Add data augmentation

This commit is contained in:
2025-10-29 09:51:27 +01:00
parent fb9dd0925d
commit 55e63ff13f

View File

@@ -3,10 +3,11 @@ import torch
import numpy as np
class singlePhotonDataset(Dataset):
def __init__(self, sampleList, sampleRatio, datasetName, noiseKeV=0):
def __init__(self, sampleList, sampleRatio, datasetName, noiseKeV=0, numberOfAugOps=1):
self.sampleFileList = sampleList
self.sampleRatio = sampleRatio
self.datasetName = datasetName
self.numberOfAugOps = numberOfAugOps
self._init_coords()
all_samples = []
@@ -44,37 +45,60 @@ class singlePhotonDataset(Dataset):
print(f'Adding Gaussian noise with sigma = {noiseKeV} keV to samples in {self.datasetName} dataset')
noise = np.random.normal(loc=0.0, scale=noiseKeV, size=self.samples.shape)
self.samples = self.samples + noise
self.labels = torch.tensor(np.concatenate(all_labels, axis=0))
self.labels = np.concatenate(all_labels, axis=0)
self.referencePoint = np.concatenate(all_ref_pts, axis=0) if all_ref_pts else None
if self.samples.shape[1] == 5: ### if sample size is 5x5, remove border pixels to make it 3x3
self.samples = self.samples[:, 1:-1, 1:-1] ### remove border pixels
self.labels = self.labels - torch.tensor([1, 1, 0, 0]) ### adjust labels accordingly
self.samples = torch.tensor(self.samples).unsqueeze(1).float()
x_grids = self.x_grid.expand(self.samples.size(0), 1, -1, -1)
y_grids = self.y_grid.expand(self.samples.size(0), 1, -1, -1)
self.samples = torch.cat([self.samples, x_grids, y_grids], dim=1) ### concatenate coordinate channels
self.labels -= torch.tensor([self.samples.shape[1]/2., self.samples.shape[1]/2., 0, 0]) ### adjust labels to be centered at (0,0)
self.labels = self.labels - np.array([1, 1, 0, 0]) ### adjust labels accordingly
self.samples = np.expand_dims(self.samples, axis=1)
self.labels -= np.array([self.samples.shape[-1]/2., self.samples.shape[-1]/2., 0, 0]) ### B,D,3,3 adjust labels to be centered at (0,0)
self.labels[:, 2] /= 650. ### normalize z coordinate (depth) to [0, 1]
### total number of samples
self.length = int(self.samples.shape[0] * self.sampleRatio)
print(f"[{self.datasetName} dataset] \t Total number of samples: {self.length}")
self.nSamples = int(self.samples.shape[0] * self.sampleRatio)
self.effectiveLength = self.nSamples * self.numberOfAugOps
print(f"[{self.datasetName} dataset] \t Total number of samples: {self.nSamples} \t Effective length (with augmentation): {self.effectiveLength}")
def _init_coords(self):
# Create a coordinate grid for 3x3 input
x = torch.linspace(-0.5, 0.5, 3)
y = torch.linspace(-0.5, 0.5, 3)
x_grid, y_grid = torch.meshgrid(x, y, indexing='ij') # (3,3), (3,3)
self.x_grid = x_grid.unsqueeze(0) # (1, 3, 3)
self.y_grid = y_grid.unsqueeze(0) # (1, 3, 3)
x = np.linspace(-0.5, 0.5, 3)
y = np.linspace(-0.5, 0.5, 3)
x_grid, y_grid = np.meshgrid(x, y, indexing='ij') # (3,3), (3,3)
self.x_grid = torch.tensor(np.expand_dims(x_grid, axis=0)).float().contiguous() # (1, 3, 3)
self.y_grid = torch.tensor(np.expand_dims(y_grid, axis=0)).float().contiguous() # (1, 3, 3)
def __getitem__(self, index):
sample = self.samples[index]
label = self.labels[index]
sampleIdx, operationIdx = index // self.numberOfAugOps, index % self.numberOfAugOps
sample = self.samples[sampleIdx]
label = self.labels[sampleIdx]
###( flipAxes, swap, label_transform)
### sample axes: 0 - y axis, 1 - x axis
### label: (x, y, ...)
TRANSFORMS = {
0: (None, False, lambda l: l),
1: ([1], False, lambda l: np.array([-l[0], l[1], l[2], l[3]])),
2: ([0], False, lambda l: np.array([l[0], -l[1], l[2], l[3]])),
3: ([0, 1], False, lambda l: -l),
4: (None, True, lambda l: np.array([l[1], l[0], l[2], l[3]])),
5: ([1], True, lambda l: np.array([-l[1], l[0], l[2], l[3]])),
6: ([0], True, lambda l: np.array([l[1], -l[0], l[2], l[3]])),
7: ([0, 1], True, lambda l: -np.array([l[1], l[0], l[2], l[3]])),
}
flipAxes, doSwap, labelTransform = TRANSFORMS[operationIdx]
if doSwap:
sample = np.swapaxes(sample, -1, -2)
if flipAxes is not None:
sample = np.flip(sample, axis=[ax+1 for ax in flipAxes])
label = labelTransform(label)
sample = torch.from_numpy(np.ascontiguousarray(sample)).float()
sample = torch.cat((sample, self.x_grid, self.y_grid), dim=0) ### concatenate coordinate channels
label = torch.from_numpy(label).float()
return sample, label
def __len__(self):
return self.length
return self.effectiveLength
class doublePhotonDataset(Dataset):
def __init__(self, sampleList, sampleRatio, datasetName, reuselFactor=1):