diff --git a/src/external/BMWtools/BMWIntegrator.h b/src/external/BMWtools/BMWIntegrator.h
index a99c7092..370f8ca3 100644
--- a/src/external/BMWtools/BMWIntegrator.h
+++ b/src/external/BMWtools/BMWIntegrator.h
@@ -481,11 +481,13 @@ inline double TAnSWaveGapIntegral::FuncAtX(double *x) const // x = {E, phi}, fPa
*
Class for the 1D integration of j0(a*x)*exp(-b*x)
* The integration uses the GSL integration routines.
*/
-class TIntBesselJ0Exp : public TIntegrator {
+class TIntBesselJ0Exp : public T2Integrator {
public:
TIntBesselJ0Exp() {}
~TIntBesselJ0Exp() {}
- double FuncAtX(double) const;
+
+ private:
+ double FuncAtX(double, const vector&) const;
};
/**
@@ -496,27 +498,29 @@ class TIntBesselJ0Exp : public TIntegrator {
*
* \param x point where the function should be evaluated
*/
-inline double TIntBesselJ0Exp::FuncAtX(double x) const
+inline double TIntBesselJ0Exp::FuncAtX(double x, const vector &par) const
{
- double w0t(TMath::TwoPi()*fPar[0]*x);
+ double w0t(TMath::TwoPi()*par[0]*x);
double j0;
if (fabs(w0t) < 0.001) { // check zero time limits of the spherical bessel functions j0(x) and j1(x)
j0 = 1.0;
} else {
j0 = TMath::Sin(w0t)/w0t;
}
- return j0 * TMath::Exp(-fPar[1]*x);
+ return j0 * TMath::Exp(-par[1]*x);
}
/**
* Class for the 1D integration of sin(a*x)*exp(-b*x*x)
* The integration uses the GSL integration routines.
*/
-class TIntSinGss : public TIntegrator {
+class TIntSinGss : public T2Integrator {
public:
TIntSinGss() {}
~TIntSinGss() {}
- double FuncAtX(double) const;
+
+ private:
+ double FuncAtX(double, const vector&) const;
};
/**
@@ -527,9 +531,9 @@ class TIntSinGss : public TIntegrator {
*
* \param x point where the function should be evaluated
*/
-inline double TIntSinGss::FuncAtX(double x) const
+inline double TIntSinGss::FuncAtX(double x, const vector &par) const
{
- return TMath::Sin(TMath::TwoPi()*fPar[0]*x) * TMath::Exp(-0.5*fPar[1]*fPar[1]*x*x);
+ return TMath::Sin(TMath::TwoPi()*par[0]*x) * TMath::Exp(-0.5*par[1]*par[1]*x*x);
}
/**
@@ -538,11 +542,13 @@ inline double TIntSinGss::FuncAtX(double x) const
* doi:10.1016/S0921-4526(00)00368-9
* The integration uses the GSL integration routines.
*/
-class TIntSGInterpolation : public TIntegrator {
+class TIntSGInterpolation : public T2Integrator {
public:
TIntSGInterpolation() {}
~TIntSGInterpolation() {}
- double FuncAtX(double) const;
+
+ private:
+ double FuncAtX(double, const vector&) const;
};
/**
@@ -553,12 +559,12 @@ class TIntSGInterpolation : public TIntegrator {
*
* \param x point where the function should be evaluated
*/
-inline double TIntSGInterpolation::FuncAtX(double x) const
+inline double TIntSGInterpolation::FuncAtX(double x, const vector &par) const
{
// Parameters: nu_L [MHz], a [1/us], lambda [1/us], beta [1], t [us]
- double wt(TMath::TwoPi()*fPar[0]*x);
- double expo(0.5*fPar[1]*fPar[1]*x*x/fPar[3]+fPar[2]*fPar[4]);
- return (wt*TMath::Cos(wt)-TMath::Sin(wt))/(wt*wt)*TMath::Exp(-TMath::Power(expo,fPar[3]))/TMath::Power(expo,(1.0-fPar[3]));
+ double wt(TMath::TwoPi()*par[0]*x);
+ double expo(0.5*par[1]*par[1]*x*x/par[3]+par[2]*par[4]);
+ return (wt*TMath::Cos(wt)-TMath::Sin(wt))/(wt*wt)*TMath::Exp(-TMath::Power(expo,par[3]))/TMath::Power(expo,(1.0-par[3]));
}
/**
@@ -593,8 +599,10 @@ inline double TGapIntegral::FuncAtX(double e) const
class TFirstUniaxialGssKTIntegral : public T2Integrator {
public:
TFirstUniaxialGssKTIntegral() {}
- ~TFirstUniaxialGssKTIntegral() {}
- double FuncAtX(double, const vector&) const; // variable: x
+ virtual ~TFirstUniaxialGssKTIntegral() {}
+
+ private:
+ virtual double FuncAtX(double, const vector&) const; // variable: x
};
/**
@@ -621,8 +629,10 @@ inline double TFirstUniaxialGssKTIntegral::FuncAtX(double x, const vector&) const; // variable: x
+ virtual ~TSecondUniaxialGssKTIntegral() {}
+
+ private:
+ virtual double FuncAtX(double, const vector&) const; // variable: x
};
/**
diff --git a/src/external/libLFRelaxation/TLFRelaxation.cpp b/src/external/libLFRelaxation/TLFRelaxation.cpp
index 2da09e40..00c6bc65 100644
--- a/src/external/libLFRelaxation/TLFRelaxation.cpp
+++ b/src/external/libLFRelaxation/TLFRelaxation.cpp
@@ -66,9 +66,8 @@ ClassImp(TLFSGInterpolation)
/**
* Constructor: Initialize variables and allocate memory for the integrator.
*/
-TLFStatGssKT::TLFStatGssKT() : fCalcNeeded(true), fLastTime(0.) {
+TLFStatGssKT::TLFStatGssKT() {
fIntSinGss = new TIntSinGss();
- fPar.resize(2, 0.);
}
//--------------------------------------------------------------------------
@@ -80,8 +79,6 @@ TLFStatGssKT::TLFStatGssKT() : fCalcNeeded(true), fLastTime(0.) {
TLFStatGssKT::~TLFStatGssKT() {
delete fIntSinGss;
fIntSinGss = 0;
- fIntValues.clear();
- fPar.clear();
}
//--------------------------------------------------------------------------
@@ -103,39 +100,17 @@ double TLFStatGssKT::operator()(double t, const vector &par) const {
double sigsq(par[1]*par[1]);
double sigsqtt(sigsq*t*t);
- if(TMath::Abs(par[0])<0.00135538817){
+ if(TMath::Abs(par[0])<0.00135538817) {
return (0.33333333333333333333+0.66666666666666666667*(1.0-sigsqtt)*TMath::Exp(-0.5*sigsqtt));
}
- for (unsigned int i(0); i<2; ++i) {
- if( fPar[i]-par[i] ) {
- fPar[i] = par[i];
- fCalcNeeded = true;
- }
- }
-
- if (fCalcNeeded) {
- fIntValues.clear();
- fIntValues[0.] = 0.;
- fLastTime = 0.;
- } else {
- if (t > fIntValues.rbegin()->first) {
- fCalcNeeded = true;
- fLastTime = fIntValues.rbegin()->first;
- }
- }
-
double omegaL(TMath::TwoPi()*par[0]);
double coeff1(2.0*sigsq/(omegaL*omegaL));
double coeff2(coeff1*sigsq/omegaL);
- if (fCalcNeeded) {
- fIntSinGss->SetParameters(par);
- fIntValues[t] = fIntValues[fLastTime] + fIntSinGss->IntegrateFunc(fLastTime,t);
- fCalcNeeded = false;
- }
+ double intValue = fIntSinGss->IntegrateFunc(0.0, t, par);
- return (1.0-(coeff1*(1.0-TMath::Exp(-0.5*sigsqtt)*TMath::Cos(omegaL*t)))+(coeff2*fIntValues[t]));
+ return (1.0-(coeff1*(1.0-TMath::Exp(-0.5*sigsqtt)*TMath::Cos(omegaL*t)))+(coeff2*intValue));
}
//--------------------------------------------------------------------------
@@ -144,9 +119,8 @@ double TLFStatGssKT::operator()(double t, const vector &par) const {
/**
* Constructor: Initialize variables and allocate memory for the integrator.
*/
-TLFStatExpKT::TLFStatExpKT() : fCalcNeeded(true), fLastTime(0.) {
+TLFStatExpKT::TLFStatExpKT() {
fIntBesselJ0Exp = new TIntBesselJ0Exp();
- fPar.resize(2, 0.);
}
//--------------------------------------------------------------------------
@@ -158,8 +132,6 @@ TLFStatExpKT::TLFStatExpKT() : fCalcNeeded(true), fLastTime(0.) {
TLFStatExpKT::~TLFStatExpKT() {
delete fIntBesselJ0Exp;
fIntBesselJ0Exp = 0;
- fIntValues.clear();
- fPar.clear();
}
//--------------------------------------------------------------------------
@@ -178,28 +150,10 @@ double TLFStatExpKT::operator()(double t, const vector &par) const {
if(t<0.0)
return 1.0;
- if(TMath::Abs(par[0])<0.00135538817){
+ if(TMath::Abs(par[0])<0.00135538817) {
return (0.33333333333333333333+0.66666666666666666667*(1.0-par[1]*t)*TMath::Exp(-par[1]*t));
}
- for (unsigned int i(0); i<2; ++i) {
- if( fPar[i]-par[i] ) {
- fPar[i] = par[i];
- fCalcNeeded = true;
- }
- }
-
- if (fCalcNeeded) {
- fIntValues.clear();
- fIntValues[0.] = 0.;
- fLastTime = 0.;
- } else {
- if (t > fIntValues.rbegin()->first) {
- fCalcNeeded = true;
- fLastTime = fIntValues.rbegin()->first;
- }
- }
-
double omegaL(TMath::TwoPi()*par[0]);
double coeff1(par[1]/omegaL);
double coeff2(coeff1*coeff1);
@@ -215,13 +169,9 @@ double TLFStatExpKT::operator()(double t, const vector &par) const {
j1 = (TMath::Sin(w0t)-w0t*TMath::Cos(w0t))/(w0t*w0t);
}
- if (fCalcNeeded) {
- fIntBesselJ0Exp->SetParameters(par);
- fIntValues[t] = fIntValues[fLastTime] + fIntBesselJ0Exp->IntegrateFunc(fLastTime,t);
- fCalcNeeded = false;
- }
+ double intValue = fIntBesselJ0Exp->IntegrateFunc(0.0, t, par);
- return (1.0-(coeff1*TMath::Exp(-par[1]*t)*j1)-(coeff2*(j0*TMath::Exp(-par[1]*t)-1.0))-coeff3*fIntValues[t]);
+ return (1.0-(coeff1*TMath::Exp(-par[1]*t)*j1)-(coeff2*(j0*TMath::Exp(-par[1]*t)-1.0))-coeff3*intValue);
}
//--------------------------------------------------------------------------
@@ -245,7 +195,7 @@ TLFDynGssKT::TLFDynGssKT() : fCalcNeeded(true), fFirstCall(true), fCounter(0) {
#ifdef HAVE_GOMP
fftwf_plan_with_nthreads(omp_get_num_procs());
#else
- fftwf_plan_with_nthreads(2);
+ fftwf_plan_with_nthreads(1);
#endif /* HAVE_GOMP */
}
#endif /* HAVE_LIBFFTW3F_THREADS */
@@ -395,11 +345,16 @@ double TLFDynGssKT::operator()(double t, const vector &par) const {
*/
double tt(0.), sigsqtsq(0.);
int i;
+ #ifdef HAVE_GOMP
+ int chunk = fNSteps/omp_get_num_procs();
+ if (chunk < 10)
+ chunk = 10;
+ #endif
if(fabs(par[0])<0.00135538817) {
double mcplusnu(-(fC+par[2]));
#ifdef HAVE_GOMP
- #pragma omp parallel for default(shared) private(i,tt) schedule(dynamic)
+ #pragma omp parallel for default(shared) private(i,tt) schedule(dynamic, chunk)
#endif
for(i = 0; i < static_cast(fNSteps); ++i) {
tt=static_cast(i)*fDt;
@@ -414,7 +369,7 @@ double TLFDynGssKT::operator()(double t, const vector &par) const {
fFFTtime[0] = fDt;
#ifdef HAVE_GOMP
- #pragma omp parallel for default(shared) private(i,tt) schedule(dynamic)
+ #pragma omp parallel for default(shared) private(i,tt) schedule(dynamic, chunk)
#endif
for(i = 1; i < static_cast(fNSteps); ++i) {
tt=(static_cast(i)-0.5)*fDt;
@@ -442,7 +397,10 @@ double TLFDynGssKT::operator()(double t, const vector &par) const {
double denom(1.0), imagsq(0.0), oneMINrealnu(1.0);
#ifdef HAVE_GOMP
- #pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic)
+ chunk = (fNSteps/2+1)/omp_get_num_procs();
+ if (chunk < 10)
+ chunk = 10;
+ #pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic, chunk)
#endif
for (i = 0; i < static_cast(fNSteps)/2+1; ++i) {
imagsq=fFFTfreq[i][1]*fFFTfreq[i][1];
@@ -564,7 +522,7 @@ TLFDynExpKT::TLFDynExpKT() : fCalcNeeded(true), fFirstCall(true), fCounter(0), f
#ifdef HAVE_GOMP
fftwf_plan_with_nthreads(omp_get_num_procs());
#else
- fftwf_plan_with_nthreads(2);
+ fftwf_plan_with_nthreads(1);
#endif /* HAVE_GOMP */
}
#endif /* HAVE_LIBFFTW3F_THREADS */
@@ -739,10 +697,15 @@ double TLFDynExpKT::operator()(double t, const vector &par) const {
double tt(0.);
int i;
+ #ifdef HAVE_GOMP
+ int chunk = fNSteps/omp_get_num_procs();
+ if (chunk < 10)
+ chunk = 10;
+ #endif
if(TMath::Abs(par[0])<0.00135538817){
#ifdef HAVE_GOMP
- #pragma omp parallel for default(shared) private(i, tt) schedule(dynamic)
+ #pragma omp parallel for default(shared) private(i, tt) schedule(dynamic, chunk)
#endif
for(i = 0; i < static_cast(fNSteps); ++i) {
tt=static_cast(i)*fDt;
@@ -757,7 +720,7 @@ double TLFDynExpKT::operator()(double t, const vector &par) const {
fFFTtime[0] = 1.0*fDt;
#ifdef HAVE_GOMP
- #pragma omp parallel for default(shared) private(i, tt) schedule(dynamic)
+ #pragma omp parallel for default(shared) private(i, tt) schedule(dynamic, chunk)
#endif
for(i = 1; i < static_cast(fNSteps); ++i) {
tt=(double(i)-0.5)*fDt;
@@ -785,7 +748,10 @@ double TLFDynExpKT::operator()(double t, const vector &par) const {
double denom(1.0), imagsq(0.0), oneMINrealnu(1.0);
#ifdef HAVE_GOMP
- #pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic)
+ chunk = (fNSteps/2+1)/omp_get_num_procs();
+ if (chunk < 10)
+ chunk = 10;
+ #pragma omp parallel for default(shared) private(i, imagsq, oneMINrealnu, denom) schedule(dynamic, chunk)
#endif
for (i = 0; i < static_cast(fNSteps)/2+1; ++i) {
imagsq=fFFTfreq[i][1]*fFFTfreq[i][1];
@@ -815,9 +781,8 @@ double TLFDynExpKT::operator()(double t, const vector &par) const {
/**
* Constructor: Initialize variables and allocate memory for the integrator.
*/
-TLFSGInterpolation::TLFSGInterpolation() : fCalcNeeded(true), fLastTime(0.) {
+TLFSGInterpolation::TLFSGInterpolation() {
fIntegral = new TIntSGInterpolation();
- fPar.resize(4, 0.);
}
//--------------------------------------------------------------------------
@@ -829,8 +794,6 @@ TLFSGInterpolation::TLFSGInterpolation() : fCalcNeeded(true), fLastTime(0.) {
TLFSGInterpolation::~TLFSGInterpolation() {
delete fIntegral;
fIntegral = 0;
- fPar.clear();
- fIntValues.clear();
}
//--------------------------------------------------------------------------
@@ -856,35 +819,14 @@ double TLFSGInterpolation::operator()(double t, const vector &par) const
0.66666666666666666667*(1.0-par[1]*par[1]*t*t/TMath::Power(expo,(1.0-par[3])))*TMath::Exp(-TMath::Power(expo,par[3])));
}
- for (unsigned int i(0); i<4; ++i) {
- if( fPar[i]-par[i] ) {
- fPar[i] = par[i];
- fCalcNeeded = true;
- }
- }
-
- if (fCalcNeeded) {
- fIntValues.clear();
- fIntValues[0.] = 0.;
- fLastTime = 0.;
- } else {
- if (t > fIntValues.rbegin()->first) {
- fCalcNeeded = true;
- fLastTime = fIntValues.rbegin()->first;
- }
- }
-
double omegaL(TMath::TwoPi()*par[0]);
- if (fCalcNeeded) {
- vector intpar(par);
- intpar.push_back(t);
- fIntegral->SetParameters(intpar);
- fIntValues[t] = fIntValues[fLastTime] + fIntegral->IntegrateFunc(fLastTime,t);
- intpar.clear();
- }
+ vector intpar(par);
+ intpar.push_back(t);
+ double intValue = fIntegral->IntegrateFunc(0.0, t, intpar);
+ intpar.clear();
return (TMath::Exp(-TMath::Power(par[2]*t,par[3])) + 2.0*par[1]*par[1]/(omegaL*omegaL) * \
((TMath::Cos(omegaL*t)-TMath::Sin(omegaL*t)/(omegaL*t))*TMath::Exp(-TMath::Power(expo,par[3]))/TMath::Power(expo,(1.0-par[3])) + \
- fIntValues[t]));
+ intValue));
}
diff --git a/src/external/libLFRelaxation/TLFRelaxation.h b/src/external/libLFRelaxation/TLFRelaxation.h
index 10ceb9dd..bf2370c0 100644
--- a/src/external/libLFRelaxation/TLFRelaxation.h
+++ b/src/external/libLFRelaxation/TLFRelaxation.h
@@ -65,12 +65,8 @@ public:
private:
TIntSinGss *fIntSinGss; ///< integrator
- mutable map fIntValues; ///< previously calculated integral values
- mutable vector fPar; ///< parameters of the function [\htmlonly νL=Bγμ/2π (MHz), σ (μs-1)\endhtmlonly \latexonly $\nu_{\mathrm{L}}=B\gamma_{\mu}/2\pi~(\mathrm{MHz})$, $\sigma~(\mu\mathrm{s}^{-1})$ \endlatexonly]
- mutable bool fCalcNeeded; ///< flag specifying if an integration has to be done
- mutable double fLastTime; ///< time of the last calculated function value
- ClassDef(TLFStatGssKT,2)
+ ClassDef(TLFStatGssKT,3)
};
//-----------------------------------------------------------------------------------------------------------------
@@ -96,12 +92,8 @@ public:
private:
TIntBesselJ0Exp *fIntBesselJ0Exp; ///< integrator
- mutable map fIntValues; ///< previously calculated integral values
- mutable vector fPar; ///< parameters of the function [\htmlonly νL=Bγμ/2π (MHz), a (μs-1)\endhtmlonly \latexonly $\nu_{\mathrm{L}}=B\gamma_{\mu}/2\pi~(\mathrm{MHz})$, $a~(\mu\mathrm{s}^{-1})$ \endlatexonly]
- mutable bool fCalcNeeded; ///< flag specifying if an integration has to be done
- mutable double fLastTime; ///< time of the last calculated function value
- ClassDef(TLFStatExpKT,2)
+ ClassDef(TLFStatExpKT,3)
};
//-----------------------------------------------------------------------------------------------------------------
@@ -270,12 +262,8 @@ public:
private:
TIntSGInterpolation *fIntegral; ///< integrator
- mutable map fIntValues; ///< previously calculated integral values
- mutable vector fPar; ///< parameters of the function [\htmlonly νL=Bγμ/2π (MHz), a (μs-1), λ (μs-1), β (1) \endhtmlonly \latexonly $\nu_{\mathrm{L}}=B\gamma_{\mu}/2\pi~(\mathrm{MHz})$, $a~(\mu\mathrm{s}^{-1})$, $\lambda~(\mu\mathrm{s}^{-1})$, $\beta~(1)$ \endlatexonly]
- mutable bool fCalcNeeded; ///< flag specifying if an integration has to be done
- mutable double fLastTime; ///< time of the last calculated function value
- ClassDef(TLFSGInterpolation,2)
+ ClassDef(TLFSGInterpolation,3)
};