libLFRelaxation functions usable again
This commit is contained in:
parent
edcda9904c
commit
a467ca9bcb
48
src/external/BMWtools/BMWIntegrator.h
vendored
48
src/external/BMWtools/BMWIntegrator.h
vendored
@ -481,11 +481,13 @@ inline double TAnSWaveGapIntegral::FuncAtX(double *x) const // x = {E, phi}, fPa
|
||||
* <p>Class for the 1D integration of j0(a*x)*exp(-b*x)
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TIntBesselJ0Exp : public TIntegrator {
|
||||
class TIntBesselJ0Exp : public T2Integrator {
|
||||
public:
|
||||
TIntBesselJ0Exp() {}
|
||||
~TIntBesselJ0Exp() {}
|
||||
double FuncAtX(double) const;
|
||||
|
||||
private:
|
||||
double FuncAtX(double, const vector<double>&) const;
|
||||
};
|
||||
|
||||
/**
|
||||
@ -496,27 +498,29 @@ class TIntBesselJ0Exp : public TIntegrator {
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TIntBesselJ0Exp::FuncAtX(double x) const
|
||||
inline double TIntBesselJ0Exp::FuncAtX(double x, const vector<double> &par) const
|
||||
{
|
||||
double w0t(TMath::TwoPi()*fPar[0]*x);
|
||||
double w0t(TMath::TwoPi()*par[0]*x);
|
||||
double j0;
|
||||
if (fabs(w0t) < 0.001) { // check zero time limits of the spherical bessel functions j0(x) and j1(x)
|
||||
j0 = 1.0;
|
||||
} else {
|
||||
j0 = TMath::Sin(w0t)/w0t;
|
||||
}
|
||||
return j0 * TMath::Exp(-fPar[1]*x);
|
||||
return j0 * TMath::Exp(-par[1]*x);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Class for the 1D integration of sin(a*x)*exp(-b*x*x)
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TIntSinGss : public TIntegrator {
|
||||
class TIntSinGss : public T2Integrator {
|
||||
public:
|
||||
TIntSinGss() {}
|
||||
~TIntSinGss() {}
|
||||
double FuncAtX(double) const;
|
||||
|
||||
private:
|
||||
double FuncAtX(double, const vector<double>&) const;
|
||||
};
|
||||
|
||||
/**
|
||||
@ -527,9 +531,9 @@ class TIntSinGss : public TIntegrator {
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TIntSinGss::FuncAtX(double x) const
|
||||
inline double TIntSinGss::FuncAtX(double x, const vector<double> &par) const
|
||||
{
|
||||
return TMath::Sin(TMath::TwoPi()*fPar[0]*x) * TMath::Exp(-0.5*fPar[1]*fPar[1]*x*x);
|
||||
return TMath::Sin(TMath::TwoPi()*par[0]*x) * TMath::Exp(-0.5*par[1]*par[1]*x*x);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -538,11 +542,13 @@ inline double TIntSinGss::FuncAtX(double x) const
|
||||
* doi:10.1016/S0921-4526(00)00368-9
|
||||
* The integration uses the GSL integration routines.
|
||||
*/
|
||||
class TIntSGInterpolation : public TIntegrator {
|
||||
class TIntSGInterpolation : public T2Integrator {
|
||||
public:
|
||||
TIntSGInterpolation() {}
|
||||
~TIntSGInterpolation() {}
|
||||
double FuncAtX(double) const;
|
||||
|
||||
private:
|
||||
double FuncAtX(double, const vector<double>&) const;
|
||||
};
|
||||
|
||||
/**
|
||||
@ -553,12 +559,12 @@ class TIntSGInterpolation : public TIntegrator {
|
||||
*
|
||||
* \param x point where the function should be evaluated
|
||||
*/
|
||||
inline double TIntSGInterpolation::FuncAtX(double x) const
|
||||
inline double TIntSGInterpolation::FuncAtX(double x, const vector<double> &par) const
|
||||
{
|
||||
// Parameters: nu_L [MHz], a [1/us], lambda [1/us], beta [1], t [us]
|
||||
double wt(TMath::TwoPi()*fPar[0]*x);
|
||||
double expo(0.5*fPar[1]*fPar[1]*x*x/fPar[3]+fPar[2]*fPar[4]);
|
||||
return (wt*TMath::Cos(wt)-TMath::Sin(wt))/(wt*wt)*TMath::Exp(-TMath::Power(expo,fPar[3]))/TMath::Power(expo,(1.0-fPar[3]));
|
||||
double wt(TMath::TwoPi()*par[0]*x);
|
||||
double expo(0.5*par[1]*par[1]*x*x/par[3]+par[2]*par[4]);
|
||||
return (wt*TMath::Cos(wt)-TMath::Sin(wt))/(wt*wt)*TMath::Exp(-TMath::Power(expo,par[3]))/TMath::Power(expo,(1.0-par[3]));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -593,8 +599,10 @@ inline double TGapIntegral::FuncAtX(double e) const
|
||||
class TFirstUniaxialGssKTIntegral : public T2Integrator {
|
||||
public:
|
||||
TFirstUniaxialGssKTIntegral() {}
|
||||
~TFirstUniaxialGssKTIntegral() {}
|
||||
double FuncAtX(double, const vector<double>&) const; // variable: x
|
||||
virtual ~TFirstUniaxialGssKTIntegral() {}
|
||||
|
||||
private:
|
||||
virtual double FuncAtX(double, const vector<double>&) const; // variable: x
|
||||
};
|
||||
|
||||
/**
|
||||
@ -621,8 +629,10 @@ inline double TFirstUniaxialGssKTIntegral::FuncAtX(double x, const vector<double
|
||||
class TSecondUniaxialGssKTIntegral : public T2Integrator {
|
||||
public:
|
||||
TSecondUniaxialGssKTIntegral() {}
|
||||
~TSecondUniaxialGssKTIntegral() {}
|
||||
double FuncAtX(double, const vector<double>&) const; // variable: x
|
||||
virtual ~TSecondUniaxialGssKTIntegral() {}
|
||||
|
||||
private:
|
||||
virtual double FuncAtX(double, const vector<double>&) const; // variable: x
|
||||
};
|
||||
|
||||
/**
|
||||
|
134
src/external/libLFRelaxation/TLFRelaxation.cpp
vendored
134
src/external/libLFRelaxation/TLFRelaxation.cpp
vendored
@ -66,9 +66,8 @@ ClassImp(TLFSGInterpolation)
|
||||
/**
|
||||
* <p>Constructor: Initialize variables and allocate memory for the integrator.
|
||||
*/
|
||||
TLFStatGssKT::TLFStatGssKT() : fCalcNeeded(true), fLastTime(0.) {
|
||||
TLFStatGssKT::TLFStatGssKT() {
|
||||
fIntSinGss = new TIntSinGss();
|
||||
fPar.resize(2, 0.);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -80,8 +79,6 @@ TLFStatGssKT::TLFStatGssKT() : fCalcNeeded(true), fLastTime(0.) {
|
||||
TLFStatGssKT::~TLFStatGssKT() {
|
||||
delete fIntSinGss;
|
||||
fIntSinGss = 0;
|
||||
fIntValues.clear();
|
||||
fPar.clear();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -103,39 +100,17 @@ double TLFStatGssKT::operator()(double t, const vector<double> &par) const {
|
||||
double sigsq(par[1]*par[1]);
|
||||
double sigsqtt(sigsq*t*t);
|
||||
|
||||
if(TMath::Abs(par[0])<0.00135538817){
|
||||
if(TMath::Abs(par[0])<0.00135538817) {
|
||||
return (0.33333333333333333333+0.66666666666666666667*(1.0-sigsqtt)*TMath::Exp(-0.5*sigsqtt));
|
||||
}
|
||||
|
||||
for (unsigned int i(0); i<2; ++i) {
|
||||
if( fPar[i]-par[i] ) {
|
||||
fPar[i] = par[i];
|
||||
fCalcNeeded = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (fCalcNeeded) {
|
||||
fIntValues.clear();
|
||||
fIntValues[0.] = 0.;
|
||||
fLastTime = 0.;
|
||||
} else {
|
||||
if (t > fIntValues.rbegin()->first) {
|
||||
fCalcNeeded = true;
|
||||
fLastTime = fIntValues.rbegin()->first;
|
||||
}
|
||||
}
|
||||
|
||||
double omegaL(TMath::TwoPi()*par[0]);
|
||||
double coeff1(2.0*sigsq/(omegaL*omegaL));
|
||||
double coeff2(coeff1*sigsq/omegaL);
|
||||
|
||||
if (fCalcNeeded) {
|
||||
fIntSinGss->SetParameters(par);
|
||||
fIntValues[t] = fIntValues[fLastTime] + fIntSinGss->IntegrateFunc(fLastTime,t);
|
||||
fCalcNeeded = false;
|
||||
}
|
||||
double intValue = fIntSinGss->IntegrateFunc(0.0, t, par);
|
||||
|
||||
return (1.0-(coeff1*(1.0-TMath::Exp(-0.5*sigsqtt)*TMath::Cos(omegaL*t)))+(coeff2*fIntValues[t]));
|
||||
return (1.0-(coeff1*(1.0-TMath::Exp(-0.5*sigsqtt)*TMath::Cos(omegaL*t)))+(coeff2*intValue));
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -144,9 +119,8 @@ double TLFStatGssKT::operator()(double t, const vector<double> &par) const {
|
||||
/**
|
||||
* <p>Constructor: Initialize variables and allocate memory for the integrator.
|
||||
*/
|
||||
TLFStatExpKT::TLFStatExpKT() : fCalcNeeded(true), fLastTime(0.) {
|
||||
TLFStatExpKT::TLFStatExpKT() {
|
||||
fIntBesselJ0Exp = new TIntBesselJ0Exp();
|
||||
fPar.resize(2, 0.);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -158,8 +132,6 @@ TLFStatExpKT::TLFStatExpKT() : fCalcNeeded(true), fLastTime(0.) {
|
||||
TLFStatExpKT::~TLFStatExpKT() {
|
||||
delete fIntBesselJ0Exp;
|
||||
fIntBesselJ0Exp = 0;
|
||||
fIntValues.clear();
|
||||
fPar.clear();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -178,28 +150,10 @@ double TLFStatExpKT::operator()(double t, const vector<double> &par) const {
|
||||
if(t<0.0)
|
||||
return 1.0;
|
||||
|
||||
if(TMath::Abs(par[0])<0.00135538817){
|
||||
if(TMath::Abs(par[0])<0.00135538817) {
|
||||
return (0.33333333333333333333+0.66666666666666666667*(1.0-par[1]*t)*TMath::Exp(-par[1]*t));
|
||||
}
|
||||
|
||||
for (unsigned int i(0); i<2; ++i) {
|
||||
if( fPar[i]-par[i] ) {
|
||||
fPar[i] = par[i];
|
||||
fCalcNeeded = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (fCalcNeeded) {
|
||||
fIntValues.clear();
|
||||
fIntValues[0.] = 0.;
|
||||
fLastTime = 0.;
|
||||
} else {
|
||||
if (t > fIntValues.rbegin()->first) {
|
||||
fCalcNeeded = true;
|
||||
fLastTime = fIntValues.rbegin()->first;
|
||||
}
|
||||
}
|
||||
|
||||
double omegaL(TMath::TwoPi()*par[0]);
|
||||
double coeff1(par[1]/omegaL);
|
||||
double coeff2(coeff1*coeff1);
|
||||
@ -215,13 +169,9 @@ double TLFStatExpKT::operator()(double t, const vector<double> &par) const {
|
||||
j1 = (TMath::Sin(w0t)-w0t*TMath::Cos(w0t))/(w0t*w0t);
|
||||
}
|
||||
|
||||
if (fCalcNeeded) {
|
||||
fIntBesselJ0Exp->SetParameters(par);
|
||||
fIntValues[t] = fIntValues[fLastTime] + fIntBesselJ0Exp->IntegrateFunc(fLastTime,t);
|
||||
fCalcNeeded = false;
|
||||
}
|
||||
double intValue = fIntBesselJ0Exp->IntegrateFunc(0.0, t, par);
|
||||
|
||||
return (1.0-(coeff1*TMath::Exp(-par[1]*t)*j1)-(coeff2*(j0*TMath::Exp(-par[1]*t)-1.0))-coeff3*fIntValues[t]);
|
||||
return (1.0-(coeff1*TMath::Exp(-par[1]*t)*j1)-(coeff2*(j0*TMath::Exp(-par[1]*t)-1.0))-coeff3*intValue);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -245,7 +195,7 @@ TLFDynGssKT::TLFDynGssKT() : fCalcNeeded(true), fFirstCall(true), fCounter(0) {
|
||||
#ifdef HAVE_GOMP
|
||||
fftwf_plan_with_nthreads(omp_get_num_procs());
|
||||
#else
|
||||
fftwf_plan_with_nthreads(2);
|
||||
fftwf_plan_with_nthreads(1);
|
||||
#endif /* HAVE_GOMP */
|
||||
}
|
||||
#endif /* HAVE_LIBFFTW3F_THREADS */
|
||||
@ -395,11 +345,16 @@ double TLFDynGssKT::operator()(double t, const vector<double> &par) const {
|
||||
*/
|
||||
double tt(0.), sigsqtsq(0.);
|
||||
int i;
|
||||
#ifdef HAVE_GOMP
|
||||
int chunk = fNSteps/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#endif
|
||||
|
||||
if(fabs(par[0])<0.00135538817) {
|
||||
double mcplusnu(-(fC+par[2]));
|
||||
#ifdef HAVE_GOMP
|
||||
#pragma omp parallel for default(shared) private(i,tt) schedule(dynamic)
|
||||
#pragma omp parallel for default(shared) private(i,tt) schedule(dynamic, chunk)
|
||||
#endif
|
||||
for(i = 0; i < static_cast<int>(fNSteps); ++i) {
|
||||
tt=static_cast<double>(i)*fDt;
|
||||
@ -414,7 +369,7 @@ double TLFDynGssKT::operator()(double t, const vector<double> &par) const {
|
||||
fFFTtime[0] = fDt;
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
#pragma omp parallel for default(shared) private(i,tt) schedule(dynamic)
|
||||
#pragma omp parallel for default(shared) private(i,tt) schedule(dynamic, chunk)
|
||||
#endif
|
||||
for(i = 1; i < static_cast<int>(fNSteps); ++i) {
|
||||
tt=(static_cast<double>(i)-0.5)*fDt;
|
||||
@ -442,7 +397,10 @@ double TLFDynGssKT::operator()(double t, const vector<double> &par) const {
|
||||
double denom(1.0), imagsq(0.0), oneMINrealnu(1.0);
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
#pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic)
|
||||
chunk = (fNSteps/2+1)/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic, chunk)
|
||||
#endif
|
||||
for (i = 0; i < static_cast<int>(fNSteps)/2+1; ++i) {
|
||||
imagsq=fFFTfreq[i][1]*fFFTfreq[i][1];
|
||||
@ -564,7 +522,7 @@ TLFDynExpKT::TLFDynExpKT() : fCalcNeeded(true), fFirstCall(true), fCounter(0), f
|
||||
#ifdef HAVE_GOMP
|
||||
fftwf_plan_with_nthreads(omp_get_num_procs());
|
||||
#else
|
||||
fftwf_plan_with_nthreads(2);
|
||||
fftwf_plan_with_nthreads(1);
|
||||
#endif /* HAVE_GOMP */
|
||||
}
|
||||
#endif /* HAVE_LIBFFTW3F_THREADS */
|
||||
@ -739,10 +697,15 @@ double TLFDynExpKT::operator()(double t, const vector<double> &par) const {
|
||||
|
||||
double tt(0.);
|
||||
int i;
|
||||
#ifdef HAVE_GOMP
|
||||
int chunk = fNSteps/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#endif
|
||||
|
||||
if(TMath::Abs(par[0])<0.00135538817){
|
||||
#ifdef HAVE_GOMP
|
||||
#pragma omp parallel for default(shared) private(i, tt) schedule(dynamic)
|
||||
#pragma omp parallel for default(shared) private(i, tt) schedule(dynamic, chunk)
|
||||
#endif
|
||||
for(i = 0; i < static_cast<int>(fNSteps); ++i) {
|
||||
tt=static_cast<double>(i)*fDt;
|
||||
@ -757,7 +720,7 @@ double TLFDynExpKT::operator()(double t, const vector<double> &par) const {
|
||||
fFFTtime[0] = 1.0*fDt;
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
#pragma omp parallel for default(shared) private(i, tt) schedule(dynamic)
|
||||
#pragma omp parallel for default(shared) private(i, tt) schedule(dynamic, chunk)
|
||||
#endif
|
||||
for(i = 1; i < static_cast<int>(fNSteps); ++i) {
|
||||
tt=(double(i)-0.5)*fDt;
|
||||
@ -785,7 +748,10 @@ double TLFDynExpKT::operator()(double t, const vector<double> &par) const {
|
||||
double denom(1.0), imagsq(0.0), oneMINrealnu(1.0);
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
#pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic)
|
||||
chunk = (fNSteps/2+1)/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic, chunk)
|
||||
#endif
|
||||
for (i = 0; i < static_cast<int>(fNSteps)/2+1; ++i) {
|
||||
imagsq=fFFTfreq[i][1]*fFFTfreq[i][1];
|
||||
@ -815,9 +781,8 @@ double TLFDynExpKT::operator()(double t, const vector<double> &par) const {
|
||||
/**
|
||||
* <p>Constructor: Initialize variables and allocate memory for the integrator.
|
||||
*/
|
||||
TLFSGInterpolation::TLFSGInterpolation() : fCalcNeeded(true), fLastTime(0.) {
|
||||
TLFSGInterpolation::TLFSGInterpolation() {
|
||||
fIntegral = new TIntSGInterpolation();
|
||||
fPar.resize(4, 0.);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -829,8 +794,6 @@ TLFSGInterpolation::TLFSGInterpolation() : fCalcNeeded(true), fLastTime(0.) {
|
||||
TLFSGInterpolation::~TLFSGInterpolation() {
|
||||
delete fIntegral;
|
||||
fIntegral = 0;
|
||||
fPar.clear();
|
||||
fIntValues.clear();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -856,35 +819,14 @@ double TLFSGInterpolation::operator()(double t, const vector<double> &par) const
|
||||
0.66666666666666666667*(1.0-par[1]*par[1]*t*t/TMath::Power(expo,(1.0-par[3])))*TMath::Exp(-TMath::Power(expo,par[3])));
|
||||
}
|
||||
|
||||
for (unsigned int i(0); i<4; ++i) {
|
||||
if( fPar[i]-par[i] ) {
|
||||
fPar[i] = par[i];
|
||||
fCalcNeeded = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (fCalcNeeded) {
|
||||
fIntValues.clear();
|
||||
fIntValues[0.] = 0.;
|
||||
fLastTime = 0.;
|
||||
} else {
|
||||
if (t > fIntValues.rbegin()->first) {
|
||||
fCalcNeeded = true;
|
||||
fLastTime = fIntValues.rbegin()->first;
|
||||
}
|
||||
}
|
||||
|
||||
double omegaL(TMath::TwoPi()*par[0]);
|
||||
|
||||
if (fCalcNeeded) {
|
||||
vector<double> intpar(par);
|
||||
intpar.push_back(t);
|
||||
fIntegral->SetParameters(intpar);
|
||||
fIntValues[t] = fIntValues[fLastTime] + fIntegral->IntegrateFunc(fLastTime,t);
|
||||
intpar.clear();
|
||||
}
|
||||
vector<double> intpar(par);
|
||||
intpar.push_back(t);
|
||||
double intValue = fIntegral->IntegrateFunc(0.0, t, intpar);
|
||||
intpar.clear();
|
||||
|
||||
return (TMath::Exp(-TMath::Power(par[2]*t,par[3])) + 2.0*par[1]*par[1]/(omegaL*omegaL) * \
|
||||
((TMath::Cos(omegaL*t)-TMath::Sin(omegaL*t)/(omegaL*t))*TMath::Exp(-TMath::Power(expo,par[3]))/TMath::Power(expo,(1.0-par[3])) + \
|
||||
fIntValues[t]));
|
||||
intValue));
|
||||
}
|
||||
|
18
src/external/libLFRelaxation/TLFRelaxation.h
vendored
18
src/external/libLFRelaxation/TLFRelaxation.h
vendored
@ -65,12 +65,8 @@ public:
|
||||
|
||||
private:
|
||||
TIntSinGss *fIntSinGss; ///< integrator
|
||||
mutable map<double, double> fIntValues; ///< previously calculated integral values
|
||||
mutable vector<double> fPar; ///< parameters of the function [\htmlonly ν<sub>L</sub>=<i>B</i>γ<sub>μ</sub>/2π (MHz), σ (μs<sup>-1</sup>)\endhtmlonly \latexonly $\nu_{\mathrm{L}}=B\gamma_{\mu}/2\pi~(\mathrm{MHz})$, $\sigma~(\mu\mathrm{s}^{-1})$ \endlatexonly]
|
||||
mutable bool fCalcNeeded; ///< flag specifying if an integration has to be done
|
||||
mutable double fLastTime; ///< time of the last calculated function value
|
||||
|
||||
ClassDef(TLFStatGssKT,2)
|
||||
ClassDef(TLFStatGssKT,3)
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------------
|
||||
@ -96,12 +92,8 @@ public:
|
||||
|
||||
private:
|
||||
TIntBesselJ0Exp *fIntBesselJ0Exp; ///< integrator
|
||||
mutable map<double, double> fIntValues; ///< previously calculated integral values
|
||||
mutable vector<double> fPar; ///< parameters of the function [\htmlonly ν<sub>L</sub>=<i>B</i>γ<sub>μ</sub>/2π (MHz), <i>a</i> (μs<sup>-1</sup>)\endhtmlonly \latexonly $\nu_{\mathrm{L}}=B\gamma_{\mu}/2\pi~(\mathrm{MHz})$, $a~(\mu\mathrm{s}^{-1})$ \endlatexonly]
|
||||
mutable bool fCalcNeeded; ///< flag specifying if an integration has to be done
|
||||
mutable double fLastTime; ///< time of the last calculated function value
|
||||
|
||||
ClassDef(TLFStatExpKT,2)
|
||||
ClassDef(TLFStatExpKT,3)
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------------
|
||||
@ -270,12 +262,8 @@ public:
|
||||
|
||||
private:
|
||||
TIntSGInterpolation *fIntegral; ///< integrator
|
||||
mutable map<double, double> fIntValues; ///< previously calculated integral values
|
||||
mutable vector<double> fPar; ///< parameters of the function [\htmlonly ν<sub>L</sub>=<i>B</i>γ<sub>μ</sub>/2π (MHz), <i>a</i> (μs<sup>-1</sup>), λ (μs<sup>-1</sup>), β (1) \endhtmlonly \latexonly $\nu_{\mathrm{L}}=B\gamma_{\mu}/2\pi~(\mathrm{MHz})$, $a~(\mu\mathrm{s}^{-1})$, $\lambda~(\mu\mathrm{s}^{-1})$, $\beta~(1)$ \endlatexonly]
|
||||
mutable bool fCalcNeeded; ///< flag specifying if an integration has to be done
|
||||
mutable double fLastTime; ///< time of the last calculated function value
|
||||
|
||||
ClassDef(TLFSGInterpolation,2)
|
||||
ClassDef(TLFSGInterpolation,3)
|
||||
};
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user