Chunkize the inference

This commit is contained in:
2025-10-27 18:21:06 +01:00
parent 535e9f057a
commit fb9dd0925d

View File

@@ -6,10 +6,16 @@ from datasets import *
from tqdm import tqdm
from matplotlib import pyplot as plt
torch.manual_seed(42)
torch.cuda.manual_seed(42)
np.random.seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
configs = {}
configs['SiemenStar'] = {
'dataFiles': [f'/mnt/sls_det_storage/moench_data/MLXID/Samples/Measurement/2504_SOLEIL_SiemenStarClusters_MOENCH040_150V/clusters_chunk{i}.h5' for i in range(32)],
'modelVersion': '251020',
'dataFiles': [f'/mnt/sls_det_storage/moench_data/MLXID/Samples/Measurement/2504_SOLEIL_SiemenStarClusters_MOENCH040_150V/clusters_chunk{i}.h5' for i in range(200)],
'modelVersion': '251022',
'roi': [140, 230, 120, 210], # x_min, x_max, y_min, y_max,
'noise': 0.13 # in keV
}
@@ -25,28 +31,36 @@ if __name__ == "__main__":
config = configs[task]
model = models.get_model_class(config['modelVersion'])().cuda()
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhotonNet_Noise{config["noise"]}keV_{config["modelVersion"]}.pth', weights_only=True))
dataset = singlePhotonDataset(config['dataFiles'], sampleRatio=1.0, datasetName='Inference')
dataLoader = torch.utils.data.DataLoader(
dataset,
batch_size=4096,
shuffle=False,
num_workers=16,
pin_memory=True,
)
referencePoints = dataset.referencePoint
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhoton{config["modelVersion"]}_15.3keV_Noise{config["noise"]}keV_E500.pth', weights_only=True))
predictions = []
referencePoints = []
nChunks = len(config['dataFiles']) // 32 + 1
for idxChunk in range(nChunks):
stFileIdx = idxChunk * 32
edFileIdx = min((idxChunk + 1) * 32, len(config['dataFiles']))
sampleFiles = config['dataFiles'][stFileIdx : edFileIdx]
print(f'Processing files {stFileIdx} to {edFileIdx}...')
dataset = singlePhotonDataset(sampleFiles, sampleRatio=1.0, datasetName='Inference')
dataLoader = torch.utils.data.DataLoader(
dataset,
batch_size=8192,
shuffle=False,
num_workers=16,
pin_memory=True,
)
with torch.no_grad():
for batch in tqdm(dataLoader):
inputs, _ = batch
inputs = inputs.cuda()
outputs = model(inputs)
predictions.append(outputs.cpu())
referencePoints.append(dataset.referencePoint)
with torch.no_grad():
for batch in tqdm(dataLoader):
inputs, _ = batch
inputs = inputs.cuda()
outputs = model(inputs)[:, :2] # only x and y
predictions.append(outputs.cpu())
predictions = torch.cat(predictions, dim=0)
predictions += torch.tensor([1.5, 1.5]).unsqueeze(0) # adjust back to original coordinate system
referencePoints = np.concatenate(referencePoints, axis=0)
print(f'mean x = {torch.mean(predictions[:, 0])}, std x = {torch.std(predictions[:, 0])}')
print(f'mean y = {torch.mean(predictions[:, 1])}, std y = {torch.std(predictions[:, 1])}')
absolutePositions = predictions.numpy() + referencePoints[:, :2] - 1