Aug in single photon inference
This commit is contained in:
@@ -20,18 +20,47 @@ configs['SiemenStar'] = {
|
||||
'noise': 0.13 # in keV
|
||||
}
|
||||
BinningFactor = 10
|
||||
numberOfAugOps = 6
|
||||
Roi = configs['SiemenStar']['roi']
|
||||
X_st, X_ed, Y_st, Y_ed = Roi
|
||||
mlSuperFrame = np.zeros(((Y_ed-Y_st)*BinningFactor, (X_ed-X_st)*BinningFactor))
|
||||
countFrame = np.zeros((Y_ed-Y_st, X_ed-X_st))
|
||||
subpixelDistribution = np.zeros((BinningFactor, BinningFactor))
|
||||
|
||||
def inv0(p): return p
|
||||
def inv1(p): return torch.stack([-p[..., 0], p[..., 1]], dim=-1)
|
||||
def inv2(p): return torch.stack([p[..., 0], -p[..., 1]], dim=-1)
|
||||
def inv3(p): return -p
|
||||
def inv4(p): return torch.stack([p[..., 1], p[..., 0]], dim=-1)
|
||||
def inv5(p): return torch.stack([p[..., 1], -p[..., 0]], dim=-1)
|
||||
def inv6(p): return torch.stack([-p[..., 1], p[..., 0]], dim=-1)
|
||||
def inv7(p): return torch.stack([-p[..., 1], -p[..., 0]], dim=-1)
|
||||
|
||||
INVERSE_TRANSFORMS = {
|
||||
0: inv0,
|
||||
1: inv1,
|
||||
2: inv2,
|
||||
3: inv3,
|
||||
4: inv4,
|
||||
5: inv5,
|
||||
6: inv6,
|
||||
7: inv7,
|
||||
}
|
||||
|
||||
def apply_inverse_transforms(predictions: torch.Tensor, numberOfAugOps: int) -> torch.Tensor:
|
||||
N = predictions.shape[0] // numberOfAugOps
|
||||
preds = predictions.view(N, numberOfAugOps, 2)
|
||||
corrected = torch.zeros_like(preds)
|
||||
for idx in range(numberOfAugOps):
|
||||
corrected[:, idx, :] = INVERSE_TRANSFORMS[idx](preds[:, idx, :])
|
||||
return corrected.mean(dim=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
task = 'SiemenStar'
|
||||
config = configs[task]
|
||||
|
||||
model = models.get_model_class(config['modelVersion'])().cuda()
|
||||
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhoton{config["modelVersion"]}_15.3keV_Noise{config["noise"]}keV_E500.pth', weights_only=True))
|
||||
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhoton{config["modelVersion"]}_15.3keV_Noise{config["noise"]}keV_E500_aug8.pth', weights_only=True))
|
||||
predictions = []
|
||||
referencePoints = []
|
||||
nChunks = len(config['dataFiles']) // 32 + 1
|
||||
@@ -40,12 +69,17 @@ if __name__ == "__main__":
|
||||
edFileIdx = min((idxChunk + 1) * 32, len(config['dataFiles']))
|
||||
sampleFiles = config['dataFiles'][stFileIdx : edFileIdx]
|
||||
print(f'Processing files {stFileIdx} to {edFileIdx}...')
|
||||
dataset = singlePhotonDataset(sampleFiles, sampleRatio=1.0, datasetName='Inference')
|
||||
dataset = singlePhotonDataset(
|
||||
sampleFiles,
|
||||
sampleRatio=1.0,
|
||||
datasetName='Inference',
|
||||
numberOfAugOps=numberOfAugOps
|
||||
)
|
||||
dataLoader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=8192,
|
||||
shuffle=False,
|
||||
num_workers=16,
|
||||
num_workers=32,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
@@ -59,6 +93,7 @@ if __name__ == "__main__":
|
||||
predictions.append(outputs.cpu())
|
||||
|
||||
predictions = torch.cat(predictions, dim=0)
|
||||
predictions = apply_inverse_transforms(predictions, numberOfAugOps)
|
||||
predictions += torch.tensor([1.5, 1.5]).unsqueeze(0) # adjust back to original coordinate system
|
||||
referencePoints = np.concatenate(referencePoints, axis=0)
|
||||
print(f'mean x = {torch.mean(predictions[:, 0])}, std x = {torch.std(predictions[:, 0])}')
|
||||
|
||||
Reference in New Issue
Block a user