixelMap",
|
||||
[]() {
|
||||
auto ptr = new NDArray<ssize_t, 2>(
|
||||
GenerateMH02SingleCounterPixelMap());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMH02FourCounterPixelMap", []() {
|
||||
auto ptr =
|
||||
new NDArray<ssize_t, 3>(GenerateMH02FourCounterPixelMap());
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
m.def("GenerateMoench03PixelMap", []() {
|
||||
auto ptr = new NDArray<ssize_t,2>(GenerateMoench03PixelMap());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMoench05PixelMap", []() {
|
||||
auto ptr = new NDArray<ssize_t,2>(GenerateMoench05PixelMap());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMoench05PixelMap1g", []() {
|
||||
auto ptr = new NDArray<ssize_t,2>(GenerateMoench05PixelMap1g());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMoench05PixelMapOld", []() {
|
||||
auto ptr = new NDArray<ssize_t,2>(GenerateMoench05PixelMapOld());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMH02SingleCounterPixelMap", []() {
|
||||
auto ptr = new NDArray<ssize_t,2>(GenerateMH02SingleCounterPixelMap());
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("GenerateMH02FourCounterPixelMap", []() {
|
||||
auto ptr = new NDArray<ssize_t,3>(GenerateMH02FourCounterPixelMap());
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
|
||||
}
|
@ -32,7 +32,7 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
shape.push_back(self.cols());
|
||||
|
||||
// return headers from all subfiles
|
||||
py::array_t<DetectorHeader> header(self.n_modules());
|
||||
py::array_t<DetectorHeader> header(self.n_mod());
|
||||
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
if (item_size == 1) {
|
||||
@ -58,14 +58,13 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
throw std::runtime_error("No frames left in file");
|
||||
}
|
||||
std::vector<size_t> shape{n_frames, self.rows(), self.cols()};
|
||||
|
||||
|
||||
// return headers from all subfiles
|
||||
py::array_t<DetectorHeader> header;
|
||||
if (self.n_modules() == 1) {
|
||||
if (self.n_mod() == 1) {
|
||||
header = py::array_t<DetectorHeader>(n_frames);
|
||||
} else {
|
||||
header = py::array_t<DetectorHeader>(
|
||||
{self.n_modules(), n_frames});
|
||||
header = py::array_t<DetectorHeader>({self.n_mod(), n_frames});
|
||||
}
|
||||
// py::array_t<DetectorHeader> header({self.n_mod(), n_frames});
|
||||
|
||||
@ -101,7 +100,7 @@ void define_raw_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("cols", &RawFile::cols)
|
||||
.def_property_readonly("bitdepth", &RawFile::bitdepth)
|
||||
.def_property_readonly("geometry", &RawFile::geometry)
|
||||
.def_property_readonly("n_modules", &RawFile::n_modules)
|
||||
.def_property_readonly("n_mod", &RawFile::n_mod)
|
||||
.def_property_readonly("detector_type", &RawFile::detector_type)
|
||||
.def_property_readonly("master", &RawFile::master);
|
||||
}
|
@ -57,8 +57,7 @@ void define_raw_master_file_bindings(py::module &m) {
|
||||
.def_property_readonly("total_frames_expected",
|
||||
&RawMasterFile::total_frames_expected)
|
||||
.def_property_readonly("geometry", &RawMasterFile::geometry)
|
||||
.def_property_readonly("analog_samples", &RawMasterFile::analog_samples,
|
||||
R"(
|
||||
.def_property_readonly("analog_samples", &RawMasterFile::analog_samples, R"(
|
||||
Number of analog samples
|
||||
|
||||
Returns
|
||||
@ -67,7 +66,7 @@ void define_raw_master_file_bindings(py::module &m) {
|
||||
The number of analog samples in the file (or None if not enabled)
|
||||
)")
|
||||
.def_property_readonly("digital_samples",
|
||||
&RawMasterFile::digital_samples, R"(
|
||||
&RawMasterFile::digital_samples, R"(
|
||||
Number of digital samples
|
||||
|
||||
Returns
|
||||
|
@ -24,8 +24,8 @@ auto read_frame_from_RawSubFile(RawSubFile &self) {
|
||||
py::array_t<DetectorHeader> header(1);
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape{static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())};
|
||||
|
||||
static_cast<ssize_t>(self.cols())};
|
||||
|
||||
py::array image;
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
@ -43,10 +43,12 @@ auto read_frame_from_RawSubFile(RawSubFile &self) {
|
||||
auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
|
||||
py::array_t<DetectorHeader> header(n_frames);
|
||||
const uint8_t item_size = self.bytes_per_pixel();
|
||||
std::vector<ssize_t> shape{static_cast<ssize_t>(n_frames),
|
||||
static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())};
|
||||
|
||||
std::vector<ssize_t> shape{
|
||||
static_cast<ssize_t>(n_frames),
|
||||
static_cast<ssize_t>(self.rows()),
|
||||
static_cast<ssize_t>(self.cols())
|
||||
};
|
||||
|
||||
py::array image;
|
||||
if (item_size == 1) {
|
||||
image = py::array_t<uint8_t>(shape);
|
||||
@ -55,14 +57,15 @@ auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
|
||||
} else if (item_size == 4) {
|
||||
image = py::array_t<uint32_t>(shape);
|
||||
}
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
|
||||
n_frames, header.mutable_data());
|
||||
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames,
|
||||
header.mutable_data());
|
||||
|
||||
return py::make_tuple(header, image);
|
||||
}
|
||||
|
||||
// Disable warnings for unused parameters, as we ignore some
|
||||
// in the __exit__ method
|
||||
|
||||
//Disable warnings for unused parameters, as we ignore some
|
||||
//in the __exit__ method
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
||||
|
||||
@ -73,7 +76,7 @@ void define_raw_sub_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
|
||||
.def_property_readonly("pixels_per_frame",
|
||||
&RawSubFile::pixels_per_frame)
|
||||
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
|
||||
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
|
||||
.def("seek", &RawSubFile::seek)
|
||||
.def("tell", &RawSubFile::tell)
|
||||
.def_property_readonly("rows", &RawSubFile::rows)
|
||||
@ -81,17 +84,18 @@ void define_raw_sub_file_io_bindings(py::module &m) {
|
||||
.def_property_readonly("frames_in_file", &RawSubFile::frames_in_file)
|
||||
.def("read_frame", &read_frame_from_RawSubFile)
|
||||
.def("read_n", &read_n_frames_from_RawSubFile)
|
||||
.def("read",
|
||||
[](RawSubFile &self) {
|
||||
self.seek(0);
|
||||
auto n_frames = self.frames_in_file();
|
||||
return read_n_frames_from_RawSubFile(self, n_frames);
|
||||
})
|
||||
.def("read", [](RawSubFile &self){
|
||||
self.seek(0);
|
||||
auto n_frames = self.frames_in_file();
|
||||
return read_n_frames_from_RawSubFile(self, n_frames);
|
||||
})
|
||||
.def("__enter__", [](RawSubFile &self) { return &self; })
|
||||
.def("__exit__",
|
||||
[](RawSubFile &self, const std::optional<pybind11::type> &exc_type,
|
||||
[](RawSubFile &self,
|
||||
const std::optional<pybind11::type> &exc_type,
|
||||
const std::optional<pybind11::object> &exc_value,
|
||||
const std::optional<pybind11::object> &traceback) {})
|
||||
const std::optional<pybind11::object> &traceback) {
|
||||
})
|
||||
.def("__iter__", [](RawSubFile &self) { return &self; })
|
||||
.def("__next__", [](RawSubFile &self) {
|
||||
try {
|
||||
@ -100,6 +104,7 @@ void define_raw_sub_file_io_bindings(py::module &m) {
|
||||
throw py::stop_iteration();
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
@ -12,8 +12,10 @@
|
||||
// #include <pybind11/stl/filesystem.h>
|
||||
// #include <string>
|
||||
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
using namespace::aare;
|
||||
|
||||
|
||||
void define_var_cluster_finder_bindings(py::module &m) {
|
||||
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
|
||||
@ -27,12 +29,12 @@ void define_var_cluster_finder_bindings(py::module &m) {
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
.def("set_noiseMap",
|
||||
[](VarClusterFinder<double> &self,
|
||||
[](VarClusterFinder<double> &self,
|
||||
py::array_t<double, py::array::c_style | py::array::forcecast>
|
||||
noise_map) {
|
||||
auto noise_map_span = make_view_2d(noise_map);
|
||||
self.set_noiseMap(noise_map_span);
|
||||
})
|
||||
auto noise_map_span = make_view_2d(noise_map);
|
||||
self.set_noiseMap(noise_map_span);
|
||||
})
|
||||
.def("set_peripheralThresholdFactor",
|
||||
&VarClusterFinder<double>::set_peripheralThresholdFactor)
|
||||
.def("find_clusters",
|
||||
@ -63,7 +65,9 @@ void define_var_cluster_finder_bindings(py::module &m) {
|
||||
return return_vector(ptr);
|
||||
})
|
||||
.def("clear_hits",
|
||||
[](VarClusterFinder<double> &self) { self.clear_hits(); })
|
||||
[](VarClusterFinder<double> &self) {
|
||||
self.clear_hits();
|
||||
})
|
||||
.def("steal_hits",
|
||||
[](VarClusterFinder<double> &self) {
|
||||
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
|
||||
@ -71,4 +75,5 @@ void define_var_cluster_finder_bindings(py::module &m) {
|
||||
return return_vector(ptr);
|
||||
})
|
||||
.def("total_clusters", &VarClusterFinder<double>::total_clusters);
|
||||
|
||||
}
|
@ -5,35 +5,32 @@ from aare import RawSubFile, DetectorType
|
||||
|
||||
@pytest.mark.files
|
||||
def test_read_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
# Starting with f1 there is now 7 frames left in the series of files
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
assert f.frames_in_file == 7
|
||||
assert f.frames_in_file == 3
|
||||
|
||||
headers, frames = f.read()
|
||||
|
||||
assert headers.size == 7
|
||||
assert frames.shape == (7, 512, 1024)
|
||||
assert headers.size == 3
|
||||
assert frames.shape == (3, 512, 1024)
|
||||
|
||||
|
||||
for i,h in zip(range(4,11,1), headers):
|
||||
# Frame numbers in this file should be 4, 5, 6
|
||||
for i,h in zip(range(4,7,1), headers):
|
||||
assert h["frameNumber"] == i
|
||||
|
||||
# Compare to canned data using numpy
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
assert np.all(data[3:] == frames)
|
||||
assert np.all(data[3:6] == frames)
|
||||
|
||||
@pytest.mark.files
|
||||
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
|
||||
|
||||
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
|
||||
|
||||
# Given the first subfile in a series we can read all frames from f0, f1, f2...fN
|
||||
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
|
||||
i = 0
|
||||
for header, frame in f:
|
||||
assert header["frameNumber"] == i+1
|
||||
assert np.all(frame == data[i])
|
||||
i += 1
|
||||
assert i == 10
|
||||
assert header["frameNumber"] == 10
|
||||
assert i == 3
|
||||
assert header["frameNumber"] == 3
|
377
src/AngleCalibration.cpp
Normal file
377
src/AngleCalibration.cpp
Normal file
@ -0,0 +1,377 @@
|
||||
#include "aare/AngleCalibration.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
AngleCalibration::AngleCalibration(
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector_,
|
||||
std::shared_ptr<FlatField> flat_field_,
|
||||
std::shared_ptr<MythenFileReader> mythen_file_reader_)
|
||||
: mythen_detector(mythen_detector_), flat_field(flat_field_),
|
||||
mythen_file_reader(mythen_file_reader_) {
|
||||
centers.reserve(mythen_detector->max_modules());
|
||||
conversions.reserve(mythen_detector->max_modules());
|
||||
offsets.reserve(mythen_detector->max_modules());
|
||||
|
||||
num_bins = std::floor(mythen_detector->max_angle() / histogram_bin_width) -
|
||||
std::floor(mythen_detector->min_angle() / histogram_bin_width) +
|
||||
1; // TODO only works if negative
|
||||
// and positive angle
|
||||
}
|
||||
|
||||
void AngleCalibration::set_histogram_bin_width(double bin_width) {
|
||||
histogram_bin_width = bin_width;
|
||||
|
||||
num_bins = std::floor(mythen_detector->max_angle() / histogram_bin_width) -
|
||||
std::floor(mythen_detector->min_angle() / histogram_bin_width) +
|
||||
1; // TODO only works if negative
|
||||
// and positive angle
|
||||
}
|
||||
|
||||
double AngleCalibration::get_histogram_bin_width() const {
|
||||
return histogram_bin_width;
|
||||
}
|
||||
|
||||
ssize_t AngleCalibration::get_new_num_bins() const { return num_bins; }
|
||||
|
||||
std::vector<double> AngleCalibration::get_centers() const { return centers; }
|
||||
|
||||
std::vector<double> AngleCalibration::get_conversions() const {
|
||||
return conversions;
|
||||
}
|
||||
|
||||
std::vector<double> AngleCalibration::get_offsets() const { return offsets; }
|
||||
|
||||
NDView<double, 1> AngleCalibration::get_new_photon_counts() const {
|
||||
return new_photon_counts.view();
|
||||
}
|
||||
|
||||
NDView<double, 1> AngleCalibration::get_new_statistical_errors() const {
|
||||
return new_photon_count_errors.view();
|
||||
}
|
||||
|
||||
void AngleCalibration::read_initial_calibration_from_file(
|
||||
const std::string &filename) {
|
||||
|
||||
std::string line;
|
||||
uint32_t module_number{};
|
||||
|
||||
try {
|
||||
std::ifstream file(filename, std::ios_base::in);
|
||||
if (!file.good()) {
|
||||
throw std::logic_error("file does not exist");
|
||||
}
|
||||
|
||||
std::stringstream file_buffer;
|
||||
file_buffer << file.rdbuf();
|
||||
|
||||
while (file_buffer >> line) {
|
||||
if (line == "module") {
|
||||
file_buffer >> line;
|
||||
module_number = std::stoi(line);
|
||||
}
|
||||
if (line == "center") {
|
||||
file_buffer >> line;
|
||||
centers.insert(centers.begin() + module_number,
|
||||
std::stod(line));
|
||||
}
|
||||
if (line == "conversion") {
|
||||
file_buffer >> line;
|
||||
conversions.insert(conversions.begin() + module_number,
|
||||
std::stod(line));
|
||||
}
|
||||
if (line == "offset") {
|
||||
file_buffer >> line;
|
||||
offsets.insert(offsets.begin() + module_number,
|
||||
std::stod(line));
|
||||
}
|
||||
}
|
||||
|
||||
file.close();
|
||||
} catch (const std::exception &e) {
|
||||
std::cerr << "Error: " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
parameters AngleCalibration::convert_to_EE_parameters() const {
|
||||
|
||||
// normal distance between sample and detector (R)
|
||||
std::vector<double> normal_distances(centers.size());
|
||||
// distances between intersection point of sample normal and module origin
|
||||
// (D)
|
||||
std::vector<double> module_center_distances(centers.size());
|
||||
// angles between undiffracted beam and orthogonal sample projection on
|
||||
// detector (phi)
|
||||
std::vector<double> angles(centers.size());
|
||||
|
||||
for (size_t i = 0; i < centers.size(); ++i) {
|
||||
auto [module_center_distance, normal_distance, angle] =
|
||||
convert_to_EE_parameters(i);
|
||||
normal_distances[i] = normal_distance;
|
||||
module_center_distances[i] = module_center_distance;
|
||||
angles[i] = angle;
|
||||
}
|
||||
|
||||
return std::make_tuple(module_center_distances, normal_distances, angles);
|
||||
}
|
||||
|
||||
std::tuple<double, double, double>
|
||||
AngleCalibration::convert_to_EE_parameters(const size_t module_index) const {
|
||||
return convert_to_EE_parameters(centers[module_index],
|
||||
conversions[module_index],
|
||||
offsets[module_index]);
|
||||
}
|
||||
|
||||
std::tuple<double, double, double> AngleCalibration::convert_to_EE_parameters(
|
||||
const double center, const double conversion, const double offset) const {
|
||||
const double module_center_distance =
|
||||
center * MythenDetectorSpecifications::pitch();
|
||||
const double normal_distance =
|
||||
MythenDetectorSpecifications::pitch() / std::abs(conversion);
|
||||
const double angle = offset + 180.0 / M_PI * center * std::abs(conversion);
|
||||
|
||||
return std::make_tuple(module_center_distance, normal_distance, angle);
|
||||
}
|
||||
|
||||
size_t AngleCalibration::global_to_local_strip_index_conversion(
|
||||
const size_t global_strip_index) const {
|
||||
const size_t module_index =
|
||||
global_strip_index / MythenDetectorSpecifications::strips_per_module();
|
||||
// local strip index in module
|
||||
size_t local_strip_index =
|
||||
global_strip_index -
|
||||
module_index * MythenDetectorSpecifications::strips_per_module();
|
||||
// switch if indexing is in clock-wise direction
|
||||
local_strip_index =
|
||||
std::signbit(conversions[module_index])
|
||||
? MythenDetectorSpecifications::strips_per_module() - 1 -
|
||||
local_strip_index
|
||||
: local_strip_index;
|
||||
|
||||
return local_strip_index;
|
||||
}
|
||||
|
||||
/*
|
||||
parameters
|
||||
AngleCalibration::convert_to_BC_parameters() {}
|
||||
*/
|
||||
|
||||
double AngleCalibration::diffraction_angle_from_DG_parameters(
|
||||
const double center, const double conversion, const double offset,
|
||||
const size_t strip_index, const double distance_to_strip) const {
|
||||
|
||||
return offset + 180.0 / M_PI *
|
||||
(center * std::abs(conversion) -
|
||||
atan((center - (strip_index + distance_to_strip)) *
|
||||
std::abs(conversion)));
|
||||
}
|
||||
|
||||
double AngleCalibration::diffraction_angle_from_EE_parameters(
|
||||
const double module_center_distance, const double normal_distance,
|
||||
const double angle, const size_t strip_index,
|
||||
const double distance_to_strip) const {
|
||||
|
||||
return angle - 180.0 / M_PI *
|
||||
atan((module_center_distance -
|
||||
MythenDetectorSpecifications::pitch() *
|
||||
(strip_index + distance_to_strip)) /
|
||||
normal_distance); // TODO: why is it minus
|
||||
// is it defined counter
|
||||
// clockwise? thought
|
||||
// should have a flipped
|
||||
// sign
|
||||
}
|
||||
|
||||
double AngleCalibration::angular_strip_width_from_DG_parameters(
|
||||
const double center, const double conversion, const double offset,
|
||||
const size_t local_strip_index) const {
|
||||
|
||||
return std::abs(diffraction_angle_from_DG_parameters(
|
||||
center, conversion, offset, local_strip_index, -0.5) -
|
||||
diffraction_angle_from_DG_parameters(
|
||||
center, conversion, offset, local_strip_index, 0.5));
|
||||
}
|
||||
|
||||
double AngleCalibration::angular_strip_width_from_EE_parameters(
|
||||
const double module_center_distance, const double normal_distance,
|
||||
const double angle, const size_t local_strip_index) const {
|
||||
|
||||
return std::abs(diffraction_angle_from_EE_parameters(
|
||||
module_center_distance, normal_distance, angle,
|
||||
local_strip_index, -0.5) -
|
||||
diffraction_angle_from_EE_parameters(
|
||||
module_center_distance, normal_distance, angle,
|
||||
local_strip_index, 0.5));
|
||||
|
||||
// TODO: again not sure about division order - taking abs anyway
|
||||
}
|
||||
|
||||
void AngleCalibration::calculate_fixed_bin_angle_width_histogram(
|
||||
const size_t start_frame_index, const size_t end_frame_index) {
|
||||
|
||||
new_photon_counts = NDArray<double, 1>(std::array<ssize_t, 1>{num_bins});
|
||||
|
||||
new_photon_count_errors =
|
||||
NDArray<double, 1>(std::array<ssize_t, 1>{num_bins});
|
||||
|
||||
// TODO: maybe group these into a 2d array - better cache usage
|
||||
NDArray<double, 1> bin_counts(std::array<ssize_t, 1>{num_bins}, 0.0);
|
||||
NDArray<double, 1> new_statistical_weights(std::array<ssize_t, 1>{num_bins},
|
||||
0.0);
|
||||
NDArray<double, 1> new_errors(std::array<ssize_t, 1>{num_bins}, 0.0);
|
||||
|
||||
NDArray<double, 1> inverse_normalized_flatfield =
|
||||
flat_field->inverse_normalized_flatfield();
|
||||
|
||||
for (size_t frame_index = start_frame_index; frame_index < end_frame_index;
|
||||
++frame_index) {
|
||||
MythenFrame frame = mythen_file_reader->read_frame(frame_index);
|
||||
redistribute_photon_counts_to_fixed_angle_bins(
|
||||
frame, bin_counts.view(), new_statistical_weights.view(),
|
||||
new_errors.view(), inverse_normalized_flatfield.view());
|
||||
}
|
||||
|
||||
for (ssize_t i = 0; i < new_photon_counts.size(); ++i) {
|
||||
new_photon_counts[i] = (new_statistical_weights[i] <=
|
||||
std::numeric_limits<double>::epsilon())
|
||||
? 0.
|
||||
: bin_counts[i] / new_statistical_weights[i];
|
||||
new_photon_count_errors[i] =
|
||||
(bin_counts[i] <= std::numeric_limits<double>::epsilon())
|
||||
? 0.
|
||||
: 1.0 / std::sqrt(bin_counts[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void AngleCalibration::redistribute_photon_counts_to_fixed_angle_bins(
|
||||
const MythenFrame &frame, NDView<double, 1> bin_counts,
|
||||
NDView<double, 1> new_statistical_weights, NDView<double, 1> new_errors,
|
||||
NDView<double, 1> inverse_normalized_flatfield) const {
|
||||
|
||||
ssize_t channel = 0; // TODO handle mask - FlatField still 1d
|
||||
|
||||
if (frame.photon_counts.shape()[0] != mythen_detector->num_strips()) {
|
||||
throw std::runtime_error("wrong number of strips read");
|
||||
}
|
||||
|
||||
ssize_t num_bins1 = mythen_detector->min_angle() / histogram_bin_width;
|
||||
ssize_t num_bins2 = mythen_detector->max_angle() / histogram_bin_width;
|
||||
|
||||
std::cout << "position: " << frame.detector_angle
|
||||
<< std::endl; // replace with log
|
||||
|
||||
double exposure_rate = 1. / mythen_detector->exposure_time();
|
||||
|
||||
for (ssize_t strip_index = 0; strip_index < mythen_detector->num_strips();
|
||||
++strip_index) {
|
||||
|
||||
size_t module_index =
|
||||
strip_index / MythenDetectorSpecifications::strips_per_module();
|
||||
|
||||
if (mythen_detector->get_bad_channels()[strip_index] ||
|
||||
!mythen_detector->get_connected_modules()[module_index])
|
||||
continue;
|
||||
|
||||
double poisson_error = std::sqrt(frame.photon_counts(strip_index)) *
|
||||
inverse_normalized_flatfield(strip_index) *
|
||||
exposure_rate;
|
||||
|
||||
double corrected_photon_count =
|
||||
frame.photon_counts(strip_index) *
|
||||
inverse_normalized_flatfield(strip_index) * exposure_rate;
|
||||
|
||||
size_t local_strip_index =
|
||||
global_to_local_strip_index_conversion(strip_index);
|
||||
|
||||
double diffraction_angle = diffraction_angle_from_DG_parameters(
|
||||
centers[module_index], conversions[module_index],
|
||||
offsets[module_index], local_strip_index);
|
||||
|
||||
diffraction_angle += (frame.detector_angle + mythen_detector->dtt0() +
|
||||
mythen_detector->bloffset());
|
||||
|
||||
if (diffraction_angle < mythen_detector->min_angle() ||
|
||||
diffraction_angle > mythen_detector->max_angle())
|
||||
continue;
|
||||
|
||||
double angle_covered_by_strip = angular_strip_width_from_DG_parameters(
|
||||
centers[module_index], conversions[module_index],
|
||||
offsets[module_index], local_strip_index);
|
||||
|
||||
double photon_count_per_bin = histogram_bin_width *
|
||||
corrected_photon_count /
|
||||
angle_covered_by_strip;
|
||||
double error_photon_count_per_bin =
|
||||
histogram_bin_width * poisson_error / angle_covered_by_strip;
|
||||
|
||||
double statistical_weights =
|
||||
1.0 / std::pow(error_photon_count_per_bin, 2); // 1./sigma²
|
||||
|
||||
double strip_boundary_left =
|
||||
diffraction_angle - 0.5 * angle_covered_by_strip;
|
||||
double strip_boundary_right =
|
||||
diffraction_angle + 0.5 * angle_covered_by_strip;
|
||||
|
||||
ssize_t left_bin_index = std::max(
|
||||
num_bins1,
|
||||
static_cast<ssize_t>(
|
||||
std::floor(strip_boundary_left / histogram_bin_width) - 1));
|
||||
ssize_t right_bin_index = std::min(
|
||||
num_bins2,
|
||||
static_cast<ssize_t>(
|
||||
std::ceil(strip_boundary_right / histogram_bin_width) + 1));
|
||||
|
||||
// TODO should it be < or <=
|
||||
for (ssize_t bin = left_bin_index; bin <= right_bin_index; ++bin) {
|
||||
double bin_coverage = std::min(strip_boundary_right,
|
||||
(bin + 0.5) * histogram_bin_width) -
|
||||
std::max(strip_boundary_left,
|
||||
(bin - 0.5) * histogram_bin_width);
|
||||
|
||||
double bin_coverage_factor = bin_coverage / histogram_bin_width;
|
||||
|
||||
ssize_t bin_index = bin - num_bins1;
|
||||
// TODO: maybe have this threshold configurable
|
||||
if (bin_coverage >= 0.0001) {
|
||||
new_statistical_weights(bin_index) +=
|
||||
statistical_weights * bin_coverage_factor;
|
||||
bin_counts(bin_index) += statistical_weights *
|
||||
bin_coverage_factor *
|
||||
photon_count_per_bin;
|
||||
new_errors(bin_index) += statistical_weights *
|
||||
bin_coverage_factor *
|
||||
std::pow(photon_count_per_bin, 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void AngleCalibration::write_to_file(
|
||||
const std::string &filename, const bool store_nonzero_bins,
|
||||
const std::filesystem::path &filepath) const {
|
||||
|
||||
std::ofstream output_file(filepath / filename);
|
||||
|
||||
if (!output_file) {
|
||||
std::cerr << "Error opening file!"
|
||||
<< std::endl; // TODO: replace with log
|
||||
}
|
||||
|
||||
output_file << std::fixed << std::setprecision(15);
|
||||
|
||||
for (ssize_t i = 0; i < num_bins; ++i) {
|
||||
if (new_photon_counts[i] <= std::numeric_limits<double>::epsilon() &&
|
||||
store_nonzero_bins) {
|
||||
continue;
|
||||
}
|
||||
|
||||
output_file << std::floor(mythen_detector->min_angle() /
|
||||
histogram_bin_width) *
|
||||
histogram_bin_width +
|
||||
i * histogram_bin_width
|
||||
<< " " << new_photon_counts[i] << " "
|
||||
<< new_photon_count_errors[i] << std::endl;
|
||||
}
|
||||
output_file.close();
|
||||
}
|
||||
|
||||
} // namespace aare
|
234
src/AngleCalibration.test.cpp
Normal file
234
src/AngleCalibration.test.cpp
Normal file
@ -0,0 +1,234 @@
|
||||
/************************************************
|
||||
* @file AngleCalibration.test.cpp
|
||||
* @short test case for angle calibration class
|
||||
***********************************************/
|
||||
|
||||
#include "aare/AngleCalibration.hpp"
|
||||
|
||||
#include <filesystem>
|
||||
|
||||
#include "test_config.hpp"
|
||||
|
||||
#include <iomanip>
|
||||
#include <type_traits>
|
||||
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("read initial angle calibration file",
|
||||
"[.anglecalibration] [.files]") {
|
||||
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector_ptr =
|
||||
std::make_shared<MythenDetectorSpecifications>();
|
||||
|
||||
AngleCalibration anglecalibration(mythen_detector_ptr,
|
||||
std::shared_ptr<FlatField>{},
|
||||
std::shared_ptr<MythenFileReader>{});
|
||||
|
||||
std::string filename = test_data_path() / "AngleCalibration_Test_Data" /
|
||||
"Angcal_2E_Feb2023_P29.off";
|
||||
|
||||
REQUIRE(std::filesystem::exists(filename));
|
||||
|
||||
anglecalibration.read_initial_calibration_from_file(filename);
|
||||
|
||||
auto centers = anglecalibration.get_centers();
|
||||
auto conversions = anglecalibration.get_conversions();
|
||||
auto offsets = anglecalibration.get_offsets();
|
||||
|
||||
std::cout.precision(17);
|
||||
|
||||
CHECK(centers.size() == 48);
|
||||
CHECK(conversions.size() == 48);
|
||||
CHECK(offsets.size() == 48);
|
||||
|
||||
CHECK(centers[9] == Catch::Approx(660.342326));
|
||||
CHECK(offsets[47] == Catch::Approx(5.8053312));
|
||||
CHECK(conversions[27] == Catch::Approx(-0.6581179125e-4));
|
||||
}
|
||||
|
||||
TEST_CASE("read bad channels",
|
||||
"[.anglecalibration][.mythenspecifications][.files]") {
|
||||
|
||||
MythenDetectorSpecifications mythen_detector;
|
||||
|
||||
std::string bad_channels_filename = test_data_path() /
|
||||
"AngleCalibration_Test_Data" /
|
||||
"bc2023_003_RING.chans";
|
||||
|
||||
REQUIRE(std::filesystem::exists(bad_channels_filename));
|
||||
|
||||
mythen_detector.read_bad_channels_from_file(bad_channels_filename);
|
||||
|
||||
CHECK(mythen_detector.get_bad_channels().size() == 61440);
|
||||
|
||||
CHECK(mythen_detector.get_bad_channels()[61437] == true);
|
||||
CHECK(std::all_of(mythen_detector.get_bad_channels().begin() + 30720,
|
||||
mythen_detector.get_bad_channels().begin() + 61439,
|
||||
[](const bool element) { return element; }));
|
||||
}
|
||||
|
||||
TEST_CASE("read unconnected modules",
|
||||
"[.anglecalibration][.mythenspecifications][.files]") {
|
||||
|
||||
MythenDetectorSpecifications mythen_detector;
|
||||
|
||||
std::string unconnected_modules_filename =
|
||||
test_data_path() / "AngleCalibration_Test_Data" / "ModOut.txt";
|
||||
|
||||
REQUIRE(std::filesystem::exists(unconnected_modules_filename));
|
||||
|
||||
mythen_detector.read_unconnected_modules_from_file(
|
||||
unconnected_modules_filename);
|
||||
|
||||
CHECK(mythen_detector.get_connected_modules().size() == 48);
|
||||
|
||||
CHECK(std::all_of(mythen_detector.get_connected_modules().begin(),
|
||||
mythen_detector.get_connected_modules().end(),
|
||||
[](const bool element) { return element; }));
|
||||
}
|
||||
|
||||
TEST_CASE("read flatfield", "[.anglecalibration][.flatfield][.files]") {
|
||||
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector_ptr =
|
||||
std::make_shared<MythenDetectorSpecifications>();
|
||||
|
||||
FlatField flatfield(mythen_detector_ptr);
|
||||
|
||||
std::string flatfield_filename =
|
||||
test_data_path() / "AngleCalibration_Test_Data" /
|
||||
"Flatfield_E22p0keV_T11000eV_up_48M_a_LONG_Feb2023_open_WS_SUMC.raw";
|
||||
|
||||
REQUIRE(std::filesystem::exists(flatfield_filename));
|
||||
|
||||
flatfield.read_flatfield_from_file(flatfield_filename);
|
||||
|
||||
auto flatfield_data = flatfield.get_flatfield();
|
||||
|
||||
CHECK(flatfield_data.size() == 61440);
|
||||
|
||||
CHECK(flatfield_data[0] == 0);
|
||||
CHECK(flatfield_data[21] == 4234186);
|
||||
}
|
||||
|
||||
TEST_CASE("compare result with python code", "[.anglecalibration] [.files]") {
|
||||
|
||||
auto fpath = test_data_path() / "AngleCalibration_Test_Data";
|
||||
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector_ptr =
|
||||
std::make_shared<MythenDetectorSpecifications>();
|
||||
|
||||
std::string bad_channels_filename = fpath / "bc2023_003_RING.chans";
|
||||
|
||||
REQUIRE(std::filesystem::exists(bad_channels_filename));
|
||||
|
||||
mythen_detector_ptr->read_bad_channels_from_file(bad_channels_filename);
|
||||
|
||||
std::string unconnected_modules_filename = fpath / "ModOut.txt";
|
||||
|
||||
REQUIRE(std::filesystem::exists(unconnected_modules_filename));
|
||||
|
||||
mythen_detector_ptr->read_unconnected_modules_from_file(
|
||||
unconnected_modules_filename);
|
||||
|
||||
std::shared_ptr<FlatField> flat_field_ptr =
|
||||
std::make_shared<FlatField>(mythen_detector_ptr);
|
||||
|
||||
std::string flatfield_filename =
|
||||
fpath /
|
||||
"Flatfield_E22p0keV_T11000eV_up_48M_a_LONG_Feb2023_open_WS_SUMC.raw";
|
||||
|
||||
REQUIRE(std::filesystem::exists(flatfield_filename));
|
||||
|
||||
flat_field_ptr->read_flatfield_from_file(flatfield_filename);
|
||||
|
||||
std::shared_ptr<MythenFileReader> mythen_file_reader_ptr =
|
||||
std::make_shared<MythenFileReader>(fpath,
|
||||
"ang1up_22keV_LaB60p3mm_48M_a_0");
|
||||
|
||||
AngleCalibration anglecalibration(mythen_detector_ptr, flat_field_ptr,
|
||||
mythen_file_reader_ptr);
|
||||
|
||||
std::string initial_angles_filename = fpath / "Angcal_2E_Feb2023_P29.off";
|
||||
|
||||
REQUIRE(std::filesystem::exists(initial_angles_filename));
|
||||
|
||||
anglecalibration.read_initial_calibration_from_file(
|
||||
initial_angles_filename);
|
||||
|
||||
anglecalibration.calculate_fixed_bin_angle_width_histogram(320, 340);
|
||||
|
||||
// anglecalibration.write_to_file("cpp_new_photon_counts.xye");
|
||||
|
||||
auto expected_filename_photons =
|
||||
test_data_path() / "AngleCalibration_Test_Data" / "new_photons.bin";
|
||||
|
||||
REQUIRE(std::filesystem::exists(expected_filename_photons));
|
||||
|
||||
auto expected_filename_errors =
|
||||
test_data_path() / "AngleCalibration_Test_Data" / "new_errors.bin";
|
||||
|
||||
REQUIRE(std::filesystem::exists(expected_filename_errors));
|
||||
|
||||
ssize_t new_num_bins = anglecalibration.get_new_num_bins();
|
||||
|
||||
auto python_output_errors = load<double, 1>(
|
||||
expected_filename_errors, std::array<ssize_t, 1>{new_num_bins});
|
||||
|
||||
auto python_output_photons = load<double, 1>(
|
||||
expected_filename_photons, std::array<ssize_t, 1>{new_num_bins});
|
||||
|
||||
CHECK(anglecalibration.get_new_photon_counts().equals(
|
||||
python_output_photons.view(),
|
||||
1e-8)); // not sure about precision does not exactly match to all
|
||||
// decimal digits
|
||||
|
||||
CHECK(anglecalibration.get_new_statistical_errors().equals(
|
||||
python_output_errors.view(),
|
||||
1e-8)); //
|
||||
}
|
||||
|
||||
TEST_CASE("check conversion from DG to EE parameters", "[.anglecalibration]") {
|
||||
|
||||
std::shared_ptr<MythenDetectorSpecifications> mythen_detector_ptr =
|
||||
std::make_shared<MythenDetectorSpecifications>();
|
||||
|
||||
AngleCalibration anglecalibration(mythen_detector_ptr,
|
||||
std::shared_ptr<FlatField>{},
|
||||
std::shared_ptr<MythenFileReader>{});
|
||||
|
||||
// DG test parameters
|
||||
const double center = 642.197591224993;
|
||||
const double conversion = 0.657694036246975e-4;
|
||||
const double offset = 5.004892881251670;
|
||||
const ssize_t local_strip_index = 1;
|
||||
|
||||
double diffraction_angle_DG_param =
|
||||
anglecalibration.diffraction_angle_from_DG_parameters(
|
||||
center, conversion, offset, local_strip_index);
|
||||
|
||||
auto [distance_center, normal_distance, angle] =
|
||||
anglecalibration.convert_to_EE_parameters(center, conversion, offset);
|
||||
|
||||
double diffraction_angle_EE_param =
|
||||
anglecalibration.diffraction_angle_from_EE_parameters(
|
||||
distance_center, normal_distance, angle, local_strip_index);
|
||||
|
||||
CHECK(diffraction_angle_EE_param ==
|
||||
Catch::Approx(diffraction_angle_DG_param));
|
||||
|
||||
double strip_width_DG_param =
|
||||
anglecalibration.angular_strip_width_from_DG_parameters(
|
||||
center, conversion, offset, local_strip_index);
|
||||
|
||||
double strip_width_EE_param =
|
||||
anglecalibration.angular_strip_width_from_EE_parameters(
|
||||
distance_center, normal_distance, angle, local_strip_index);
|
||||
|
||||
CHECK(strip_width_DG_param == Catch::Approx(strip_width_EE_param));
|
||||
}
|
@ -1,395 +0,0 @@
|
||||
#include "aare/ClusterFile.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace aare {
|
||||
|
||||
ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
|
||||
const std::string &mode)
|
||||
: m_chunk_size(chunk_size), m_mode(mode) {
|
||||
|
||||
if (mode == "r") {
|
||||
fp = fopen(fname.c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for reading: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "w") {
|
||||
fp = fopen(fname.c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for writing: " +
|
||||
fname.string());
|
||||
}
|
||||
} else if (mode == "a") {
|
||||
fp = fopen(fname.c_str(), "ab");
|
||||
if (!fp) {
|
||||
throw std::runtime_error("Could not open file for appending: " +
|
||||
fname.string());
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported mode: " + mode);
|
||||
}
|
||||
}
|
||||
|
||||
void ClusterFile::set_roi(ROI roi) { m_roi = roi; }
|
||||
|
||||
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map) {
|
||||
m_noise_map = NDArray<int32_t, 2>(noise_map);
|
||||
}
|
||||
|
||||
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map) {
|
||||
m_gain_map = NDArray<double, 2>(gain_map);
|
||||
|
||||
// Gain map is passed as ADU/keV to avoid dividing in when applying the gain
|
||||
// map we invert it here
|
||||
for (auto &item : m_gain_map->view()) {
|
||||
item = 1.0 / item;
|
||||
}
|
||||
}
|
||||
|
||||
ClusterFile::~ClusterFile() { close(); }
|
||||
|
||||
void ClusterFile::close() {
|
||||
if (fp) {
|
||||
fclose(fp);
|
||||
fp = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
|
||||
if (m_mode != "w" && m_mode != "a") {
|
||||
throw std::runtime_error("File not opened for writing");
|
||||
}
|
||||
if (!(clusters.cluster_size_x() == 3) &&
|
||||
!(clusters.cluster_size_y() == 3)) {
|
||||
throw std::runtime_error("Only 3x3 clusters are supported");
|
||||
}
|
||||
// First write the frame number - 4 bytes
|
||||
int32_t frame_number = clusters.frame_number();
|
||||
if (fwrite(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not write frame number");
|
||||
}
|
||||
|
||||
// Then write the number of clusters - 4 bytes
|
||||
uint32_t n_clusters = clusters.size();
|
||||
if (fwrite(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not write number of clusters");
|
||||
}
|
||||
|
||||
// Now write the clusters in the frame
|
||||
if (fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp) !=
|
||||
clusters.size()) {
|
||||
throw std::runtime_error(LOCATION + "Could not write clusters");
|
||||
}
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_clusters_with_cut(n_clusters);
|
||||
} else {
|
||||
return read_clusters_without_cut(n_clusters);
|
||||
}
|
||||
}
|
||||
|
||||
ClusterVector<int32_t>
|
||||
ClusterFile::read_clusters_without_cut(size_t n_clusters) {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> clusters(3, 3, n_clusters);
|
||||
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
size_t nph_read = 0;
|
||||
uint32_t nn = m_num_left;
|
||||
uint32_t nph = m_num_left; // number of clusters in frame needs to be 4
|
||||
|
||||
// auto buf = reinterpret_cast<Cluster3x3 *>(clusters.data());
|
||||
auto buf = clusters.data();
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to read we
|
||||
// read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nph_read += fread((buf + nph_read * clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
clusters.set_frame_number(iframe);
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nph_read += fread((buf + nph_read * clusters.item_size()),
|
||||
clusters.item_size(), nn, fp);
|
||||
m_num_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the vector to the number of clusters.
|
||||
// No new allocation, only change bounds.
|
||||
clusters.resize(nph_read);
|
||||
if (m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
return clusters;
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
|
||||
ClusterVector<int32_t> clusters(3, 3);
|
||||
clusters.reserve(n_clusters);
|
||||
|
||||
// if there are photons left from previous frame read them first
|
||||
if (m_num_left) {
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
Cluster3x3 c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c.x, c.y,
|
||||
reinterpret_cast<std::byte *>(c.data));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we did not have enough clusters left in the previous frame
|
||||
// keep on reading frames until reaching n_clusters
|
||||
if (clusters.size() < n_clusters) {
|
||||
// sanity check
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
LOCATION + "Entered second loop with clusters left\n");
|
||||
}
|
||||
|
||||
int32_t frame_number = 0; // frame number needs to be 4 bytes!
|
||||
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
|
||||
clusters.set_frame_number(
|
||||
frame_number); // cluster vector will hold the last frame
|
||||
// number
|
||||
while (m_num_left && clusters.size() < n_clusters) {
|
||||
Cluster3x3 c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(
|
||||
c.x, c.y, reinterpret_cast<std::byte *>(c.data));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we have enough clusters, break out of the outer while loop
|
||||
if (clusters.size() >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
Cluster3x3 ClusterFile::read_one_cluster() {
|
||||
Cluster3x3 c;
|
||||
auto rc = fread(&c, sizeof(c), 1, fp);
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read cluster");
|
||||
}
|
||||
--m_num_left;
|
||||
return c;
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_frame() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error(LOCATION + "File not opened for reading");
|
||||
}
|
||||
if (m_noise_map || m_roi) {
|
||||
return read_frame_with_cut();
|
||||
} else {
|
||||
return read_frame_without_cut();
|
||||
}
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION + "Could not read frame number");
|
||||
}
|
||||
|
||||
int32_t n_clusters; // Saved as 32bit integer in the cluster file
|
||||
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> clusters(3, 3, n_clusters);
|
||||
clusters.set_frame_number(frame_number);
|
||||
|
||||
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
|
||||
static_cast<size_t>(n_clusters)) {
|
||||
throw std::runtime_error(LOCATION + "Could not read clusters");
|
||||
}
|
||||
clusters.resize(n_clusters);
|
||||
if (m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
return clusters;
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
|
||||
if (m_mode != "r") {
|
||||
throw std::runtime_error("File not opened for reading");
|
||||
}
|
||||
if (m_num_left) {
|
||||
throw std::runtime_error(
|
||||
"There are still photons left in the last frame");
|
||||
}
|
||||
int32_t frame_number;
|
||||
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read frame number");
|
||||
}
|
||||
|
||||
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
|
||||
throw std::runtime_error("Could not read number of clusters");
|
||||
}
|
||||
|
||||
ClusterVector<int32_t> clusters(3, 3);
|
||||
clusters.reserve(m_num_left);
|
||||
clusters.set_frame_number(frame_number);
|
||||
while (m_num_left) {
|
||||
Cluster3x3 c = read_one_cluster();
|
||||
if (is_selected(c)) {
|
||||
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte *>(c.data));
|
||||
}
|
||||
}
|
||||
if (m_gain_map)
|
||||
clusters.apply_gain_map(m_gain_map->view());
|
||||
return clusters;
|
||||
}
|
||||
|
||||
bool ClusterFile::is_selected(Cluster3x3 &cl) {
|
||||
// Should fail fast
|
||||
if (m_roi) {
|
||||
if (!(m_roi->contains(cl.x, cl.y))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (m_noise_map) {
|
||||
int32_t sum_1x1 = cl.data[4]; // central pixel
|
||||
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
|
||||
int32_t sum_3x3 = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise =
|
||||
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
|
||||
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// we passed all checks
|
||||
return true;
|
||||
}
|
||||
|
||||
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
|
||||
// TOTO! make work with 2x2 clusters
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a 3x3 cluster and return them in a Eta2
|
||||
* struct containing etay, etax and the corner of the cluster.
|
||||
*/
|
||||
Eta2 calculate_eta2(Cluster3x3 &cl) {
|
||||
Eta2 eta{};
|
||||
|
||||
std::array<int32_t, 4> tot2;
|
||||
tot2[0] = cl.data[0] + cl.data[1] + cl.data[3] + cl.data[4];
|
||||
tot2[1] = cl.data[1] + cl.data[2] + cl.data[4] + cl.data[5];
|
||||
tot2[2] = cl.data[3] + cl.data[4] + cl.data[6] + cl.data[7];
|
||||
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
|
||||
|
||||
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
|
||||
eta.sum = tot2[c];
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if ((cl.data[3] + cl.data[4]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
|
||||
if ((cl.data[1] + cl.data[4]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
|
||||
eta.c = cBottomLeft;
|
||||
break;
|
||||
case cBottomRight:
|
||||
if ((cl.data[2] + cl.data[5]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[5]) / (cl.data[4] + cl.data[5]);
|
||||
if ((cl.data[1] + cl.data[4]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[4]) / (cl.data[1] + cl.data[4]);
|
||||
eta.c = cBottomRight;
|
||||
break;
|
||||
case cTopLeft:
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[4]) / (cl.data[3] + cl.data[4]);
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
|
||||
eta.c = cTopLeft;
|
||||
break;
|
||||
case cTopRight:
|
||||
if ((cl.data[5] + cl.data[4]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[5]) / (cl.data[5] + cl.data[4]);
|
||||
if ((cl.data[7] + cl.data[4]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[7]) / (cl.data[7] + cl.data[4]);
|
||||
eta.c = cTopRight;
|
||||
break;
|
||||
// no default to allow compiler to warn about missing cases
|
||||
}
|
||||
return eta;
|
||||
}
|
||||
|
||||
Eta2 calculate_eta2(Cluster2x2 &cl) {
|
||||
Eta2 eta{};
|
||||
if ((cl.data[0] + cl.data[1]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
|
||||
if ((cl.data[0] + cl.data[2]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
|
||||
eta.sum = cl.data[0] + cl.data[1] + cl.data[2] + cl.data[3];
|
||||
eta.c = cBottomLeft; // TODO! This is not correct, but need to put something
|
||||
return eta;
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -10,8 +10,9 @@ using aare::Cluster;
|
||||
using aare::ClusterFile;
|
||||
using aare::ClusterVector;
|
||||
|
||||
|
||||
TEST_CASE("Read one frame from a cluster file", "[.files]") {
|
||||
// We know that the frame has 97 clusters
|
||||
//We know that the frame has 97 clusters
|
||||
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
@ -26,6 +27,7 @@ TEST_CASE("Read one frame from a cluster file", "[.files]") {
|
||||
std::begin(expected_cluster_data)));
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Read one frame using ROI", "[.files]") {
|
||||
// We know that the frame has 97 clusters
|
||||
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
|
||||
@ -58,6 +60,8 @@ TEST_CASE("Read one frame using ROI", "[.files]") {
|
||||
std::begin(expected_cluster_data)));
|
||||
}
|
||||
|
||||
|
||||
|
||||
TEST_CASE("Read clusters from single frame file", "[.files]") {
|
||||
|
||||
// frame_number, num_clusters [135] 97
|
||||
|
@ -14,24 +14,22 @@ CtbRawFile::CtbRawFile(const std::filesystem::path &fname) : m_master(fname) {
|
||||
m_file.open(m_master.data_fname(0, 0), std::ios::binary);
|
||||
}
|
||||
|
||||
void CtbRawFile::read_into(std::byte *image_buf, DetectorHeader *header) {
|
||||
if (m_current_frame >= m_master.frames_in_file()) {
|
||||
void CtbRawFile::read_into(std::byte *image_buf, DetectorHeader* header) {
|
||||
if(m_current_frame >= m_master.frames_in_file()){
|
||||
throw std::runtime_error(LOCATION + " End of file reached");
|
||||
}
|
||||
|
||||
if (m_current_frame != 0 &&
|
||||
m_current_frame % m_master.max_frames_per_file() == 0) {
|
||||
open_data_file(m_current_subfile + 1);
|
||||
if(m_current_frame != 0 && m_current_frame % m_master.max_frames_per_file() == 0){
|
||||
open_data_file(m_current_subfile+1);
|
||||
}
|
||||
|
||||
if (header) {
|
||||
|
||||
if(header){
|
||||
m_file.read(reinterpret_cast<char *>(header), sizeof(DetectorHeader));
|
||||
} else {
|
||||
}else{
|
||||
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
|
||||
}
|
||||
|
||||
m_file.read(reinterpret_cast<char *>(image_buf),
|
||||
m_master.image_size_in_bytes());
|
||||
m_file.read(reinterpret_cast<char *>(image_buf), m_master.image_size_in_bytes());
|
||||
m_current_frame++;
|
||||
}
|
||||
|
||||
@ -40,16 +38,13 @@ void CtbRawFile::seek(size_t frame_number) {
|
||||
open_data_file(index);
|
||||
}
|
||||
size_t frame_number_in_file = frame_number % m_master.max_frames_per_file();
|
||||
m_file.seekg((sizeof(DetectorHeader) + m_master.image_size_in_bytes()) *
|
||||
frame_number_in_file);
|
||||
m_file.seekg((sizeof(DetectorHeader)+m_master.image_size_in_bytes()) * frame_number_in_file);
|
||||
m_current_frame = frame_number;
|
||||
}
|
||||
|
||||
size_t CtbRawFile::tell() const { return m_current_frame; }
|
||||
|
||||
size_t CtbRawFile::image_size_in_bytes() const {
|
||||
return m_master.image_size_in_bytes();
|
||||
}
|
||||
size_t CtbRawFile::image_size_in_bytes() const { return m_master.image_size_in_bytes(); }
|
||||
|
||||
size_t CtbRawFile::frames_in_file() const { return m_master.frames_in_file(); }
|
||||
|
||||
@ -68,11 +63,12 @@ void CtbRawFile::open_data_file(size_t subfile_index) {
|
||||
throw std::runtime_error(LOCATION + "Subfile index out of range");
|
||||
}
|
||||
m_current_subfile = subfile_index;
|
||||
m_file = std::ifstream(m_master.data_fname(0, subfile_index),
|
||||
std::ios::binary); // only one module for CTB
|
||||
m_file = std::ifstream(m_master.data_fname(0, subfile_index), std::ios::binary); // only one module for CTB
|
||||
if (!m_file.is_open()) {
|
||||
throw std::runtime_error(LOCATION + "Could not open data file");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace aare
|
@ -10,8 +10,7 @@ namespace aare {
|
||||
* @brief Construct a DType object from a type_info object
|
||||
* @param t type_info object
|
||||
* @throw runtime_error if the type is not supported
|
||||
* @note supported types are: int8_t, uint8_t, int16_t, uint16_t, int32_t,
|
||||
* uint32_t, int64_t, uint64_t, float, double
|
||||
* @note supported types are: int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, float, double
|
||||
* @note the type_info object is obtained using typeid (e.g. typeid(int))
|
||||
*/
|
||||
Dtype::Dtype(const std::type_info &t) {
|
||||
@ -36,8 +35,7 @@ Dtype::Dtype(const std::type_info &t) {
|
||||
else if (t == typeid(double))
|
||||
m_type = TypeIndex::DOUBLE;
|
||||
else
|
||||
throw std::runtime_error(
|
||||
"Could not construct data type. Type not supported.");
|
||||
throw std::runtime_error("Could not construct data type. Type not supported.");
|
||||
}
|
||||
|
||||
/**
|
||||
@ -65,8 +63,7 @@ uint8_t Dtype::bitdepth() const {
|
||||
case TypeIndex::NONE:
|
||||
return 0;
|
||||
default:
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Could not get bitdepth. Type not supported.");
|
||||
throw std::runtime_error(LOCATION + "Could not get bitdepth. Type not supported.");
|
||||
}
|
||||
}
|
||||
|
||||
@ -141,8 +138,7 @@ Dtype Dtype::from_bitdepth(uint8_t bitdepth) {
|
||||
case 64:
|
||||
return Dtype(TypeIndex::UINT64);
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"Could not construct data type from bitdepth.");
|
||||
throw std::runtime_error("Could not construct data type from bitdepth.");
|
||||
}
|
||||
}
|
||||
/**
|
||||
@ -179,27 +175,17 @@ std::string Dtype::to_string() const {
|
||||
case TypeIndex::DOUBLE:
|
||||
return "f8";
|
||||
case TypeIndex::ERROR:
|
||||
throw std::runtime_error(
|
||||
"Could not get string representation. Type not supported.");
|
||||
throw std::runtime_error("Could not get string representation. Type not supported.");
|
||||
case TypeIndex::NONE:
|
||||
throw std::runtime_error(
|
||||
"Could not get string representation. Type not supported.");
|
||||
throw std::runtime_error("Could not get string representation. Type not supported.");
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
bool Dtype::operator==(const Dtype &other) const noexcept {
|
||||
return m_type == other.m_type;
|
||||
}
|
||||
bool Dtype::operator!=(const Dtype &other) const noexcept {
|
||||
return !(*this == other);
|
||||
}
|
||||
bool Dtype::operator==(const Dtype &other) const noexcept { return m_type == other.m_type; }
|
||||
bool Dtype::operator!=(const Dtype &other) const noexcept { return !(*this == other); }
|
||||
|
||||
bool Dtype::operator==(const std::type_info &t) const {
|
||||
return Dtype(t) == *this;
|
||||
}
|
||||
bool Dtype::operator!=(const std::type_info &t) const {
|
||||
return Dtype(t) != *this;
|
||||
}
|
||||
bool Dtype::operator==(const std::type_info &t) const { return Dtype(t) == *this; }
|
||||
bool Dtype::operator!=(const std::type_info &t) const { return Dtype(t) != *this; }
|
||||
|
||||
} // namespace aare
|
||||
|
@ -51,6 +51,4 @@ TEST_CASE("Construct from string with endianess") {
|
||||
REQUIRE_THROWS(Dtype(">i4") == typeid(int32_t));
|
||||
}
|
||||
|
||||
TEST_CASE("Convert to string") {
|
||||
REQUIRE(Dtype(typeid(int)).to_string() == "<i4");
|
||||
}
|
||||
TEST_CASE("Convert to string") { REQUIRE(Dtype(typeid(int)).to_string() == "<i4"); }
|
21
src/File.cpp
21
src/File.cpp
@ -19,24 +19,28 @@ File::File(const std::filesystem::path &fname, const std::string &mode,
|
||||
fmt::format("File does not exist: {}", fname.string()));
|
||||
}
|
||||
|
||||
// Assuming we are pointing at a master file?
|
||||
// Assuming we are pointing at a master file?
|
||||
// TODO! How do we read raw files directly?
|
||||
if (fname.extension() == ".raw" || fname.extension() == ".json") {
|
||||
// file_impl = new RawFile(fname, mode, cfg);
|
||||
file_impl = std::make_unique<RawFile>(fname, mode);
|
||||
} else if (fname.extension() == ".npy") {
|
||||
}
|
||||
else if (fname.extension() == ".npy") {
|
||||
// file_impl = new NumpyFile(fname, mode, cfg);
|
||||
file_impl = std::make_unique<NumpyFile>(fname, mode, cfg);
|
||||
} else if (fname.extension() == ".dat") {
|
||||
}else if(fname.extension() == ".dat"){
|
||||
file_impl = std::make_unique<JungfrauDataFile>(fname);
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported file type");
|
||||
}
|
||||
}
|
||||
|
||||
File::File(File &&other) noexcept { std::swap(file_impl, other.file_impl); }
|
||||
|
||||
File &File::operator=(File &&other) noexcept {
|
||||
File::File(File &&other) noexcept{
|
||||
std::swap(file_impl, other.file_impl);
|
||||
}
|
||||
|
||||
File& File::operator=(File &&other) noexcept {
|
||||
if (this != &other) {
|
||||
File tmp(std::move(other));
|
||||
std::swap(file_impl, tmp.file_impl);
|
||||
@ -66,16 +70,15 @@ size_t File::frame_number(size_t frame_index) {
|
||||
}
|
||||
|
||||
size_t File::bytes_per_frame() const { return file_impl->bytes_per_frame(); }
|
||||
size_t File::pixels_per_frame() const { return file_impl->pixels_per_frame(); }
|
||||
size_t File::pixels_per_frame() const{ return file_impl->pixels_per_frame(); }
|
||||
void File::seek(size_t frame_index) { file_impl->seek(frame_index); }
|
||||
size_t File::tell() const { return file_impl->tell(); }
|
||||
size_t File::rows() const { return file_impl->rows(); }
|
||||
size_t File::cols() const { return file_impl->cols(); }
|
||||
size_t File::bitdepth() const { return file_impl->bitdepth(); }
|
||||
size_t File::bytes_per_pixel() const {
|
||||
return file_impl->bitdepth() / bits_per_byte;
|
||||
}
|
||||
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
|
||||
|
||||
DetectorType File::detector_type() const { return file_impl->detector_type(); }
|
||||
|
||||
|
||||
} // namespace aare
|
@ -6,12 +6,10 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
FilePtr::FilePtr(const std::filesystem::path &fname,
|
||||
const std::string &mode = "rb") {
|
||||
FilePtr::FilePtr(const std::filesystem::path& fname, const std::string& mode = "rb") {
|
||||
fp_ = fopen(fname.c_str(), mode.c_str());
|
||||
if (!fp_)
|
||||
throw std::runtime_error(
|
||||
fmt::format("Could not open: {}", fname.c_str()));
|
||||
throw std::runtime_error(fmt::format("Could not open: {}", fname.c_str()));
|
||||
}
|
||||
|
||||
FilePtr::FilePtr(FilePtr &&other) { std::swap(fp_, other.fp_); }
|
||||
@ -26,16 +24,15 @@ FILE *FilePtr::get() { return fp_; }
|
||||
ssize_t FilePtr::tell() {
|
||||
auto pos = ftell(fp_);
|
||||
if (pos == -1)
|
||||
throw std::runtime_error(
|
||||
fmt::format("Error getting file position: {}", error_msg()));
|
||||
throw std::runtime_error(fmt::format("Error getting file position: {}", error_msg()));
|
||||
return pos;
|
||||
}
|
||||
}
|
||||
FilePtr::~FilePtr() {
|
||||
if (fp_)
|
||||
fclose(fp_); // check?
|
||||
}
|
||||
|
||||
std::string FilePtr::error_msg() {
|
||||
std::string FilePtr::error_msg(){
|
||||
if (feof(fp_)) {
|
||||
return "End of file reached";
|
||||
}
|
||||
|
238
src/Fit.cpp
238
src/Fit.cpp
@ -1,12 +1,13 @@
|
||||
#include "aare/Fit.hpp"
|
||||
#include "aare/utils/par.hpp"
|
||||
#include "aare/utils/task.hpp"
|
||||
#include "aare/utils/par.hpp"
|
||||
#include <lmcurve2.h>
|
||||
#include <lmfit.hpp>
|
||||
#include <thread>
|
||||
|
||||
#include <array>
|
||||
|
||||
|
||||
namespace aare {
|
||||
|
||||
namespace func {
|
||||
@ -33,10 +34,8 @@ NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
return y;
|
||||
}
|
||||
|
||||
double scurve(const double x, const double *par) {
|
||||
return (par[0] + par[1] * x) +
|
||||
0.5 * (1 + erf((x - par[2]) / (sqrt(2) * par[3]))) *
|
||||
(par[4] + par[5] * (x - par[2]));
|
||||
double scurve(const double x, const double * par) {
|
||||
return (par[0] + par[1] * x) + 0.5 * (1 + erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
|
||||
}
|
||||
|
||||
NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
@ -47,10 +46,8 @@ NDArray<double, 1> scurve(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
return y;
|
||||
}
|
||||
|
||||
double scurve2(const double x, const double *par) {
|
||||
return (par[0] + par[1] * x) +
|
||||
0.5 * (1 - erf((x - par[2]) / (sqrt(2) * par[3]))) *
|
||||
(par[4] + par[5] * (x - par[2]));
|
||||
double scurve2(const double x, const double * par) {
|
||||
return (par[0] + par[1] * x) + 0.5 * (1 - erf((x - par[2]) / (sqrt(2) * par[3]))) * (par[4] + par[5] * (x - par[2]));
|
||||
}
|
||||
|
||||
NDArray<double, 1> scurve2(NDView<double, 1> x, NDView<double, 1> par) {
|
||||
@ -94,8 +91,7 @@ NDArray<double, 3> fit_gaus(NDView<double, 1> x, NDView<double, 3> y,
|
||||
return result;
|
||||
}
|
||||
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
std::array<double, 3> gaus_init_par(const NDView<double, 1> x, const NDView<double, 1> y) {
|
||||
std::array<double, 3> start_par{0, 0, 0};
|
||||
auto e = std::max_element(y.begin(), y.end());
|
||||
auto idx = std::distance(y.begin(), e);
|
||||
@ -107,29 +103,31 @@ std::array<double, 3> gaus_init_par(const NDView<double, 1> x,
|
||||
// For sigma we estimate the fwhm and divide by 2.35
|
||||
// assuming equally spaced x values
|
||||
auto delta = x[1] - x[0];
|
||||
start_par[2] = std::count_if(y.begin(), y.end(),
|
||||
[e](double val) { return val > *e / 2; }) *
|
||||
delta / 2.35;
|
||||
start_par[2] =
|
||||
std::count_if(y.begin(), y.end(),
|
||||
[e, delta](double val) { return val > *e / 2; }) *
|
||||
delta / 2.35;
|
||||
|
||||
return start_par;
|
||||
}
|
||||
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 2> start_par{0, 0};
|
||||
|
||||
auto y2 = std::max_element(y.begin(), y.end());
|
||||
auto x2 = x[std::distance(y.begin(), y2)];
|
||||
auto y1 = std::min_element(y.begin(), y.end());
|
||||
auto x1 = x[std::distance(y.begin(), y1)];
|
||||
std::array<double, 2> pol1_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 2> start_par{0, 0};
|
||||
|
||||
start_par[0] =
|
||||
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
|
||||
start_par[1] =
|
||||
*y1 - ((*y2 - *y1) / (x2 - x1)) *
|
||||
x1; // For the mean we use the x value of the maximum value
|
||||
return start_par;
|
||||
|
||||
auto y2 = std::max_element(y.begin(), y.end());
|
||||
auto x2 = x[std::distance(y.begin(), y2)];
|
||||
auto y1 = std::min_element(y.begin(), y.end());
|
||||
auto x1 = x[std::distance(y.begin(), y1)];
|
||||
|
||||
start_par[0] =
|
||||
(*y2 - *y1) / (x2 - x1); // For amplitude we use the maximum value
|
||||
start_par[1] =
|
||||
*y1 - ((*y2 - *y1) / (x2 - x1)) *
|
||||
x1; // For the mean we use the x value of the maximum value
|
||||
return start_par;
|
||||
}
|
||||
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
@ -143,6 +141,7 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
"and par_out, par_err_out must have size 3");
|
||||
}
|
||||
|
||||
|
||||
// /* Collection of output parameters for status info. */
|
||||
// typedef struct {
|
||||
// double fnorm; /* norm of the residue vector fvec. */
|
||||
@ -154,32 +153,23 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
// */
|
||||
// } lm_status_struct;
|
||||
|
||||
|
||||
lm_status_struct status;
|
||||
par_out = gaus_init_par(x, y);
|
||||
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
std::array<double, 9> cov{0, 0, 0, 0, 0, 0, 0 , 0 , 0};
|
||||
|
||||
// void lmcurve2( const int n_par, double *par, double *parerr, double
|
||||
// *covar, const int m_dat, const double *t, const double *y, const double
|
||||
// *dy, double (*f)( const double ti, const double *par ), const
|
||||
// lm_control_struct *control, lm_status_struct *status); n_par - Number of
|
||||
// free variables. Length of parameter vector par. par - Parameter vector.
|
||||
// On input, it must contain a reasonable guess. On output, it contains the
|
||||
// solution found to minimize ||r||. parerr - Parameter uncertainties
|
||||
// vector. Array of length n_par or NULL. On output, unless it or covar is
|
||||
// NULL, it contains the weighted parameter uncertainties for the found
|
||||
// parameters. covar - Covariance matrix. Array of length n_par * n_par or
|
||||
// NULL. On output, unless it is NULL, it contains the covariance matrix.
|
||||
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy
|
||||
// n_par <= m_dat. t - Array of length m_dat. Contains the abcissae (time,
|
||||
// or "x") for which function f will be evaluated. y - Array of length
|
||||
// m_dat. Contains the ordinate values that shall be fitted. dy - Array of
|
||||
// length m_dat. Contains the standard deviations of the values y. f - A
|
||||
// user-supplied parametric function f(ti;par). control - Parameter
|
||||
// collection for tuning the fit procedure. In most cases, the default
|
||||
// &lm_control_double is adequate. If f is only computed with
|
||||
// single-precision accuracy, &lm_control_float should be used. Parameters
|
||||
// are explained in lmmin2(3). status - A record used to return information
|
||||
// about the minimization process: For details, see lmmin2(3).
|
||||
// void lmcurve2( const int n_par, double *par, double *parerr, double *covar, const int m_dat, const double *t, const double *y, const double *dy, double (*f)( const double ti, const double *par ), const lm_control_struct *control, lm_status_struct *status);
|
||||
// n_par - Number of free variables. Length of parameter vector par.
|
||||
// par - Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||r||.
|
||||
// parerr - Parameter uncertainties vector. Array of length n_par or NULL. On output, unless it or covar is NULL, it contains the weighted parameter uncertainties for the found parameters.
|
||||
// covar - Covariance matrix. Array of length n_par * n_par or NULL. On output, unless it is NULL, it contains the covariance matrix.
|
||||
// m_dat - Number of data points. Length of vectors t, y, dy. Must statisfy n_par <= m_dat.
|
||||
// t - Array of length m_dat. Contains the abcissae (time, or "x") for which function f will be evaluated.
|
||||
// y - Array of length m_dat. Contains the ordinate values that shall be fitted.
|
||||
// dy - Array of length m_dat. Contains the standard deviations of the values y.
|
||||
// f - A user-supplied parametric function f(ti;par).
|
||||
// control - Parameter collection for tuning the fit procedure. In most cases, the default &lm_control_double is adequate. If f is only computed with single-precision accuracy, &lm_control_float should be used. Parameters are explained in lmmin2(3).
|
||||
// status - A record used to return information about the minimization process: For details, see lmmin2(3).
|
||||
|
||||
lmcurve2(par_out.size(), par_out.data(), par_err_out.data(), cov.data(),
|
||||
x.size(), x.data(), y.data(), y_err.data(), aare::func::gaus,
|
||||
@ -188,14 +178,12 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
|
||||
int n_threads) {
|
||||
|
||||
@ -209,9 +197,10 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
{par_out.shape(2)});
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
|
||||
fit_gaus(x, y_view, y_err_view, par_out_view, par_err_out_view,
|
||||
chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -221,8 +210,7 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
}
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out,
|
||||
double &chi2) {
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
@ -242,14 +230,13 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out,
|
||||
NDView<double, 2> chi2_out, int n_threads) {
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
@ -262,14 +249,15 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view,
|
||||
chi2_out(row, col));
|
||||
fit_pol1(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
NDArray<double, 1> fit_pol1(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
@ -312,29 +300,27 @@ NDArray<double, 3> fit_pol1(NDView<double, 1> x, NDView<double, 3> y,
|
||||
// ~~ S-CURVES ~~
|
||||
|
||||
// SCURVE --
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
std::array<double, 6> scurve_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold
|
||||
// (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] >= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] >= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = 1;
|
||||
return start_par;
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = 1;
|
||||
return start_par;
|
||||
}
|
||||
|
||||
// - No error
|
||||
@ -348,8 +334,7 @@ NDArray<double, 1> fit_scurve(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads) {
|
||||
NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
@ -373,9 +358,8 @@ NDArray<double, 3> fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
}
|
||||
|
||||
// - Error
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2) {
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
@ -396,15 +380,13 @@ void fit_scurve(NDView<double, 1> x, NDView<double, 1> y,
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
void fit_scurve(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
@ -417,41 +399,40 @@ void fit_scurve(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_scurve(x, y_view, y_err_view, par_out_view,
|
||||
par_err_out_view, chi2_out(row, col));
|
||||
fit_scurve(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
// SCURVE2 ---
|
||||
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x,
|
||||
const NDView<double, 1> y) {
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
std::array<double, 6> scurve2_init_par(const NDView<double, 1> x, const NDView<double, 1> y){
|
||||
// Estimate the initial parameters for the fit
|
||||
std::array<double, 6> start_par{0, 0, 0, 0, 0, 0};
|
||||
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold
|
||||
// (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] <= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
auto ymax = std::max_element(y.begin(), y.end());
|
||||
auto ymin = std::min_element(y.begin(), y.end());
|
||||
start_par[4] = *ymin + (*ymax - *ymin) / 2;
|
||||
|
||||
// Find the first x where the corresponding y value is above the threshold (start_par[4])
|
||||
for (ssize_t i = 0; i < y.size(); ++i) {
|
||||
if (y[i] <= start_par[4]) {
|
||||
start_par[2] = x[i];
|
||||
break; // Exit the loop after finding the first valid x
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = -1;
|
||||
return start_par;
|
||||
start_par[3] = 2 * sqrt(start_par[2]);
|
||||
start_par[0] = 100;
|
||||
start_par[1] = 0.25;
|
||||
start_par[5] = -1;
|
||||
return start_par;
|
||||
}
|
||||
|
||||
// - No error
|
||||
@ -465,8 +446,7 @@ NDArray<double, 1> fit_scurve2(NDView<double, 1> x, NDView<double, 1> y) {
|
||||
return result;
|
||||
}
|
||||
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
int n_threads) {
|
||||
NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, int n_threads) {
|
||||
NDArray<double, 3> result({y.shape(0), y.shape(1), 6}, 0);
|
||||
|
||||
auto process = [&x, &y, &result](ssize_t first_row, ssize_t last_row) {
|
||||
@ -490,9 +470,8 @@ NDArray<double, 3> fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
}
|
||||
|
||||
// - Error
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y,
|
||||
NDView<double, 1> y_err, NDView<double, 1> par_out,
|
||||
NDView<double, 1> par_err_out, double &chi2) {
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
|
||||
NDView<double, 1> par_out, NDView<double, 1> par_err_out, double& chi2) {
|
||||
|
||||
// Check that we have the correct sizes
|
||||
if (y.size() != x.size() || y.size() != y_err.size() ||
|
||||
@ -513,15 +492,13 @@ void fit_scurve2(NDView<double, 1> x, NDView<double, 1> y,
|
||||
// Calculate chi2
|
||||
chi2 = 0;
|
||||
for (ssize_t i = 0; i < y.size(); i++) {
|
||||
chi2 +=
|
||||
std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 3> y_err, NDView<double, 3> par_out,
|
||||
NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y, NDView<double, 3> y_err,
|
||||
NDView<double, 3> par_out, NDView<double, 3> par_err_out, NDView<double, 2> chi2_out,
|
||||
int n_threads) {
|
||||
|
||||
auto process = [&](ssize_t first_row, ssize_t last_row) {
|
||||
for (ssize_t row = first_row; row < last_row; row++) {
|
||||
@ -534,14 +511,15 @@ void fit_scurve2(NDView<double, 1> x, NDView<double, 3> y,
|
||||
NDView<double, 1> par_err_out_view(&par_err_out(row, col, 0),
|
||||
{par_err_out.shape(2)});
|
||||
|
||||
fit_scurve2(x, y_view, y_err_view, par_out_view,
|
||||
par_err_out_view, chi2_out(row, col));
|
||||
fit_scurve2(x, y_view, y_err_view, par_out_view, par_err_out_view, chi2_out(row, col));
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto tasks = split_task(0, y.shape(0), n_threads);
|
||||
RunInParallel(process, tasks);
|
||||
|
||||
}
|
||||
|
||||
} // namespace aare
|
@ -29,7 +29,8 @@ uint64_t Frame::size() const { return m_rows * m_cols; }
|
||||
size_t Frame::bytes() const { return m_rows * m_cols * m_dtype.bytes(); }
|
||||
std::byte *Frame::data() const { return m_data; }
|
||||
|
||||
std::byte *Frame::pixel_ptr(uint32_t row, uint32_t col) const {
|
||||
|
||||
std::byte *Frame::pixel_ptr(uint32_t row, uint32_t col) const{
|
||||
if ((row >= m_rows) || (col >= m_cols)) {
|
||||
std::cerr << "Invalid row or column index" << '\n';
|
||||
return nullptr;
|
||||
@ -37,6 +38,7 @@ std::byte *Frame::pixel_ptr(uint32_t row, uint32_t col) const {
|
||||
return m_data + (row * m_cols + col) * (m_dtype.bytes());
|
||||
}
|
||||
|
||||
|
||||
Frame &Frame::operator=(Frame &&other) noexcept {
|
||||
if (this == &other) {
|
||||
return *this;
|
||||
@ -68,4 +70,5 @@ Frame Frame::clone() const {
|
||||
return frame;
|
||||
}
|
||||
|
||||
|
||||
} // namespace aare
|
||||
|
@ -65,8 +65,7 @@ TEST_CASE("Set a value in a 64 bit frame") {
|
||||
// only the value we did set should be non-zero
|
||||
for (size_t i = 0; i < rows; i++) {
|
||||
for (size_t j = 0; j < cols; j++) {
|
||||
uint64_t *data =
|
||||
reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
|
||||
uint64_t *data = reinterpret_cast<uint64_t *>(frame.pixel_ptr(i, j));
|
||||
REQUIRE(data != nullptr);
|
||||
if (i == 5 && j == 7) {
|
||||
REQUIRE(*data == value);
|
||||
@ -151,3 +150,4 @@ TEST_CASE("test explicit copy constructor") {
|
||||
REQUIRE(frame2.bytes() == rows * cols * bitdepth / 8);
|
||||
REQUIRE(frame2.data() != data);
|
||||
}
|
||||
|
||||
|
110
src/Hdf5FileReader.test.cpp
Normal file
110
src/Hdf5FileReader.test.cpp
Normal file
@ -0,0 +1,110 @@
|
||||
/************************************************
|
||||
* @file Hdf5FileReader.test.cpp
|
||||
* @short test case for reading hdf5 files
|
||||
***********************************************/
|
||||
|
||||
#include <filesystem>
|
||||
|
||||
#include "test_config.hpp"
|
||||
|
||||
#include <H5Cpp.h>
|
||||
|
||||
#include "aare/Hdf5FileReader.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("read hdf5 file", "[.hdf5file][.files]") {
|
||||
|
||||
// TODO generalize datasetpath
|
||||
std::string filename = test_data_path() / "AngleCalibration_Test_Data" /
|
||||
"ang1up_22keV_LaB60p3mm_48M_a_0320.h5";
|
||||
|
||||
REQUIRE(std::filesystem::exists(filename));
|
||||
|
||||
HDF5FileReader file_reader;
|
||||
|
||||
file_reader.open_file(filename);
|
||||
|
||||
auto dataset = file_reader.get_dataset("/entry/data/data");
|
||||
|
||||
auto shape = dataset.get_shape();
|
||||
|
||||
CHECK(shape[0] == 61440);
|
||||
|
||||
auto type = dataset.get_datatype();
|
||||
|
||||
const std::type_info *type_info = dataset.get_cpp_type();
|
||||
|
||||
CHECK(*type_info == typeid(uint32_t));
|
||||
|
||||
SECTION("read dataset into NDArray") {
|
||||
|
||||
NDArray<uint32_t, 1> dataset_array =
|
||||
dataset.store_as_ndarray<uint32_t, 1>();
|
||||
|
||||
CHECK(dataset_array(0) == 866);
|
||||
CHECK(dataset_array(61439) == 1436);
|
||||
}
|
||||
|
||||
SECTION("read dataset into Frame") {
|
||||
Frame frame = dataset.store_as_frame();
|
||||
CHECK(*(reinterpret_cast<uint32_t *>(frame.pixel_ptr(0, 0))) == 866);
|
||||
CHECK(*(reinterpret_cast<uint32_t *>(frame.pixel_ptr(0, 61439))) ==
|
||||
1436);
|
||||
}
|
||||
SECTION("read subset of dataset") {
|
||||
Frame frame(1, 10, Dtype(typeid(uint32_t)));
|
||||
|
||||
Subset subset{std::vector<hsize_t>{10}, std::vector<hsize_t>{10}};
|
||||
|
||||
dataset.read_into_buffer(frame.data(), subset);
|
||||
|
||||
CHECK(*(reinterpret_cast<uint32_t *>(frame.pixel_ptr(0, 0))) == 664);
|
||||
CHECK(*(reinterpret_cast<uint32_t *>(frame.pixel_ptr(0, 9))) == 654);
|
||||
}
|
||||
/*
|
||||
SECTION("read scalar") {
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
TEST_CASE("test datatypes", "[.hdf5file]") {
|
||||
|
||||
auto [dtype, expected_type_info] = GENERATE(
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_INT), &typeid(int)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_INT8),
|
||||
&typeid(int8_t)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_UINT16),
|
||||
&typeid(uint16_t)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_INT16),
|
||||
&typeid(int16_t)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::STD_U32LE),
|
||||
&typeid(uint32_t)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::STD_I32LE),
|
||||
&typeid(int32_t)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_INT32),
|
||||
&typeid(int32_t)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::IEEE_F64LE),
|
||||
&typeid(double)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::IEEE_F32LE), &typeid(float)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_FLOAT),
|
||||
&typeid(float)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_DOUBLE),
|
||||
&typeid(double)),
|
||||
std::make_tuple(H5::DataType(H5::PredType::NATIVE_CHAR),
|
||||
&typeid(int8_t)));
|
||||
|
||||
const std::type_info &type_info = deduce_cpp_type(dtype);
|
||||
|
||||
CHECK(type_info == *expected_type_info);
|
||||
|
||||
// TODO: handle bit swapping
|
||||
REQUIRE_THROWS(deduce_cpp_type(
|
||||
H5::DataType(H5::PredType::IEEE_F32BE))); // does not convert from big
|
||||
// to little endian
|
||||
}
|
@ -19,15 +19,16 @@ JungfrauDataFile::JungfrauDataFile(const std::filesystem::path &fname) {
|
||||
open_file(m_current_file_index);
|
||||
}
|
||||
|
||||
|
||||
// FileInterface
|
||||
|
||||
Frame JungfrauDataFile::read_frame() {
|
||||
Frame JungfrauDataFile::read_frame(){
|
||||
Frame f(rows(), cols(), Dtype::UINT16);
|
||||
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
|
||||
return f;
|
||||
}
|
||||
|
||||
Frame JungfrauDataFile::read_frame(size_t frame_number) {
|
||||
Frame JungfrauDataFile::read_frame(size_t frame_number){
|
||||
seek(frame_number);
|
||||
Frame f(rows(), cols(), Dtype::UINT16);
|
||||
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
|
||||
@ -36,7 +37,7 @@ Frame JungfrauDataFile::read_frame(size_t frame_number) {
|
||||
|
||||
std::vector<Frame> JungfrauDataFile::read_n(size_t n_frames) {
|
||||
std::vector<Frame> frames;
|
||||
for (size_t i = 0; i < n_frames; ++i) {
|
||||
for(size_t i = 0; i < n_frames; ++i){
|
||||
frames.push_back(read_frame());
|
||||
}
|
||||
return frames;
|
||||
@ -47,7 +48,7 @@ void JungfrauDataFile::read_into(std::byte *image_buf) {
|
||||
}
|
||||
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames) {
|
||||
read_into(image_buf, n_frames, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
size_t JungfrauDataFile::frame_number(size_t frame_index) {
|
||||
seek(frame_index);
|
||||
@ -58,9 +59,7 @@ std::array<ssize_t, 2> JungfrauDataFile::shape() const {
|
||||
return {static_cast<ssize_t>(rows()), static_cast<ssize_t>(cols())};
|
||||
}
|
||||
|
||||
DetectorType JungfrauDataFile::detector_type() const {
|
||||
return DetectorType::Jungfrau;
|
||||
}
|
||||
DetectorType JungfrauDataFile::detector_type() const { return DetectorType::Jungfrau; }
|
||||
|
||||
std::string JungfrauDataFile::base_name() const { return m_base_name; }
|
||||
|
||||
@ -196,23 +195,22 @@ void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames,
|
||||
JungfrauDataHeader *header) {
|
||||
if (header) {
|
||||
for (size_t i = 0; i < n_frames; ++i)
|
||||
read_into(image_buf + i * m_bytes_per_frame, header + i);
|
||||
} else {
|
||||
read_into(image_buf + i * m_bytes_per_frame, header + i);
|
||||
}else{
|
||||
for (size_t i = 0; i < n_frames; ++i)
|
||||
read_into(image_buf + i * m_bytes_per_frame, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
void JungfrauDataFile::read_into(NDArray<uint16_t> *image,
|
||||
JungfrauDataHeader *header) {
|
||||
if (image->shape() != shape()) {
|
||||
throw std::runtime_error(
|
||||
LOCATION + "Image shape does not match file size: " +
|
||||
std::to_string(rows()) + "x" + std::to_string(cols()));
|
||||
void JungfrauDataFile::read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header) {
|
||||
if(image->shape()!=shape()){
|
||||
throw std::runtime_error(LOCATION +
|
||||
"Image shape does not match file size: " + std::to_string(rows()) + "x" + std::to_string(cols()));
|
||||
}
|
||||
read_into(reinterpret_cast<std::byte *>(image->data()), header);
|
||||
}
|
||||
|
||||
|
||||
JungfrauDataHeader JungfrauDataFile::read_header() {
|
||||
JungfrauDataHeader header;
|
||||
if (auto rc = fread(&header, 1, sizeof(header), m_fp.get());
|
||||
|
@ -1,21 +1,21 @@
|
||||
#include "aare/JungfrauDataFile.hpp"
|
||||
|
||||
#include "test_config.hpp"
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include "test_config.hpp"
|
||||
|
||||
using aare::JungfrauDataFile;
|
||||
using aare::JungfrauDataHeader;
|
||||
TEST_CASE("Open a Jungfrau data file", "[.files]") {
|
||||
// we know we have 4 files with 7, 7, 7, and 3 frames
|
||||
// firs frame number if 1 and the bunch id is frame_number**2
|
||||
// so we can check the header
|
||||
//we know we have 4 files with 7, 7, 7, and 3 frames
|
||||
//firs frame number if 1 and the bunch id is frame_number**2
|
||||
//so we can check the header
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF500k_000000.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
REQUIRE(f.rows() == 512);
|
||||
REQUIRE(f.cols() == 1024);
|
||||
REQUIRE(f.bytes_per_frame() == 1048576);
|
||||
REQUIRE(f.bytes_per_frame() == 1048576);
|
||||
REQUIRE(f.pixels_per_frame() == 524288);
|
||||
REQUIRE(f.bytes_per_pixel() == 2);
|
||||
REQUIRE(f.bitdepth() == 16);
|
||||
@ -25,7 +25,7 @@ TEST_CASE("Open a Jungfrau data file", "[.files]") {
|
||||
REQUIRE(f.total_frames() == 24);
|
||||
REQUIRE(f.current_file() == fpath);
|
||||
|
||||
// Check that the frame number and buch id is read correctly
|
||||
//Check that the frame number and buch id is read correctly
|
||||
for (size_t i = 0; i < 24; ++i) {
|
||||
JungfrauDataHeader header;
|
||||
aare::NDArray<uint16_t> image(f.shape());
|
||||
@ -37,64 +37,65 @@ TEST_CASE("Open a Jungfrau data file", "[.files]") {
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Seek in a JungfrauDataFile", "[.files]") {
|
||||
TEST_CASE("Seek in a JungfrauDataFile", "[.files]"){
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
|
||||
// The file should have 113 frames
|
||||
//The file should have 113 frames
|
||||
f.seek(19);
|
||||
REQUIRE(f.tell() == 19);
|
||||
auto h = f.read_header();
|
||||
REQUIRE(h.framenum == 19 + 1);
|
||||
REQUIRE(h.framenum == 19+1);
|
||||
|
||||
// Reading again does not change the file pointer
|
||||
//Reading again does not change the file pointer
|
||||
auto h2 = f.read_header();
|
||||
REQUIRE(h2.framenum == 19 + 1);
|
||||
REQUIRE(h2.framenum == 19+1);
|
||||
|
||||
f.seek(59);
|
||||
REQUIRE(f.tell() == 59);
|
||||
auto h3 = f.read_header();
|
||||
REQUIRE(h3.framenum == 59 + 1);
|
||||
REQUIRE(h3.framenum == 59+1);
|
||||
|
||||
JungfrauDataHeader h4;
|
||||
aare::NDArray<uint16_t> image(f.shape());
|
||||
f.read_into(&image, &h4);
|
||||
REQUIRE(h4.framenum == 59 + 1);
|
||||
REQUIRE(h4.framenum == 59+1);
|
||||
|
||||
// now we should be on the next frame
|
||||
//now we should be on the next frame
|
||||
REQUIRE(f.tell() == 60);
|
||||
REQUIRE(f.read_header().framenum == 60 + 1);
|
||||
REQUIRE(f.read_header().framenum == 60+1);
|
||||
|
||||
REQUIRE_THROWS(f.seek(86356)); // out of range
|
||||
REQUIRE_THROWS(f.seek(86356)); //out of range
|
||||
}
|
||||
|
||||
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]") {
|
||||
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]"){
|
||||
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF65k_000003.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
JungfrauDataFile f(fpath);
|
||||
|
||||
// 18 files per data file, opening the 3rd file we ignore the first 3
|
||||
REQUIRE(f.total_frames() == 113 - 18 * 3);
|
||||
//18 files per data file, opening the 3rd file we ignore the first 3
|
||||
REQUIRE(f.total_frames() == 113-18*3);
|
||||
REQUIRE(f.tell() == 0);
|
||||
|
||||
// Frame numbers start at 1 in the first file
|
||||
REQUIRE(f.read_header().framenum == 18 * 3 + 1);
|
||||
//Frame numbers start at 1 in the first file
|
||||
REQUIRE(f.read_header().framenum == 18*3+1);
|
||||
|
||||
// moving relative to the third file
|
||||
f.seek(5);
|
||||
REQUIRE(f.read_header().framenum == 18 * 3 + 1 + 5);
|
||||
REQUIRE(f.read_header().framenum == 18*3+1+5);
|
||||
|
||||
// ignoring the first 3 files
|
||||
REQUIRE(f.n_files() == 4);
|
||||
|
||||
REQUIRE(f.current_file().stem() == "AldoJF65k_000003");
|
||||
|
||||
}
|
||||
|
||||
TEST_CASE("Read into throws if size doesn't match", "[.files]") {
|
||||
TEST_CASE("Read into throws if size doesn't match", "[.files]"){
|
||||
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
@ -108,4 +109,6 @@ TEST_CASE("Read into throws if size doesn't match", "[.files]") {
|
||||
REQUIRE_THROWS(f.read_into(&image));
|
||||
|
||||
REQUIRE(f.tell() == 0);
|
||||
|
||||
|
||||
}
|
33
src/MythenFileReader.test.cpp
Normal file
33
src/MythenFileReader.test.cpp
Normal file
@ -0,0 +1,33 @@
|
||||
/************************************************
|
||||
* @file MythenFileReader.test.cpp
|
||||
* @short test case for angle calibration class
|
||||
***********************************************/
|
||||
|
||||
#include "aare/MythenFileReader.hpp"
|
||||
|
||||
#include <filesystem>
|
||||
|
||||
#include "test_config.hpp"
|
||||
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("test mythenfile_reader", "[.mythenfilereader][.files]") {
|
||||
|
||||
auto fpath = test_data_path() / "AngleCalibration_Test_Data";
|
||||
|
||||
REQUIRE(std::filesystem::exists(fpath));
|
||||
|
||||
MythenFileReader file_reader(fpath, "ang1up_22keV_LaB60p3mm_48M_a_0");
|
||||
|
||||
auto frame = file_reader.read_frame(320);
|
||||
|
||||
CHECK(frame.detector_angle == 0.99955);
|
||||
|
||||
CHECK(frame.channel_mask == std::array<uint8_t, 3>{0, 0, 1});
|
||||
|
||||
CHECK(frame.photon_counts.size() == 61440);
|
||||
}
|
@ -35,7 +35,7 @@ TEST_CASE("Construct from an NDView") {
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("3D NDArray from NDView") {
|
||||
TEST_CASE("3D NDArray from NDView"){
|
||||
std::vector<int> data(27);
|
||||
std::iota(data.begin(), data.end(), 0);
|
||||
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
|
||||
@ -44,9 +44,9 @@ TEST_CASE("3D NDArray from NDView") {
|
||||
REQUIRE(image.size() == view.size());
|
||||
REQUIRE(image.data() != view.data());
|
||||
|
||||
for (ssize_t i = 0; i < image.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < image.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < image.shape(2); k++) {
|
||||
for(ssize_t i=0; i<image.shape(0); i++){
|
||||
for(ssize_t j=0; j<image.shape(1); j++){
|
||||
for(ssize_t k=0; k<image.shape(2); k++){
|
||||
REQUIRE(image(i, j, k) == view(i, j, k));
|
||||
}
|
||||
}
|
||||
@ -132,7 +132,7 @@ TEST_CASE("Elementwise multiplication of 3D image") {
|
||||
|
||||
NDArray<int> MultiplyNDArrayUsingOperator(NDArray<int> &a, NDArray<int> &b) {
|
||||
// return a * a * b * b;
|
||||
NDArray<int> c = a * b;
|
||||
NDArray<int>c = a*b;
|
||||
return c;
|
||||
}
|
||||
|
||||
@ -162,6 +162,7 @@ NDArray<int> AddNDArrayUsingIndex(NDArray<int> &a, NDArray<int> &b) {
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Compare two images") {
|
||||
NDArray<int> a;
|
||||
NDArray<int> b;
|
||||
@ -221,6 +222,7 @@ TEST_CASE("Bitwise and on data") {
|
||||
REQUIRE(a(2) == 384);
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Elementwise operations on images") {
|
||||
std::array<ssize_t, 2> shape{5, 5};
|
||||
double a_val = 3.0;
|
||||
@ -256,8 +258,7 @@ TEST_CASE("Elementwise operations on images") {
|
||||
NDArray<double> A(shape, a_val);
|
||||
NDArray<double> B(shape, b_val);
|
||||
NDArray<double> C = A - B;
|
||||
// auto C = A - B; // This works but the result is a lazy ArraySub
|
||||
// object
|
||||
// auto C = A - B; // This works but the result is a lazy ArraySub object
|
||||
|
||||
// Value of C matches
|
||||
for (uint32_t i = 0; i < C.size(); ++i) {
|
||||
@ -281,8 +282,7 @@ TEST_CASE("Elementwise operations on images") {
|
||||
SECTION("Multiply two images") {
|
||||
NDArray<double> A(shape, a_val);
|
||||
NDArray<double> B(shape, b_val);
|
||||
// auto C = A * B; // This works but the result is a lazy ArrayMul
|
||||
// object
|
||||
// auto C = A * B; // This works but the result is a lazy ArrayMul object
|
||||
NDArray<double> C = A * B;
|
||||
|
||||
// Value of C matches
|
||||
@ -307,8 +307,7 @@ TEST_CASE("Elementwise operations on images") {
|
||||
SECTION("Divide two images") {
|
||||
NDArray<double> A(shape, a_val);
|
||||
NDArray<double> B(shape, b_val);
|
||||
// auto C = A / B; // This works but the result is a lazy ArrayDiv
|
||||
// object
|
||||
// auto C = A / B; // This works but the result is a lazy ArrayDiv object
|
||||
NDArray<double> C = A / B;
|
||||
|
||||
// Value of C matches
|
||||
|
@ -2,8 +2,8 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
using aare::NDView;
|
||||
using aare::Shape;
|
||||
@ -151,10 +151,8 @@ TEST_CASE("divide with another span") {
|
||||
std::vector<int> vec1{3, 2, 1};
|
||||
std::vector<int> result{3, 6, 3};
|
||||
|
||||
NDView<int, 1> data0(vec0.data(),
|
||||
Shape<1>{static_cast<ssize_t>(vec0.size())});
|
||||
NDView<int, 1> data1(vec1.data(),
|
||||
Shape<1>{static_cast<ssize_t>(vec1.size())});
|
||||
NDView<int, 1> data0(vec0.data(), Shape<1>{static_cast<ssize_t>(vec0.size())});
|
||||
NDView<int, 1> data1(vec1.data(), Shape<1>{static_cast<ssize_t>(vec1.size())});
|
||||
|
||||
data0 /= data1;
|
||||
|
||||
@ -183,7 +181,8 @@ TEST_CASE("compare two views") {
|
||||
REQUIRE((view1 == view2));
|
||||
}
|
||||
|
||||
TEST_CASE("Create a view over a vector") {
|
||||
|
||||
TEST_CASE("Create a view over a vector"){
|
||||
std::vector<int> vec(12);
|
||||
std::iota(vec.begin(), vec.end(), 0);
|
||||
auto v = aare::make_view(vec);
|
||||
|
@ -4,16 +4,16 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
NumpyFile::NumpyFile(const std::filesystem::path &fname,
|
||||
const std::string &mode, FileConfig cfg) {
|
||||
|
||||
|
||||
NumpyFile::NumpyFile(const std::filesystem::path &fname, const std::string &mode, FileConfig cfg) {
|
||||
// TODO! add opts to constructor
|
||||
|
||||
m_mode = mode;
|
||||
if (mode == "r") {
|
||||
fp = fopen(fname.string().c_str(), "rb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("Could not open: {} for reading", fname.string()));
|
||||
throw std::runtime_error(fmt::format("Could not open: {} for reading", fname.string()));
|
||||
}
|
||||
load_metadata();
|
||||
} else if (mode == "w") {
|
||||
@ -24,15 +24,11 @@ NumpyFile::NumpyFile(const std::filesystem::path &fname,
|
||||
m_header.shape = {0, cfg.rows, cfg.cols};
|
||||
fp = fopen(fname.string().c_str(), "wb");
|
||||
if (!fp) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("Could not open: {} for reading", fname.string()));
|
||||
throw std::runtime_error(fmt::format("Could not open: {} for reading", fname.string()));
|
||||
}
|
||||
initial_header_len = aare::NumpyHelpers::write_header(
|
||||
std::filesystem::path(fname.c_str()), m_header);
|
||||
initial_header_len = aare::NumpyHelpers::write_header(std::filesystem::path(fname.c_str()), m_header);
|
||||
}
|
||||
m_pixels_per_frame =
|
||||
std::accumulate(m_header.shape.begin() + 1, m_header.shape.end(), 1,
|
||||
std::multiplies<>());
|
||||
m_pixels_per_frame = std::accumulate(m_header.shape.begin() + 1, m_header.shape.end(), 1, std::multiplies<>());
|
||||
|
||||
m_bytes_per_frame = m_header.dtype.bitdepth() / 8 * m_pixels_per_frame;
|
||||
}
|
||||
@ -67,8 +63,7 @@ void NumpyFile::get_frame_into(size_t frame_number, std::byte *image_buf) {
|
||||
if (frame_number > m_header.shape[0]) {
|
||||
throw std::invalid_argument("Frame number out of range");
|
||||
}
|
||||
if (fseek(fp, header_size + frame_number * m_bytes_per_frame,
|
||||
SEEK_SET)) // NOLINT
|
||||
if (fseek(fp, header_size + frame_number * m_bytes_per_frame, SEEK_SET)) // NOLINT
|
||||
throw std::runtime_error("Could not seek to frame");
|
||||
|
||||
size_t const rc = fread(image_buf, m_bytes_per_frame, 1, fp);
|
||||
@ -118,8 +113,7 @@ NumpyFile::~NumpyFile() noexcept {
|
||||
// write header
|
||||
size_t const rc = fwrite(header_str.c_str(), header_str.size(), 1, fp);
|
||||
if (rc != 1) {
|
||||
std::cout << "Error writing header to numpy file in destructor"
|
||||
<< std::endl;
|
||||
std::cout << "Error writing header to numpy file in destructor" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@ -146,10 +140,8 @@ void NumpyFile::load_metadata() {
|
||||
}
|
||||
|
||||
// read version
|
||||
rc =
|
||||
fread(reinterpret_cast<char *>(&major_ver_), sizeof(major_ver_), 1, fp);
|
||||
rc +=
|
||||
fread(reinterpret_cast<char *>(&minor_ver_), sizeof(minor_ver_), 1, fp);
|
||||
rc = fread(reinterpret_cast<char *>(&major_ver_), sizeof(major_ver_), 1, fp);
|
||||
rc += fread(reinterpret_cast<char *>(&minor_ver_), sizeof(minor_ver_), 1, fp);
|
||||
if (rc != 2) {
|
||||
throw std::runtime_error("Error reading numpy version");
|
||||
}
|
||||
@ -167,8 +159,7 @@ void NumpyFile::load_metadata() {
|
||||
if (rc != 1) {
|
||||
throw std::runtime_error("Error reading header length");
|
||||
}
|
||||
header_size = aare::NumpyHelpers::magic_string_length + 2 +
|
||||
header_len_size + header_len;
|
||||
header_size = aare::NumpyHelpers::magic_string_length + 2 + header_len_size + header_len;
|
||||
if (header_size % 16 != 0) {
|
||||
fmt::print("Warning: header length is not a multiple of 16\n");
|
||||
}
|
||||
|
@ -1,8 +1,8 @@
|
||||
#include "aare/NumpyFile.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
#include "test_config.hpp"
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include "test_config.hpp"
|
||||
|
||||
using aare::Dtype;
|
||||
using aare::NumpyFile;
|
||||
@ -23,7 +23,7 @@ TEST_CASE("Read a 1D numpy file with int32 data type", "[.integration]") {
|
||||
REQUIRE(data(i) == i);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Read a 3D numpy file with np.double data type", "[.integration]") {
|
||||
|
||||
auto fpath = test_data_path() / "numpy" / "test_3d_double.npy";
|
||||
|
@ -29,8 +29,7 @@ namespace aare {
|
||||
|
||||
std::string NumpyHeader::to_string() const {
|
||||
std::stringstream sstm;
|
||||
sstm << "dtype: " << dtype.to_string()
|
||||
<< ", fortran_order: " << fortran_order << ' ';
|
||||
sstm << "dtype: " << dtype.to_string() << ", fortran_order: " << fortran_order << ' ';
|
||||
sstm << "shape: (";
|
||||
for (auto item : shape)
|
||||
sstm << item << ',';
|
||||
@ -38,10 +37,10 @@ std::string NumpyHeader::to_string() const {
|
||||
return sstm.str();
|
||||
}
|
||||
|
||||
|
||||
namespace NumpyHelpers {
|
||||
|
||||
std::unordered_map<std::string, std::string>
|
||||
parse_dict(std::string in, const std::vector<std::string> &keys) {
|
||||
std::unordered_map<std::string, std::string> parse_dict(std::string in, const std::vector<std::string> &keys) {
|
||||
std::unordered_map<std::string, std::string> map;
|
||||
if (keys.empty())
|
||||
return map;
|
||||
@ -101,8 +100,7 @@ aare::Dtype parse_descr(std::string typestring) {
|
||||
constexpr char little_endian_char = '<';
|
||||
constexpr char big_endian_char = '>';
|
||||
constexpr char no_endian_char = '|';
|
||||
constexpr std::array<char, 3> endian_chars = {
|
||||
little_endian_char, big_endian_char, no_endian_char};
|
||||
constexpr std::array<char, 3> endian_chars = {little_endian_char, big_endian_char, no_endian_char};
|
||||
constexpr std::array<char, 4> numtype_chars = {'f', 'i', 'u', 'c'};
|
||||
|
||||
const char byteorder_c = typestring[0];
|
||||
@ -141,9 +139,7 @@ std::string get_value_from_map(const std::string &mapstr) {
|
||||
return trim(tmp);
|
||||
}
|
||||
|
||||
bool is_digits(const std::string &str) {
|
||||
return std::all_of(str.begin(), str.end(), ::isdigit);
|
||||
}
|
||||
bool is_digits(const std::string &str) { return std::all_of(str.begin(), str.end(), ::isdigit); }
|
||||
|
||||
std::vector<std::string> parse_tuple(std::string in) {
|
||||
std::vector<std::string> v;
|
||||
@ -219,25 +215,20 @@ inline std::string write_boolean(bool b) {
|
||||
return "False";
|
||||
}
|
||||
|
||||
inline std::string write_header_dict(const std::string &descr,
|
||||
bool fortran_order,
|
||||
const std::vector<size_t> &shape) {
|
||||
inline std::string write_header_dict(const std::string &descr, bool fortran_order, const std::vector<size_t> &shape) {
|
||||
std::string const s_fortran_order = write_boolean(fortran_order);
|
||||
std::string const shape_s = write_tuple(shape);
|
||||
|
||||
return "{'descr': '" + descr + "', 'fortran_order': " + s_fortran_order +
|
||||
", 'shape': " + shape_s + ", }";
|
||||
return "{'descr': '" + descr + "', 'fortran_order': " + s_fortran_order + ", 'shape': " + shape_s + ", }";
|
||||
}
|
||||
|
||||
size_t write_header(const std::filesystem::path &fname,
|
||||
const NumpyHeader &header) {
|
||||
size_t write_header(const std::filesystem::path &fname, const NumpyHeader &header) {
|
||||
std::ofstream out(fname, std::ios::binary | std::ios::out);
|
||||
return write_header(out, header);
|
||||
}
|
||||
|
||||
size_t write_header(std::ostream &out, const NumpyHeader &header) {
|
||||
std::string const header_dict = write_header_dict(
|
||||
header.dtype.to_string(), header.fortran_order, header.shape);
|
||||
std::string const header_dict = write_header_dict(header.dtype.to_string(), header.fortran_order, header.shape);
|
||||
|
||||
size_t length = magic_string_length + 2 + 2 + header_dict.length() + 1;
|
||||
|
||||
@ -256,22 +247,17 @@ size_t write_header(std::ostream &out, const NumpyHeader &header) {
|
||||
|
||||
// write header length
|
||||
if (version_major == 1 && version_minor == 0) {
|
||||
auto header_len =
|
||||
static_cast<uint16_t>(header_dict.length() + padding.length() + 1);
|
||||
auto header_len = static_cast<uint16_t>(header_dict.length() + padding.length() + 1);
|
||||
|
||||
std::array<uint8_t, 2> header_len_le16{
|
||||
static_cast<uint8_t>((header_len >> 0) & 0xff),
|
||||
static_cast<uint8_t>((header_len >> 8) & 0xff)};
|
||||
std::array<uint8_t, 2> header_len_le16{static_cast<uint8_t>((header_len >> 0) & 0xff),
|
||||
static_cast<uint8_t>((header_len >> 8) & 0xff)};
|
||||
out.write(reinterpret_cast<char *>(header_len_le16.data()), 2);
|
||||
} else {
|
||||
auto header_len =
|
||||
static_cast<uint32_t>(header_dict.length() + padding.length() + 1);
|
||||
auto header_len = static_cast<uint32_t>(header_dict.length() + padding.length() + 1);
|
||||
|
||||
std::array<uint8_t, 4> header_len_le32{
|
||||
static_cast<uint8_t>((header_len >> 0) & 0xff),
|
||||
static_cast<uint8_t>((header_len >> 8) & 0xff),
|
||||
static_cast<uint8_t>((header_len >> 16) & 0xff),
|
||||
static_cast<uint8_t>((header_len >> 24) & 0xff)};
|
||||
static_cast<uint8_t>((header_len >> 0) & 0xff), static_cast<uint8_t>((header_len >> 8) & 0xff),
|
||||
static_cast<uint8_t>((header_len >> 16) & 0xff), static_cast<uint8_t>((header_len >> 24) & 0xff)};
|
||||
out.write(reinterpret_cast<char *>(header_len_le32.data()), 4);
|
||||
}
|
||||
|
||||
|
@ -19,9 +19,7 @@ TEST_CASE("Check for quotes and return stripped string") {
|
||||
REQUIRE(parse_str("''") == "");
|
||||
}
|
||||
|
||||
TEST_CASE("parsing a string without quotes throws") {
|
||||
REQUIRE_THROWS(parse_str("hej"));
|
||||
}
|
||||
TEST_CASE("parsing a string without quotes throws") { REQUIRE_THROWS(parse_str("hej")); }
|
||||
|
||||
TEST_CASE("trim whitespace") {
|
||||
REQUIRE(trim(" hej ") == "hej");
|
||||
@ -55,8 +53,7 @@ TEST_CASE("is element in array") {
|
||||
}
|
||||
|
||||
TEST_CASE("Parse numpy dict") {
|
||||
std::string in =
|
||||
"{'descr': '<f4', 'fortran_order': False, 'shape': (3, 4)}";
|
||||
std::string in = "{'descr': '<f4', 'fortran_order': False, 'shape': (3, 4)}";
|
||||
std::vector<std::string> keys{"descr", "fortran_order", "shape"};
|
||||
auto map = parse_dict(in, keys);
|
||||
REQUIRE(map["descr"] == "'<f4'");
|
||||
|
@ -1,7 +1,8 @@
|
||||
#include "aare/Pedestal.hpp"
|
||||
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <chrono>
|
||||
#include <random>
|
||||
|
||||
@ -57,8 +58,7 @@ TEST_CASE("test pedestal push") {
|
||||
if (k < 5) {
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == k + 1);
|
||||
REQUIRE(pedestal.get_sum()(i, j) == (k + 1) * (i + j));
|
||||
REQUIRE(pedestal.get_sum2()(i, j) ==
|
||||
(k + 1) * (i + j) * (i + j));
|
||||
REQUIRE(pedestal.get_sum2()(i, j) == (k + 1) * (i + j) * (i + j));
|
||||
} else {
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == 5);
|
||||
REQUIRE(pedestal.get_sum()(i, j) == 5 * (i + j));
|
||||
@ -95,12 +95,9 @@ TEST_CASE("test pedestal with normal distribution") {
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int j = 0; j < 5; j++) {
|
||||
REQUIRE_THAT(mean(i, j),
|
||||
Catch::Matchers::WithinAbs(MEAN, MEAN * TOLERANCE));
|
||||
REQUIRE_THAT(variance(i, j),
|
||||
Catch::Matchers::WithinAbs(VAR, VAR * TOLERANCE));
|
||||
REQUIRE_THAT(standard_deviation(i, j),
|
||||
Catch::Matchers::WithinAbs(STD, STD * TOLERANCE));
|
||||
REQUIRE_THAT(mean(i, j), Catch::Matchers::WithinAbs(MEAN, MEAN * TOLERANCE));
|
||||
REQUIRE_THAT(variance(i, j), Catch::Matchers::WithinAbs(VAR, VAR * TOLERANCE));
|
||||
REQUIRE_THAT(standard_deviation(i, j), Catch::Matchers::WithinAbs(STD, STD * TOLERANCE));
|
||||
}
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user