Aug in single photon inference

This commit is contained in:
2025-11-04 16:55:12 +01:00
parent 5781b214c0
commit f4178ce50f

View File

@@ -20,18 +20,47 @@ configs['SiemenStar'] = {
'noise': 0.13 # in keV
}
BinningFactor = 10
numberOfAugOps = 6
Roi = configs['SiemenStar']['roi']
X_st, X_ed, Y_st, Y_ed = Roi
mlSuperFrame = np.zeros(((Y_ed-Y_st)*BinningFactor, (X_ed-X_st)*BinningFactor))
countFrame = np.zeros((Y_ed-Y_st, X_ed-X_st))
subpixelDistribution = np.zeros((BinningFactor, BinningFactor))
def inv0(p): return p
def inv1(p): return torch.stack([-p[..., 0], p[..., 1]], dim=-1)
def inv2(p): return torch.stack([p[..., 0], -p[..., 1]], dim=-1)
def inv3(p): return -p
def inv4(p): return torch.stack([p[..., 1], p[..., 0]], dim=-1)
def inv5(p): return torch.stack([p[..., 1], -p[..., 0]], dim=-1)
def inv6(p): return torch.stack([-p[..., 1], p[..., 0]], dim=-1)
def inv7(p): return torch.stack([-p[..., 1], -p[..., 0]], dim=-1)
INVERSE_TRANSFORMS = {
0: inv0,
1: inv1,
2: inv2,
3: inv3,
4: inv4,
5: inv5,
6: inv6,
7: inv7,
}
def apply_inverse_transforms(predictions: torch.Tensor, numberOfAugOps: int) -> torch.Tensor:
N = predictions.shape[0] // numberOfAugOps
preds = predictions.view(N, numberOfAugOps, 2)
corrected = torch.zeros_like(preds)
for idx in range(numberOfAugOps):
corrected[:, idx, :] = INVERSE_TRANSFORMS[idx](preds[:, idx, :])
return corrected.mean(dim=1)
if __name__ == "__main__":
task = 'SiemenStar'
config = configs[task]
model = models.get_model_class(config['modelVersion'])().cuda()
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhoton{config["modelVersion"]}_15.3keV_Noise{config["noise"]}keV_E500.pth', weights_only=True))
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhoton{config["modelVersion"]}_15.3keV_Noise{config["noise"]}keV_E500_aug8.pth', weights_only=True))
predictions = []
referencePoints = []
nChunks = len(config['dataFiles']) // 32 + 1
@@ -40,12 +69,17 @@ if __name__ == "__main__":
edFileIdx = min((idxChunk + 1) * 32, len(config['dataFiles']))
sampleFiles = config['dataFiles'][stFileIdx : edFileIdx]
print(f'Processing files {stFileIdx} to {edFileIdx}...')
dataset = singlePhotonDataset(sampleFiles, sampleRatio=1.0, datasetName='Inference')
dataset = singlePhotonDataset(
sampleFiles,
sampleRatio=1.0,
datasetName='Inference',
numberOfAugOps=numberOfAugOps
)
dataLoader = torch.utils.data.DataLoader(
dataset,
batch_size=8192,
shuffle=False,
num_workers=16,
num_workers=32,
pin_memory=True,
)
@@ -59,6 +93,7 @@ if __name__ == "__main__":
predictions.append(outputs.cpu())
predictions = torch.cat(predictions, dim=0)
predictions = apply_inverse_transforms(predictions, numberOfAugOps)
predictions += torch.tensor([1.5, 1.5]).unsqueeze(0) # adjust back to original coordinate system
referencePoints = np.concatenate(referencePoints, axis=0)
print(f'mean x = {torch.mean(predictions[:, 0])}, std x = {torch.std(predictions[:, 0])}')