Augment for single photon

This commit is contained in:
2025-11-04 16:54:47 +01:00
parent 55e63ff13f
commit 5781b214c0

View File

@@ -24,6 +24,7 @@ model = models.get_model_class(modelVersion)().cuda()
# summary(model, input_size=(128, 1, 3, 3))
LearningRate = 1e-3
Noise = 0.13 # in keV
numberOfAugOps = 8 # 1 (no augmentation) or (1,8] (with augmentation)
TrainLosses, TestLosses = [], []
def weighted_loss(pred, target, alpha=7.0):
@@ -87,12 +88,14 @@ trainDataset = singlePhotonDataset(
sampleRatio=1.0,
datasetName='Train',
noiseKeV = Noise,
numberOfAugOps=numberOfAugOps,
)
valDataset = singlePhotonDataset(
[f'{sampleFolder}/{Energy}_Moench040_150V_{i}.npz' for i in range(13,14)],
sampleRatio=1.0,
datasetName='Val',
noiseKeV = Noise,
numberOfAugOps=numberOfAugOps,
)
testDataset = singlePhotonDataset(
[f'{sampleFolder}/{Energy}_Moench040_150V_{i}.npz' for i in range(15,16)],
@@ -104,37 +107,37 @@ trainLoader = torch.utils.data.DataLoader(
trainDataset,
batch_size=4096,
shuffle=True,
num_workers=16,
num_workers=32,
pin_memory=True,
)
valLoader = torch.utils.data.DataLoader(
valDataset,
batch_size=1024,
shuffle=False,
num_workers=16,
num_workers=32,
pin_memory=True,
)
testLoader = torch.utils.data.DataLoader(
testDataset,
batch_size=1024,
shuffle=4096,
num_workers=16,
num_workers=32,
pin_memory=True,
)
optimizer = torch.optim.Adam(model.parameters(), lr=LearningRate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.7, patience = 3)
if __name__ == "__main__":
for epoch in tqdm(range(1, 301)):
for epoch in tqdm(range(1, 1001)):
train(model, trainLoader, optimizer)
test(model, valLoader)
scheduler.step(ValLosses[-1])
print(f"Learning Rate: {optimizer.param_groups[0]['lr']}")
if epoch in [20, 50, 100, 200, 300, 500]:
torch.save(model.state_dict(), f'Models/singlePhoton{modelVersion}_{Energy}_Noise{Noise}keV_E{epoch}.pth')
if epoch in [20, 50, 100, 200, 300, 500, 750, 1000]:
torch.save(model.state_dict(), f'Models/singlePhoton{modelVersion}_{Energy}_Noise{Noise}keV_E{epoch}_aug{numberOfAugOps}.pth')
test(model, testLoader)
torch.save(model.state_dict(), f'Models/singlePhoton{modelVersion}_{Energy}_Noise{Noise}keV.pth')
torch.save(model.state_dict(), f'Models/singlePhoton{modelVersion}_{Energy}_Noise{Noise}keV_aug{numberOfAugOps}.pth')
def plot_loss_curve(TrainLosses, ValLosses, TestLoss, modelVersion):
import matplotlib.pyplot as plt