182 Commits

Author SHA1 Message Date
Mose Müller
77802da417 Merge pull request #166 from tiqi-group/fix/logging_settings
fix: removes basic configuration of logging system in task module
2024-09-25 19:50:10 +02:00
Mose Müller
3e21858cb7 removes basic configuration of logging system in task module 2024-09-25 19:48:32 +02:00
Mose Müller
2003f28fd1 Merge pull request #165 from tiqi-group/fix/client_usage_in_jupyter_notebook
Fix: client usage in jupyter notebook
2024-09-25 19:41:42 +02:00
Mose Müller
172b50bf77 updates to version v0.10.5 2024-09-25 19:38:28 +02:00
Mose Müller
ec5694fedf no need to check for RuntimeError as the loop is always new 2024-09-25 19:38:09 +02:00
Mose Müller
968f774092 always create a new event loop in the client and pass it to a new thread 2024-09-25 19:37:33 +02:00
Mose Müller
757dc9aa3c Merge pull request #163 from tiqi-group/fix/removes_PerInstanceTaskDescriptor_warning
fix: removes inheritance warning for descriptors
2024-09-23 13:35:44 +02:00
Mose Müller
3d938562a6 updates to version v0.10.4 2024-09-23 13:35:33 +02:00
Mose Müller
964a62d4b4 removes inheritance warning for descriptors 2024-09-23 13:33:13 +02:00
Mose Müller
99aa38fcfe chore: removes unused code 2024-09-23 13:28:08 +02:00
Mose Müller
5658514c8a Merge pull request #162 from tiqi-group/fix/normalize_full_access_path
Fix: normalize full access path (for dict keys)
2024-09-23 13:23:11 +02:00
Mose Müller
109ee7d5e1 updates version to v0.10.3 2024-09-23 13:16:50 +02:00
Mose Müller
f4fa02fe11 adds test enuring dict keys can be encoded with both single and double quotes 2024-09-23 13:16:50 +02:00
Mose Müller
487ef504a8 normalizes full access path strings containing dict keys with double quotes
Full access paths containing stringed dictionary keys are sent with
double quotes from the frontend. The quotes have to be changed to single
quotes s.t. the comparison with the property dependency dictionary
works.
2024-09-23 13:16:49 +02:00
Mose Müller
c98e407ed7 Merge pull request #161 from tiqi-group/160-control-of-tasks-in-instances-derived-from-same-class-only-controls-task-of-first-instance
fix: controlling tasks of instances derived from same class
2024-09-23 12:54:38 +02:00
Mose Müller
6b6ce1d43f adds test checking for multiple instances of a class containing a task 2024-09-23 09:44:43 +02:00
Mose Müller
e491ac7458 observable does not have to initialise descriptor objects anymore
The task decorator is not returning a Task object directly anymore, but
rather a descriptor which is returning the task. This is where the task
is initialised and this does not have to be done in the observable base
class, any more.
2024-09-23 09:27:15 +02:00
Mose Müller
e9d8cbafc2 adds PerInstanceTaskDescriptor class managing task objects for service class instances
When defining a task on a DataService class, formerly a task object was
created which replaced the decorated method as a class attribute. This
caused errors when using multiple instances of that class as each
instance was referring to the same task.
This descriptor class now handles the tasks per instance of the service
class.
2024-09-23 09:21:04 +02:00
Mose Müller
aa705592b2 removes code from Task meant to bind the passed function to the containing class instance
The task object will only receive bound methods, so there is no need to
keep the descriptor functionality anymore.
2024-09-23 09:15:42 +02:00
Mose Müller
008e1262bb updates PropertyObserver to support descriptors returning observables
If a class attribute is a descriptor, get its value before checking if
it is an Observable.
2024-09-23 08:57:00 +02:00
Mose Müller
91a71ad004 updates is_descriptor to exclude false positives for methods, functions and builtins 2024-09-23 08:55:44 +02:00
Mose Müller
bbf479a440 Merge pull request #159 from tiqi-group/158-defining-task-without-autostart-fails
fix: defining task without autostart fails
2024-09-21 11:43:31 +02:00
Mose Müller
983d392ba8 properly handle Task objects in autostart method
Tasks that are not autostart or are already running were passed to
autostart_nested_services. This caused the recursion as tasks have a
__self__ attribute pointing to the containing service.
2024-09-21 11:40:25 +02:00
Mose Müller
56dd9dd8aa adapts autostart to support nested lists in dicts and vice versa 2024-09-21 09:12:01 +02:00
Mose Müller
20028c379d test: updates task tests 2024-09-21 09:04:04 +02:00
Mose Müller
e48046795e updates version to v0.10.2 2024-09-21 08:37:34 +02:00
Mose Müller
1ac9e45c73 test: updates task test to catch recursion when defining without autostart 2024-09-21 08:36:47 +02:00
Mose Müller
488415436c fixes recursion when defining task without autostart 2024-09-21 08:32:54 +02:00
Mose Müller
d7c5c2cd6e updates to version v0.10.1 2024-09-17 16:52:39 +02:00
Mose Müller
5388fd0d2b Merge pull request #157 from tiqi-group/fix/handle_minus_sign_input
fix: correctly handling minus sign input in NumberComponent
2024-09-17 16:52:08 +02:00
Mose Müller
e74b5c773a npm run build 2024-09-17 16:51:00 +02:00
Mose Müller
bb6cd159f1 frontend: refactoring minus sign handling in NumberComponent 2024-09-17 16:48:40 +02:00
Mose Müller
4a09f02882 docs: updates Readme
Trying to clarify the usage of ports in both server and clients.
2024-09-17 07:23:45 +02:00
Mose Müller
9180bb1d9e Merge pull request #150 from tiqi-group/feat/task_decorator
Feat: Replace implicit async function tasks with task decorator
2024-09-16 15:51:52 +02:00
Mose Müller
ece68b4b99 docs: updates Task documentation
- updates Tasks.md
- updates docstrings
- adds api section
2024-09-16 15:30:47 +02:00
Mose Müller
0c95b5e3cb frontend: removes AsyncMethodComponent (replaced by Task) 2024-09-16 14:22:29 +02:00
Mose Müller
0450bb1570 updates version to v0.10.0 2024-09-16 14:18:10 +02:00
Mose Müller
2f5a640c4c chore: refactored task autostart 2024-09-16 14:17:20 +02:00
Mose Müller
78964be506 adds serialization and deserialization support for task objects 2024-09-16 13:58:58 +02:00
Mose Müller
fbdf6de63c npm run build 2024-09-16 13:58:16 +02:00
Mose Müller
9b04dcd41e frontend: ass Task component 2024-09-16 13:46:07 +02:00
Mose Müller
32e36d4962 adds task tests 2024-09-16 07:53:46 +02:00
Mose Müller
62f28f79db adds list and dictionary entries to task autostart 2024-09-16 07:53:44 +02:00
Mose Müller
e88965b69d fixes device connection test 2024-09-13 16:09:39 +02:00
Mose Müller
e422d627af adds docstring to autostart method 2024-09-13 16:07:30 +02:00
Mose Müller
2e31ebb7d9 fixes or removes task-related tests 2024-09-13 16:07:29 +02:00
Mose Müller
71adc8bea2 adds autostart to server 2024-09-13 12:37:29 +02:00
Mose Müller
bfa0acedab moves autostart from Task to separate autostart submodule 2024-09-13 12:37:18 +02:00
Mose Müller
416b9ee815 removes part of serializer for serializing start and stop methods of async methods 2024-09-13 11:27:30 +02:00
Mose Müller
d1d2ac2614 fixing circular import 2024-09-13 11:27:30 +02:00
Mose Müller
fa35fa53e2 removes TaskManager 2024-09-13 11:27:30 +02:00
Mose Müller
c0e5a77d6f simplifies @task decorator (updates types), moves task logic into Task's run_task() 2024-09-13 11:27:30 +02:00
Mose Müller
96cc7b31b4 updates documentation 2024-09-13 11:27:30 +02:00
Mose Müller
0d6d312f68 chore: fixes type hints for python 3.10 2024-09-13 11:27:30 +02:00
Mose Müller
be3011c565 adapt device connection component to use @task decorator 2024-09-13 11:27:30 +02:00
Mose Müller
09fae01985 adds warning when _bound_func has not been bound yet
This might arise when calling the start method of a task which is part of a class
that has not been instantiated yet.
2024-09-13 11:27:30 +02:00
Mose Müller
12c0c9763d delay task setup until called from class instance containing the task 2024-09-13 11:27:30 +02:00
Mose Müller
15322b742d using explicit loop to create task even if loop is not running yet 2024-09-13 11:27:30 +02:00
Mose Müller
85d6229aa6 updates DataService import to avoid circular import 2024-09-13 11:27:30 +02:00
Mose Müller
083fab0a29 Carefully setting up asyncio event loop 2024-09-13 11:27:30 +02:00
Mose Müller
2a1aff589d properly binding task method 2024-09-13 11:27:30 +02:00
Mose Müller
3cd7198747 task can only wrap async functions without arguments 2024-09-13 11:27:30 +02:00
Mose Müller
1e02f12794 adds autostart flag to task 2024-09-13 11:27:30 +02:00
Mose Müller
e4a3cf341f task can receive bound and unbound functions now 2024-09-13 11:27:30 +02:00
Mose Müller
7ddcd97f68 fixing ruff and mypy errors 2024-09-13 11:27:30 +02:00
Mose Müller
80da96657c tasks: don't start another task when it is already running 2024-09-13 11:27:30 +02:00
Mose Müller
861e89f37a task: using functools to get correct func name 2024-09-13 11:27:30 +02:00
Mose Müller
c00cf9a6ff updating property dependencies in PropertyObserver
As Task objects have to be class attributes, I have to loop through class attributes, as well
when calculating nested observables properties.
2024-09-13 11:27:30 +02:00
Mose Müller
ed7f3d8509 dont make descriptors attributes of the instance -> would loose functionality 2024-09-13 11:27:30 +02:00
Mose Müller
456090fee9 adds is_descriptor helper method 2024-09-13 11:27:30 +02:00
Mose Müller
e69ef376ae replaces some code with helper function 2024-09-13 11:27:30 +02:00
Mose Müller
5f78771f66 tasks: need to bind method as soon as instance is passed to __get__
I cannot keep a reference to the parent class as the Task class is a DataService, as well.
2024-09-13 11:27:30 +02:00
Mose Müller
09ceae90ec tasks: only care about async methods right now 2024-09-13 11:27:30 +02:00
Mose Müller
c34351270c feat: first Task implementation 2024-09-13 11:27:29 +02:00
Mose Müller
743c18bdd7 fix: need to compare with serialized value (for enums) 2024-09-13 11:27:29 +02:00
Mose Müller
12d7ddab08 updates to version v0.9.1 2024-08-29 08:57:45 +02:00
Mose Müller
e40646c664 Merge pull request #153 from tiqi-group/feat/overwritable_sio_client_manager
adds overwritable sio client_manager
2024-08-29 08:56:58 +02:00
Mose Müller
ab9b4257f2 adds overwritable sio client_manager 2024-08-28 12:37:56 +02:00
Mose Müller
a2effca2b0 fixes ruff errors 2024-08-20 13:14:03 +02:00
Mose Müller
f76703340c Merge pull request #156 from tiqi-group/docs
Updates Docs
2024-08-20 13:01:17 +02:00
Mose Müller
dbc1fa00f7 adds autogenerated api documentation 2024-08-20 12:03:08 +02:00
Mose Müller
4ecc1a191f renames main.md to README.md 2024-08-20 11:50:27 +02:00
Mose Müller
4f8e3f845c fixes relative links 2024-08-20 11:50:27 +02:00
Mose Müller
132856a8f0 updates mkdocstrings dependency (adds python extra)
updates requirements.txt
2024-08-20 11:50:27 +02:00
Mose Müller
b1f75bb786 makes handle_server_shutdown a protected method 2024-08-20 11:50:27 +02:00
Mose Müller
0011a0f92e fix: uses logger instead of logging in sio events 2024-08-20 08:30:13 +02:00
Mose Müller
b7ab364aab adds "testing" operation mode 2024-08-20 08:29:54 +02:00
Mose Müller
52e4647433 Merge pull request #155 from tiqi-group/docs
Updating Docs
2024-08-19 16:35:40 +02:00
Mose Müller
b2b3d426ed updates license 2024-08-19 16:11:26 +02:00
Mose Müller
7ae3ff504d reference link to license 2024-08-19 16:03:37 +02:00
Mose Müller
50f3686c12 moves "Understanding Units" to docs 2024-08-19 15:56:57 +02:00
Mose Müller
b0c3c4cad9 moves "Validating Property Setters" to docs 2024-08-19 15:52:08 +02:00
Mose Müller
9b8279da85 moving "Understanding Tasks" into docs 2024-08-19 15:41:19 +02:00
Mose Müller
97e21b2ea8 docs: more reference links 2024-08-19 15:34:09 +02:00
Mose Müller
fb75de5b51 adds service persistence page to mkdocs.yml 2024-08-19 15:19:46 +02:00
Mose Müller
3eb9c6476b replaces inline links with reference links (can be overwritten in docs) 2024-08-19 15:17:31 +02:00
Mose Müller
c7ec929d05 moves state persistence section into docs, restructuring docs 2024-08-19 14:45:56 +02:00
Mose Müller
ca19fcc63f updates Readme (moving components guide to docs, removing TOC, updated features list,...) 2024-08-19 14:18:28 +02:00
Mose Müller
7904d0d7d9 updates Readme introduction 2024-08-19 13:19:30 +02:00
Mose Müller
8526e74aa7 Merge pull request #154 from tiqi-group/fixci-github-release
CI: fixing github-release ci job
2024-08-19 10:08:12 +02:00
Mose Müller
6e16d84ba4 fixes python sigstore action 2024-08-19 10:01:33 +02:00
Mose Müller
6765246231 fixing ruff formatting error 2024-08-19 09:53:54 +02:00
Mose Müller
f50976358b Fixes python-package workflow 2024-08-19 09:52:54 +02:00
Mose Müller
aa37fa8533 Removes ruff github action with explicit steps 2024-08-19 09:40:34 +02:00
Mose Müller
2ebdb77433 Merge pull request #152 from tiqi-group/feat/client_context_manager
feat: adds a context manager to the client, fixes running loop issue
2024-08-13 07:16:05 +02:00
Mose Müller
5ce30cfeaa updates Readme and docs 2024-08-13 07:14:33 +02:00
Mose Müller
82d6a7f895 adds a context manager to the client, fixes running loop issue 2024-08-13 07:14:33 +02:00
Mose Müller
9aad9dfbc6 Merge pull request #151 from tiqi-group/breaking/client_arguments
Breaking: changing allowed client arguments
2024-08-13 07:04:10 +02:00
Mose Müller
86bac8f9e5 updates version to v0.9.0 2024-08-13 07:03:49 +02:00
Mose Müller
348ff092aa updates Readme with client instructions 2024-08-12 14:21:13 +02:00
Mose Müller
1ac08bf97d fixes client test 2024-08-12 13:19:45 +02:00
Mose Müller
42357d7901 breaking: client takes url instead of hostname and port
Connecting to secure services (with wss) was not possible.
The user has to provide the whole URL now, which makes it much more flexible and less bug-prone.
2024-08-12 13:15:17 +02:00
Mose Müller
014a7b9492 updates ruff dependency 2024-08-05 09:36:32 +02:00
Mose Müller
e0d710644b sio_setup: removes unused function 2024-08-05 05:27:17 +02:00
Mose Müller
4a9dba30d7 Merge pull request #149 from tiqi-group/feat/allow_monkey_patching_api_endpoints
feat: allow monkey patching serilization methods for api endpoints
2024-07-31 09:48:29 +02:00
Mose Müller
9663dea79d feat: allow monkey patching serilization methods for api endpoints 2024-07-31 08:44:23 +02:00
Mose Müller
81e40860df moves frontend customization from Readme into docs 2024-07-30 11:27:57 +02:00
Mose Müller
9021e3a903 updates Readme 2024-07-30 11:19:07 +02:00
Mose Müller
2136d1a157 remove requests from dev dependencies 2024-07-30 11:17:35 +02:00
Mose Müller
c894215ddc Merge pull request #147 from tiqi-group/feat/add_http_api_endpoints
Feat: add http API endpoints
2024-07-30 10:47:59 +02:00
Mose Müller
22d836587e udpates to version v0.8.5 2024-07-30 10:40:11 +02:00
Mose Müller
9e852c17ac docs: updates documentation 2024-07-30 10:38:56 +02:00
Mose Müller
bd6220cb9e chore: refactoring state_manager 2024-07-30 10:17:43 +02:00
Mose Müller
940f7039d3 reflecting changes in openapi.yaml 2024-07-30 10:15:40 +02:00
Mose Müller
d45d2dba7d updates api tests 2024-07-30 10:15:34 +02:00
Mose Müller
1fb296c3c1 removes read-only check from state manager's set_service_attribute_value_by_path 2024-07-30 10:15:34 +02:00
Mose Müller
bfe2d82c0b api: getting value from service instead of cache 2024-07-30 09:30:28 +02:00
Mose Müller
5d8471fd47 disallows clients to add class attributes (through the state manager)
Note that adding dictionary keys still works. You can also append to lists.
2024-07-30 09:18:22 +02:00
Mose Müller
75e355faf9 pytest: changes fixture scopes 2024-07-30 08:36:59 +02:00
Mose Müller
f91be30ad0 adds tests for http api endpoints 2024-07-30 08:28:37 +02:00
Mose Müller
b148d6919a StateManager: replaces _data_service_cache with cache_manager
- _data_service_cache -> cache_manager
2024-07-30 08:28:37 +02:00
Mose Müller
74ebbc6223 http api: replaces post endpoints with put endpoints 2024-07-30 08:28:37 +02:00
Mose Müller
554d6f7daa changes http API (reflected in openapi specification) 2024-07-30 08:28:37 +02:00
Mose Müller
80243487cb fixing image link 2024-07-30 08:28:37 +02:00
Mose Müller
aeaf57331e updates docs python requirements 2024-07-30 08:28:37 +02:00
Mose Müller
baad1268e8 updates documentation
- using material theme instead of readthedocs
- introducing "Interacting with pydase Services" guide
    - restful api docs
    - auto-generated frontend
    - pydase.Client
2024-07-30 08:28:37 +02:00
Mose Müller
9ce0c93954 adds swagger-ui-tag python dep to render swagger ui, updates mkdocs to include new page 2024-07-30 08:28:37 +02:00
Mose Müller
95d29ee4e8 return method results over http 2024-07-30 08:28:37 +02:00
Mose Müller
6f4fcf52dd adds user guide for restful api 2024-07-30 08:28:37 +02:00
Mose Müller
0e73239d08 adds API versioning 2024-07-30 08:28:37 +02:00
Mose Müller
e659ca9d1c adds requests to dev group 2024-07-30 08:28:37 +02:00
Mose Müller
eaf76a7211 fixing logging for aiohttp and SocketIOHandler 2024-07-30 08:28:37 +02:00
Mose Müller
aa55ac772e using api application as web server api endpoint 2024-07-30 08:28:37 +02:00
Mose Müller
755a303239 creates api definition, using that in sio_setup 2024-07-30 08:28:37 +02:00
Mose Müller
7e63f34c0a pytest: using asyncio session scope to get rid of more warnings 2024-07-30 08:28:18 +02:00
Mose Müller
2364fc892c pytest: removes warning (could not join thread) 2024-07-30 08:28:18 +02:00
Mose Müller
a1da332dba pytest: configures logging through caplog fixture 2024-07-30 08:28:07 +02:00
Mose Müller
8bf0b771fa replace deprecated object from pint package 2024-07-30 06:56:59 +02:00
Mose Müller
fd73653433 Merge pull request #148 from tiqi-group/124-adding-keys-to-dictionary-through-pydaseclient
feat: clients can add keys to dictionaries
2024-07-29 15:17:01 +02:00
Mose Müller
d09675de6a updates client test 2024-07-29 15:06:54 +02:00
Mose Müller
36d3a7becc restructure StateManager to allow extending dictionaries through clients 2024-07-29 15:02:47 +02:00
Mose Müller
d54eed8a58 get_object_by_path_parts and get_object_attr_from_path do not catch exceptions any more 2024-07-29 15:02:47 +02:00
Mose Müller
817afc610a StateManager: replaces _data_service_cache with cache_manager
- _data_service_cache -> cache_manager
- removes cache property
- replaces get_nested_dict_by_path with cache_manager.get_value_dict_from_cache where possible
2024-07-29 15:02:47 +02:00
Mose Müller
ad0f9420d9 get_value_dict_from_cache does not catch exceptions any more 2024-07-29 14:59:02 +02:00
Mose Müller
6d786cd0f8 removes unused SerializationValueError exception 2024-07-29 14:59:02 +02:00
Mose Müller
de4270daa4 Merge pull request #146 from tiqi-group/feat/replace_fastapi_with_aiohttp
Replace fastapi with aiohttp
2024-07-25 08:39:01 +02:00
Mose Müller
7286017715 removes unused imports 2024-07-25 08:28:33 +02:00
Mose Müller
1a23206f42 adds example to helper function 2024-07-25 08:25:28 +02:00
Mose Müller
fdb17e44e2 replaces fastapi with aiohttp 2024-07-25 08:25:10 +02:00
Mose Müller
fc738e2743 using aiohttp as socketio async_mode 2024-07-25 08:22:12 +02:00
Mose Müller
9de4071120 updates logging to remove uvicorn dependency 2024-07-25 07:48:22 +02:00
Mose Müller
369d0b1126 adds handle for server shutdown, removes uvicorn dependency from server.py 2024-07-25 07:47:59 +02:00
Mose Müller
c396de75fb frontend: default export useRenderCount hook 2024-07-24 15:06:36 +02:00
Mose Müller
4ed8899708 Merge pull request #145 from tiqi-group/11-frontend-user-should-be-able-to-change-the-order-of-the-elements-in-the-frontend
adds support for altering component display order
2024-07-24 15:02:22 +02:00
Mose Müller
2fa3505310 updates Readme with displayOrder customization 2024-07-24 14:58:56 +02:00
Mose Müller
9d387944ef npm run build 2024-07-24 14:58:47 +02:00
Mose Müller
0d70b7492d frontend: adds support for displayOrder in web settings 2024-07-24 14:53:40 +02:00
Mose Müller
7bc12b340f updates vscode debugging config 2024-07-24 13:41:48 +02:00
Mose Müller
e996966388 Merge pull request #144 from tiqi-group/feat/useLocalStorage_hook
Feat: useLocalStorage hook
2024-07-22 07:09:04 +02:00
Mose Müller
c07efe056b npm run build 2024-07-22 07:05:16 +02:00
Mose Müller
9e0adba8dc introduces useLocalStorage hook 2024-07-22 07:05:09 +02:00
Mose Müller
1789a6ad7e Merge pull request #143 from tiqi-group/fix/logging
configures pydase's logger only (not root logger anymore)
2024-07-12 07:46:32 +02:00
Mose Müller
0e5f1ede20 fixes logging test 2024-07-12 07:45:11 +02:00
Mose Müller
f8cae28128 fix tests: need to propagate logger when testing (due to pytest) 2024-07-11 19:49:55 +02:00
Mose Müller
e31af9ae31 moves log_config out of setup_logging method to make it configurable, removes argument from function 2024-07-11 17:04:11 +02:00
Mose Müller
60c671eb0d configures pydase's logger (not root logger anymore) 2024-07-11 16:53:12 +02:00
Mose Müller
203059822c Merge pull request #142 from tiqi-group/feat/allow_monkey_patching_sio_setup
Allow monkey-patching of serialization methods in socketio setup
2024-07-09 16:27:35 +02:00
Mose Müller
e7f9ad799c uses loads instead of Deserializer, allows for monkey-patching loads and dump 2024-07-09 16:25:35 +02:00
Mose Müller
3e5a56446f Merge pull request #141 from tiqi-group/feat/serialize_datetime
Adds support for datetime serialization
2024-07-09 15:55:00 +02:00
Mose Müller
cf0780b2ca adds support for datetime serialization 2024-07-09 15:41:30 +02:00
Mose Müller
8afee54c51 Merge pull request #140 from tiqi-group/feat/make_serializer_methods_properly_overridable
serializer: converting staticmethods to classmethods
2024-07-09 15:19:53 +02:00
Mose Müller
6e4e000c28 serializer: converting staticmethods to classmethods
This helps developers that want to add functionality to the serializer.
2024-07-09 15:15:30 +02:00
99 changed files with 4364 additions and 2421 deletions

View File

@@ -70,9 +70,9 @@ jobs:
name: python-package-distributions
path: dist/
- name: Sign the dists with Sigstore
uses: sigstore/gh-action-sigstore-python@v1.2.3
uses: sigstore/gh-action-sigstore-python@v3.0.0
with:
inputs: >-
inputs: |
./dist/*.tar.gz
./dist/*.whl
- name: Upload artifact signatures to GitHub Release
@@ -85,27 +85,3 @@ jobs:
gh release upload
'${{ github.ref_name }}' dist/**
--repo '${{ github.repository }}'
# publish-to-testpypi:
# name: Publish Python 🐍 distribution 📦 to TestPyPI
# needs:
# - build
# runs-on: ubuntu-latest
#
# environment:
# name: testpypi
# url: https://test.pypi.org/p/pydase
#
# permissions:
# id-token: write # IMPORTANT: mandatory for trusted publishing
#
# steps:
# - name: Download all the dists
# uses: actions/download-artifact@v3
# with:
# name: python-package-distributions
# path: dist/
# - name: Publish distribution 📦 to TestPyPI
# uses: pypa/gh-action-pypi-publish@release/v1
# with:
# repository-url: https://test.pypi.org/legacy/

View File

@@ -20,9 +20,6 @@ jobs:
steps:
- uses: actions/checkout@v4
- uses: chartboost/ruff-action@v1
with:
src: "./src"
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
@@ -32,6 +29,12 @@ jobs:
python -m pip install --upgrade pip
python -m pip install poetry
poetry install --with dev
- name: Check with ruff
run: |
poetry run ruff check src
- name: Check formatting with ruff
run: |
poetry run ruff format --check src
- name: Test with pytest
run: |
poetry run pytest

2
.vscode/launch.json vendored
View File

@@ -25,7 +25,7 @@
"type": "firefox",
"request": "launch",
"name": "react: firefox",
"url": "http://localhost:3000",
"url": "http://localhost:5173",
"webRoot": "${workspaceFolder}/frontend"
}
]

View File

@@ -1,6 +1,4 @@
MIT License
Copyright (c) 2023 Mose Müller <mosemueller@gmail.com>
Copyright (c) 2023-2024 Mose Müller <mosemueller@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

846
README.md
View File

@@ -1,64 +1,34 @@
# pydase (Python Data Service) <!-- omit from toc -->
<!--introduction-start-->
# pydase <!-- omit from toc -->
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Documentation Status](https://readthedocs.org/projects/pydase/badge/?version=latest)](https://pydase.readthedocs.io/en/latest/?badge=latest)
[![Version](https://img.shields.io/pypi/v/pydase?style=flat)](https://pypi.org/project/pydase/)
[![Python Versions](https://img.shields.io/pypi/pyversions/pydase)](https://pypi.org/project/pydase/)
[![Documentation Status](https://readthedocs.org/projects/pydase/badge/?version=stable)](https://pydase.readthedocs.io/en/stable/)
[![License: MIT](https://img.shields.io/github/license/tiqi-group/pydase)][License]
`pydase` is a Python library for creating data service servers with integrated web and RPC servers. It's designed to handle the management of data structures, automated tasks, and callbacks, and provides built-in functionality for serving data over different protocols.
`pydase` is a Python library that simplifies the creation of remote control interfaces for Python objects. It exposes the public attributes of a user-defined class via a [Socket.IO](https://python-socketio.readthedocs.io/en/stable/) web server, ensuring they are always in sync with the service state. You can interact with these attributes using an RPC client, a RESTful API, or a web browser. The web browser frontend is auto-generated, displaying components that correspond to each public attribute of the class for direct interaction.
`pydase` implements an [observer pattern][Observer Pattern] to provide the real-time updates, ensuring that changes to the class attributes are reflected across all clients.
- [Features](#features)
- [Installation](#installation)
- [Usage](#usage)
- [Defining a DataService](#defining-a-dataservice)
- [Running the Server](#running-the-server)
- [Accessing the Web Interface](#accessing-the-web-interface)
- [Connecting to the Service via Python Client](#connecting-to-the-service-via-python-client)
- [Tab Completion Support](#tab-completion-support)
- [Integration within Another Service](#integration-within-another-service)
- [Understanding the Component System](#understanding-the-component-system)
- [Built-in Type and Enum Components](#built-in-type-and-enum-components)
- [Method Components](#method-components)
- [DataService Instances (Nested Classes)](#dataservice-instances-nested-classes)
- [Custom Components (`pydase.components`)](#custom-components-pydasecomponents)
- [`DeviceConnection`](#deviceconnection)
- [Customizing Connection Logic](#customizing-connection-logic)
- [Reconnection Interval](#reconnection-interval)
- [`Image`](#image)
- [`NumberSlider`](#numberslider)
- [`ColouredEnum`](#colouredenum)
- [Extending with New Components](#extending-with-new-components)
- [Understanding Service Persistence](#understanding-service-persistence)
- [Controlling Property State Loading with `@load_state`](#controlling-property-state-loading-with-load_state)
- [Understanding Tasks in pydase](#understanding-tasks-in-pydase)
- [Understanding Units in pydase](#understanding-units-in-pydase)
- [Using `validate_set` to Validate Property Setters](#using-validate_set-to-validate-property-setters)
- [Configuring pydase via Environment Variables](#configuring-pydase-via-environment-variables)
- [Customizing the Web Interface](#customizing-the-web-interface)
- [Enhancing the Web Interface Style with Custom CSS](#enhancing-the-web-interface-style-with-custom-css)
- [Tailoring Frontend Component Layout](#tailoring-frontend-component-layout)
- [Specifying a Custom Frontend Source](#specifying-a-custom-frontend-source)
- [Logging in pydase](#logging-in-pydase)
- [Changing the Log Level](#changing-the-log-level)
- [Documentation](#documentation)
- [Contributing](#contributing)
- [License](#license)
Whether you're managing lab sensors, network devices, or any abstract data entity, `pydase` facilitates service development and deployment.
## Features
<!-- no toc -->
- [Simple data service definition through class-based interface](#defining-a-dataService)
- [Integrated web interface for interactive access and control of your data service](#accessing-the-web-interface)
- [Support for programmatic control and interaction with your service](#connecting-to-the-service-via-python-client)
- [Component system bridging Python backend with frontend visual representation](#understanding-the-component-system)
- [Customizable styling for the web interface through user-defined CSS](#customizing-web-interface-style)
- [Saving and restoring the service state for service persistence](#understanding-service-persistence)
- [Automated task management with built-in start/stop controls and optional autostart](#understanding-tasks-in-pydase)
- [Support for units](#understanding-units-in-pydase)
- [Validating Property Setters](#using-validate_set-to-validate-property-setters)
<!-- Support for additional servers for specific use-cases -->
- [Simple service definition through class-based interface][Defining DataService]
- [Auto-generated web interface for interactive access and control of your service][Web Interface Access]
- [Python RPC client][Short RPC Client]
- [Customizable web interface][Customizing Web Interface]
- [Saving and restoring the service state][Service Persistence]
- [Automated task management with built-in start/stop controls and optional autostart][Task Management]
- [Support for units][Units]
- [Validating Property Setters][Property Validation]
<!--introduction-end-->
<!--getting-started-start-->
## Installation
<!--installation-start-->
Install `pydase` using [`poetry`](https://python-poetry.org/):
@@ -72,26 +42,27 @@ or `pip`:
pip install pydase
```
<!--installation-end-->
## Usage
<!--usage-start-->
Using `pydase` involves three main steps: defining a `DataService` subclass, running the server, and then connecting to the service either programmatically using `pydase.Client` or through the web interface.
Using `pydase` involves three main steps: defining a `pydase.DataService` subclass, running the server, and then connecting to the service either programmatically using `pydase.Client` or through the web interface.
### Defining a DataService
To use pydase, you'll first need to create a class that inherits from `DataService`. This class represents your custom data service, which will be exposed via a web server. Your class can implement class / instance attributes and synchronous and asynchronous tasks.
To use `pydase`, you'll first need to create a class that inherits from `pydase.DataService`.
This class represents your custom service, which will be exposed via a web server.<br>
Your class can implement synchronous and asynchronous methods, some [built-in types](https://docs.python.org/3/library/stdtypes.html) (like `int`, `float`, `str`, `bool`, `list` or `dict`) and [other components][Custom Components] as attributes.
For more information, please refer to the [components guide][Components].
Here's an example:
```python
from pydase import DataService, Server
import pydase
from pydase.utils.decorators import frontend
class Device(DataService):
class Device(pydase.DataService):
_current = 0.0
_voltage = 0.0
_power = False
@@ -134,26 +105,30 @@ class Device(DataService):
if __name__ == "__main__":
service = Device()
Server(service).run()
pydase.Server(service=service, web_port=8001).run()
```
In the above example, we define a Device class that extends DataService. We define a few properties (current, voltage, power) and their getter and setter methods.
In the above example, we define a `Device` class that inherits from `pydase.DataService`.
We define a few properties (current, voltage, power) and their getter and setter methods.
### Running the Server
Once your DataService is defined, you can create an instance of it and run the server:
Once your service class is defined, you can create an instance of it and run the server:
```python
from pydase import Server
import pydase
# ... defining the Device class ...
if __name__ == "__main__":
service = Device()
Server(service).run()
pydase.Server(service=service, web_port=8001).run()
```
This will start the server, making your Device service accessible via RPC and a web server at [http://localhost:8001](http://localhost:8001).
This will start the server, making your `Device` service accessible on
[http://localhost:8001](http://localhost:8001). The port number for the web server can
be customised in the server constructor or through environment variables and defaults
to `8001`.
### Accessing the Web Interface
@@ -163,7 +138,7 @@ Once the server is running, you can access the web interface in a browser:
In this interface, you can interact with the properties of your `Device` service.
### Connecting to the Service via Python Client
### Connecting to the Service via Python RPC Client
You can connect to the service using the `pydase.Client`. Below is an example of how to establish a connection to a service and interact with it:
@@ -172,7 +147,8 @@ import pydase
# Replace the hostname and port with the IP address and the port of the machine where
# the service is running, respectively
client_proxy = pydase.Client(hostname="<ip_addr>", port=8001).proxy
client_proxy = pydase.Client(url="ws://<ip_addr>:<web_port>").proxy
# client_proxy = pydase.Client(url="wss://your-domain.ch").proxy # if your service uses ssl-encryption
# After the connection, interact with the service attributes as if they were local
client_proxy.voltage = 5.0
@@ -184,662 +160,27 @@ The proxy acts as a local representative of the remote service, enabling straigh
The proxy class dynamically synchronizes with the server's exposed attributes. This synchronization allows the proxy to be automatically updated with any attributes or methods that the server exposes, essentially mirroring the server's API. This dynamic updating enables users to interact with the remote service as if they were working with a local object.
#### Tab Completion Support
The RPC client also supports tab completion support in the interpreter, can be used as a context manager and integrates very well with other pydase services. For more information, please refer to the [documentation][Python RPC Client].
In interactive environments such as Python interpreters and Jupyter notebooks, the proxy class supports tab completion, which allows users to explore available methods and attributes.
### RESTful API
The `pydase` RESTful API allows for standard HTTP-based interactions and provides access to various functionalities through specific routes.
#### Integration within Another Service
You can also integrate a client proxy within another service. Here's how you can set it up:
For example, you can get a value like this:
```python
import pydase
import json
class MyService(pydase.DataService):
# Initialize the client without blocking the constructor
proxy = pydase.Client(hostname="<ip_addr>", port=8001, block_until_connected=False).proxy
import requests
if __name__ == "__main__":
service = MyService()
# Create a server that exposes this service; adjust the web_port as needed
server = pydase.Server(service, web_port=8002). run()
response = requests.get(
"http://<hostname>:<web_port>/api/v1/get_value?access_path=<full_access_path>"
)
serialized_value = json.loads(response.text)
```
In this setup, the `MyService` class has a `proxy` attribute that connects to a `pydase` service located at `<ip_addr>:8001`.
The `block_until_connected=False` argument allows the service to start up even if the initial connection attempt fails.
This configuration is particularly useful in distributed systems where services may start in any order.
For more information, see [here][RESTful API].
<!--usage-end-->
## Understanding the Component System
<!-- Component User Guide Start -->
In `pydase`, components are fundamental building blocks that bridge the Python backend logic with frontend visual representation and interactions. This system can be understood based on the following categories:
### Built-in Type and Enum Components
`pydase` automatically maps standard Python data types to their corresponding frontend components:
- `str`: Translated into a `StringComponent` on the frontend.
- `int` and `float`: Manifested as the `NumberComponent`.
- `bool`: Rendered as a `ButtonComponent`.
- `list`: Each item displayed individually, named after the list attribute and its index.
- `dict`: Each key-value pair displayed individually, named after the dictionary attribute and its key. **Note** that the dictionary keys must be strings.
- `enum.Enum`: Presented as an `EnumComponent`, facilitating dropdown selection.
### Method Components
Within the `DataService` class of `pydase`, only methods devoid of arguments can be represented in the frontend, classified into two distinct categories
1. [**Tasks**](#understanding-tasks-in-pydase): Argument-free asynchronous functions, identified within `pydase` as tasks, are inherently designed for frontend interaction. These tasks are automatically rendered with a start/stop button, allowing users to initiate or halt the task execution directly from the web interface.
2. **Synchronous Methods with `@frontend` Decorator**: Synchronous methods without arguments can also be presented in the frontend. For this, they have to be decorated with the `@frontend` decorator.
```python
import pydase
import pydase.components
import pydase.units as u
from pydase.utils.decorators import frontend
class MyService(pydase.DataService):
@frontend
def exposed_method(self) -> None:
...
async def my_task(self) -> None:
while True:
# ...
```
![Method Components](docs/images/method_components.png)
You can still define synchronous tasks with arguments and call them using a python client. However, decorating them with the `@frontend` decorator will raise a `FunctionDefinitionError`. Defining a task with arguments will raise a `TaskDefinitionError`.
I decided against supporting function arguments for functions rendered in the frontend due to the following reasons:
1. Feature Request Pitfall: supporting function arguments create a bottomless pit of feature requests. As users encounter the limitations of supported types, demands for extending support to more complex types would grow.
2. Complexity in Supported Argument Types: while simple types like `int`, `float`, `bool` and `str` could be easily supported, more complicated types are not (representation, (de-)serialization).
### DataService Instances (Nested Classes)
Nested `DataService` instances offer an organized hierarchy for components, enabling richer applications. Each nested class might have its own attributes and methods, each mapped to a frontend component.
Here is an example:
```python
from pydase import DataService, Server
class Channel(DataService):
def __init__(self, channel_id: int) -> None:
super().__init__()
self._channel_id = channel_id
self._current = 0.0
@property
def current(self) -> float:
# run code to get current
result = self._current
return result
@current.setter
def current(self, value: float) -> None:
# run code to set current
self._current = value
class Device(DataService):
def __init__(self) -> None:
super().__init__()
self.channels = [Channel(i) for i in range(2)]
if __name__ == "__main__":
service = Device()
Server(service).run()
```
![Nested Classes App](docs/images/Nested_Class_App.png)
**Note** that defining classes within `DataService` classes is not supported (see [this issue](https://github.com/tiqi-group/pydase/issues/16)).
### Custom Components (`pydase.components`)
The custom components in `pydase` have two main parts:
- A **Python Component Class** in the backend, implementing the logic needed to set, update, and manage the component's state and data.
- A **Frontend React Component** that renders and manages user interaction in the browser.
Below are the components available in the `pydase.components` module, accompanied by their Python usage:
#### `DeviceConnection`
The `DeviceConnection` component acts as a base class within the `pydase` framework for managing device connections. It provides a structured approach to handle connections by offering a customizable `connect` method and a `connected` property. This setup facilitates the implementation of automatic reconnection logic, which periodically attempts reconnection whenever the connection is lost.
In the frontend, this class abstracts away the direct interaction with the `connect` method and the `connected` property. Instead, it showcases user-defined attributes, methods, and properties. When the `connected` status is `False`, the frontend displays an overlay that prompts manual reconnection through the `connect()` method. Successful reconnection removes the overlay.
```python
import pydase.components
import pydase.units as u
class Device(pydase.components.DeviceConnection):
def __init__(self) -> None:
super().__init__()
self._voltage = 10 * u.units.V
def connect(self) -> None:
if not self._connected:
self._connected = True
@property
def voltage(self) -> float:
return self._voltage
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.device = Device()
if __name__ == "__main__":
service_instance = MyService()
pydase.Server(service_instance).run()
```
![DeviceConnection Component](docs/images/DeviceConnection_component.png)
##### Customizing Connection Logic
Users are encouraged to primarily override the `connect` method to tailor the connection process to their specific device. This method should adjust the `self._connected` attribute based on the outcome of the connection attempt:
```python
import pydase.components
class MyDeviceConnection(pydase.components.DeviceConnection):
def __init__(self) -> None:
super().__init__()
# Add any necessary initialization code here
def connect(self) -> None:
# Implement device-specific connection logic here
# Update self._connected to `True` if the connection is successful,
# or `False` if unsuccessful
...
```
Moreover, if the connection status requires additional logic, users can override the `connected` property:
```python
import pydase.components
class MyDeviceConnection(pydase.components.DeviceConnection):
def __init__(self) -> None:
super().__init__()
# Add any necessary initialization code here
def connect(self) -> None:
# Implement device-specific connection logic here
# Ensure self._connected reflects the connection status accurately
...
@property
def connected(self) -> bool:
# Implement custom logic to accurately report connection status
return self._connected
```
##### Reconnection Interval
The `DeviceConnection` component automatically executes a task that checks for device availability at a default interval of 10 seconds. This interval is adjustable by modifying the `_reconnection_wait_time` attribute on the class instance.
#### `Image`
This component provides a versatile interface for displaying images within the application. Users can update and manage images from various sources, including local paths, URLs, and even matplotlib figures.
The component offers methods to load images seamlessly, ensuring that visual content is easily integrated and displayed within the data service.
```python
import matplotlib.pyplot as plt
import numpy as np
import pydase
from pydase.components.image import Image
class MyDataService(pydase.DataService):
my_image = Image()
if __name__ == "__main__":
service = MyDataService()
# loading from local path
service.my_image.load_from_path("/your/image/path/")
# loading from a URL
service.my_image.load_from_url("https://cataas.com/cat")
# loading a matplotlib figure
fig = plt.figure()
x = np.linspace(0, 2 * np.pi)
plt.plot(x, np.sin(x))
plt.grid()
service.my_image.load_from_matplotlib_figure(fig)
pydase.Server(service).run()
```
![Image Component](docs/images/Image_component.png)
#### `NumberSlider`
The `NumberSlider` component in the `pydase` package provides an interactive slider interface for adjusting numerical values on the frontend. It is designed to support both numbers and quantities and ensures that values adjusted on the frontend are synchronized with the backend.
To utilize the `NumberSlider`, users should implement a class that derives from `NumberSlider`. This class can then define the initial values, minimum and maximum limits, step sizes, and additional logic as needed.
Here's an example of how to implement and use a custom slider:
```python
import pydase
import pydase.components
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: float = 0.0,
min_: float = 0.0,
max_: float = 100.0,
step_size: float = 1.0,
) -> None:
super().__init__(value, min_, max_, step_size)
@property
def min(self) -> float:
return self._min
@min.setter
def min(self, value: float) -> None:
self._min = value
@property
def max(self) -> float:
return self._max
@max.setter
def max(self, value: float) -> None:
self._max = value
@property
def step_size(self) -> float:
return self._step_size
@step_size.setter
def step_size(self, value: float) -> None:
self._step_size = value
@property
def value(self) -> float:
"""Slider value."""
return self._value
@value.setter
def value(self, value: float) -> None:
if value < self._min or value > self._max:
raise ValueError("Value is either below allowed min or above max value.")
self._value = value
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.voltage = MySlider()
if __name__ == "__main__":
service_instance = MyService()
service_instance.voltage.value = 5
print(service_instance.voltage.value) # Output: 5
pydase.Server(service_instance).run()
```
In this example, `MySlider` overrides the `min`, `max`, `step_size`, and `value` properties. Users can make any of these properties read-only by omitting the corresponding setter method.
![Slider Component](docs/images/Slider_component.png)
- Accessing parent class resources in `NumberSlider`
In scenarios where you need the slider component to interact with or access resources from its parent class, you can achieve this by passing a callback function to it. This method avoids directly passing the entire parent class instance (`self`) and offers a more encapsulated approach. The callback function can be designed to utilize specific attributes or methods of the parent class, allowing the slider to perform actions or retrieve data in response to slider events.
Here's an illustrative example:
```python
from collections.abc import Callable
import pydase
import pydase.components
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: float,
on_change: Callable[[float], None],
) -> None:
super().__init__(value=value)
self._on_change = on_change
# ... other properties ...
@property
def value(self) -> float:
return self._value
@value.setter
def value(self, new_value: float) -> None:
if new_value < self._min or new_value > self._max:
raise ValueError("Value is either below allowed min or above max value.")
self._value = new_value
self._on_change(new_value)
class MyService(pydase.DataService):
def __init__(self) -> None:
self.voltage = MySlider(
5,
on_change=self.handle_voltage_change,
)
def handle_voltage_change(self, new_voltage: float) -> None:
print(f"Voltage changed to: {new_voltage}")
# Additional logic here
if __name__ == "__main__":
service_instance = MyService()
my_service.voltage.value = 7 # Output: "Voltage changed to: 7"
pydase.Server(service_instance).run()
```
- Incorporating units in `NumberSlider`
The `NumberSlider` is capable of [displaying units](#understanding-units-in-pydase) alongside values, enhancing its usability in contexts where unit representation is crucial. When utilizing `pydase.units`, you can specify units for the slider's value, allowing the component to reflect these units in the frontend.
Here's how to implement a `NumberSlider` with unit display:
```python
import pydase
import pydase.components
import pydase.units as u
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: u.Quantity = 0.0 * u.units.V,
) -> None:
super().__init__(value)
@property
def value(self) -> u.Quantity:
return self._value
@value.setter
def value(self, value: u.Quantity) -> None:
if value.m < self._min or value.m > self._max:
raise ValueError("Value is either below allowed min or above max value.")
self._value = value
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.voltage = MySlider()
if __name__ == "__main__":
service_instance = MyService()
service_instance.voltage.value = 5 * u.units.V
print(service_instance.voltage.value) # Output: 5 V
pydase.Server(service_instance).run()
```
#### `ColouredEnum`
This component provides a way to visually represent different states or categories in a data service using colour-coded options. It behaves similarly to a standard `Enum`, but the values encode colours in a format understood by CSS. The colours can be defined using various methods like Hexadecimal, RGB, HSL, and more.
If the property associated with the `ColouredEnum` has a setter function, the keys of the enum will be rendered as a dropdown menu, allowing users to interact and select different options. Without a setter function, the selected key will simply be displayed as a coloured box with text inside, serving as a visual indicator.
```python
import pydase
import pydase.components as pyc
class MyStatus(pyc.ColouredEnum):
PENDING = "#FFA500" # Hexadecimal colour (Orange)
RUNNING = "#0000FF80" # Hexadecimal colour with transparency (Blue)
PAUSED = "rgb(169, 169, 169)" # RGB colour (Dark Gray)
RETRYING = "rgba(255, 255, 0, 0.3)" # RGB colour with transparency (Yellow)
COMPLETED = "hsl(120, 100%, 50%)" # HSL colour (Green)
FAILED = "hsla(0, 100%, 50%, 0.7)" # HSL colour with transparency (Red)
CANCELLED = "SlateGray" # Cross-browser colour name (Slate Gray)
class StatusTest(pydase.DataService):
_status = MyStatus.RUNNING
@property
def status(self) -> MyStatus:
return self._status
@status.setter
def status(self, value: MyStatus) -> None:
# do something ...
self._status = value
# Modifying or accessing the status value:
my_service = StatusExample()
my_service.status = MyStatus.FAILED
```
![ColouredEnum Component](docs/images/ColouredEnum_component.png)
**Note** that each enumeration name and value must be unique.
This means that you should use different colour formats when you want to use a colour multiple times.
#### Extending with New Components
Users can also extend the library by creating custom components. This involves defining the behavior on the Python backend and the visual representation on the frontend. For those looking to introduce new components, the [guide on adding components](https://pydase.readthedocs.io/en/latest/dev-guide/Adding_Components/) provides detailed steps on achieving this.
<!-- Component User Guide End -->
## Understanding Service Persistence
`pydase` allows you to easily persist the state of your service by saving it to a file. This is especially useful when you want to maintain the service's state across different runs.
To save the state of your service, pass a `filename` keyword argument to the constructor of the `pydase.Server` class. If the file specified by `filename` does not exist, the state manager will create this file and store its state in it when the service is shut down. If the file already exists, the state manager will load the state from this file, setting the values of its attributes to the values stored in the file.
Here's an example:
```python
from pydase import DataService, Server
class Device(DataService):
# ... defining the Device class ...
if __name__ == "__main__":
service = Device()
Server(service, filename="device_state.json").run()
```
In this example, the state of the `Device` service will be saved to `device_state.json` when the service is shut down. If `device_state.json` exists when the server is started, the state manager will restore the state of the service from this file.
### Controlling Property State Loading with `@load_state`
By default, the state manager only restores values for public attributes of your service. If you have properties that you want to control the loading for, you can use the `@load_state` decorator on your property setters. This indicates to the state manager that the value of the property should be loaded from the state file.
Here is how you can apply the `@load_state` decorator:
```python
from pydase import DataService
from pydase.data_service.state_manager import load_state
class Device(DataService):
_name = "Default Device Name"
@property
def name(self) -> str:
return self._name
@name.setter
@load_state
def name(self, value: str) -> None:
self._name = value
```
With the `@load_state` decorator applied to the `name` property setter, the state manager will load and apply the `name` property's value from the file storing the state upon server startup, assuming it exists.
Note: If the service class structure has changed since the last time its state was saved, only the attributes and properties decorated with `@load_state` that have remained the same will be restored from the settings file.
## Understanding Tasks in pydase
In `pydase`, a task is defined as an asynchronous function without arguments contained in a class that inherits from `DataService`. These tasks usually contain a while loop and are designed to carry out periodic functions.
For example, a task might be used to periodically read sensor data, update a database, or perform any other recurring job. One core feature of `pydase` is its ability to automatically generate start and stop functions for these tasks. This allows you to control task execution via both the frontend and python clients, giving you flexible and powerful control over your service's operation.
Another powerful feature of `pydase` is its ability to automatically start tasks upon initialization of the service. By specifying the tasks and their arguments in the `_autostart_tasks` dictionary in your service class's `__init__` method, `pydase` will automatically start these tasks when the server is started. Here's an example:
```python
from pydase import DataService, Server
class SensorService(DataService):
def __init__(self):
super().__init__()
self.readout_frequency = 1.0
self._autostart_tasks["read_sensor_data"] = ()
def _process_data(self, data: ...) -> None:
...
def _read_from_sensor(self) -> Any:
...
async def read_sensor_data(self):
while True:
data = self._read_from_sensor()
self._process_data(data) # Process the data as needed
await asyncio.sleep(self.readout_frequency)
if __name__ == "__main__":
service = SensorService()
Server(service).run()
```
In this example, `read_sensor_data` is a task that continuously reads data from a sensor. By adding it to the `_autostart_tasks` dictionary, it will automatically start running when `Server(service).run()` is executed.
As with all tasks, `pydase` will generate `start_read_sensor_data` and `stop_read_sensor_data` methods, which can be called to manually start and stop the data reading task. The readout frequency can be updated using the `readout_frequency` attribute.
## Understanding Units in pydase
`pydase` integrates with the [`pint`](https://pint.readthedocs.io/en/stable/) package to allow you to work with physical quantities within your service. This enables you to define attributes with units, making your service more expressive and ensuring consistency in the handling of physical quantities.
You can define quantities in your `DataService` subclass using `pydase`'s `units` functionality.
Here's an example:
```python
from typing import Any
import pydase.units as u
from pydase import DataService, Server
class ServiceClass(DataService):
voltage = 1.0 * u.units.V
_current: u.Quantity = 1.0 * u.units.mA
@property
def current(self) -> u.Quantity:
return self._current
@current.setter
def current(self, value: u.Quantity) -> None:
self._current = value
if __name__ == "__main__":
service = ServiceClass()
service.voltage = 10.0 * u.units.V
service.current = 1.5 * u.units.mA
Server(service).run()
```
In the frontend, quantities are rendered as floats, with the unit displayed as additional text. This allows you to maintain a clear and consistent representation of physical quantities across both the backend and frontend of your service.
![Web interface with rendered units](./docs/images/Units_App.png)
Should you need to access the magnitude or the unit of a quantity, you can use the `.m` attribute or the `.u` attribute of the variable, respectively. For example, this could be necessary to set the periodicity of a task:
```python
import asyncio
from pydase import DataService, Server
import pydase.units as u
class ServiceClass(DataService):
readout_wait_time = 1.0 * u.units.ms
async def read_sensor_data(self):
while True:
print("Reading out sensor ...")
await asyncio.sleep(self.readout_wait_time.to("s").m)
if __name__ == "__main__":
service = ServiceClass()
Server(service).run()
```
For more information about what you can do with the units, please consult the documentation of [`pint`](https://pint.readthedocs.io/en/stable/).
## Using `validate_set` to Validate Property Setters
The `validate_set` decorator ensures that a property setter reads back the set value using the property getter and checks it against the desired value.
This decorator can be used to validate that a parameter has been correctly set on a device within a specified precision and timeout.
The decorator takes two keyword arguments: `timeout` and `precision`. The `timeout` argument specifies the maximum time (in seconds) to wait for the value to be within the precision boundary.
If the value is not within the precision boundary after this time, an exception is raised.
The `precision` argument defines the acceptable deviation from the desired value.
If `precision` is `None`, the value must be exact.
For example, if `precision` is set to `1e-5`, the value read from the device must be within ±0.00001 of the desired value.
Heres how to use the `validate_set` decorator in a `DataService` class:
```python
import pydase
from pydase.observer_pattern.observable.decorators import validate_set
class Service(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self._device = RemoteDevice() # dummy class
@property
def value(self) -> float:
# Implement how to get the value from the remote device...
return self._device.value
@value.setter
@validate_set(timeout=1.0, precision=1e-5)
def value(self, value: float) -> None:
# Implement how to set the value on the remote device...
self._device.value = value
if __name__ == "__main__":
pydase.Server(Service()).run()
```
<!--getting-started-end-->
## Configuring pydase via Environment Variables
@@ -856,7 +197,6 @@ Configuring `pydase` through environment variables enhances flexibility, securit
```
- **`SERVICE_WEB_PORT`**: Defines the port number for the web server. This has to be different for each services running on the same host. Default is 8001.
- **`SERVICE_RPC_PORT`**: Defines the port number for the rpc server. This has to be different for each services running on the same host. Default is 18871.
- **`GENERATE_WEB_SETTINGS`**: When set to true, generates / updates the `web_settings.json` file. If the file already exists, only new entries are appended.
Some of those settings can also be altered directly in code when initializing the server:
@@ -871,7 +211,6 @@ from your_service_module import YourService
server = Server(
YourService(),
web_port=8080,
rpc_port=18880,
config_dir=pathlib.Path("other_config_dir"), # note that you need to provide an argument of type pathlib.Path
generate_web_settings=True
).run()
@@ -879,62 +218,14 @@ server = Server(
## Customizing the Web Interface
### Enhancing the Web Interface Style with Custom CSS
`pydase` allows you to enhance the user experience by customizing the web interface's appearance through
`pydase` allows you to enhance the user experience by customizing the web interface's appearance. You can apply your own styles globally across the web interface by passing a custom CSS file to the server during initialization.
1. a custom CSS file, and
2. tailoring the frontend component layout and display style.
Here's how you can use this feature:
You can also provide a custom frontend source if you need even more flexibility.
1. Prepare your custom CSS file with the desired styles.
2. When initializing your server, use the `css` parameter of the `Server` class to specify the path to your custom CSS file.
```python
from pydase import Server, DataService
class MyService(DataService):
# ... your service definition ...
if __name__ == "__main__":
service = MyService()
server = Server(service, css="path/to/your/custom.css").run()
```
This will apply the styles defined in `custom.css` to the web interface, allowing you to maintain branding consistency or improve visual accessibility.
Please ensure that the CSS file path is accessible from the server's running location. Relative or absolute paths can be used depending on your setup.
### Tailoring Frontend Component Layout
`pydase` enables users to customize the frontend layout via the `web_settings.json` file. Each key in the file corresponds to the full access path of public attributes, properties, and methods of the exposed service, using dot-notation.
- **Custom Display Names**: Modify the `"displayName"` value in the file to change how each component appears in the frontend.
- **Control Component Visibility**: Utilize the `"display"` key-value pair to control whether a component is rendered in the frontend. Set the value to `true` to make the component visible or `false` to hide it.
<!-- - **Adjustable Component Order**: The `"displayOrder"` values determine the order of components. Alter these values to rearrange the components as desired. -->
The `web_settings.json` file will be stored in the directory specified by `SERVICE_CONFIG_DIR`. You can generate a `web_settings.json` file by setting the `GENERATE_WEB_SETTINGS` to `True`. For more information, see the [configuration section](#configuring-pydase-via-environment-variables).
### Specifying a Custom Frontend Source
To further personalize your web interface, you can provide `pydase` with a custom frontend GUI. To do so, you can use the `frontend_src` keyword in the `pydase.Server`:
```python
from pathlib import Path
import pydase
class MyService(pydase.DataService):
# Service definition
if __name__ == "__main__":
service = MyService()
pydase.Server(
service,
frontend_src=Path("path/to/your/frontend/directory"),
).run()
```
For details, please see [here](https://pydase.readthedocs.io/en/stable/user-guide/interaction/main/#customization-options).
## Logging in pydase
@@ -979,12 +270,27 @@ You have two primary ways to adjust the log levels in `pydase`:
## Documentation
The full documentation provides more detailed information about `pydase`, including advanced usage examples, API references, and tips for troubleshooting common issues. See the [full documentation](https://pydase.readthedocs.io/en/latest/) for more information.
The full documentation provides more detailed information about `pydase`, including advanced usage examples, API references, and tips for troubleshooting common issues. See the [full documentation](https://pydase.readthedocs.io/en/stable/) for more information.
## Contributing
We welcome contributions! Please see [contributing.md](https://pydase.readthedocs.io/en/latest/about/contributing/) for details on how to contribute.
We welcome contributions! Please see [contributing.md](https://pydase.readthedocs.io/en/stable/about/contributing/) for details on how to contribute.
## License
`pydase` is licensed under the [MIT License](https://github.com/tiqi-group/pydase/blob/main/LICENSE).
`pydase` is licensed under the [MIT License][License].
[License]: ./LICENSE
[Observer Pattern]: https://pydase.readthedocs.io/en/docs/dev-guide/Observer_Pattern_Implementation/
[Service Persistence]: https://pydase.readthedocs.io/en/stable/user-guide/Service_Persistence
[Defining DataService]: #defining-a-dataService
[Web Interface Access]: #accessing-the-web-interface
[Short RPC Client]: #connecting-to-the-service-via-python-rpc-client
[Customizing Web Interface]: #customizing-the-web-interface
[Task Management]: https://pydase.readthedocs.io/en/stable/user-guide/Tasks/
[Units]: https://pydase.readthedocs.io/en/stable/user-guide/Understanding-Units/
[Property Validation]: https://pydase.readthedocs.io/en/stable/user-guide/Validating-Property-Setters/
[Custom Components]: https://pydase.readthedocs.io/en/stable/user-guide/Components/#custom-components-pydasecomponents
[Components]: https://pydase.readthedocs.io/en/stable/user-guide/Components/
[RESTful API]: https://pydase.readthedocs.io/en/stable/user-guide/interaction/main/#restful-api
[Python RPC Client]: https://pydase.readthedocs.io/en/stable/user-guide/interaction/main/#python-rpc-client

View File

@@ -111,7 +111,7 @@ Write the React component code, following the structure and patterns used in exi
For example, for the `Image` component, a template could look like this:
```tsx
```ts
import React, { useEffect, useRef, useState } from 'react';
import { Card, Collapse, Image } from 'react-bootstrap';
import { DocStringComponent } from './DocStringComponent';
@@ -203,8 +203,7 @@ There are two different events a component might want to trigger: updating an at
For illustration, take the `ButtonComponent`. When the button state changes, we want to send this update to the backend:
```tsx
// file: frontend/src/components/ButtonComponent.tsx
```ts title="frontend/src/components/ButtonComponent.tsx"
// ... (import statements)
type ButtonComponentProps = {
@@ -249,7 +248,7 @@ There are two different events a component might want to trigger: updating an at
To see how to use the `MethodComponent` in your component, have a look at the `DeviceConnection.tsx` file. Here is an example that demonstrates the usage of the `runMethod` function (also, have a look at the `MethodComponent.tsx` file):
```tsx
```ts title="frontend/src/components/_YourComponent_.tsx"
import { runMethod } from '../socket';
// ... (other imports)
@@ -287,9 +286,7 @@ The `GenericComponent` is responsible for rendering different types of component
At the beginning of the `GenericComponent` file, import the newly created `ImageComponent`:
```tsx
// file: frontend/src/components/GenericComponent.tsx
```ts title="frontend/src/components/GenericComponent.tsx"
import { ImageComponent } from './ImageComponent';
```
@@ -299,7 +296,7 @@ Update the `AttributeType` type definition to include the new type for the `Imag
For example, if the new attribute type is `'Image'` (which should correspond to the name of the backend component class), you can add it to the union:
```tsx
```ts
type AttributeType =
| 'str'
| 'bool'
@@ -318,7 +315,7 @@ type AttributeType =
Inside the `GenericComponent` function, add a new conditional branch to render the `ImageComponent` when the attribute type is `'Image'`:
```tsx
```ts
} else if (attribute.type === 'Image') {
return (
<ImageComponent
@@ -348,7 +345,7 @@ For example, updating an `Image` component corresponds to setting a very long st
To create a custom notification message, you can update the message passed to the `addNotification` method in the `useEffect` hook in the component file file. For the `ImageComponent`, this could look like this:
```tsx
```ts
const fullAccessPath = [parentPath, name].filter((element) => element).join('.');
useEffect(() => {

View File

@@ -2,7 +2,7 @@
## Overview
The Observer Pattern is a fundamental design pattern in the `pydase` package, serving as the central communication mechanism for state updates to clients connected to a service.
The [Observer Pattern](https://en.wikipedia.org/wiki/Observer_pattern) is a fundamental design pattern in the `pydase` package, serving as the central communication mechanism for state updates to clients connected to a service.
## How it Works

View File

@@ -0,0 +1,45 @@
::: pydase.data_service
handler: python
::: pydase.server.server
handler: python
::: pydase.server.web_server
handler: python
::: pydase.client
handler: python
::: pydase.components
handler: python
::: pydase.task
handler: python
options:
inherited_members: false
show_submodules: true
::: pydase.utils.serialization.serializer
handler: python
::: pydase.utils.serialization.deserializer
handler: python
options:
show_root_heading: true
show_root_toc_entry: false
show_symbol_type_heading: true
show_symbol_type_toc: true
::: pydase.utils.serialization.types
handler: python
::: pydase.utils.decorators
handler: python
options:
filters: ["!render_in_frontend"]
::: pydase.units
handler: python
::: pydase.config
handler: python

View File

@@ -1,14 +1,11 @@
# Getting Started
## Installation
{%
include-markdown "../README.md"
start="<!--installation-start-->"
end="<!--installation-end-->"
start="<!--getting-started-start-->"
end="<!--getting-started-end-->"
%}
## Usage
{%
include-markdown "../README.md"
start="<!--usage-start-->"
end="<!--usage-end-->"
%}
[RESTful API]: ./user-guide/interaction/README.md#restful-api
[Python RPC Client]: ./user-guide/interaction/README.md#python-rpc-client
[Custom Components]: ./user-guide/Components.md#custom-components-pydasecomponents
[Components]: ./user-guide/Components.md

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1 +1,16 @@
{% include-markdown "../README.md" %}
{%
include-markdown "../README.md"
start="<!--introduction-start-->"
end="<!--introduction-end-->"
%}
[License]: ./about/license.md
[Observer Pattern]: ./dev-guide/Observer_Pattern_Implementation.md
[Service Persistence]: ./user-guide/Service_Persistence.md
[Defining DataService]: ./getting-started.md#defining-a-dataservice
[Web Interface Access]: ./getting-started.md#accessing-the-web-interface
[Short RPC Client]: ./getting-started.md#connecting-to-the-service-via-python-rpc-client
[Customizing Web Interface]: ./user-guide/interaction/README.md#customization-options
[Task Management]: ./user-guide/Tasks.md
[Units]: ./user-guide/Understanding-Units.md
[Property Validation]: ./user-guide/Validating-Property-Setters.md

View File

@@ -1,20 +1,38 @@
babel==2.15.0 ; python_version >= "3.10" and python_version < "4.0"
beautifulsoup4==4.12.3 ; python_version >= "3.10" and python_version < "4.0"
certifi==2024.7.4 ; python_version >= "3.10" and python_version < "4.0"
charset-normalizer==3.3.2 ; python_version >= "3.10" and python_version < "4.0"
click==8.1.7 ; python_version >= "3.10" and python_version < "4.0"
colorama==0.4.6 ; python_version >= "3.10" and python_version < "4.0" and platform_system == "Windows"
colorama==0.4.6 ; python_version >= "3.10" and python_version < "4.0"
ghp-import==2.1.0 ; python_version >= "3.10" and python_version < "4.0"
jinja2==3.1.2 ; python_version >= "3.10" and python_version < "4.0"
markdown==3.4.4 ; python_version >= "3.10" and python_version < "4.0"
markupsafe==2.1.3 ; python_version >= "3.10" and python_version < "4.0"
griffe==1.1.0 ; python_version >= "3.10" and python_version < "4.0"
idna==3.7 ; python_version >= "3.10" and python_version < "4.0"
jinja2==3.1.4 ; python_version >= "3.10" and python_version < "4.0"
markdown==3.6 ; python_version >= "3.10" and python_version < "4.0"
markupsafe==2.1.5 ; python_version >= "3.10" and python_version < "4.0"
mergedeep==1.3.4 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-autorefs==0.5.0 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-autorefs==1.0.1 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-get-deps==0.2.0 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-include-markdown-plugin==3.9.1 ; python_version >= "3.10" and python_version < "4.0"
mkdocs==1.5.3 ; python_version >= "3.10" and python_version < "4.0"
mkdocstrings==0.22.0 ; python_version >= "3.10" and python_version < "4.0"
packaging==23.1 ; python_version >= "3.10" and python_version < "4.0"
pathspec==0.11.2 ; python_version >= "3.10" and python_version < "4.0"
platformdirs==3.10.0 ; python_version >= "3.10" and python_version < "4.0"
pymdown-extensions==10.3 ; python_version >= "3.10" and python_version < "4.0"
python-dateutil==2.8.2 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-material-extensions==1.3.1 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-material==9.5.31 ; python_version >= "3.10" and python_version < "4.0"
mkdocs-swagger-ui-tag==0.6.10 ; python_version >= "3.10" and python_version < "4.0"
mkdocs==1.6.0 ; python_version >= "3.10" and python_version < "4.0"
mkdocstrings-python==1.10.8 ; python_version >= "3.10" and python_version < "4.0"
mkdocstrings==0.25.2 ; python_version >= "3.10" and python_version < "4.0"
mkdocstrings[python]==0.25.2 ; python_version >= "3.10" and python_version < "4.0"
packaging==24.1 ; python_version >= "3.10" and python_version < "4.0"
paginate==0.5.6 ; python_version >= "3.10" and python_version < "4.0"
pathspec==0.12.1 ; python_version >= "3.10" and python_version < "4.0"
platformdirs==4.2.2 ; python_version >= "3.10" and python_version < "4.0"
pygments==2.18.0 ; python_version >= "3.10" and python_version < "4.0"
pymdown-extensions==10.9 ; python_version >= "3.10" and python_version < "4.0"
python-dateutil==2.9.0.post0 ; python_version >= "3.10" and python_version < "4.0"
pyyaml-env-tag==0.1 ; python_version >= "3.10" and python_version < "4.0"
pyyaml==6.0.1 ; python_version >= "3.10" and python_version < "4.0"
regex==2024.7.24 ; python_version >= "3.10" and python_version < "4.0"
requests==2.32.3 ; python_version >= "3.10" and python_version < "4.0"
six==1.16.0 ; python_version >= "3.10" and python_version < "4.0"
watchdog==3.0.0 ; python_version >= "3.10" and python_version < "4.0"
soupsieve==2.5 ; python_version >= "3.10" and python_version < "4.0"
urllib3==2.2.2 ; python_version >= "3.10" and python_version < "4.0"
watchdog==4.0.1 ; python_version >= "3.10" and python_version < "4.0"

View File

@@ -1,6 +1,435 @@
# Components Guide
{%
include-markdown "../../README.md"
start="<!-- Component User Guide Start -->"
end="<!-- Component User Guide End -->"
%}
In `pydase`, components are fundamental building blocks that bridge the Python backend logic with frontend visual representation and interactions. This system can be understood based on the following categories:
## Built-in Type and Enum Components
`pydase` automatically maps standard Python data types to their corresponding frontend components:
- `str`: Translated into a `StringComponent` on the frontend.
- `int` and `float`: Manifested as the `NumberComponent`.
- `bool`: Rendered as a `ButtonComponent`.
- `list`: Each item displayed individually, named after the list attribute and its index.
- `dict`: Each key-value pair displayed individually, named after the dictionary attribute and its key. **Note** that the dictionary keys must be strings.
- `enum.Enum`: Presented as an `EnumComponent`, facilitating dropdown selection.
## Method Components
Within the `DataService` class of `pydase`, only methods devoid of arguments can be represented in the frontend, classified into two distinct categories
1. [**Tasks**](./Tasks.md): Argument-free asynchronous functions, identified within `pydase` as tasks, are inherently designed for frontend interaction. These tasks are automatically rendered with a start/stop button, allowing users to initiate or halt the task execution directly from the web interface.
2. **Synchronous Methods with `@frontend` Decorator**: Synchronous methods without arguments can also be presented in the frontend. For this, they have to be decorated with the `@frontend` decorator.
```python
import pydase
import pydase.components
import pydase.units as u
from pydase.utils.decorators import frontend
class MyService(pydase.DataService):
@frontend
def exposed_method(self) -> None:
...
async def my_task(self) -> None:
while True:
# ...
```
![Method Components](../images/method_components.png)
You can still define synchronous tasks with arguments and call them using a python client. However, decorating them with the `@frontend` decorator will raise a `FunctionDefinitionError`. Defining a task with arguments will raise a `TaskDefinitionError`.
I decided against supporting function arguments for functions rendered in the frontend due to the following reasons:
1. Feature Request Pitfall: supporting function arguments create a bottomless pit of feature requests. As users encounter the limitations of supported types, demands for extending support to more complex types would grow.
2. Complexity in Supported Argument Types: while simple types like `int`, `float`, `bool` and `str` could be easily supported, more complicated types are not (representation, (de-)serialization).
## DataService Instances (Nested Classes)
Nested `DataService` instances offer an organized hierarchy for components, enabling richer applications. Each nested class might have its own attributes and methods, each mapped to a frontend component.
Here is an example:
```python
from pydase import DataService, Server
class Channel(DataService):
def __init__(self, channel_id: int) -> None:
super().__init__()
self._channel_id = channel_id
self._current = 0.0
@property
def current(self) -> float:
# run code to get current
result = self._current
return result
@current.setter
def current(self, value: float) -> None:
# run code to set current
self._current = value
class Device(DataService):
def __init__(self) -> None:
super().__init__()
self.channels = [Channel(i) for i in range(2)]
if __name__ == "__main__":
service = Device()
Server(service).run()
```
![Nested Classes App](../images/Nested_Class_App.png)
**Note** that defining classes within `DataService` classes is not supported (see [this issue](https://github.com/tiqi-group/pydase/issues/16)).
## Custom Components (`pydase.components`)
The custom components in `pydase` have two main parts:
- A **Python Component Class** in the backend, implementing the logic needed to set, update, and manage the component's state and data.
- A **Frontend React Component** that renders and manages user interaction in the browser.
Below are the components available in the `pydase.components` module, accompanied by their Python usage:
### `DeviceConnection`
The `DeviceConnection` component acts as a base class within the `pydase` framework for managing device connections. It provides a structured approach to handle connections by offering a customizable `connect` method and a `connected` property. This setup facilitates the implementation of automatic reconnection logic, which periodically attempts reconnection whenever the connection is lost.
In the frontend, this class abstracts away the direct interaction with the `connect` method and the `connected` property. Instead, it showcases user-defined attributes, methods, and properties. When the `connected` status is `False`, the frontend displays an overlay that prompts manual reconnection through the `connect()` method. Successful reconnection removes the overlay.
```python
import pydase.components
import pydase.units as u
class Device(pydase.components.DeviceConnection):
def __init__(self) -> None:
super().__init__()
self._voltage = 10 * u.units.V
def connect(self) -> None:
if not self._connected:
self._connected = True
@property
def voltage(self) -> float:
return self._voltage
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.device = Device()
if __name__ == "__main__":
service_instance = MyService()
pydase.Server(service_instance).run()
```
![DeviceConnection Component](../images/DeviceConnection_component.png)
#### Customizing Connection Logic
Users are encouraged to primarily override the `connect` method to tailor the connection process to their specific device. This method should adjust the `self._connected` attribute based on the outcome of the connection attempt:
```python
import pydase.components
class MyDeviceConnection(pydase.components.DeviceConnection):
def __init__(self) -> None:
super().__init__()
# Add any necessary initialization code here
def connect(self) -> None:
# Implement device-specific connection logic here
# Update self._connected to `True` if the connection is successful,
# or `False` if unsuccessful
...
```
Moreover, if the connection status requires additional logic, users can override the `connected` property:
```python
import pydase.components
class MyDeviceConnection(pydase.components.DeviceConnection):
def __init__(self) -> None:
super().__init__()
# Add any necessary initialization code here
def connect(self) -> None:
# Implement device-specific connection logic here
# Ensure self._connected reflects the connection status accurately
...
@property
def connected(self) -> bool:
# Implement custom logic to accurately report connection status
return self._connected
```
#### Reconnection Interval
The `DeviceConnection` component automatically executes a task that checks for device availability at a default interval of 10 seconds. This interval is adjustable by modifying the `_reconnection_wait_time` attribute on the class instance.
### `Image`
This component provides a versatile interface for displaying images within the application. Users can update and manage images from various sources, including local paths, URLs, and even matplotlib figures.
The component offers methods to load images seamlessly, ensuring that visual content is easily integrated and displayed within the data service.
```python
import matplotlib.pyplot as plt
import numpy as np
import pydase
from pydase.components.image import Image
class MyDataService(pydase.DataService):
my_image = Image()
if __name__ == "__main__":
service = MyDataService()
# loading from local path
service.my_image.load_from_path("/your/image/path/")
# loading from a URL
service.my_image.load_from_url("https://cataas.com/cat")
# loading a matplotlib figure
fig = plt.figure()
x = np.linspace(0, 2 * np.pi)
plt.plot(x, np.sin(x))
plt.grid()
service.my_image.load_from_matplotlib_figure(fig)
pydase.Server(service).run()
```
![Image Component](../images/Image_component.png)
### `NumberSlider`
The `NumberSlider` component in the `pydase` package provides an interactive slider interface for adjusting numerical values on the frontend. It is designed to support both numbers and quantities and ensures that values adjusted on the frontend are synchronized with the backend.
To utilize the `NumberSlider`, users should implement a class that derives from `NumberSlider`. This class can then define the initial values, minimum and maximum limits, step sizes, and additional logic as needed.
Here's an example of how to implement and use a custom slider:
```python
import pydase
import pydase.components
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: float = 0.0,
min_: float = 0.0,
max_: float = 100.0,
step_size: float = 1.0,
) -> None:
super().__init__(value, min_, max_, step_size)
@property
def min(self) -> float:
return self._min
@min.setter
def min(self, value: float) -> None:
self._min = value
@property
def max(self) -> float:
return self._max
@max.setter
def max(self, value: float) -> None:
self._max = value
@property
def step_size(self) -> float:
return self._step_size
@step_size.setter
def step_size(self, value: float) -> None:
self._step_size = value
@property
def value(self) -> float:
"""Slider value."""
return self._value
@value.setter
def value(self, value: float) -> None:
if value < self._min or value > self._max:
raise ValueError("Value is either below allowed min or above max value.")
self._value = value
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.voltage = MySlider()
if __name__ == "__main__":
service_instance = MyService()
service_instance.voltage.value = 5
print(service_instance.voltage.value) # Output: 5
pydase.Server(service_instance).run()
```
In this example, `MySlider` overrides the `min`, `max`, `step_size`, and `value` properties. Users can make any of these properties read-only by omitting the corresponding setter method.
![Slider Component](../images/Slider_component.png)
- Accessing parent class resources in `NumberSlider`
In scenarios where you need the slider component to interact with or access resources from its parent class, you can achieve this by passing a callback function to it. This method avoids directly passing the entire parent class instance (`self`) and offers a more encapsulated approach. The callback function can be designed to utilize specific attributes or methods of the parent class, allowing the slider to perform actions or retrieve data in response to slider events.
Here's an illustrative example:
```python
from collections.abc import Callable
import pydase
import pydase.components
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: float,
on_change: Callable[[float], None],
) -> None:
super().__init__(value=value)
self._on_change = on_change
# ... other properties ...
@property
def value(self) -> float:
return self._value
@value.setter
def value(self, new_value: float) -> None:
if new_value < self._min or new_value > self._max:
raise ValueError("Value is either below allowed min or above max value.")
self._value = new_value
self._on_change(new_value)
class MyService(pydase.DataService):
def __init__(self) -> None:
self.voltage = MySlider(
5,
on_change=self.handle_voltage_change,
)
def handle_voltage_change(self, new_voltage: float) -> None:
print(f"Voltage changed to: {new_voltage}")
# Additional logic here
if __name__ == "__main__":
service_instance = MyService()
my_service.voltage.value = 7 # Output: "Voltage changed to: 7"
pydase.Server(service_instance).run()
```
- Incorporating units in `NumberSlider`
The `NumberSlider` is capable of [displaying units](./Understanding-Units.md) alongside values, enhancing its usability in contexts where unit representation is crucial. When utilizing `pydase.units`, you can specify units for the slider's value, allowing the component to reflect these units in the frontend.
Here's how to implement a `NumberSlider` with unit display:
```python
import pydase
import pydase.components
import pydase.units as u
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: u.Quantity = 0.0 * u.units.V,
) -> None:
super().__init__(value)
@property
def value(self) -> u.Quantity:
return self._value
@value.setter
def value(self, value: u.Quantity) -> None:
if value.m < self._min or value.m > self._max:
raise ValueError("Value is either below allowed min or above max value.")
self._value = value
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.voltage = MySlider()
if __name__ == "__main__":
service_instance = MyService()
service_instance.voltage.value = 5 * u.units.V
print(service_instance.voltage.value) # Output: 5 V
pydase.Server(service_instance).run()
```
### `ColouredEnum`
This component provides a way to visually represent different states or categories in a data service using colour-coded options. It behaves similarly to a standard `Enum`, but the values encode colours in a format understood by CSS. The colours can be defined using various methods like Hexadecimal, RGB, HSL, and more.
If the property associated with the `ColouredEnum` has a setter function, the keys of the enum will be rendered as a dropdown menu, allowing users to interact and select different options. Without a setter function, the selected key will simply be displayed as a coloured box with text inside, serving as a visual indicator.
```python
import pydase
import pydase.components as pyc
class MyStatus(pyc.ColouredEnum):
PENDING = "#FFA500" # Hexadecimal colour (Orange)
RUNNING = "#0000FF80" # Hexadecimal colour with transparency (Blue)
PAUSED = "rgb(169, 169, 169)" # RGB colour (Dark Gray)
RETRYING = "rgba(255, 255, 0, 0.3)" # RGB colour with transparency (Yellow)
COMPLETED = "hsl(120, 100%, 50%)" # HSL colour (Green)
FAILED = "hsla(0, 100%, 50%, 0.7)" # HSL colour with transparency (Red)
CANCELLED = "SlateGray" # Cross-browser colour name (Slate Gray)
class StatusTest(pydase.DataService):
_status = MyStatus.RUNNING
@property
def status(self) -> MyStatus:
return self._status
@status.setter
def status(self, value: MyStatus) -> None:
# do something ...
self._status = value
# Modifying or accessing the status value:
my_service = StatusExample()
my_service.status = MyStatus.FAILED
```
![ColouredEnum Component](../images/ColouredEnum_component.png)
**Note** that each enumeration name and value must be unique.
This means that you should use different colour formats when you want to use a colour multiple times.
### Extending with New Components
Users can also extend the library by creating custom components. This involves defining the behavior on the Python backend and the visual representation on the frontend. For those looking to introduce new components, the [guide on adding components](https://pydase.readthedocs.io/en/latest/dev-guide/Adding_Components/) provides detailed steps on achieving this.

View File

@@ -0,0 +1,49 @@
# Understanding Service Persistence
`pydase` allows you to easily persist the state of your service by saving it to a file. This is especially useful when you want to maintain the service's state across different runs.
To save the state of your service, pass a `filename` keyword argument to the constructor of the `pydase.Server` class. If the file specified by `filename` does not exist, the state manager will create this file and store its state in it when the service is shut down. If the file already exists, the state manager will load the state from this file, setting the values of its attributes to the values stored in the file.
Here's an example:
```python
import pydase
class Device(pydase.DataService):
# ... defining the Device class ...
if __name__ == "__main__":
service = Device()
pydase.Server(service=service, filename="device_state.json").run()
```
In this example, the state of the `Device` service will be saved to `device_state.json` when the service is shut down. If `device_state.json` exists when the server is started, the state manager will restore the state of the service from this file.
## Controlling Property State Loading with `@load_state`
By default, the state manager only restores values for public attributes of your service. If you have properties that you want to control the loading for, you can use the `@load_state` decorator on your property setters. This indicates to the state manager that the value of the property should be loaded from the state file.
Here is how you can apply the `@load_state` decorator:
```python
import pydase
from pydase.data_service.state_manager import load_state
class Device(pydase.DataService):
_name = "Default Device Name"
@property
def name(self) -> str:
return self._name
@name.setter
@load_state
def name(self, value: str) -> None:
self._name = value
```
With the `@load_state` decorator applied to the `name` property setter, the state manager will load and apply the `name` property's value from the file storing the state upon server startup, assuming it exists.
Note: If the service class structure has changed since the last time its state was saved, only the attributes and properties decorated with `@load_state` that have remained the same will be restored from the settings file.

38
docs/user-guide/Tasks.md Normal file
View File

@@ -0,0 +1,38 @@
# Understanding Tasks
In `pydase`, a task is defined as an asynchronous function without arguments that is decorated with the `@task` decorator and contained in a class that inherits from `pydase.DataService`. These tasks usually contain a while loop and are designed to carry out periodic functions. For example, a task might be used to periodically read sensor data, update a database, or perform any other recurring job.
`pydase` allows you to control task execution via both the frontend and Python clients and can automatically start tasks upon initialization of the service. By using the `@task` decorator with the `autostart=True` argument in your service class, `pydase` will automatically start these tasks when the server is started. Here's an example:
```python
import pydase
from pydase.task.decorator import task
class SensorService(pydase.DataService):
def __init__(self):
super().__init__()
self.readout_frequency = 1.0
def _process_data(self, data: ...) -> None:
...
def _read_from_sensor(self) -> Any:
...
@task(autostart=True)
async def read_sensor_data(self):
while True:
data = self._read_from_sensor()
self._process_data(data) # Process the data as needed
await asyncio.sleep(self.readout_frequency)
if __name__ == "__main__":
service = SensorService()
pydase.Server(service=service).run()
```
In this example, `read_sensor_data` is a task that continuously reads data from a sensor. By decorating it with `@task(autostart=True)`, it will automatically start running when `pydase.Server(service).run()` is executed.
The `@task` decorator replaces the function with a task object that has `start()` and `stop()` methods. This means you can control the task execution directly using these methods. For instance, you can manually start or stop the task by calling `service.read_sensor_data.start()` and `service.read_sensor_data.stop()`, respectively.

View File

@@ -0,0 +1,64 @@
# Understanding Units
`pydase` integrates with the [`pint`](https://pint.readthedocs.io/en/stable/) package to allow you to work with physical quantities within your service. This enables you to define attributes with units, making your service more expressive and ensuring consistency in the handling of physical quantities.
You can define quantities in your `pydase.DataService` subclass using the `pydase.units` module.
Here's an example:
```python
from typing import Any
import pydase
import pydase.units as u
class ServiceClass(pydase.DataService):
voltage = 1.0 * u.units.V
_current: u.Quantity = 1.0 * u.units.mA
@property
def current(self) -> u.Quantity:
return self._current
@current.setter
def current(self, value: u.Quantity) -> None:
self._current = value
if __name__ == "__main__":
service = ServiceClass()
service.voltage = 10.0 * u.units.V
service.current = 1.5 * u.units.mA
pydase.Server(service=service).run()
```
In the frontend, quantities are rendered as floats, with the unit displayed as additional text. This allows you to maintain a clear and consistent representation of physical quantities across both the backend and frontend of your service.
![Web interface with rendered units](../images/Units_App.png)
Should you need to access the magnitude or the unit of a quantity, you can use the `.m` attribute or the `.u` attribute of the variable, respectively. For example, this could be necessary to set the periodicity of a task:
```python
import asyncio
import pydase
import pydase.units as u
class ServiceClass(pydase.DataService):
readout_wait_time = 1.0 * u.units.ms
async def read_sensor_data(self):
while True:
print("Reading out sensor ...")
await asyncio.sleep(self.readout_wait_time.to("s").m)
if __name__ == "__main__":
service = ServiceClass()
pydase.Server(service=service).run()
```
For more information about what you can do with the units, please consult the documentation of [`pint`](https://pint.readthedocs.io/en/stable/).

View File

@@ -0,0 +1,38 @@
# Using `validate_set` to Validate Property Setters
The `validate_set` decorator ensures that a property setter reads back the set value using the property getter and checks it against the desired value.
This decorator can be used to validate that a parameter has been correctly set on a device within a specified precision and timeout.
The decorator takes two keyword arguments: `timeout` and `precision`. The `timeout` argument specifies the maximum time (in seconds) to wait for the value to be within the precision boundary.
If the value is not within the precision boundary after this time, an exception is raised.
The `precision` argument defines the acceptable deviation from the desired value.
If `precision` is `None`, the value must be exact.
For example, if `precision` is set to `1e-5`, the value read from the device must be within ±0.00001 of the desired value.
Heres how to use the `validate_set` decorator in a `DataService` class:
```python
import pydase
from pydase.observer_pattern.observable.decorators import validate_set
class Service(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self._device = RemoteDevice() # dummy class
@property
def value(self) -> float:
# Implement how to get the value from the remote device...
return self._device.value
@value.setter
@validate_set(timeout=1.0, precision=1e-5)
def value(self, value: float) -> None:
# Implement how to set the value on the remote device...
self._device.value = value
if __name__ == "__main__":
pydase.Server(service=Service()).run()
```

View File

@@ -0,0 +1,167 @@
# Auto-generated Frontend
`pydase` automatically generates a frontend interface based on your service definition, representing the current state and controls of the service.
It simplifies the process of visualization and control of the data and devices managed by your `pydase` service, making it accessible to both developers and end-users.
Through the integration of Socket.IO, the frontend provides real-time updates, reflecting changes as they occur and allowing for immediate interaction with the backend.
## Accessing the Frontend
You can access the auto-generated frontend by navigating to the hostname of the device the service is hosted on, followed by the exposed port:
```
http://<hostname>:<port>/
```
The frontend uses a component-based approach, representing various data types and control mechanisms as distinct UI components. For more information about this, please refer to [Components Guide](../Components.md).
## Customization Options
`pydase` allows you to enhance the user experience by customizing the web interface's appearance through
1. a custom CSS file, and
2. tailoring the frontend component layout and display style.
For more advanced customization, you can provide a completely custom frontend source.
### Custom CSS Styling
You can apply your own styles globally across the web interface by passing a custom CSS file to the server during initialization.
Here's how you can use this feature:
1. Prepare your custom CSS file with the desired styles.
2. When initializing your server, use the `css` parameter of the `Server` class to specify the path to your custom CSS file.
```python
from pydase import Server, DataService
class MyService(DataService):
# ... your service definition ...
if __name__ == "__main__":
service = MyService()
server = Server(service, css="path/to/your/custom.css").run()
```
This will apply the styles defined in `custom.css` to the web interface, allowing you to maintain branding consistency or improve visual accessibility.
Please ensure that the CSS file path is accessible from the server's running location. Relative or absolute paths can be used depending on your setup.
### Tailoring Frontend Component Layout
You can customize the display names, visibility, and order of components via the `web_settings.json` file.
Each key in the file corresponds to the full access path of public attributes, properties, and methods of the exposed service, using dot-notation.
- **Custom Display Names**: Modify the `"displayName"` value in the file to change how each component appears in the frontend.
- **Control Component Visibility**: Utilize the `"display"` key-value pair to control whether a component is rendered in the frontend. Set the value to `true` to make the component visible or `false` to hide it.
- **Adjustable Component Order**: The `"displayOrder"` values determine the order of components. Alter these values to rearrange the components as desired. The value defaults to [`Number.MAX_SAFE_INTEGER`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER).
The `web_settings.json` file will be stored in the directory specified by `SERVICE_CONFIG_DIR`. You can generate a `web_settings.json` file by setting the `GENERATE_WEB_SETTINGS` to `True`. For more information, see the [configuration section](#configuring-pydase-via-environment-variables).
For example, styling the following service
```python
import pydase
class Device(pydase.DataService):
name = "My Device"
temperature = 1.0
power = 1
class Service(pydase.DataService):
device = Device()
state = "RUNNING"
if __name__ == "__main__":
pydase.Server(Service()).run()
```
with the following `web_settings.json`
```json
{
"device": {
"displayName": "My Device",
"displayOrder": 1
},
"device.name": {
"display": false
},
"device.power": {
"displayName": "Power",
"displayOrder": 1
},
"device.temperature": {
"displayName": "Temperature",
"displayOrder": 0
},
"state": {
"displayOrder": 0
}
}
```
looks like this:
![Tailoring frontend component layout](../../images/Tailoring_frontend_component_layout.png)
### Specifying a Custom Frontend Source
To further customize your web interface, you can provide a custom frontend source.
By specifying the `frontend_src` parameter when initializing the server, you can host a tailored frontend application:
```python
from pathlib import Path
import pydase
class MyService(pydase.DataService):
# Service definition
if __name__ == "__main__":
service = MyService()
pydase.Server(
service,
frontend_src=Path("path/to/your/frontend/directory"),
).run()
```
`pydase` expects a directory structured as follows:
```bash title="Frontend directory structure"
<your_frontend_directory>
├── assets
│   └── ...
└── index.html
```
Any CSS, js, image or other files need to be put into the assets folder for the web server to be able to provide access to it.
#### Example: Custom React Frontend
You can use vite to generate a react app template:
```bash
npm create vite@latest my-react-app -- --template react
```
*TODO: Add some useful information here...*
To deploy the custom react frontend, build it with
```bash
npm run build
```
and pass the relative path of the output directory to the `frontend_src` parameter of the `pydase.Server`.
**Note** that you have to make sure that all the generated files (except the `index.html`) are in the `assets` folder. In the react app, you can achieve this by not using the `public` folder, but instead using e.g. `src/assets`.

View File

@@ -0,0 +1,60 @@
# Python RPC Client
You can connect to the service using the `pydase.Client`. Below is an example of how to establish a connection to a service and interact with it:
```python
import pydase
# Replace the hostname and port with the IP address and the port of the machine where
# the service is running, respectively
client_proxy = pydase.Client(url="ws://<ip_addr>:<service_port>").proxy
# client_proxy = pydase.Client(url="wss://your-domain.ch").proxy # if your service uses ssl-encryption
# Interact with the service attributes as if they were local
client_proxy.voltage = 5.0
print(client_proxy.voltage) # Expected output: 5.0
```
This example demonstrates setting and retrieving the `voltage` attribute through the client proxy.
The proxy acts as a local representative of the remote service, enabling straightforward interaction.
The proxy class dynamically synchronizes with the server's exposed attributes. This synchronization allows the proxy to be automatically updated with any attributes or methods that the server exposes, essentially mirroring the server's API. This dynamic updating enables users to interact with the remote service as if they were working with a local object.
## Context Manager
You can also use the client as a context manager which automatically opens and closes the connection again:
```python
import pydase
with pydase.Client(url="ws://localhost:8001") as client:
client.proxy.<my_method>()
```
## Tab Completion Support
In interactive environments such as Python interpreters and Jupyter notebooks, the proxy class supports tab completion, which allows users to explore available methods and attributes.
## Integration within Other Services
You can also integrate a client proxy within another service. Here's how you can set it up:
```python
import pydase
class MyService(pydase.DataService):
# Initialize the client without blocking the constructor
proxy = pydase.Client(url="ws://<ip_addr>:<service_port>", block_until_connected=False).proxy
# proxy = pydase.Client(url="wss://your-domain.ch", block_until_connected=False).proxy # communicating with ssl-encrypted service
if __name__ == "__main__":
service = MyService()
# Create a server that exposes this service; adjust the web_port as needed
server = pydase.Server(service, web_port=8002). run()
```
In this setup, the `MyService` class has a `proxy` attribute that connects to a `pydase` service located at `<ip_addr>:8001`.
The `block_until_connected=False` argument allows the service to start up even if the initial connection attempt fails.
This configuration is particularly useful in distributed systems where services may start in any order.

View File

@@ -0,0 +1,81 @@
# Interacting with `pydase` Services
`pydase` offers multiple ways for users to interact with the services they create, providing flexibility and convenience for different use cases. This section outlines the primary interaction methods available, including an auto-generated frontend, a RESTful API, and a Python client based on Socket.IO.
{%
include-markdown "./Auto-generated Frontend.md"
heading-offset=1
%}
{%
include-markdown "./RESTful API.md"
heading-offset=1
%}
{%
include-markdown "./Python Client.md"
heading-offset=1
%}
<!-- ## 2. **Socket.IO for Real-Time Updates** -->
<!-- For scenarios requiring real-time data updates, `pydase` includes a Socket.IO server. This feature is ideal for applications where live data tracking is crucial, such as monitoring systems or interactive dashboards. -->
<!---->
<!-- ### Key Features: -->
<!-- - **Live Data Streams**: Receive real-time updates for data changes. -->
<!-- - **Event-Driven Communication**: Utilize event-based messaging to push updates and handle client actions. -->
<!---->
<!-- ### Example Usage: -->
<!-- Clients can connect to the Socket.IO server to receive updates: -->
<!-- ```javascript -->
<!-- var socket = io.connect('http://<hostname>:<port>'); -->
<!-- socket.on('<event_name>', function(data) { -->
<!-- console.log(data); -->
<!-- }); -->
<!-- ``` -->
<!---->
<!-- **Use Cases:** -->
<!---->
<!-- - Real-time monitoring and alerts -->
<!-- - Live data visualization -->
<!-- - Collaborative applications -->
<!---->
<!-- ## 3. **Auto-Generated Frontend** -->
<!-- `pydase` automatically generates a web frontend based on the service definitions. This frontend is a convenient interface for interacting with the service, especially for users who prefer a graphical interface over command-line or code-based interactions. -->
<!---->
<!-- ### Key Features: -->
<!-- - **User-Friendly Interface**: Intuitive and easy to use, with real-time interaction capabilities. -->
<!-- - **Customizable**: Adjust the frontend's appearance and functionality to suit specific needs. -->
<!---->
<!-- ### Accessing the Frontend: -->
<!-- Once the service is running, access the frontend via a web browser: -->
<!-- ``` -->
<!-- http://<hostname>:<port> -->
<!-- ``` -->
<!---->
<!-- **Use Cases:** -->
<!---->
<!-- - End-user interfaces for data control and visualization -->
<!-- - Rapid prototyping and testing -->
<!-- - Demonstrations and training -->
<!---->
<!-- ## 4. **Python Client** -->
<!-- `pydase` also provides a Python client for programmatic interactions. This client is particularly useful for developers who want to integrate `pydase` services into other Python applications or automate interactions. -->
<!---->
<!-- ### Key Features: -->
<!-- - **Direct Interaction**: Call methods and access properties as if they were local. -->
<!-- - **Tab Completion**: Supports tab completion in interactive environments like Jupyter notebooks. -->
<!---->
<!-- ### Example Usage: -->
<!-- ```python -->
<!-- import pydase -->
<!---->
<!-- client = pydase.Client(hostname="<ip_addr>", port=8001) -->
<!-- service = client.proxy -->
<!-- service.some_method() -->
<!-- ``` -->
<!---->
<!-- **Use Cases:** -->
<!---->
<!-- - Integrating with other Python applications -->
<!-- - Automation and scripting -->
<!-- - Data analysis and manipulation -->

View File

@@ -0,0 +1,22 @@
# RESTful API
The `pydase` RESTful API allows for standard HTTP-based interactions and provides access to various functionalities through specific routes. This is particularly useful for integrating `pydase` services with other applications or for scripting and automation.
For example, you can get a value like this:
```python
import json
import requests
response = requests.get(
"http://<hostname>:<port>/api/v1/get_value?access_path=<full_access_path>"
)
serialized_value = json.loads(response.text)
```
To help developers understand and utilize the API, we provide an OpenAPI specification. This specification describes the available endpoints and corresponding request/response formats.
## OpenAPI Specification
<swagger-ui src="./openapi.yaml"/>

View File

@@ -0,0 +1,326 @@
openapi: 3.1.0
info:
version: 1.0.0
title: pydase API
tags:
- name: /api/v1
description: Version 1
paths:
/api/v1/get_value:
get:
tags:
- /api/v1
summary: Get the value of an existing attribute.
description: Get the value of an existing attribute by full access path.
operationId: getValue
parameters:
- in: query
name: access_path
schema:
type: string
example: device.channel[0].voltage
required: true
description: Full access path of the service attribute.
responses:
'200':
description: Successful Operation
content:
application/json:
schema:
$ref: '#/components/schemas/SerializedAttribute'
examples:
Exists:
summary: Attribute exists
value:
docs: My documentation string.
full_access_path: device.channel[0].voltage
readonly: false
type: float
value: 12.1
'400':
description: Could not get attribute
content:
application/json:
schema:
$ref: '#/components/schemas/SerializedException'
examples:
Attribute:
summary: Attribute does not exist
value:
docs: null
full_access_path: ""
name: AttributeError
readonly: true
type: Exception
value: "'MyService' object has no attribute 'invalid_attribute'"
List:
summary: List index out of range
value:
docs: null
full_access_path: ""
name: IndexError
readonly: true
type: Exception
value: "list index out of range"
/api/v1/update_value:
put:
tags:
- /api/v1
summary: Update an existing attribute.
description: Update an existing attribute by full access path.
operationId: updateValue
requestBody:
description: Update an existent attribute in the service
content:
application/json:
schema:
$ref: '#/components/schemas/UpdateValue'
required: true
responses:
'200':
description: Successful Operation
'400':
description: Could not Update Attribute
content:
application/json:
schema:
$ref: '#/components/schemas/SerializedException'
examples:
Attribute:
summary: Attribute does not exist
value:
docs: null
full_access_path: ""
name: AttributeError
readonly: true
type: Exception
value: "'MyService' object has no attribute 'invalid_attribute'"
ReadOnly:
summary: Attribute is read-only
value:
docs: null
full_access_path: ""
name: AttributeError
readonly: true
type: Exception
value: "property 'readonly_property' of 'MyService' object has no setter"
List:
summary: List index out of range
value:
docs: null
full_access_path: ""
name: IndexError
readonly: true
type: Exception
value: "list index out of range"
/api/v1/trigger_method:
put:
tags:
- /api/v1
summary: Trigger method.
description: Trigger method with by full access path with provided args and kwargs.
operationId: triggerMethod
requestBody:
description: Update an existent attribute in the service
content:
application/json:
schema:
$ref: '#/components/schemas/TriggerMethod'
required: true
responses:
'200':
description: Successful Operation
content:
application/json:
schema:
$ref: '#/components/schemas/SerializedAttribute'
examples:
NoneReturn:
summary: Function returns None
value:
docs: null
full_access_path: ""
readonly: false
type: "NoneType"
value: null
FloatReturn:
summary: Function returns float
value:
docs: null
full_access_path: ""
readonly: false
type: "float"
value: 23.2
'400':
description: Method does not exist
content:
application/json:
schema:
$ref: '#/components/schemas/SerializedException'
examples:
Args:
summary: Wrong number of arguments
value:
docs: null
full_access_path: ""
name: TypeError
readonly: true
type: Exception
value: "MyService.some_function() takes 1 positional argument but 2 were given"
Attribute:
summary: Attribute does not exist
value:
docs: null
full_access_path: ""
name: AttributeError
readonly: true
type: Exception
value: "'MyService' object has no attribute 'invalid_method'"
List:
summary: List index out of range
value:
docs: null
full_access_path: ""
name: IndexError
readonly: true
type: Exception
value: "list index out of range"
Dict:
summary: Dictionary key does not exist
value:
docs: null
full_access_path: ""
name: KeyError
readonly: true
type: Exception
value: "invalid_key"
components:
schemas:
UpdateValue:
required:
- access_path
- value
type: object
properties:
access_path:
type: string
example: device.channel[0].voltage
value:
$ref: '#/components/schemas/SerializedValue'
TriggerMethod:
required:
- access_path
type: object
properties:
access_path:
type: string
example: device.channel[0].voltage
args:
type: object
required:
- type
- value
- full_access_path
properties:
full_access_path:
type: string
example: ""
type:
type: string
enum:
- list
value:
type: array
items:
$ref: '#/components/schemas/SerializedValue'
kwargs:
type: object
required:
- type
- value
- full_access_path
properties:
full_access_path:
type: string
example: ""
type:
type: string
enum:
- dict
value:
type: object
additionalProperties:
$ref: '#/components/schemas/SerializedValue'
SerializedValue:
required:
- full_access_path
- type
- value
type: object
properties:
docs:
type: string | null
example: null
full_access_path:
type: string
example: ""
readonly:
type: boolean
example: false
type:
type: string
example: float
value:
type: any
example: 22.0
SerializedAttribute:
required:
- full_access_path
- type
- value
type: object
properties:
docs:
type: string | null
example: My documentation string.
full_access_path:
type: string
example: device.channel[0].voltage
readonly:
type: boolean
example: false
type:
type: string
example: float
value:
type: any
example: 22.0
SerializedException:
required:
- full_access_path
- type
- value
type: object
properties:
docs:
type: string | null
example: Raised when the access path does not correspond to a valid attribute.
full_access_path:
type: string
example: ""
name:
type: string
example: SerializationPathError
readonly:
type: boolean
example: true
type:
type: string
example: Exception
value:
type: string
examples:
value:
"Index '2': list index out of range"
some:
"Index '2': list index out of range"

View File

@@ -12,6 +12,7 @@ import { setNestedValueByPath, State } from "./utils/stateUtils";
import { WebSettingsContext, WebSetting } from "./WebSettings";
import { GenericComponent } from "./components/GenericComponent";
import { SerializedObject } from "./types/SerializedObject";
import useLocalStorage from "./hooks/useLocalStorage";
type Action =
| { type: "SET_DATA"; data: State }
@@ -53,15 +54,15 @@ const App = () => {
const [state, dispatch] = useReducer(reducer, null);
const [serviceName, setServiceName] = useState<string | null>(null);
const [webSettings, setWebSettings] = useState<Record<string, WebSetting>>({});
const [isInstantUpdate, setIsInstantUpdate] = useState(() => {
const saved = localStorage.getItem("isInstantUpdate");
return saved !== null ? JSON.parse(saved) : false;
});
const [isInstantUpdate, setIsInstantUpdate] = useLocalStorage(
"isInstantUpdate",
false,
);
const [showSettings, setShowSettings] = useState(false);
const [showNotification, setShowNotification] = useState(() => {
const saved = localStorage.getItem("showNotification");
return saved !== null ? JSON.parse(saved) : false;
});
const [showNotification, setShowNotification] = useLocalStorage(
"showNotification",
false,
);
const [notifications, setNotifications] = useState<Notification[]>([]);
const [connectionStatus, setConnectionStatus] = useState("connecting");
@@ -115,14 +116,6 @@ const App = () => {
};
}, []);
// Persist isInstantUpdate and showNotification state changes to localStorage
useEffect(() => {
localStorage.setItem("isInstantUpdate", JSON.stringify(isInstantUpdate));
}, [isInstantUpdate]);
useEffect(() => {
localStorage.setItem("showNotification", JSON.stringify(showNotification));
}, [showNotification]);
// Adding useCallback to prevent notify to change causing a re-render of all
// components
const addNotification = useCallback(

View File

@@ -5,5 +5,5 @@ export const WebSettingsContext = createContext<Record<string, WebSetting>>({});
export interface WebSetting {
displayName: string;
display: boolean;
index: number;
displayOrder: number;
}

View File

@@ -3,7 +3,7 @@ import { ToggleButton } from "react-bootstrap";
import { DocStringComponent } from "./DocStringComponent";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
interface ButtonComponentProps {
fullAccessPath: string;

View File

@@ -1,10 +1,11 @@
import { useEffect, useState } from "react";
import React from "react";
import { Card, Collapse } from "react-bootstrap";
import { ChevronDown, ChevronRight } from "react-bootstrap-icons";
import { GenericComponent } from "./GenericComponent";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import useLocalStorage from "../hooks/useLocalStorage";
import useSortedEntries from "../hooks/useSortedEntries";
interface DataServiceProps {
props: DataServiceJSON;
@@ -19,15 +20,9 @@ export type DataServiceJSON = Record<string, SerializedObject>;
export const DataServiceComponent = React.memo(
({ props, isInstantUpdate, addNotification, displayName, id }: DataServiceProps) => {
// Retrieve the initial state from localStorage, default to true if not found
const [open, setOpen] = useState(() => {
const savedState = localStorage.getItem(`dataServiceComponent-${id}-open`);
return savedState !== null ? JSON.parse(savedState) : true;
});
const [open, setOpen] = useLocalStorage(`dataServiceComponent-${id}-open`, true);
// Update localStorage whenever the state changes
useEffect(() => {
localStorage.setItem(`dataServiceComponent-${id}-open`, JSON.stringify(open));
}, [open]);
const sortedEntries = useSortedEntries(props);
if (displayName !== "") {
return (
@@ -38,9 +33,9 @@ export const DataServiceComponent = React.memo(
</Card.Header>
<Collapse in={open}>
<Card.Body>
{Object.entries(props).map(([key, value]) => (
{sortedEntries.map((value) => (
<GenericComponent
key={key}
key={value.full_access_path}
attribute={value}
isInstantUpdate={isInstantUpdate}
addNotification={addNotification}
@@ -54,9 +49,9 @@ export const DataServiceComponent = React.memo(
} else {
return (
<div className="component dataServiceComponent" id={id}>
{Object.entries(props).map(([key, value]) => (
{sortedEntries.map((value) => (
<GenericComponent
key={key}
key={value.full_access_path}
attribute={value}
isInstantUpdate={isInstantUpdate}
addNotification={addNotification}

View File

@@ -3,7 +3,8 @@ import { DocStringComponent } from "./DocStringComponent";
import { GenericComponent } from "./GenericComponent";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
import useSortedEntries from "../hooks/useSortedEntries";
interface DictComponentProps {
value: Record<string, SerializedObject>;
@@ -14,16 +15,16 @@ interface DictComponentProps {
}
export const DictComponent = React.memo((props: DictComponentProps) => {
const { value, docString, isInstantUpdate, addNotification, id } = props;
const { docString, isInstantUpdate, addNotification, id } = props;
const sortedEntries = useSortedEntries(props.value);
const renderCount = useRenderCount();
const valueArray = Object.values(value);
return (
<div className={"listComponent"} id={id}>
{process.env.NODE_ENV === "development" && <div>Render count: {renderCount}</div>}
<DocStringComponent docString={docString} />
{valueArray.map((item) => {
{sortedEntries.map((item) => {
return (
<GenericComponent
key={item.full_access_path}

View File

@@ -4,7 +4,7 @@ import { DocStringComponent } from "./DocStringComponent";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject, SerializedEnum } from "../types/SerializedObject";
import { propsAreEqual } from "../utils/propsAreEqual";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
interface EnumComponentProps extends SerializedEnum {
addNotification: (message: string, levelname?: LevelName) => void;

View File

@@ -4,7 +4,6 @@ import { NumberComponent, NumberObject } from "./NumberComponent";
import { SliderComponent } from "./SliderComponent";
import { EnumComponent } from "./EnumComponent";
import { MethodComponent } from "./MethodComponent";
import { AsyncMethodComponent } from "./AsyncMethodComponent";
import { StringComponent } from "./StringComponent";
import { ListComponent } from "./ListComponent";
import { DataServiceComponent, DataServiceJSON } from "./DataServiceComponent";
@@ -17,6 +16,7 @@ import { updateValue } from "../socket";
import { DictComponent } from "./DictComponent";
import { parseFullAccessPath } from "../utils/stateUtils";
import { SerializedEnum, SerializedObject } from "../types/SerializedObject";
import { TaskComponent, TaskStatus } from "./TaskComponent";
interface GenericComponentProps {
attribute: SerializedObject;
@@ -144,30 +144,16 @@ export const GenericComponent = React.memo(
/>
);
} else if (attribute.type === "method") {
if (!attribute.async) {
return (
<MethodComponent
fullAccessPath={fullAccessPath}
docString={attribute.doc}
addNotification={addNotification}
displayName={displayName}
id={id}
render={attribute.frontend_render}
/>
);
} else {
return (
<AsyncMethodComponent
fullAccessPath={fullAccessPath}
docString={attribute.doc}
value={attribute.value as "RUNNING" | null}
addNotification={addNotification}
displayName={displayName}
id={id}
render={attribute.frontend_render}
/>
);
}
return (
<MethodComponent
fullAccessPath={fullAccessPath}
docString={attribute.doc}
addNotification={addNotification}
displayName={displayName}
id={id}
render={attribute.frontend_render}
/>
);
} else if (attribute.type === "str") {
return (
<StringComponent
@@ -182,6 +168,17 @@ export const GenericComponent = React.memo(
id={id}
/>
);
} else if (attribute.type == "Task") {
return (
<TaskComponent
fullAccessPath={fullAccessPath}
docString={attribute.doc}
status={attribute.value["status"].value as TaskStatus}
addNotification={addNotification}
displayName={displayName}
id={id}
/>
);
} else if (attribute.type === "DataService") {
return (
<DataServiceComponent

View File

@@ -3,7 +3,7 @@ import { Card, Collapse, Image } from "react-bootstrap";
import { DocStringComponent } from "./DocStringComponent";
import { ChevronDown, ChevronRight } from "react-bootstrap-icons";
import { LevelName } from "./NotificationsComponent";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
interface ImageComponentProps {
fullAccessPath: string;

View File

@@ -3,7 +3,8 @@ import { DocStringComponent } from "./DocStringComponent";
import { GenericComponent } from "./GenericComponent";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
import useSortedEntries from "../hooks/useSortedEntries";
interface ListComponentProps {
value: SerializedObject[];
@@ -14,7 +15,9 @@ interface ListComponentProps {
}
export const ListComponent = React.memo((props: ListComponentProps) => {
const { value, docString, isInstantUpdate, addNotification, id } = props;
const { docString, isInstantUpdate, addNotification, id } = props;
const sortedEntries = useSortedEntries(props.value);
const renderCount = useRenderCount();
@@ -22,7 +25,7 @@ export const ListComponent = React.memo((props: ListComponentProps) => {
<div className={"listComponent"} id={id}>
{process.env.NODE_ENV === "development" && <div>Render count: {renderCount}</div>}
<DocStringComponent docString={docString} />
{value.map((item) => {
{sortedEntries.map((item) => {
return (
<GenericComponent
key={item.full_access_path}

View File

@@ -3,7 +3,7 @@ import { runMethod } from "../socket";
import { Button, Form } from "react-bootstrap";
import { DocStringComponent } from "./DocStringComponent";
import { LevelName } from "./NotificationsComponent";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
import { propsAreEqual } from "../utils/propsAreEqual";
interface MethodProps {

View File

@@ -5,7 +5,7 @@ import "../App.css";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import { QuantityMap } from "../types/QuantityMap";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
// TODO: add button functionality
@@ -132,6 +132,8 @@ const handleNumericKey = (
selectionStart: number,
selectionEnd: number,
) => {
let newValue = value;
// Check if a number key or a decimal point key is pressed
if (key === "." && value.includes(".")) {
// Check if value already contains a decimal. If so, ignore input.
@@ -139,14 +141,34 @@ const handleNumericKey = (
return { value, selectionStart };
}
let newValue = value;
// Handle minus sign input
if (key === "-") {
if (selectionStart === 0 && selectionEnd > selectionStart) {
// Replace selection with minus if selection starts at 0
newValue = "-" + value.slice(selectionEnd);
selectionStart = 1;
} else if (selectionStart === 0 && !value.startsWith("-")) {
// Add minus at the beginning if it doesn't exist
newValue = "-" + value;
selectionStart = 1;
} else if (
(selectionStart === 0 || selectionStart === 1) &&
value.startsWith("-")
) {
// Remove minus if it exists
newValue = value.slice(1);
selectionStart = 0;
}
return { value: newValue, selectionStart };
}
// Add the new key at the cursor's position
if (selectionEnd > selectionStart) {
// If there is a selection, replace it with the key
newValue = value.slice(0, selectionStart) + key + value.slice(selectionEnd);
} else {
// otherwise, append the key after the selection start
// Otherwise, insert the key at the cursor position
newValue = value.slice(0, selectionStart) + key + value.slice(selectionStart);
}
@@ -176,7 +198,6 @@ export const NumberComponent = React.memo((props: NumberComponentProps) => {
const handleKeyDown = (event: React.KeyboardEvent<HTMLInputElement>) => {
const { key, target } = event;
console.log(typeof key);
// Typecast
const inputTarget = target as HTMLInputElement;
@@ -202,17 +223,7 @@ export const NumberComponent = React.memo((props: NumberComponentProps) => {
// Select everything when pressing Ctrl + a
inputTarget.setSelectionRange(0, value.length);
return;
} else if (key === "-") {
if (selectionStart === 0 && !value.startsWith("-")) {
newValue = "-" + value;
selectionStart++;
} else if (value.startsWith("-") && selectionStart === 1) {
newValue = value.substring(1); // remove minus sign
selectionStart--;
} else {
return; // Ignore "-" pressed in other positions
}
} else if (key >= "0" && key <= "9") {
} else if ((key >= "0" && key <= "9") || key === "-") {
// Check if a number key or a decimal point key is pressed
({ value: newValue, selectionStart } = handleNumericKey(
key,

View File

@@ -7,7 +7,7 @@ import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import { QuantityMap } from "../types/QuantityMap";
import { propsAreEqual } from "../utils/propsAreEqual";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
interface SliderComponentProps {
fullAccessPath: string;

View File

@@ -4,7 +4,7 @@ import { DocStringComponent } from "./DocStringComponent";
import "../App.css";
import { LevelName } from "./NotificationsComponent";
import { SerializedObject } from "../types/SerializedObject";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
// TODO: add button functionality

View File

@@ -3,69 +3,53 @@ import { runMethod } from "../socket";
import { Form, Button, InputGroup, Spinner } from "react-bootstrap";
import { DocStringComponent } from "./DocStringComponent";
import { LevelName } from "./NotificationsComponent";
import { useRenderCount } from "../hooks/useRenderCount";
import useRenderCount from "../hooks/useRenderCount";
interface AsyncMethodProps {
export type TaskStatus = "RUNNING" | "NOT_RUNNING";
interface TaskProps {
fullAccessPath: string;
value: "RUNNING" | null;
docString: string | null;
hideOutput?: boolean;
status: TaskStatus;
addNotification: (message: string, levelname?: LevelName) => void;
displayName: string;
id: string;
render: boolean;
}
export const AsyncMethodComponent = React.memo((props: AsyncMethodProps) => {
const {
fullAccessPath,
docString,
value: runningTask,
addNotification,
displayName,
id,
} = props;
// Conditional rendering based on the 'render' prop.
if (!props.render) {
return null;
}
export const TaskComponent = React.memo((props: TaskProps) => {
const { fullAccessPath, docString, status, addNotification, displayName, id } = props;
const renderCount = useRenderCount();
const formRef = useRef(null);
const [spinning, setSpinning] = useState(false);
const name = fullAccessPath.split(".").at(-1)!;
const parentPath = fullAccessPath.slice(0, -(name.length + 1));
useEffect(() => {
let message: string;
if (runningTask === null) {
message = `${fullAccessPath} task was stopped.`;
} else {
if (status === "RUNNING") {
message = `${fullAccessPath} was started.`;
} else {
message = `${fullAccessPath} was stopped.`;
}
addNotification(message);
setSpinning(false);
}, [props.value]);
}, [status]);
const execute = async (event: React.FormEvent) => {
event.preventDefault();
let method_name: string;
if (runningTask !== undefined && runningTask !== null) {
method_name = `stop_${name}`;
} else {
method_name = `start_${name}`;
}
const method_name = status == "RUNNING" ? "stop" : "start";
const accessPath = [parentPath, method_name].filter((element) => element).join(".");
const accessPath = [fullAccessPath, method_name]
.filter((element) => element)
.join(".");
setSpinning(true);
runMethod(accessPath);
};
return (
<div className="component asyncMethodComponent" id={id}>
<div className="component taskComponent" id={id}>
{process.env.NODE_ENV === "development" && <div>Render count: {renderCount}</div>}
<Form onSubmit={execute} ref={formRef}>
<InputGroup>
@@ -76,7 +60,7 @@ export const AsyncMethodComponent = React.memo((props: AsyncMethodProps) => {
<Button id={`button-${id}`} type="submit">
{spinning ? (
<Spinner size="sm" role="status" aria-hidden="true" />
) : runningTask === "RUNNING" ? (
) : status === "RUNNING" ? (
"Stop "
) : (
"Start "
@@ -88,4 +72,4 @@ export const AsyncMethodComponent = React.memo((props: AsyncMethodProps) => {
);
});
AsyncMethodComponent.displayName = "AsyncMethodComponent";
TaskComponent.displayName = "TaskComponent";

View File

@@ -0,0 +1,18 @@
import { useState, useEffect } from "react";
export default function useLocalStorage(key: string, defaultValue: unknown) {
const [value, setValue] = useState(() => {
const storedValue = localStorage.getItem(key);
if (storedValue) {
return JSON.parse(storedValue);
}
return defaultValue;
});
useEffect(() => {
if (value === undefined) return;
localStorage.setItem(key, JSON.stringify(value));
}, [value, key]);
return [value, setValue];
}

View File

@@ -1,6 +1,6 @@
import { useRef, useEffect } from "react";
export function useRenderCount() {
export default function useRenderCount() {
const count = useRef(0);
useEffect(() => {

View File

@@ -0,0 +1,28 @@
import { useContext } from "react";
import { WebSettingsContext } from "../WebSettings";
import { SerializedObject } from "../types/SerializedObject";
export default function useSortedEntries(
props: Record<string, SerializedObject> | SerializedObject[],
) {
const webSettings = useContext(WebSettingsContext);
// Get the order for sorting
const getOrder = (fullAccessPath: string) => {
return webSettings[fullAccessPath]?.displayOrder ?? Number.MAX_SAFE_INTEGER;
};
// Sort entries based on whether props is an array or an object
let sortedEntries;
if (Array.isArray(props)) {
// Need to make copy of array to leave the original array unmodified
sortedEntries = [...props].sort((objectA, objectB) => {
return getOrder(objectA.full_access_path) - getOrder(objectB.full_access_path);
});
} else {
sortedEntries = Object.values(props).sort((objectA, objectB) => {
return getOrder(objectA.full_access_path) - getOrder(objectB.full_access_path);
});
}
return sortedEntries;
}

View File

@@ -77,7 +77,12 @@ type SerializedException = SerializedObjectBase & {
type: "Exception";
};
type DataServiceTypes = "DataService" | "Image" | "NumberSlider" | "DeviceConnection";
type DataServiceTypes =
| "DataService"
| "Image"
| "NumberSlider"
| "DeviceConnection"
| "Task";
type SerializedDataService = SerializedObjectBase & {
name: string;

View File

@@ -4,8 +4,13 @@ edit_uri: blob/docs/docs/
nav:
- Home: index.md
- Getting Started: getting-started.md
- User Guide:
- User Guide:
- Components Guide: user-guide/Components.md
- Interacting with pydase Services: user-guide/interaction/README.md
- Achieving Service Persistence: user-guide/Service_Persistence.md
- Understanding Tasks: user-guide/Tasks.md
- Understanding Units: user-guide/Understanding-Units.md
- Validating Property Setters: user-guide/Validating-Property-Setters.md
- Developer Guide:
- Developer Guide: dev-guide/README.md
- API Reference: dev-guide/api.md
@@ -16,7 +21,10 @@ nav:
- Contributing: about/contributing.md
- License: about/license.md
theme: readthedocs
theme:
name: material
features:
- content.code.copy
extra_css:
- css/extra.css
@@ -26,17 +34,45 @@ markdown_extensions:
- toc:
permalink: true
- pymdownx.highlight:
use_pygments: true
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.snippets
- pymdownx.superfences
# - pymdownx.highlight:
# - pymdownx.inlinehilite
- pymdownx.inlinehilite
plugins:
- include-markdown
- search
- mkdocstrings
- include-markdown
- search
- mkdocstrings:
handlers:
python:
paths: [src] # search packages in the src folder
import:
- https://docs.python.org/3/objects.inv
- https://docs.pydantic.dev/latest/objects.inv
- https://confz.readthedocs.io/en/latest/objects.inv
options:
show_source: true
inherited_members: true
merge_init_into_class: true
show_signature_annotations: true
signature_crossrefs: true
separate_signature: true
docstring_options:
ignore_init_summary: true
# docstring_section_style: list
heading_level: 2
parameter_headings: true
show_root_heading: true
show_root_full_path: true
show_symbol_type_heading: true
show_symbol_type_toc: true
# summary: true
unwrap_annotated: true
- swagger-ui-tag
watch:
- src/pydase

1073
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "pydase"
version = "0.8.4"
version = "0.10.5"
description = "A flexible and robust Python library for creating, managing, and interacting with data services, with built-in support for web and RPC servers, and customizable features for diverse use cases."
authors = ["Mose Mueller <mosmuell@ethz.ch>"]
readme = "README.md"
@@ -9,14 +9,14 @@ packages = [{ include = "pydase", from = "src" }]
[tool.poetry.dependencies]
python = "^3.10"
fastapi = "^0.108.0"
uvicorn = "^0.27.0"
toml = "^0.10.2"
python-socketio = "^5.8.0"
confz = "^2.0.0"
pint = "^0.24"
websocket-client = "^1.7.0"
aiohttp = "^3.9.3"
click = "^8.1.7"
aiohttp-middlewares = "^2.3.0"
[tool.poetry.group.dev]
optional = true
@@ -29,17 +29,18 @@ mypy = "^1.4.1"
matplotlib = "^3.7.2"
pyright = "^1.1.323"
pytest-mock = "^3.11.1"
ruff = "^0.2.0"
ruff = "^0.5.0"
pytest-asyncio = "^0.23.2"
[tool.poetry.group.docs]
optional = true
[tool.poetry.group.docs.dependencies]
mkdocs = "^1.5.2"
mkdocs-material = "^9.5.30"
mkdocs-include-markdown-plugin = "^3.9.1"
mkdocstrings = "^0.22.0"
mkdocstrings = {extras = ["python"], version = "^0.25.2"}
pymdown-extensions = "^10.1"
mkdocs-swagger-ui-tag = "^0.6.10"
[build-system]
requires = ["poetry-core"]

View File

@@ -1,5 +1,6 @@
import asyncio
import logging
import sys
import threading
from typing import TypedDict, cast
@@ -10,6 +11,12 @@ from pydase.client.proxy_loader import ProxyClassMixin, ProxyLoader
from pydase.utils.serialization.deserializer import loads
from pydase.utils.serialization.types import SerializedDataService, SerializedObject
if sys.version_info < (3, 11):
from typing_extensions import Self
else:
from typing import Self
logger = logging.getLogger(__name__)
@@ -33,10 +40,10 @@ class ProxyClass(ProxyClassMixin, pydase.components.DeviceConnection):
via a socket.io client in an asyncio environment.
Args:
sio_client (socketio.AsyncClient):
sio_client:
The socket.io client instance used for asynchronous communication with the
pydase service server.
loop (asyncio.AbstractEventLoop):
loop:
The event loop in which the client operations are managed and executed.
This class is used to create a proxy object that behaves like a local representation
@@ -44,26 +51,27 @@ class ProxyClass(ProxyClassMixin, pydase.components.DeviceConnection):
while actually communicating over network protocols.
It can also be used as an attribute of a pydase service itself, e.g.
```python
import pydase
```python
import pydase
class MyService(pydase.DataService):
proxy = pydase.Client(
hostname="...", port=8001, block_until_connected=False
).proxy
class MyService(pydase.DataService):
proxy = pydase.Client(
hostname="...", port=8001, block_until_connected=False
).proxy
if __name__ == "__main__":
service = MyService()
server = pydase.Server(service, web_port=8002).run()
```
if __name__ == "__main__":
service = MyService()
server = pydase.Server(service, web_port=8002).run()
```
"""
def __init__(
self, sio_client: socketio.AsyncClient, loop: asyncio.AbstractEventLoop
) -> None:
super().__init__()
pydase.components.DeviceConnection.__init__(self)
self._initialise(sio_client=sio_client, loop=loop)
@@ -74,19 +82,16 @@ class Client:
connection, disconnection, and updates, and ensures that the proxy object is
up-to-date with the server state.
Attributes:
proxy (ProxyClass):
A proxy object representing the remote service, facilitating interaction as
if it were local.
Args:
hostname (str):
Hostname of the exposed service this client attempts to connect to.
Default is "localhost".
port (int):
Port of the exposed service this client attempts to connect on.
Default is 8001.
block_until_connected (bool):
url:
The URL of the pydase Socket.IO server. This should always contain the
protocol and the hostname.
Examples:
- `wss://my-service.example.com` # for secure connections, use wss
- `ws://localhost:8001`
block_until_connected:
If set to True, the constructor will block until the connection to the
service has been established. This is useful for ensuring the client is
ready to use immediately after instantiation. Default is True.
@@ -94,42 +99,62 @@ class Client:
def __init__(
self,
hostname: str,
port: int,
*,
url: str,
block_until_connected: bool = True,
):
self._hostname = hostname
self._port = port
self._url = url
self._sio = socketio.AsyncClient()
self._loop = asyncio.new_event_loop()
self.proxy = ProxyClass(sio_client=self._sio, loop=self._loop)
"""A proxy object representing the remote service, facilitating interaction as
if it were local."""
self._thread = threading.Thread(
target=asyncio_loop_thread, args=(self._loop,), daemon=True
)
self._thread.start()
self.connect(block_until_connected=block_until_connected)
def __enter__(self) -> Self:
self.connect(block_until_connected=True)
return self
def __del__(self) -> None:
self.disconnect()
def connect(self, block_until_connected: bool = True) -> None:
connection_future = asyncio.run_coroutine_threadsafe(
self._connect(), self._loop
)
if block_until_connected:
connection_future.result()
def disconnect(self) -> None:
connection_future = asyncio.run_coroutine_threadsafe(
self._disconnect(), self._loop
)
connection_future.result()
async def _connect(self) -> None:
logger.debug("Connecting to server '%s:%s' ...", self._hostname, self._port)
logger.debug("Connecting to server '%s' ...", self._url)
await self._setup_events()
await self._sio.connect(
f"ws://{self._hostname}:{self._port}",
self._url,
socketio_path="/ws/socket.io",
transports=["websocket"],
retry=True,
)
async def _disconnect(self) -> None:
await self._sio.disconnect()
async def _setup_events(self) -> None:
self._sio.on("connect", self._handle_connect)
self._sio.on("disconnect", self._handle_disconnect)
self._sio.on("notify", self._handle_update)
async def _handle_connect(self) -> None:
logger.debug("Connected to '%s:%s' ...", self._hostname, self._port)
logger.debug("Connected to '%s' ...", self._url)
serialized_object = cast(
SerializedDataService, await self._sio.call("service_serialization")
)
@@ -141,7 +166,7 @@ class Client:
self.proxy._connected = True
async def _handle_disconnect(self) -> None:
logger.debug("Disconnected from '%s:%s' ...", self._hostname, self._port)
logger.debug("Disconnected from '%s' ...", self._url)
self.proxy._connected = False
async def _handle_update(self, data: NotifyDict) -> None:

View File

@@ -351,7 +351,7 @@ class ProxyLoader:
) -> Any:
# Custom types like Components or DataService classes
component_class = cast(
type, Deserializer.get_component_class(serialized_object["type"])
type, Deserializer.get_service_base_class(serialized_object["type"])
)
class_bases = (
ProxyClassMixin,

View File

@@ -7,58 +7,59 @@ class ColouredEnum(Enum):
This class extends the standard Enum but requires its values to be valid CSS
colour codes. Supported colour formats include:
- Hexadecimal colours
- Hexadecimal colours with transparency
- RGB colours
- RGBA colours
- HSL colours
- HSLA colours
- Predefined/Cross-browser colour names
- Hexadecimal colours
- Hexadecimal colours with transparency
- RGB colours
- RGBA colours
- HSL colours
- HSLA colours
- Predefined/Cross-browser colour names
Refer to the this website for more details on colour formats:
(https://www.w3schools.com/cssref/css_colours_legal.php)
The behavior of this component in the UI depends on how it's defined in the data
service:
- As property with a setter or as attribute: Renders as a dropdown menu,
allowing users to select and change its value from the frontend.
- As property without a setter: Displays as a coloured box with the key of the
`ColouredEnum` as text inside, serving as a visual indicator without user
interaction.
- As property with a setter or as attribute: Renders as a dropdown menu, allowing
users to select and change its value from the frontend.
- As property without a setter: Displays as a coloured box with the key of the
`ColouredEnum` as text inside, serving as a visual indicator without user
interaction.
Example:
--------
```python
import pydase.components as pyc
import pydase
```python
import pydase.components as pyc
import pydase
class MyStatus(pyc.ColouredEnum):
PENDING = "#FFA500" # Orange
RUNNING = "#0000FF80" # Transparent Blue
PAUSED = "rgb(169, 169, 169)" # Dark Gray
RETRYING = "rgba(255, 255, 0, 0.3)" # Transparent Yellow
COMPLETED = "hsl(120, 100%, 50%)" # Green
FAILED = "hsla(0, 100%, 50%, 0.7)" # Transparent Red
CANCELLED = "SlateGray" # Slate Gray
class MyStatus(pyc.ColouredEnum):
PENDING = "#FFA500" # Orange
RUNNING = "#0000FF80" # Transparent Blue
PAUSED = "rgb(169, 169, 169)" # Dark Gray
RETRYING = "rgba(255, 255, 0, 0.3)" # Transparent Yellow
COMPLETED = "hsl(120, 100%, 50%)" # Green
FAILED = "hsla(0, 100%, 50%, 0.7)" # Transparent Red
CANCELLED = "SlateGray" # Slate Gray
class StatusExample(pydase.DataService):
_status = MyStatus.RUNNING
class StatusExample(pydase.DataService):
_status = MyStatus.RUNNING
@property
def status(self) -> MyStatus:
return self._status
@property
def status(self) -> MyStatus:
return self._status
@status.setter
def status(self, value: MyStatus) -> None:
# Custom logic here...
self._status = value
@status.setter
def status(self, value: MyStatus) -> None:
# Custom logic here...
self._status = value
# Example usage:
my_service = StatusExample()
my_service.status = MyStatus.FAILED
```
# Example usage:
my_service = StatusExample()
my_service.status = MyStatus.FAILED
```
Note
----
Each enumeration name and value must be unique. This means that you should use
different colour formats when you want to use a colour multiple times.
Note:
Each enumeration name and value must be unique. This means that you should use
different colour formats when you want to use a colour multiple times.
"""

View File

@@ -1,6 +1,7 @@
import asyncio
import pydase.data_service
import pydase.task.decorator
class DeviceConnection(pydase.data_service.DataService):
@@ -19,22 +20,26 @@ class DeviceConnection(pydase.data_service.DataService):
to the device. This method should update the `self._connected` attribute to reflect
the connection status:
>>> class MyDeviceConnection(DeviceConnection):
... def connect(self) -> None:
... # Implementation to connect to the device
... # Update self._connected to `True` if connection is successful,
... # `False` otherwise
... ...
```python
class MyDeviceConnection(DeviceConnection):
def connect(self) -> None:
# Implementation to connect to the device
# Update self._connected to `True` if connection is successful,
# `False` otherwise
...
```
Optionally, if additional logic is needed to determine the connection status,
the `connected` property can also be overridden:
>>> class MyDeviceConnection(DeviceConnection):
... @property
... def connected(self) -> bool:
... # Custom logic to determine connection status
... return some_custom_condition
...
```python
class MyDeviceConnection(DeviceConnection):
@property
def connected(self) -> bool:
# Custom logic to determine connection status
return some_custom_condition
```
Frontend Representation
-----------------------
@@ -48,7 +53,6 @@ class DeviceConnection(pydase.data_service.DataService):
def __init__(self) -> None:
super().__init__()
self._connected = False
self._autostart_tasks["_handle_connection"] = () # type: ignore
self._reconnection_wait_time = 10.0
def connect(self) -> None:
@@ -66,6 +70,7 @@ class DeviceConnection(pydase.data_service.DataService):
"""
return self._connected
@pydase.task.decorator.task(autostart=True)
async def _handle_connection(self) -> None:
"""Automatically tries reconnecting to the device if it is not connected.
This method leverages the `connect` method and the `connected` property to

View File

@@ -11,76 +11,74 @@ class NumberSlider(DataService):
This class models a UI slider for a data service, allowing for adjustments of a
parameter within a specified range and increments.
Parameters:
-----------
value (float, optional):
The initial value of the slider. Defaults to 0.
min (float, optional):
The minimum value of the slider. Defaults to 0.
max (float, optional):
The maximum value of the slider. Defaults to 100.
step_size (float, optional):
The increment/decrement step size of the slider. Defaults to 1.0.
Args:
value:
The initial value of the slider. Defaults to 0.
min_:
The minimum value of the slider. Defaults to 0.
max_:
The maximum value of the slider. Defaults to 100.
step_size:
The increment/decrement step size of the slider. Defaults to 1.0.
Example:
--------
```python
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: float = 0.0,
min_: float = 0.0,
max_: float = 100.0,
step_size: float = 1.0,
) -> None:
super().__init__(value, min_, max_, step_size)
```python
class MySlider(pydase.components.NumberSlider):
def __init__(
self,
value: float = 0.0,
min_: float = 0.0,
max_: float = 100.0,
step_size: float = 1.0,
) -> None:
super().__init__(value, min_, max_, step_size)
@property
def min(self) -> float:
return self._min
@property
def min(self) -> float:
return self._min
@min.setter
def min(self, value: float) -> None:
self._min = value
@min.setter
def min(self, value: float) -> None:
self._min = value
@property
def max(self) -> float:
return self._max
@property
def max(self) -> float:
return self._max
@max.setter
def max(self, value: float) -> None:
self._max = value
@max.setter
def max(self, value: float) -> None:
self._max = value
@property
def step_size(self) -> float:
return self._step_size
@property
def step_size(self) -> float:
return self._step_size
@step_size.setter
def step_size(self, value: float) -> None:
self._step_size = value
@step_size.setter
def step_size(self, value: float) -> None:
self._step_size = value
@property
def value(self) -> float:
return self._value
@property
def value(self) -> float:
return self._value
@value.setter
def value(self, value: float) -> None:
if value < self._min or value > self._max:
raise ValueError(
"Value is either below allowed min or above max value."
)
@value.setter
def value(self, value: float) -> None:
if value < self._min or value > self._max:
raise ValueError(
"Value is either below allowed min or above max value."
)
self._value = value
self._value = value
class MyService(pydase.DataService):
def __init__(self) -> None:
self.voltage = MyService()
class MyService(pydase.DataService):
def __init__(self) -> None:
self.voltage = MyService()
# Modifying or accessing the voltage value:
my_service = MyService()
my_service.voltage.value = 5
print(my_service.voltage.value) # Output: 5
```
# Modifying or accessing the voltage value:
my_service = MyService()
my_service.voltage.value = 5
print(my_service.voltage.value) # Output: 5
```
"""
def __init__(

View File

@@ -5,19 +5,31 @@ from confz import BaseConfig, EnvSource
class OperationMode(BaseConfig): # type: ignore[misc]
environment: Literal["development", "production"] = "development"
environment: Literal["testing", "development", "production"] = "development"
"""The service's operation mode."""
CONFIG_SOURCES = EnvSource(allow=["ENVIRONMENT"])
class ServiceConfig(BaseConfig): # type: ignore[misc]
"""Service configuration.
Variables can be set through environment variables prefixed with `SERVICE_` or an
`.env` file containing those variables.
"""
config_dir: Path = Path("config")
"""Configuration directory"""
web_port: int = 8001
"""Web server port"""
CONFIG_SOURCES = EnvSource(allow_all=True, prefix="SERVICE_", file=".env")
class WebServerConfig(BaseConfig): # type: ignore[misc]
"""The service's web server configuration."""
generate_web_settings: bool = False
"""Should generate web_settings.json file"""
CONFIG_SOURCES = EnvSource(allow=["GENERATE_WEB_SETTINGS"])

View File

@@ -1,15 +1,7 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any
from pydase.observer_pattern.observable.observable import Observable
if TYPE_CHECKING:
from pydase.data_service.data_service import DataService
from pydase.data_service.task_manager import TaskManager
class AbstractDataService(Observable):
__root__: DataService
_task_manager: TaskManager
_autostart_tasks: dict[str, tuple[Any]]
pass

View File

@@ -5,12 +5,12 @@ from typing import Any
import pydase.units as u
from pydase.data_service.abstract_data_service import AbstractDataService
from pydase.data_service.task_manager import TaskManager
from pydase.observer_pattern.observable.observable import (
Observable,
)
from pydase.utils.helpers import (
get_class_and_instance_attributes,
is_descriptor,
is_property_attribute,
)
from pydase.utils.serialization.serializer import (
@@ -24,11 +24,6 @@ logger = logging.getLogger(__name__)
class DataService(AbstractDataService):
def __init__(self) -> None:
super().__init__()
self._task_manager = TaskManager(self)
if not hasattr(self, "_autostart_tasks"):
self._autostart_tasks = {}
self.__check_instance_classes()
def __setattr__(self, __name: str, __value: Any) -> None:
@@ -74,7 +69,7 @@ class DataService(AbstractDataService):
if not issubclass(
value_class,
(int | float | bool | str | list | dict | Enum | u.Quantity | Observable),
):
) and not is_descriptor(__value):
logger.warning(
"Class '%s' does not inherit from DataService. This may lead to"
" unexpected behaviour!",

View File

@@ -2,8 +2,6 @@ import logging
from typing import TYPE_CHECKING, Any, cast
from pydase.utils.serialization.serializer import (
SerializationPathError,
SerializationValueError,
SerializedObject,
get_nested_dict_by_path,
set_nested_value_by_path,
@@ -38,16 +36,7 @@ class DataServiceCache:
)
def get_value_dict_from_cache(self, full_access_path: str) -> SerializedObject:
try:
return get_nested_dict_by_path(
cast(dict[str, SerializedObject], self._cache["value"]),
full_access_path,
)
except (SerializationPathError, SerializationValueError, KeyError):
return {
"full_access_path": full_access_path,
"value": None,
"type": "None",
"doc": None,
"readonly": False,
}
return get_nested_dict_by_path(
cast(dict[str, SerializedObject], self._cache["value"]),
full_access_path,
)

View File

@@ -8,8 +8,15 @@ from pydase.observer_pattern.observable.observable_object import ObservableObjec
from pydase.observer_pattern.observer.property_observer import (
PropertyObserver,
)
from pydase.utils.helpers import get_object_attr_from_path
from pydase.utils.serialization.serializer import SerializedObject, dump
from pydase.utils.helpers import (
get_object_attr_from_path,
normalize_full_access_path_string,
)
from pydase.utils.serialization.serializer import (
SerializationPathError,
SerializedObject,
dump,
)
logger = logging.getLogger(__name__)
@@ -29,12 +36,22 @@ class DataServiceObserver(PropertyObserver):
for changing_attribute in self.changing_attributes
):
return
cached_value_dict: SerializedObject
cached_value_dict = deepcopy(
self.state_manager._data_service_cache.get_value_dict_from_cache(
full_access_path
try:
cached_value_dict = deepcopy(
self.state_manager.cache_manager.get_value_dict_from_cache(
full_access_path
)
)
)
except (SerializationPathError, KeyError):
cached_value_dict = {
"full_access_path": full_access_path,
"value": None,
"type": "None",
"doc": None,
"readonly": False,
}
cached_value = cached_value_dict.get("value")
if (
@@ -46,7 +63,7 @@ class DataServiceObserver(PropertyObserver):
self._update_cache_value(full_access_path, value, cached_value_dict)
cached_value_dict = deepcopy(
self.state_manager._data_service_cache.get_value_dict_from_cache(
self.state_manager.cache_manager.get_value_dict_from_cache(
full_access_path
)
)
@@ -79,13 +96,14 @@ class DataServiceObserver(PropertyObserver):
value_dict["type"],
cached_value_dict["type"],
)
self.state_manager._data_service_cache.update_cache(
self.state_manager.cache_manager.update_cache(
full_access_path,
value,
)
def _notify_dependent_property_changes(self, changed_attr_path: str) -> None:
changed_props = self.property_deps_dict.get(changed_attr_path, [])
normalized_attr_path = normalize_full_access_path_string(changed_attr_path)
changed_props = self.property_deps_dict.get(normalized_attr_path, [])
for prop in changed_props:
# only notify about changing attribute if it is not currently being
# "changed" e.g. when calling the getter of a property within another
@@ -110,8 +128,10 @@ class DataServiceObserver(PropertyObserver):
object.
Args:
callback (Callable[[str, Any, dict[str, Any]]): The callback function to be
registered. The function should have the following signature:
callback:
The callback function to be registered. The function should have the
following signature:
- full_access_path (str): The full dot-notation access path of the
changed attribute. This path indicates the location of the changed
attribute within the observable object's structure.

View File

@@ -1,3 +1,4 @@
import contextlib
import json
import logging
import os
@@ -32,17 +33,19 @@ def load_state(func: Callable[..., Any]) -> Callable[..., Any]:
the value should be loaded from the JSON file.
Example:
>>> class Service(pydase.DataService):
... _name = "Service"
...
... @property
... def name(self) -> str:
... return self._name
...
... @name.setter
... @load_state
... def name(self, value: str) -> None:
... self._name = value
```python
class Service(pydase.DataService):
_name = "Service"
@property
def name(self) -> str:
return self._name
@name.setter
@load_state
def name(self, value: str) -> None:
self._name = value
```
"""
func._load_state = True # type: ignore[attr-defined]
@@ -84,13 +87,11 @@ class StateManager:
StateManager provides a snapshot of the DataService's state that is sufficiently
accurate for initial rendering and interaction.
Attributes:
cache (dict[str, Any]):
A dictionary cache of the DataService's state.
filename (str):
The file name used for storing the DataService's state.
service (DataService):
Args:
service:
The DataService instance whose state is being managed.
filename:
The file name used for storing the DataService's state.
Note:
The StateManager's cache updates are triggered by notifications and do not
@@ -113,19 +114,12 @@ class StateManager:
self.filename = filename
self.service = service
self._data_service_cache = DataServiceCache(self.service)
@property
def cache(self) -> SerializedObject:
"""Returns the cached DataService state."""
return self._data_service_cache.cache
self.cache_manager = DataServiceCache(self.service)
@property
def cache_value(self) -> dict[str, SerializedObject]:
"""Returns the "value" value of the DataService serialization."""
return cast(
dict[str, SerializedObject], self._data_service_cache.cache["value"]
)
return cast(dict[str, SerializedObject], self.cache_manager.cache["value"])
def save_state(self) -> None:
"""
@@ -157,9 +151,18 @@ class StateManager:
for path in generate_serialized_data_paths(json_dict):
if self.__is_loadable_state_attribute(path):
nested_json_dict = get_nested_dict_by_path(json_dict, path)
nested_class_dict = self._data_service_cache.get_value_dict_from_cache(
path
)
try:
nested_class_dict = self.cache_manager.get_value_dict_from_cache(
path
)
except (SerializationPathError, KeyError):
nested_class_dict = {
"full_access_path": path,
"value": None,
"type": "None",
"doc": None,
"readonly": False,
}
value_type = nested_json_dict["type"]
class_attr_value_type = nested_class_dict.get("type", None)
@@ -197,17 +200,23 @@ class StateManager:
It also handles type-specific conversions for the new value before setting it.
Args:
path: A dot-separated string indicating the hierarchical path to the
path:
A dot-separated string indicating the hierarchical path to the
attribute.
value: The new value to set for the attribute.
serialized_value:
The serialized representation of the new value to set for the attribute.
"""
current_value_dict = get_nested_dict_by_path(self.cache_value, path)
# This will also filter out methods as they are 'read-only'
if current_value_dict["readonly"]:
logger.debug("Attribute '%s' is read-only. Ignoring new value...", path)
return
try:
current_value_dict = self.cache_manager.get_value_dict_from_cache(path)
except (SerializationPathError, KeyError):
current_value_dict = {
"full_access_path": path,
"value": None,
"type": "None",
"doc": None,
"readonly": False,
}
if "full_access_path" not in serialized_value:
# Backwards compatibility for JSON files not containing the
@@ -237,24 +246,21 @@ class StateManager:
def __update_attribute_by_path(
self, path: str, serialized_value: SerializedObject
) -> None:
is_value_set = False
path_parts = parse_full_access_path(path)
target_obj = get_object_by_path_parts(self.service, path_parts[:-1])
attr_cache_type = get_nested_dict_by_path(self.cache_value, path)["type"]
# De-serialize the value
if attr_cache_type in ("ColouredEnum", "Enum"):
if self.__cached_value_is_enum(path):
enum_attr = get_object_by_path_parts(target_obj, [path_parts[-1]])
# take the value of the existing enum class
if serialized_value["type"] in ("ColouredEnum", "Enum"):
try:
# This error will arise when setting an enum from another enum class.
# In this case, we resort to loading the enum and setting it directly.
with contextlib.suppress(KeyError):
value = enum_attr.__class__[serialized_value["value"]]
except KeyError:
# This error will arise when setting an enum from another enum class
# In this case, we resort to loading the enum and setting it
# directly
value = loads(serialized_value)
else:
is_value_set = True
if not is_value_set:
value = loads(serialized_value)
# set the value
@@ -262,6 +268,15 @@ class StateManager:
processed_key = parse_serialized_key(path_parts[-1])
target_obj[processed_key] = value # type: ignore
else:
# Don't allow adding attributes to objects through state manager
if self.__attr_exists_on_target_obj(
target_obj=target_obj, name=path_parts[-1]
):
raise AttributeError(
f"{target_obj.__class__.__name__!r} object has no attribute "
f"{path_parts[-1]!r}"
)
setattr(target_obj, path_parts[-1], value)
def __is_loadable_state_attribute(self, full_access_path: str) -> bool:
@@ -287,8 +302,8 @@ class StateManager:
return has_decorator
try:
cached_serialization_dict = get_nested_dict_by_path(
self.cache_value, full_access_path
cached_serialization_dict = self.cache_manager.get_value_dict_from_cache(
full_access_path
)
if cached_serialization_dict["value"] == "method":
@@ -303,3 +318,16 @@ class StateManager:
path_parts[-1],
)
return False
def __cached_value_is_enum(self, path: str) -> bool:
try:
attr_cache_type = self.cache_manager.get_value_dict_from_cache(path)["type"]
return attr_cache_type in ("ColouredEnum", "Enum")
except Exception:
return False
def __attr_exists_on_target_obj(self, target_obj: Any, name: str) -> bool:
return not is_property_attribute(target_obj, name) and not hasattr(
target_obj, name
)

View File

@@ -1,225 +0,0 @@
from __future__ import annotations
import asyncio
import inspect
import logging
from enum import Enum
from typing import TYPE_CHECKING, Any
from pydase.data_service.abstract_data_service import AbstractDataService
from pydase.utils.helpers import (
function_has_arguments,
get_class_and_instance_attributes,
is_property_attribute,
)
if TYPE_CHECKING:
from collections.abc import Callable
from .data_service import DataService
logger = logging.getLogger(__name__)
class TaskStatus(Enum):
RUNNING = "running"
class TaskManager:
"""
The TaskManager class is a utility designed to manage asynchronous tasks. It
provides functionality for starting, stopping, and tracking these tasks. The class
is primarily used by the DataService class to manage its tasks.
A task in TaskManager is any asynchronous function. To add a task, you simply need
to define an async function within your class that extends TaskManager. For example:
```python
class MyService(DataService):
async def my_task(self):
# Your task implementation here
pass
```
With the above definition, TaskManager automatically creates `start_my_task` and
`stop_my_task` methods that can be used to control the task.
TaskManager also supports auto-starting tasks. If there are tasks that should start
running as soon as an instance of your class is created, you can define them in
`self._autostart_tasks` in your class constructor (__init__ method). Here's how:
```python
class MyService(DataService):
def __init__(self):
self._autostart_tasks = {
"my_task": (*args) # Replace with actual arguments
}
self.wait_time = 1
super().__init__()
async def my_task(self, *args):
while True:
# Your task implementation here
await asyncio.sleep(self.wait_time)
```
In the above example, `my_task` will start running as soon as
`_start_autostart_tasks` is called which is done when the DataService instance is
passed to the `pydase.Server` class.
The responsibilities of the TaskManager class are:
- Track all running tasks: Keeps track of all the tasks that are currently running.
This allows for monitoring of task statuses and for making sure tasks do not
overlap.
- Provide the ability to start and stop tasks: Automatically creates methods to
start and stop each task.
- Emit notifications when the status of a task changes: Has a built-in mechanism for
emitting notifications when a task starts or stops. This is used to update the user
interfaces, but can also be used to write logs, etc.
"""
def __init__(self, service: DataService) -> None:
self.service = service
self.tasks: dict[str, asyncio.Task[None]] = {}
"""A dictionary to keep track of running tasks. The keys are the names of the
tasks and the values are TaskDict instances which include the task itself and
its kwargs.
"""
self._set_start_and_stop_for_async_methods()
@property
def _loop(self) -> asyncio.AbstractEventLoop:
return asyncio.get_running_loop()
def _set_start_and_stop_for_async_methods(self) -> None:
for name in dir(self.service):
# circumvents calling properties
if is_property_attribute(self.service, name):
continue
method = getattr(self.service, name)
if inspect.iscoroutinefunction(method):
if function_has_arguments(method):
logger.info(
"Async function %a is defined with at least one argument. If "
"you want to use it as a task, remove the argument(s) from the "
"function definition.",
method.__name__,
)
continue
# create start and stop methods for each coroutine
setattr(
self.service, f"start_{name}", self._make_start_task(name, method)
)
setattr(self.service, f"stop_{name}", self._make_stop_task(name))
def _initiate_task_startup(self) -> None:
if self.service._autostart_tasks is not None:
for service_name, args in self.service._autostart_tasks.items():
start_method = getattr(self.service, f"start_{service_name}", None)
if start_method is not None and callable(start_method):
start_method(*args)
else:
logger.warning(
"No start method found for service '%s'", service_name
)
def start_autostart_tasks(self) -> None:
self._initiate_task_startup()
attrs = get_class_and_instance_attributes(self.service)
for attr_value in attrs.values():
if isinstance(attr_value, AbstractDataService):
attr_value._task_manager.start_autostart_tasks()
elif isinstance(attr_value, list):
for item in attr_value:
if isinstance(item, AbstractDataService):
item._task_manager.start_autostart_tasks()
def _make_stop_task(self, name: str) -> Callable[..., Any]:
"""
Factory function to create a 'stop_task' function for a running task.
The generated function cancels the associated asyncio task using 'name' for
identification, ensuring proper cleanup. Avoids closure and late binding issues.
Args:
name (str): The name of the coroutine task, used for its identification.
"""
def stop_task() -> None:
# cancel the task
task = self.tasks.get(name, None)
if task is not None:
self._loop.call_soon_threadsafe(task.cancel)
return stop_task
def _make_start_task(
self, name: str, method: Callable[..., Any]
) -> Callable[..., Any]:
"""
Factory function to create a 'start_task' function for a coroutine.
The generated function starts the coroutine as an asyncio task, handling
registration and monitoring.
It uses 'name' and 'method' to avoid the closure and late binding issue.
Args:
name (str): The name of the coroutine, used for task management.
method (callable): The coroutine to be turned into an asyncio task.
"""
def start_task() -> None:
def task_done_callback(task: asyncio.Task[None], name: str) -> None:
"""Handles tasks that have finished.
Removes a task from the tasks dictionary, calls the defined
callbacks, and logs and re-raises exceptions."""
# removing the finished task from the tasks i
self.tasks.pop(name, None)
# emit the notification that the task was stopped
self.service._notify_changed(name, None)
exception = task.exception()
if exception is not None:
# Handle the exception, or you can re-raise it.
logger.error(
"Task '%s' encountered an exception: %s: %s",
name,
type(exception).__name__,
exception,
)
raise exception
async def task() -> None:
try:
await method()
except asyncio.CancelledError:
logger.info("Task '%s' was cancelled", name)
if not self.tasks.get(name):
# creating the task and adding the task_done_callback which checks
# if an exception has occured during the task execution
task_object = self._loop.create_task(task())
task_object.add_done_callback(
lambda task: task_done_callback(task, name)
)
# Store the task and its arguments in the '__tasks' dictionary. The
# key is the name of the method, and the value is a dictionary
# containing the task object and the updated keyword arguments.
self.tasks[name] = task_object
# emit the notification that the task was started
self.service._notify_changed(name, TaskStatus.RUNNING)
else:
logger.error("Task '%s' is already running!", name)
return start_task

View File

@@ -6,7 +6,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta name="theme-color" content="#000000" />
<meta name="description" content="Web site displaying a pydase UI." />
<script type="module" crossorigin src="/assets/index-C12UM6g5.js"></script>
<script type="module" crossorigin src="/assets/index-BjsjosWf.js"></script>
<link rel="stylesheet" crossorigin href="/assets/index-D2aktF3W.css">
</head>

View File

@@ -17,10 +17,10 @@ def validate_set(
getter and check against the desired value.
Args:
timeout (float):
timeout:
The maximum time (in seconds) to wait for the value to be within the
precision boundary.
precision (float | None):
precision:
The acceptable deviation from the desired value. If None, the value must be
exact.
"""
@@ -44,13 +44,11 @@ def has_validate_set_decorator(prop: property) -> bool:
Checks if a property setter has been decorated with the `validate_set` decorator.
Args:
prop (property):
prop:
The property to check.
Returns:
bool:
True if the property setter has the `validate_set` decorator, False
otherwise.
True if the property setter has the `validate_set` decorator, False otherwise.
"""
property_setter = prop.fset
@@ -68,11 +66,11 @@ def _validate_value_was_correctly_set(
specified `precision` and time `timeout`.
Args:
obj (Observable):
obj:
The instance of the class containing the property.
name (str):
name:
The name of the property to validate.
value (Any):
value:
The desired value to check against.
Raises:

View File

@@ -6,7 +6,7 @@ from pydase.observer_pattern.observable.decorators import (
has_validate_set_decorator,
)
from pydase.observer_pattern.observable.observable_object import ObservableObject
from pydase.utils.helpers import is_property_attribute
from pydase.utils.helpers import is_descriptor, is_property_attribute
logger = logging.getLogger(__name__)
@@ -22,7 +22,9 @@ class Observable(ObservableObject):
- {"__annotations__"}
}
for name, value in class_attrs.items():
if isinstance(value, property) or callable(value):
if isinstance(value, property) or callable(value) or is_descriptor(value):
# Properties, methods and descriptors have to be stored as class
# attributes to work properly. So don't make it an instance attribute.
continue
self.__dict__[name] = self._initialise_new_objects(name, value)

View File

@@ -24,8 +24,7 @@ class Observer(ABC):
self.on_change_start(changing_attribute)
@abstractmethod
def on_change(self, full_access_path: str, value: Any) -> None:
...
def on_change(self, full_access_path: str, value: Any) -> None: ...
def on_change_start(self, full_access_path: str) -> None:
return

View File

@@ -5,6 +5,7 @@ from typing import Any
from pydase.observer_pattern.observable.observable import Observable
from pydase.observer_pattern.observer.observer import Observer
from pydase.utils.helpers import is_descriptor
logger = logging.getLogger(__name__)
@@ -60,18 +61,28 @@ class PropertyObserver(Observer):
def _process_nested_observables_properties(
self, obj: Observable, deps: dict[str, Any], prefix: str
) -> None:
for k, value in vars(obj).items():
for k, value in {**vars(type(obj)), **vars(obj)}.items():
actual_value = value
prefix = (
f"{prefix}." if prefix != "" and not prefix.endswith(".") else prefix
)
parent_path = f"{prefix}{k}"
if isinstance(value, Observable):
# Get value from descriptor
if not isinstance(value, property) and is_descriptor(value):
actual_value = getattr(obj, k)
if isinstance(actual_value, Observable):
new_prefix = f"{parent_path}."
deps.update(
self._get_properties_and_their_dependencies(value, new_prefix)
self._get_properties_and_their_dependencies(
actual_value, new_prefix
)
)
elif isinstance(value, list | dict):
self._process_collection_item_properties(value, deps, parent_path)
self._process_collection_item_properties(
actual_value, deps, parent_path
)
def _process_collection_item_properties(
self,

View File

@@ -2,18 +2,26 @@ import asyncio
import logging
import os
import signal
import sys
import threading
from pathlib import Path
from types import FrameType
from typing import Any, Protocol, TypedDict
from uvicorn.server import HANDLED_SIGNALS
from pydase import DataService
from pydase.config import ServiceConfig
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
from pydase.server.web_server import WebServer
from pydase.task.autostart import autostart_service_tasks
from pydase.utils.helpers import current_event_loop_exists
HANDLED_SIGNALS = (
signal.SIGINT, # Unix signal 2. Sent by Ctrl+C.
signal.SIGTERM, # Unix signal 15. Sent by `kill <pid>`.
)
if sys.platform == "win32": # pragma: py-not-win32
HANDLED_SIGNALS += (signal.SIGBREAK,) # Windows signal 21. Sent by Ctrl+Break.
logger = logging.getLogger(__name__)
@@ -29,18 +37,18 @@ class AdditionalServerProtocol(Protocol):
Args:
data_service_observer:
Observer for the DataService, handling state updates and communication to
connected clients through injected callbacks. Can be utilized to access the
service and state manager, and to add custom state-update callbacks.
Observer for the DataService, handling state updates and communication to
connected clients through injected callbacks. Can be utilized to access the
service and state manager, and to add custom state-update callbacks.
host:
Hostname or IP address where the server is accessible. Commonly '0.0.0.0' to
bind to all network interfaces.
Hostname or IP address where the server is accessible. Commonly '0.0.0.0' to
bind to all network interfaces.
port:
Port number on which the server listens. Typically in the range 1024-65535
(non-standard ports).
Port number on which the server listens. Typically in the range 1024-65535
(non-standard ports).
**kwargs:
Any additional parameters required for initializing the server. These
parameters are specific to the server's implementation.
Any additional parameters required for initializing the server. These
parameters are specific to the server's implementation.
"""
def __init__(
@@ -58,18 +66,17 @@ class AdditionalServerProtocol(Protocol):
class AdditionalServer(TypedDict):
"""
A TypedDict that represents the configuration for an additional server to be run
"""A TypedDict that represents the configuration for an additional server to be run
alongside the main server.
This class is used to specify the server type, the port on which the server should
run, and any additional keyword arguments that should be passed to the server when
it's instantiated.
"""
server: type[AdditionalServerProtocol]
"""Server adhering to the
[`AdditionalServerProtocol`][pydase.server.server.AdditionalServerProtocol]."""
port: int
"""Port on which the server should run."""
kwargs: dict[str, Any]
"""Additional keyword arguments that will be passed to the server's constructor """
class Server:
@@ -77,29 +84,20 @@ class Server:
The `Server` class provides a flexible server implementation for the `DataService`.
Args:
service: DataService
service:
The DataService instance that this server will manage.
host: str
The host address for the server. Default is '0.0.0.0', which means all
host:
The host address for the server. Defaults to `'0.0.0.0'`, which means all
available network interfaces.
web_port: int
The port number for the web server. Default is
`pydase.config.ServiceConfig().web_port`.
enable_web: bool
Whether to enable the web server. Default is True.
filename: str | Path | None
web_port:
The port number for the web server. Defaults to
[`ServiceConfig().web_port`][pydase.config.ServiceConfig.web_port].
enable_web:
Whether to enable the web server.
filename:
Filename of the file managing the service state persistence.
Defaults to None.
additional_servers : list[AdditionalServer]
A list of additional servers to run alongside the main server. Each entry in
the list should be a dictionary with the following structure:
- server: A class that adheres to the AdditionalServerProtocol. This
class should have an `__init__` method that accepts the DataService
instance, port, host, and optional keyword arguments, and a `serve`
method that is a coroutine responsible for starting the server.
- port: The port on which the additional server will be running.
- kwargs: A dictionary containing additional keyword arguments that will
be passed to the server's `__init__` method.
additional_servers:
A list of additional servers to run alongside the main server.
Here's an example of how you might define an additional server:
@@ -139,8 +137,8 @@ class Server:
)
server.run()
```
**kwargs: Any
Additional keyword arguments.
**kwargs:
Additional keyword arguments.
"""
def __init__( # noqa: PLR0913
@@ -160,13 +158,18 @@ class Server:
self._web_port = web_port
self._enable_web = enable_web
self._kwargs = kwargs
self._loop: asyncio.AbstractEventLoop
self._additional_servers = additional_servers
self.should_exit = False
self.servers: dict[str, asyncio.Future[Any]] = {}
self._state_manager = StateManager(self._service, filename)
self._observer = DataServiceObserver(self._state_manager)
self._state_manager.load_state()
autostart_service_tasks(self._service)
if not current_event_loop_exists():
self._loop = asyncio.new_event_loop()
asyncio.set_event_loop(self._loop)
else:
self._loop = asyncio.get_event_loop()
def run(self) -> None:
"""
@@ -174,7 +177,7 @@ class Server:
This method should be called to start the server after it's been instantiated.
"""
asyncio.run(self.serve())
self._loop.run_until_complete(self.serve())
async def serve(self) -> None:
process_id = os.getpid()
@@ -190,10 +193,8 @@ class Server:
logger.info("Finished server process [%s]", process_id)
async def startup(self) -> None:
self._loop = asyncio.get_running_loop()
self._loop.set_exception_handler(self.custom_exception_handler)
self.install_signal_handlers()
self._service._task_manager.start_autostart_tasks()
for server in self._additional_servers:
addin_server = server["server"](
@@ -207,8 +208,9 @@ class Server:
addin_server.__module__ + "." + addin_server.__class__.__name__
)
future_or_task = self._loop.create_task(addin_server.serve())
self.servers[server_name] = future_or_task
server_task = self._loop.create_task(addin_server.serve())
server_task.add_done_callback(self._handle_server_shutdown)
self.servers[server_name] = server_task
if self._enable_web:
self._web_server = WebServer(
data_service_observer=self._observer,
@@ -216,8 +218,22 @@ class Server:
port=self._web_port,
**self._kwargs,
)
future_or_task = self._loop.create_task(self._web_server.serve())
self.servers["web"] = future_or_task
server_task = self._loop.create_task(self._web_server.serve())
server_task.add_done_callback(self._handle_server_shutdown)
self.servers["web"] = server_task
def _handle_server_shutdown(self, task: asyncio.Task[Any]) -> None:
"""Handle server shutdown. If the service should exit, do nothing. Else, make
the service exit."""
if self.should_exit:
return
try:
task.result()
except Exception:
self.should_exit = True
async def main_loop(self) -> None:
while not self.should_exit:
@@ -229,7 +245,9 @@ class Server:
logger.info("Saving data to %s.", self._state_manager.filename)
self._state_manager.save_state()
logger.debug("Cancelling servers")
await self.__cancel_servers()
logger.debug("Cancelling tasks")
await self.__cancel_tasks()
async def __cancel_servers(self) -> None:
@@ -240,7 +258,7 @@ class Server:
except asyncio.CancelledError:
logger.debug("Cancelled '%s' server.", server_name)
except Exception as e:
logger.warning("Unexpected exception: %s", e)
logger.error("Unexpected exception: %s", e)
async def __cancel_tasks(self) -> None:
for task in asyncio.all_tasks(self._loop):

View File

@@ -0,0 +1,24 @@
import logging
import aiohttp.web
import aiohttp_middlewares.error
import pydase.server.web_server.api.v1.application
from pydase.data_service.state_manager import StateManager
logger = logging.getLogger(__name__)
def create_api_application(state_manager: StateManager) -> aiohttp.web.Application:
api_application = aiohttp.web.Application(
middlewares=(aiohttp_middlewares.error.error_middleware(),)
)
api_application.add_subapp(
"/v1/",
pydase.server.web_server.api.v1.application.create_api_application(
state_manager
),
)
return api_application

View File

@@ -0,0 +1,70 @@
import logging
from typing import TYPE_CHECKING
import aiohttp.web
import aiohttp_middlewares.error
from pydase.data_service.state_manager import StateManager
from pydase.server.web_server.api.v1.endpoints import (
get_value,
trigger_method,
update_value,
)
from pydase.utils.serialization.serializer import dump
if TYPE_CHECKING:
from pydase.server.web_server.sio_setup import TriggerMethodDict, UpdateDict
logger = logging.getLogger(__name__)
API_VERSION = "v1"
STATUS_OK = 200
STATUS_FAILED = 400
def create_api_application(state_manager: StateManager) -> aiohttp.web.Application:
api_application = aiohttp.web.Application(
middlewares=(aiohttp_middlewares.error.error_middleware(),)
)
async def _get_value(request: aiohttp.web.Request) -> aiohttp.web.Response:
logger.info("Handle api request: %s", request)
access_path = request.rel_url.query["access_path"]
status = STATUS_OK
try:
result = get_value(state_manager, access_path)
except Exception as e:
logger.exception(e)
result = dump(e)
status = STATUS_FAILED
return aiohttp.web.json_response(result, status=status)
async def _update_value(request: aiohttp.web.Request) -> aiohttp.web.Response:
data: UpdateDict = await request.json()
try:
update_value(state_manager, data)
return aiohttp.web.json_response()
except Exception as e:
logger.exception(e)
return aiohttp.web.json_response(dump(e), status=STATUS_FAILED)
async def _trigger_method(request: aiohttp.web.Request) -> aiohttp.web.Response:
data: TriggerMethodDict = await request.json()
try:
return aiohttp.web.json_response(trigger_method(state_manager, data))
except Exception as e:
logger.exception(e)
return aiohttp.web.json_response(dump(e), status=STATUS_FAILED)
api_application.router.add_get("/get_value", _get_value)
api_application.router.add_put("/update_value", _update_value)
api_application.router.add_put("/trigger_method", _trigger_method)
return api_application

View File

@@ -0,0 +1,38 @@
from typing import Any
import pydase.utils.serialization.deserializer
import pydase.utils.serialization.serializer
from pydase.data_service.state_manager import StateManager
from pydase.server.web_server.sio_setup import TriggerMethodDict, UpdateDict
from pydase.utils.helpers import get_object_attr_from_path
from pydase.utils.serialization.types import SerializedObject
loads = pydase.utils.serialization.deserializer.loads
Serializer = pydase.utils.serialization.serializer.Serializer
def update_value(state_manager: StateManager, data: UpdateDict) -> None:
path = data["access_path"]
state_manager.set_service_attribute_value_by_path(
path=path, serialized_value=data["value"]
)
def get_value(state_manager: StateManager, access_path: str) -> SerializedObject:
return Serializer.serialize_object(
get_object_attr_from_path(state_manager.service, access_path),
access_path=access_path,
)
def trigger_method(state_manager: StateManager, data: TriggerMethodDict) -> Any:
method = get_object_attr_from_path(state_manager.service, data["access_path"])
serialized_args = data.get("args", None)
args = loads(serialized_args) if serialized_args else []
serialized_kwargs = data.get("kwargs", None)
kwargs: dict[str, Any] = loads(serialized_kwargs) if serialized_kwargs else {}
return Serializer.serialize_object(method(*args, **kwargs))

View File

@@ -1,19 +1,30 @@
import asyncio
import logging
import sys
from typing import Any, TypedDict
if sys.version_info < (3, 11):
from typing_extensions import NotRequired
else:
from typing import NotRequired
import click
import socketio # type: ignore[import-untyped]
import pydase.server.web_server.api.v1.endpoints
import pydase.utils.serialization.deserializer
import pydase.utils.serialization.serializer
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
from pydase.utils.helpers import get_object_attr_from_path
from pydase.utils.logging import SocketIOHandler
from pydase.utils.serialization.deserializer import Deserializer
from pydase.utils.serialization.serializer import SerializedObject, dump
from pydase.utils.serialization.serializer import SerializedObject
logger = logging.getLogger(__name__)
# These functions can be monkey-patched by other libraries at runtime
dump = pydase.utils.serialization.serializer.dump
sio_client_manager = None
class UpdateDict(TypedDict):
"""
@@ -34,8 +45,8 @@ class UpdateDict(TypedDict):
class TriggerMethodDict(TypedDict):
access_path: str
args: SerializedObject
kwargs: SerializedObject
args: NotRequired[SerializedObject]
kwargs: NotRequired[SerializedObject]
class RunMethodDict(TypedDict):
@@ -44,12 +55,15 @@ class RunMethodDict(TypedDict):
exposed DataService.
Attributes:
name (str): The name of the method to be run.
parent_path (str): The access path for the parent object of the method to be
run. This is used to construct the full access path for the method. For
example, for an method with access path 'attr1.list_attr[0].method_name',
'attr1.list_attr[0]' would be the parent_path.
kwargs (dict[str, Any]): The arguments passed to the method.
name:
The name of the method to be run.
parent_path:
The access path for the parent object of the method to be run. This is used
to construct the full access path for the method. For example, for an method
with access path 'attr1.list_attr[0].method_name', 'attr1.list_attr[0]'
would be the parent_path.
kwargs:
The arguments passed to the method.
"""
name: str
@@ -66,23 +80,30 @@ def setup_sio_server(
Sets up and configures a Socket.IO asynchronous server.
Args:
observer (DataServiceObserver):
The observer managing state updates and communication.
enable_cors (bool):
Flag indicating whether CORS should be enabled for the server.
loop (asyncio.AbstractEventLoop):
The event loop in which the server will run.
observer:
The observer managing state updates and communication.
enable_cors:
Flag indicating whether CORS should be enabled for the server.
loop:
The event loop in which the server will run.
Returns:
socketio.AsyncServer: The configured Socket.IO asynchronous server.
The configured Socket.IO asynchronous server.
"""
state_manager = observer.state_manager
if enable_cors:
sio = socketio.AsyncServer(async_mode="asgi", cors_allowed_origins="*")
sio = socketio.AsyncServer(
async_mode="aiohttp",
cors_allowed_origins="*",
client_manager=sio_client_manager,
)
else:
sio = socketio.AsyncServer(async_mode="asgi")
sio = socketio.AsyncServer(
async_mode="aiohttp",
client_manager=sio_client_manager,
)
setup_sio_events(sio, state_manager)
setup_logging_handler(sio)
@@ -117,37 +138,36 @@ def setup_sio_server(
def setup_sio_events(sio: socketio.AsyncServer, state_manager: StateManager) -> None: # noqa: C901
@sio.event # type: ignore
async def connect(sid: str, environ: Any) -> None:
logging.debug("Client [%s] connected", click.style(str(sid), fg="cyan"))
logger.debug("Client [%s] connected", click.style(str(sid), fg="cyan"))
@sio.event # type: ignore
async def disconnect(sid: str) -> None:
logging.debug("Client [%s] disconnected", click.style(str(sid), fg="cyan"))
logger.debug("Client [%s] disconnected", click.style(str(sid), fg="cyan"))
@sio.event # type: ignore
async def service_serialization(sid: str) -> SerializedObject:
logging.debug(
logger.debug(
"Client [%s] requested service serialization",
click.style(str(sid), fg="cyan"),
)
return state_manager.cache
return state_manager.cache_manager.cache
@sio.event
async def update_value(sid: str, data: UpdateDict) -> SerializedObject | None: # type: ignore
path = data["access_path"]
async def update_value(sid: str, data: UpdateDict) -> SerializedObject | None:
try:
state_manager.set_service_attribute_value_by_path(
path=path, serialized_value=data["value"]
pydase.server.web_server.api.v1.endpoints.update_value(
state_manager=state_manager, data=data
)
except Exception as e:
logger.exception(e)
return dump(e)
return None
@sio.event
async def get_value(sid: str, access_path: str) -> SerializedObject:
try:
return state_manager._data_service_cache.get_value_dict_from_cache(
access_path
return pydase.server.web_server.api.v1.endpoints.get_value(
state_manager=state_manager, access_path=access_path
)
except Exception as e:
logger.exception(e)
@@ -156,17 +176,14 @@ def setup_sio_events(sio: socketio.AsyncServer, state_manager: StateManager) ->
@sio.event
async def trigger_method(sid: str, data: TriggerMethodDict) -> Any:
try:
method = get_object_attr_from_path(
state_manager.service, data["access_path"]
return pydase.server.web_server.api.v1.endpoints.trigger_method(
state_manager=state_manager, data=data
)
args = Deserializer.deserialize(data["args"])
kwargs: dict[str, Any] = Deserializer.deserialize(data["kwargs"])
return dump(method(*args, **kwargs))
except Exception as e:
logger.error(e)
return dump(e)
def setup_logging_handler(sio: socketio.AsyncServer) -> None:
logger = logging.getLogger()
logger.addHandler(SocketIOHandler(sio))
logging.getLogger().addHandler(SocketIOHandler(sio))
logging.getLogger("pydase").addHandler(SocketIOHandler(sio))

View File

@@ -4,62 +4,72 @@ import logging
from pathlib import Path
from typing import Any
import socketio # type: ignore[import-untyped]
import uvicorn
from fastapi import FastAPI, Response
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
import aiohttp.web
import aiohttp_middlewares.cors
from pydase.config import ServiceConfig, WebServerConfig
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.server.web_server.api import create_api_application
from pydase.server.web_server.sio_setup import (
setup_sio_server,
)
from pydase.utils.helpers import get_path_from_path_parts, parse_full_access_path
from pydase.utils.helpers import (
get_path_from_path_parts,
parse_full_access_path,
)
from pydase.utils.serialization.serializer import generate_serialized_data_paths
from pydase.version import __version__
logger = logging.getLogger(__name__)
API_VERSION = "v1"
class WebServer:
"""
Represents a web server that adheres to the AdditionalServerProtocol, designed to
work with a DataService instance. This server facilitates client-server
communication and state management through web protocols and socket connections.
Represents a web server that adheres to the
[`AdditionalServerProtocol`][pydase.server.server.AdditionalServerProtocol],
designed to work with a [`DataService`][pydase.DataService] instance. This server
facilitates client-server communication and state management through web protocols
and socket connections.
The WebServer class initializes and manages a web server environment using FastAPI
and Socket.IO, allowing for HTTP and WebSocket communications. It incorporates CORS
(Cross-Origin Resource Sharing) support, custom CSS, and serves a frontend static
files directory. It also initializes web server settings based on configuration
files or generates default settings if necessary.
The WebServer class initializes and manages a web server environment aiohttp and
Socket.IO, allowing for HTTP and Socket.IO communications. It incorporates CORS
(Cross-Origin Resource Sharing) support, custom CSS, and serves a static files
directory. It also initializes web server settings based on configuration files or
generates default settings if necessary.
Configuration for the web server (like service configuration directory and whether
to generate new web settings) is determined in the following order of precedence:
1. Values provided directly to the constructor.
2. Environment variable settings (via configuration classes like
`pydase.config.ServiceConfig` and `pydase.config.WebServerConfig`).
[`ServiceConfig`][pydase.config.ServiceConfig] and
[`WebServerConfig`][pydase.config.WebServerConfig]).
3. Default values defined in the configuration classes.
Args:
data_service_observer (DataServiceObserver): Observer for the DataService,
handling state updates and communication to connected clients.
host (str): Hostname or IP address where the server is accessible. Commonly
'0.0.0.0' to bind to all network interfaces.
port (int): Port number on which the server listens. Typically in the range
1024-65535 (non-standard ports).
css (str | Path | None, optional): Path to a custom CSS file for styling the
frontend. If None, no custom styles are applied. Defaults to None.
enable_cors (bool, optional): Flag to enable or disable CORS policy. When True,
CORS is enabled, allowing cross-origin requests. Defaults to True.
config_dir (Path | None, optional): Path to the configuration
directory where the web settings will be stored. Defaults to
`pydase.config.ServiceConfig().config_dir`.
generate_new_web_settings (bool | None, optional): Flag to enable or disable
generation of new web settings if the configuration file is missing. Defaults
to `pydase.config.WebServerConfig().generate_new_web_settings`.
**kwargs (Any): Additional unused keyword arguments.
data_service_observer:
Observer for the [`DataService`][pydase.DataService], handling state updates
and communication to connected clients.
host:
Hostname or IP address where the server is accessible. Commonly '0.0.0.0'
to bind to all network interfaces.
port:
Port number on which the server listens. Typically in the range 1024-65535
(non-standard ports).
css:
Path to a custom CSS file for styling the frontend. If None, no custom
styles are applied. Defaults to None.
enable_cors:
Flag to enable or disable CORS policy. When True, CORS is enabled, allowing
cross-origin requests. Defaults to True.
config_dir:
Path to the configuration directory where the web settings will be stored.
Defaults to
[`ServiceConfig().config_dir`][pydase.config.ServiceConfig.config_dir].
generate_web_settings:
Flag to enable or disable generation of new web settings if the
configuration file is missing. Defaults to
[`WebServerConfig().generate_web_settings`][pydase.config.WebServerConfig.generate_web_settings].
"""
def __init__( # noqa: PLR0913
@@ -88,24 +98,68 @@ class WebServer:
async def serve(self) -> None:
self._loop = asyncio.get_running_loop()
self._setup_socketio()
self._setup_fastapi_app()
self.web_server = uvicorn.Server(
uvicorn.Config(self.__fastapi_app, host=self.host, port=self.port)
self._sio = setup_sio_server(self.observer, self.enable_cors, self._loop)
async def index(request: aiohttp.web.Request) -> aiohttp.web.FileResponse:
return aiohttp.web.FileResponse(self.frontend_src / "index.html")
app = aiohttp.web.Application()
# Add CORS middleware if enabled
if self.enable_cors:
app.middlewares.append(
aiohttp_middlewares.cors.cors_middleware(allow_all=True)
)
# Define routes
self._sio.attach(app, socketio_path="/ws/socket.io")
app.router.add_static("/assets", self.frontend_src / "assets")
app.router.add_get("/service-properties", self._service_properties_route)
app.router.add_get("/web-settings", self._web_settings_route)
app.router.add_get("/custom.css", self._styles_route)
app.add_subapp("/api/", create_api_application(self.state_manager))
app.router.add_get(r"/", index)
app.router.add_get(r"/{tail:.*}", index)
await aiohttp.web._run_app(
app,
host=self.host,
port=self.port,
handle_signals=False,
print=logger.info,
shutdown_timeout=0.1,
)
# overwrite uvicorn's signal handlers, otherwise it will bogart SIGINT and
# SIGTERM, which makes it impossible to escape out of
self.web_server.install_signal_handlers = lambda: None # type: ignore[method-assign]
await self.web_server.serve()
async def _service_properties_route(
self,
request: aiohttp.web.Request,
) -> aiohttp.web.Response:
return aiohttp.web.json_response(self.state_manager.cache_manager.cache)
async def _web_settings_route(
self,
request: aiohttp.web.Request,
) -> aiohttp.web.Response:
return aiohttp.web.json_response(self.web_settings)
async def _styles_route(
self,
request: aiohttp.web.Request,
) -> aiohttp.web.FileResponse | aiohttp.web.Response:
if self.css is not None:
return aiohttp.web.FileResponse(self.css)
return aiohttp.web.Response(content_type="text/css")
def _initialise_configuration(self) -> None:
logger.debug("Initialising web server configuration...")
file_path = self._service_config_dir / "web_settings.json"
if self._generate_web_settings:
# File does not exist, create it with default content
logger.debug("Generating web settings file...")
file_path = self._service_config_dir / "web_settings.json"
# File does not exist, create it with default content
file_path.parent.mkdir(
parents=True, exist_ok=True
) # Ensure directory exists
@@ -148,54 +202,3 @@ class WebServer:
}
return current_web_settings
def _setup_socketio(self) -> None:
self._sio = setup_sio_server(self.observer, self.enable_cors, self._loop)
self.__sio_app = socketio.ASGIApp(self._sio)
def _setup_fastapi_app(self) -> None: # noqa: C901
app = FastAPI()
if self.enable_cors:
app.add_middleware(
CORSMiddleware,
allow_credentials=True,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app.mount("/ws", self.__sio_app)
@app.get("/version")
def version() -> str:
return __version__
@app.get("/name")
def name() -> str:
return type(self.service).__name__
@app.get("/service-properties")
def service_properties() -> dict[str, Any]:
return self.state_manager.cache # type: ignore
@app.get("/web-settings")
def web_settings() -> dict[str, Any]:
return self.web_settings
# exposing custom.css file provided by user
@app.get("/custom.css")
async def styles() -> Response:
if self.css is not None:
return FileResponse(str(self.css))
return Response(content="", media_type="text/css")
app.mount(
"/",
StaticFiles(
directory=self.frontend_src,
html=True,
),
)
self.__fastapi_app = app

View File

View File

@@ -0,0 +1,46 @@
from typing import Any
import pydase.data_service.data_service
import pydase.task.task
from pydase.task.task_status import TaskStatus
from pydase.utils.helpers import is_property_attribute
def autostart_service_tasks(
service: pydase.data_service.data_service.DataService,
) -> None:
"""Starts the service tasks defined with the `autostart` keyword argument.
This method goes through the attributes of the passed service and its nested
[`DataService`][pydase.DataService] instances and calls the start method on
autostart-tasks.
"""
for attr in dir(service):
if is_property_attribute(service, attr) or attr in {
"_observers",
"__dict__",
}: # prevent eval of property attrs and recursion
continue
val = getattr(service, attr)
if isinstance(val, pydase.task.task.Task):
if val.autostart and val.status == TaskStatus.NOT_RUNNING:
val.start()
else:
continue
else:
autostart_nested_service_tasks(val)
def autostart_nested_service_tasks(
service: pydase.data_service.data_service.DataService | list[Any] | dict[Any, Any],
) -> None:
if isinstance(service, pydase.DataService):
autostart_service_tasks(service)
elif isinstance(service, list):
for entry in service:
autostart_nested_service_tasks(entry)
elif isinstance(service, dict):
for entry in service.values():
autostart_nested_service_tasks(entry)

View File

@@ -0,0 +1,145 @@
import logging
from collections.abc import Callable, Coroutine
from typing import Any, Generic, TypeVar, overload
from pydase.data_service.data_service import DataService
from pydase.task.task import Task
logger = logging.getLogger(__name__)
R = TypeVar("R")
class PerInstanceTaskDescriptor(Generic[R]):
"""
A descriptor class that provides a unique [`Task`][pydase.task.task.Task] object
for each instance of a [`DataService`][pydase.data_service.data_service.DataService]
class.
The `PerInstanceTaskDescriptor` is used to transform an asynchronous function into a
task that is managed independently for each instance of a `DataService` subclass.
This allows tasks to be initialized, started, and stopped on a per-instance basis,
providing better control over task execution within the service.
The `PerInstanceTaskDescriptor` is not intended to be used directly. Instead, it is
used internally by the `@task` decorator to manage task objects for each instance of
the service class.
"""
def __init__(
self,
func: Callable[[Any], Coroutine[None, None, R]]
| Callable[[], Coroutine[None, None, R]],
autostart: bool = False,
) -> None:
self.__func = func
self.__autostart = autostart
self.__task_instances: dict[object, Task[R]] = {}
def __set_name__(self, owner: type[DataService], name: str) -> None:
"""Stores the name of the task within the owning class. This method is called
automatically when the descriptor is assigned to a class attribute.
"""
self.__task_name = name
@overload
def __get__(
self, instance: None, owner: type[DataService]
) -> "PerInstanceTaskDescriptor[R]":
"""Returns the descriptor itself when accessed through the class."""
@overload
def __get__(self, instance: DataService, owner: type[DataService]) -> Task[R]:
"""Returns the `Task` object associated with the specific `DataService`
instance.
If no task exists for the instance, a new `Task` object is created and stored
in the `__task_instances` dictionary.
"""
def __get__(
self, instance: DataService | None, owner: type[DataService]
) -> "Task[R] | PerInstanceTaskDescriptor[R]":
if instance is None:
return self
# Create a new Task object for this instance, using the function's name.
if instance not in self.__task_instances:
self.__task_instances[instance] = instance._initialise_new_objects(
self.__task_name,
Task(self.__func.__get__(instance, owner), autostart=self.__autostart),
)
return self.__task_instances[instance]
def task(
*, autostart: bool = False
) -> Callable[
[
Callable[[Any], Coroutine[None, None, R]]
| Callable[[], Coroutine[None, None, R]]
],
PerInstanceTaskDescriptor[R],
]:
"""
A decorator to define an asynchronous function as a per-instance task within a
[`DataService`][pydase.DataService] class.
This decorator transforms an asynchronous function into a
[`Task`][pydase.task.task.Task] object that is unique to each instance of the
`DataService` class. The resulting `Task` object provides methods like `start()`
and `stop()` to control the execution of the task, and manages the task's lifecycle
independently for each instance of the service.
The decorator is particularly useful for defining tasks that need to run
periodically or perform asynchronous operations, such as polling data sources,
updating databases, or any recurring job that should be managed within the context
of a `DataService`.
time.
Args:
autostart:
If set to True, the task will automatically start when the service is
initialized. Defaults to False.
Returns:
A decorator that wraps an asynchronous function in a
[`PerInstanceTaskDescriptor`][pydase.task.decorator.PerInstanceTaskDescriptor]
object, which, when accessed, provides an instance-specific
[`Task`][pydase.task.task.Task] object.
Example:
```python
import asyncio
import pydase
from pydase.task.decorator import task
class MyService(pydase.DataService):
@task(autostart=True)
async def my_task(self) -> None:
while True:
# Perform some periodic work
await asyncio.sleep(1)
if __name__ == "__main__":
service = MyService()
pydase.Server(service=service).run()
```
In this example, `my_task` is defined as a task using the `@task` decorator, and
it will start automatically when the service is initialized because
`autostart=True` is set. You can manually start or stop the task using
`service.my_task.start()` and `service.my_task.stop()`, respectively.
"""
def decorator(
func: Callable[[Any], Coroutine[None, None, R]]
| Callable[[], Coroutine[None, None, R]],
) -> PerInstanceTaskDescriptor[R]:
return PerInstanceTaskDescriptor(func, autostart=autostart)
return decorator

148
src/pydase/task/task.py Normal file
View File

@@ -0,0 +1,148 @@
import asyncio
import inspect
import logging
from collections.abc import Callable, Coroutine
from typing import (
Generic,
TypeVar,
)
import pydase.data_service.data_service
from pydase.task.task_status import TaskStatus
from pydase.utils.helpers import current_event_loop_exists
logger = logging.getLogger(__name__)
R = TypeVar("R")
class Task(pydase.data_service.data_service.DataService, Generic[R]):
"""A class representing a task within the `pydase` framework.
The `Task` class wraps an asynchronous function and provides methods to manage its
lifecycle, such as `start()` and `stop()`. It is typically used to perform periodic
or recurring jobs in a [`DataService`][pydase.DataService], like reading
sensor data, updating databases, or executing other background tasks.
When a function is decorated with the [`@task`][pydase.task.decorator.task]
decorator, it is replaced by a `Task` instance that controls the execution of the
original function.
Args:
func:
The asynchronous function that this task wraps. It must be a coroutine
without arguments.
autostart:
If set to True, the task will automatically start when the service is
initialized. Defaults to False.
Example:
```python
import asyncio
import pydase
from pydase.task.decorator import task
class MyService(pydase.DataService):
@task(autostart=True)
async def my_task(self) -> None:
while True:
# Perform some periodic work
await asyncio.sleep(1)
if __name__ == "__main__":
service = MyService()
pydase.Server(service=service).run()
```
In this example, `my_task` is defined as a task using the `@task` decorator, and
it will start automatically when the service is initialized because
`autostart=True` is set. You can manually start or stop the task using
`service.my_task.start()` and `service.my_task.stop()`, respectively.
"""
def __init__(
self,
func: Callable[[], Coroutine[None, None, R | None]],
*,
autostart: bool = False,
) -> None:
super().__init__()
self._autostart = autostart
self._func_name = func.__name__
self._func = func
self._task: asyncio.Task[R | None] | None = None
self._status = TaskStatus.NOT_RUNNING
self._result: R | None = None
if not current_event_loop_exists():
self._loop = asyncio.new_event_loop()
asyncio.set_event_loop(self._loop)
else:
self._loop = asyncio.get_event_loop()
@property
def autostart(self) -> bool:
"""Defines if the task should be started automatically when the
[`Server`][pydase.Server] starts."""
return self._autostart
@property
def status(self) -> TaskStatus:
"""Returns the current status of the task."""
return self._status
def start(self) -> None:
"""Starts the asynchronous task if it is not already running."""
if self._task:
return
def task_done_callback(task: asyncio.Task[R | None]) -> None:
"""Handles tasks that have finished.
Updates the task status, calls the defined callbacks, and logs and re-raises
exceptions.
"""
self._task = None
self._status = TaskStatus.NOT_RUNNING
exception = task.exception()
if exception is not None:
# Handle the exception, or you can re-raise it.
logger.error(
"Task '%s' encountered an exception: %s: %s",
self._func_name,
type(exception).__name__,
exception,
)
raise exception
self._result = task.result()
async def run_task() -> R | None:
if inspect.iscoroutinefunction(self._func):
logger.info("Starting task %r", self._func_name)
self._status = TaskStatus.RUNNING
res: Coroutine[None, None, R | None] = self._func()
try:
return await res
except asyncio.CancelledError:
logger.info("Task '%s' was cancelled", self._func_name)
return None
logger.warning(
"Cannot start task %r. Function has not been bound yet", self._func_name
)
return None
logger.info("Creating task %r", self._func_name)
self._task = self._loop.create_task(run_task())
self._task.add_done_callback(task_done_callback)
def stop(self) -> None:
"""Stops the running asynchronous task by cancelling it."""
if self._task:
self._task.cancel()

View File

@@ -0,0 +1,8 @@
import enum
class TaskStatus(enum.Enum):
"""Possible statuses of a [`Task`][pydase.task.task.Task]."""
RUNNING = "running"
NOT_RUNNING = "not_running"

View File

@@ -3,7 +3,7 @@ from typing import TypedDict
import pint
units: pint.UnitRegistry = pint.UnitRegistry(autoconvert_offset_to_baseunit=True)
units.default_format = "~P" # pretty and short format
units.formatter.default_format = "~P" # pretty and short format
Quantity = pint.Quantity
Unit = units.Unit
@@ -21,18 +21,20 @@ def convert_to_quantity(
Convert a given value into a pint.Quantity object with the specified unit.
Args:
value (QuantityDict | float | int | Quantity):
value:
The value to be converted into a Quantity object.
- If value is a float or int, it will be directly converted to the specified
unit.
- If value is a dict, it must have keys 'magnitude' and 'unit' to represent
the value and unit.
- If value is a Quantity object, it will remain unchanged.\n
unit (str, optional): The target unit for conversion. If empty and value is not
a Quantity object, it will assume a unitless quantity.
unit:
The target unit for conversion. If empty and value is not a Quantity object,
it will assume a unitless quantity.
Returns:
Quantity: The converted value as a pint.Quantity object with the specified unit.
The converted value as a pint.Quantity object with the specified unit.
Examples:
>>> convert_to_quantity(5, 'm')
@@ -42,9 +44,9 @@ def convert_to_quantity(
>>> convert_to_quantity(10.0 * u.units.V)
<Quantity(10.0, 'volt')>
Notes:
- If unit is not provided and value is a float or int, the resulting Quantity
will be unitless.
Note:
If unit is not provided and value is a float or int, the resulting Quantity will
be unitless.
"""
if isinstance(value, int | float):

View File

@@ -10,9 +10,9 @@ class FunctionDefinitionError(Exception):
def frontend(func: Callable[..., Any]) -> Callable[..., Any]:
"""
Decorator to mark a DataService method for frontend rendering. Ensures that the
method does not contain arguments, as they are not supported for frontend rendering.
"""Decorator to mark a [`DataService`][pydase.DataService] method for frontend
rendering. Ensures that the method does not contain arguments, as they are not
supported for frontend rendering.
"""
if function_has_arguments(func):

View File

@@ -60,6 +60,10 @@ def parse_full_access_path(path: str) -> list[str]:
list[str]
A list of components that make up the path, including attribute names,
numeric indices, and string keys as separate elements.
Example:
>>> parse_full_access_path('dict_attr["some_key"].attr_name["other_key"]')
["dict_attr", '["some_key"]', "attr_name", '["other_key"]']
"""
# Matches:
# \w+ - Words
@@ -110,24 +114,26 @@ def get_class_and_instance_attributes(obj: object) -> dict[str, Any]:
If an attribute exists at both the instance and class level,the value from the
instance attribute takes precedence.
The __root__ object is removed as this will lead to endless recursion in the for
loops.
"""
return dict(chain(type(obj).__dict__.items(), obj.__dict__.items()))
def get_object_by_path_parts(target_obj: Any, path_parts: list[str]) -> Any:
"""Gets nested attribute of `target_object` specified by `path_parts`.
Raises:
AttributeError: Attribute does not exist.
KeyError: Key in dict does not exist.
IndexError: Index out of list range.
TypeError: List index in the path is not a valid integer.
"""
for part in path_parts:
if part.startswith("["):
deserialized_part = parse_serialized_key(part)
target_obj = target_obj[deserialized_part]
else:
try:
target_obj = getattr(target_obj, part)
except AttributeError:
logger.debug("Attribute %a does not exist in the object.", part)
return None
target_obj = getattr(target_obj, part)
return target_obj
@@ -145,12 +151,21 @@ def get_object_attr_from_path(target_obj: Any, path: str) -> Any:
the path does not exist, the function logs a debug message and returns None.
Raises:
ValueError: If a list index in the path is not a valid integer.
AttributeError: Attribute does not exist.
KeyError: Key in dict does not exist.
IndexError: Index out of list range.
TypeError: List index in the path is not a valid integer.
"""
path_parts = parse_full_access_path(path)
return get_object_by_path_parts(target_obj, path_parts)
def get_task_class() -> type:
from pydase.task.task import Task
return Task
def get_component_classes() -> list[type]:
"""
Returns references to the component classes in a list.
@@ -185,3 +200,48 @@ def function_has_arguments(func: Callable[..., Any]) -> bool:
# Check if there are any parameters left which would indicate additional arguments.
return len(parameters) > 0
def is_descriptor(obj: object) -> bool:
"""Check if an object is a descriptor."""
# Exclude functions, methods, builtins and properties
if (
inspect.isfunction(obj)
or inspect.ismethod(obj)
or inspect.isbuiltin(obj)
or isinstance(obj, property)
):
return False
# Check if it has any descriptor methods
return any(hasattr(obj, method) for method in ("__get__", "__set__", "__delete__"))
def current_event_loop_exists() -> bool:
"""Check if an event loop has been set."""
import asyncio
return asyncio.get_event_loop_policy()._local._loop is not None # type: ignore
def normalize_full_access_path_string(s: str) -> str:
"""Normalizes a string representing a full access path by converting double quotes
to single quotes.
This function is useful for ensuring consistency in strings that represent access
paths containing dictionary keys, by replacing all double quotes (`"`) with single
quotes (`'`).
Args:
s (str): The input string to be normalized.
Returns:
A new string with all double quotes replaced by single quotes.
Example:
>>> normalize_full_access_path_string('dictionary["first"].my_task')
"dictionary['first'].my_task"
"""
return s.replace('"', "'")

View File

@@ -1,16 +1,58 @@
import asyncio
import logging
import logging.config
import sys
from collections.abc import Callable
from copy import copy
from typing import ClassVar, Literal
import click
import socketio # type: ignore[import-untyped]
import uvicorn.logging
from uvicorn.config import LOGGING_CONFIG
import pydase.config
logger = logging.getLogger(__name__)
class DefaultFormatter(uvicorn.logging.ColourizedFormatter):
if pydase.config.OperationMode().environment == "development":
LOG_LEVEL = logging.DEBUG
else:
LOG_LEVEL = logging.INFO
LOGGING_CONFIG = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"()": "pydase.utils.logging.DefaultFormatter",
"fmt": "%(asctime)s.%(msecs)03d | %(levelprefix)s | "
"%(name)s:%(funcName)s:%(lineno)d - %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S",
},
},
"handlers": {
"default": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
},
"loggers": {
"pydase": {"handlers": ["default"], "level": LOG_LEVEL, "propagate": False},
"aiohttp_middlewares": {
"handlers": ["default"],
"level": logging.WARNING,
"propagate": False,
},
"aiohttp": {
"handlers": ["default"],
"level": logging.INFO,
"propagate": False,
},
},
}
class DefaultFormatter(logging.Formatter):
"""
A custom log formatter class that:
@@ -19,6 +61,36 @@ class DefaultFormatter(uvicorn.logging.ColourizedFormatter):
for formatting the output, instead of the plain text message.
"""
level_name_colors: ClassVar[dict[int, Callable[..., str]]] = {
logging.DEBUG: lambda level_name: click.style(str(level_name), fg="cyan"),
logging.INFO: lambda level_name: click.style(str(level_name), fg="green"),
logging.WARNING: lambda level_name: click.style(str(level_name), fg="yellow"),
logging.ERROR: lambda level_name: click.style(str(level_name), fg="red"),
logging.CRITICAL: lambda level_name: click.style(
str(level_name), fg="bright_red"
),
}
def __init__(
self,
fmt: str | None = None,
datefmt: str | None = None,
style: Literal["%", "{", "$"] = "%",
use_colors: bool | None = None,
):
if use_colors in (True, False):
self.use_colors = use_colors
else:
self.use_colors = sys.stdout.isatty()
super().__init__(fmt=fmt, datefmt=datefmt, style=style)
def color_level_name(self, level_name: str, level_no: int) -> str:
def default(level_name: str) -> str:
return str(level_name)
func = self.level_name_colors.get(level_no, default)
return func(level_name)
def formatMessage(self, record: logging.LogRecord) -> str: # noqa: N802
recordcopy = copy(record)
levelname = recordcopy.levelname
@@ -47,7 +119,8 @@ class SocketIOHandler(logging.Handler):
self._sio = sio
def format(self, record: logging.LogRecord) -> str:
return f"{record.name}:{record.funcName}:{record.lineno} - {record.message}"
msg = record.getMessage()
return f"{record.name}:{record.funcName}:{record.lineno} - {msg}"
def emit(self, record: logging.LogRecord) -> None:
log_entry = self.format(record)
@@ -64,86 +137,16 @@ class SocketIOHandler(logging.Handler):
)
def setup_logging(level: str | int | None = None) -> None:
def setup_logging() -> None:
"""
Configures the logging settings for the application.
This function sets up logging with specific formatting and colorization of log
messages. The log level is determined based on the application's operation mode,
with an option to override the level. By default, in a development environment, the
log level is set to DEBUG, whereas in other environments, it is set to INFO.
Args:
level (Optional[str | int]):
A specific log level to set for the application. If None, the log level is
determined based on the application's operation mode. Accepts standard log
level names ('DEBUG', 'INFO', etc.) and corresponding numerical values.
Example:
```python
>>> import logging
>>> setup_logging(logging.DEBUG)
>>> setup_logging("INFO")
```
messages. The log level is determined based on the application's operation mode. By
default, in a development environment, the log level is set to DEBUG, whereas in
other environments, it is set to INFO.
"""
logger = logging.getLogger()
logger.debug("Configuring pydase logging.")
if pydase.config.OperationMode().environment == "development":
log_level = logging.DEBUG
else:
log_level = logging.INFO
# If a level is specified, check whether it's a string or an integer.
if level is not None:
if isinstance(level, str):
# Convert known log level strings directly to their corresponding logging
# module constants.
level_name = level.upper() # Ensure level names are uppercase
if hasattr(logging, level_name):
log_level = getattr(logging, level_name)
else:
raise ValueError(
f"Invalid log level: {level}. Must be one of 'DEBUG', 'INFO', "
"'WARNING', 'ERROR', etc."
)
elif isinstance(level, int):
log_level = level # Directly use integer levels
else:
raise ValueError("Log level must be a string or an integer.")
# Set the logger's level.
logger.setLevel(log_level)
# create console handler and set level to debug
ch = logging.StreamHandler()
# add formatter to ch
ch.setFormatter(
DefaultFormatter(
fmt=(
"%(asctime)s.%(msecs)03d | %(levelprefix)s | "
"%(name)s:%(funcName)s:%(lineno)d - %(message)s"
),
datefmt="%Y-%m-%d %H:%M:%S",
)
)
# add ch to logger
logger.addHandler(ch)
logger.debug("Configuring service logging.")
logging.getLogger("asyncio").setLevel(logging.INFO)
logging.getLogger("urllib3").setLevel(logging.INFO)
# configuring uvicorn logger
LOGGING_CONFIG["formatters"]["default"][
"fmt"
] = "%(asctime)s.%(msecs)03d | %(levelprefix)s %(message)s"
LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
LOGGING_CONFIG["formatters"]["access"]["fmt"] = (
"%(asctime)s.%(msecs)03d | %(levelprefix)s %(client_addr)s "
'- "%(request_line)s" %(status_code)s'
)
LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
logging.config.dictConfig(LOGGING_CONFIG)

View File

@@ -1,22 +1,31 @@
import enum
import logging
from datetime import datetime
from typing import TYPE_CHECKING, Any, NoReturn, cast
import pydase
import pydase.components
import pydase.units as u
from pydase.utils.helpers import get_component_classes
from pydase.utils.serialization.types import SerializedObject
from pydase.utils.helpers import (
get_component_classes,
)
from pydase.utils.serialization.types import (
SerializedDatetime,
SerializedException,
SerializedObject,
)
if TYPE_CHECKING:
from collections.abc import Callable
logger = logging.getLogger(__name__)
class Deserializer:
@classmethod
def deserialize(cls, serialized_object: SerializedObject) -> Any:
"""Deserialize `serialized_object` (a `dict`) to a Python object."""
type_handler: dict[str | None, None | Callable[..., Any]] = {
None: None,
"int": cls.deserialize_primitive,
@@ -33,6 +42,7 @@ class Deserializer:
"dict": cls.deserialize_dict,
"method": cls.deserialize_method,
"Exception": cls.deserialize_exception,
"datetime": cls.deserialize_datetime,
}
# First go through handled types (as ColouredEnum is also within the components)
@@ -41,9 +51,9 @@ class Deserializer:
return handler(serialized_object)
# Custom types like Components or DataService classes
component_class = cls.get_component_class(serialized_object["type"])
if component_class:
return cls.deserialize_component_type(serialized_object, component_class)
service_base_class = cls.get_service_base_class(serialized_object["type"])
if service_base_class:
return cls.deserialize_data_service(serialized_object, service_base_class)
return None
@@ -57,6 +67,10 @@ class Deserializer:
def deserialize_quantity(cls, serialized_object: SerializedObject) -> Any:
return u.convert_to_quantity(serialized_object["value"]) # type: ignore
@classmethod
def deserialize_datetime(cls, serialized_object: SerializedDatetime) -> datetime:
return datetime.fromisoformat(serialized_object["value"])
@classmethod
def deserialize_enum(
cls,
@@ -88,27 +102,27 @@ class Deserializer:
return
@classmethod
def deserialize_exception(cls, serialized_object: SerializedObject) -> NoReturn:
def deserialize_exception(cls, serialized_object: SerializedException) -> NoReturn:
import builtins
try:
exception = getattr(builtins, serialized_object["name"]) # type: ignore
exception = getattr(builtins, serialized_object["name"])
except AttributeError:
exception = type(serialized_object["name"], (Exception,), {}) # type: ignore
raise exception(serialized_object["value"])
@staticmethod
def get_component_class(type_name: str | None) -> type | None:
def get_service_base_class(type_name: str | None) -> type | None:
for component_class in get_component_classes():
if type_name == component_class.__name__:
return component_class
if type_name == "DataService":
if type_name in ("DataService", "Task"):
import pydase
return pydase.DataService
return None
@classmethod
@classmethod # TODO: this shouldn't be a class method
def create_attr_property(cls, serialized_attr: SerializedObject) -> property:
attr_name = serialized_attr["full_access_path"].split(".")[-1]
@@ -125,7 +139,7 @@ class Deserializer:
return property(get, set)
@classmethod
def deserialize_component_type(
def deserialize_data_service(
cls, serialized_object: SerializedObject, base_class: type
) -> Any:
def create_proxy_class(serialized_object: SerializedObject) -> type:
@@ -148,4 +162,5 @@ class Deserializer:
def loads(serialized_object: SerializedObject) -> Any:
"""Deserialize `serialized_object` (a `dict`) to a Python object."""
return Deserializer.deserialize(serialized_object)

View File

@@ -3,17 +3,20 @@ from __future__ import annotations
import inspect
import logging
import sys
from datetime import datetime
from enum import Enum
from typing import TYPE_CHECKING, Any, Literal, cast
import pydase.units as u
from pydase.data_service.abstract_data_service import AbstractDataService
from pydase.data_service.task_manager import TaskStatus
from pydase.task.task_status import TaskStatus
from pydase.utils.decorators import render_in_frontend
from pydase.utils.helpers import (
get_attribute_doc,
get_component_classes,
get_data_service_class_reference,
get_task_class,
is_property_attribute,
parse_full_access_path,
parse_serialized_key,
)
@@ -21,6 +24,7 @@ from pydase.utils.serialization.types import (
DataServiceTypes,
SerializedBool,
SerializedDataService,
SerializedDatetime,
SerializedDict,
SerializedEnum,
SerializedException,
@@ -49,41 +53,59 @@ class SerializationPathError(Exception):
pass
class SerializationValueError(Exception):
pass
class Serializer:
@staticmethod
def serialize_object(obj: Any, access_path: str = "") -> SerializedObject: # noqa: C901
"""Serializes objects into
[`SerializedObject`][pydase.utils.serialization.types.SerializedObject]
representations.
"""
@classmethod
def serialize_object(cls, obj: Any, access_path: str = "") -> SerializedObject: # noqa: C901
"""Serialize `obj` to a
[`SerializedObject`][pydase.utils.serialization.types.SerializedObject].
Args:
obj:
Object to be serialized.
access_path:
String corresponding to the full access path of the object. This will be
prepended to the full_access_path in the SerializedObject entries.
Returns:
Dictionary representation of `obj`.
"""
result: SerializedObject
if isinstance(obj, Exception):
result = Serializer._serialize_exception(obj)
result = cls._serialize_exception(obj)
elif isinstance(obj, datetime):
result = cls._serialize_datetime(obj, access_path=access_path)
elif isinstance(obj, AbstractDataService):
result = Serializer._serialize_data_service(obj, access_path=access_path)
result = cls._serialize_data_service(obj, access_path=access_path)
elif isinstance(obj, list):
result = Serializer._serialize_list(obj, access_path=access_path)
result = cls._serialize_list(obj, access_path=access_path)
elif isinstance(obj, dict):
result = Serializer._serialize_dict(obj, access_path=access_path)
result = cls._serialize_dict(obj, access_path=access_path)
# Special handling for u.Quantity
elif isinstance(obj, u.Quantity):
result = Serializer._serialize_quantity(obj, access_path=access_path)
result = cls._serialize_quantity(obj, access_path=access_path)
# Handling for Enums
elif isinstance(obj, Enum):
result = Serializer._serialize_enum(obj, access_path=access_path)
result = cls._serialize_enum(obj, access_path=access_path)
# Methods and coroutines
elif inspect.isfunction(obj) or inspect.ismethod(obj):
result = Serializer._serialize_method(obj, access_path=access_path)
result = cls._serialize_method(obj, access_path=access_path)
elif isinstance(obj, int | float | bool | str | None):
result = Serializer._serialize_primitive(obj, access_path=access_path)
result = cls._serialize_primitive(obj, access_path=access_path)
try:
return result
@@ -92,8 +114,9 @@ class Serializer:
f"Could not serialized object of type {type(obj)}."
)
@staticmethod
@classmethod
def _serialize_primitive(
cls,
obj: float | bool | str | None,
access_path: str,
) -> (
@@ -112,8 +135,18 @@ class Serializer:
"value": obj,
}
@staticmethod
def _serialize_exception(obj: Exception) -> SerializedException:
@classmethod
def _serialize_datetime(cls, obj: datetime, access_path: str) -> SerializedDatetime:
return {
"type": "datetime",
"value": str(obj),
"doc": None,
"full_access_path": access_path,
"readonly": True,
}
@classmethod
def _serialize_exception(cls, obj: Exception) -> SerializedException:
return {
"full_access_path": "",
"doc": None,
@@ -123,8 +156,8 @@ class Serializer:
"name": obj.__class__.__name__,
}
@staticmethod
def _serialize_enum(obj: Enum, access_path: str = "") -> SerializedEnum:
@classmethod
def _serialize_enum(cls, obj: Enum, access_path: str = "") -> SerializedEnum:
import pydase.components.coloured_enum
value = obj.name
@@ -149,9 +182,9 @@ class Serializer:
},
}
@staticmethod
@classmethod
def _serialize_quantity(
obj: u.Quantity, access_path: str = ""
cls, obj: u.Quantity, access_path: str = ""
) -> SerializedQuantity:
doc = get_attribute_doc(obj)
value: u.QuantityDict = {"magnitude": obj.m, "unit": str(obj.u)}
@@ -163,13 +196,15 @@ class Serializer:
"doc": doc,
}
@staticmethod
def _serialize_dict(obj: dict[str, Any], access_path: str = "") -> SerializedDict:
@classmethod
def _serialize_dict(
cls, obj: dict[str, Any], access_path: str = ""
) -> SerializedDict:
readonly = False
doc = get_attribute_doc(obj)
value = {}
for key, val in obj.items():
value[key] = Serializer.serialize_object(
value[key] = cls.serialize_object(
val, access_path=f'{access_path}["{key}"]'
)
return {
@@ -180,12 +215,12 @@ class Serializer:
"doc": doc,
}
@staticmethod
def _serialize_list(obj: list[Any], access_path: str = "") -> SerializedList:
@classmethod
def _serialize_list(cls, obj: list[Any], access_path: str = "") -> SerializedList:
readonly = False
doc = get_attribute_doc(obj)
value = [
Serializer.serialize_object(o, access_path=f"{access_path}[{i}]")
cls.serialize_object(o, access_path=f"{access_path}[{i}]")
for i, o in enumerate(obj)
]
return {
@@ -196,9 +231,9 @@ class Serializer:
"doc": doc,
}
@staticmethod
@classmethod
def _serialize_method(
obj: Callable[..., Any], access_path: str = ""
cls, obj: Callable[..., Any], access_path: str = ""
) -> SerializedMethod:
readonly = True
doc = get_attribute_doc(obj)
@@ -231,9 +266,9 @@ class Serializer:
"frontend_render": frontend_render,
}
@staticmethod
@classmethod
def _serialize_data_service(
obj: AbstractDataService, access_path: str = ""
cls, obj: AbstractDataService, access_path: str = ""
) -> SerializedDataService:
readonly = False
doc = get_attribute_doc(obj)
@@ -247,6 +282,10 @@ class Serializer:
if component_base_cls:
obj_type = component_base_cls.__name__ # type: ignore
elif isinstance(obj, get_task_class()):
# Check if obj is a pydase task
obj_type = "Task"
# Get the set of DataService class attributes
data_service_attr_set = set(dir(get_data_service_class_reference()))
# Get the set of the object attributes
@@ -261,29 +300,15 @@ class Serializer:
if key.startswith("_"):
continue # Skip attributes that start with underscore
# Skip keys that start with "start_" or "stop_" and end with an async
# method name
if key.startswith(("start_", "stop_")) and key.split("_", 1)[1] in {
name
for name, _ in inspect.getmembers(
obj, predicate=inspect.iscoroutinefunction
)
}:
continue
val = getattr(obj, key)
path = f"{access_path}.{key}" if access_path else key
serialized_object = Serializer.serialize_object(val, access_path=path)
# If there's a running task for this method
if serialized_object["type"] == "method" and key in obj._task_manager.tasks:
serialized_object["value"] = TaskStatus.RUNNING.name
serialized_object = cls.serialize_object(val, access_path=path)
value[key] = serialized_object
# If the DataService attribute is a property
if isinstance(getattr(obj.__class__, key, None), property):
if is_property_attribute(obj, key):
prop: property = getattr(obj.__class__, key)
value[key]["readonly"] = prop.fset is None
value[key]["doc"] = get_attribute_doc(prop) # overwrite the doc
@@ -299,6 +324,19 @@ class Serializer:
def dump(obj: Any) -> SerializedObject:
"""Serialize `obj` to a
[`SerializedObject`][pydase.utils.serialization.types.SerializedObject].
The [`Serializer`][pydase.utils.serialization.serializer.Serializer] is used for
encoding.
Args:
obj:
Object to be serialized.
Returns:
Dictionary representation of `obj`.
"""
return Serializer.serialize_object(obj)
@@ -307,12 +345,13 @@ def set_nested_value_by_path(
) -> None:
"""
Set a value in a nested dictionary structure, which conforms to the serialization
format used by `pydase.utils.serializer.Serializer`, using a dot-notation path.
format used by [`Serializer`][pydase.utils.serialization.serializer.Serializer],
using a dot-notation path.
Args:
serialization_dict:
The base dictionary representing data serialized with
`pydase.utils.serializer.Serializer`.
[`Serializer`][pydase.utils.serialization.serializer.Serializer].
path:
The dot-notation path (e.g., 'attr1.attr2[0].attr3') indicating where to
set the value.
@@ -320,8 +359,8 @@ def set_nested_value_by_path(
The new value to set at the specified path.
Note:
- If the index equals the length of the list, the function will append the
serialized representation of the 'value' to the list.
If the index equals the length of the list, the function will append the
serialized representation of the 'value' to the list.
"""
path_parts = parse_full_access_path(path)
@@ -340,7 +379,7 @@ def set_nested_value_by_path(
next_level_serialized_object = get_container_item_by_key(
current_dict, path_parts[-1], allow_append=True
)
except (SerializationPathError, SerializationValueError, KeyError) as e:
except (SerializationPathError, KeyError) as e:
logger.error("Error occured trying to change %a: %s", path, e)
return
@@ -424,36 +463,30 @@ def get_container_item_by_key(
) -> SerializedObject:
"""
Retrieve an item from a container specified by the passed key. Add an item to the
container if allow_append is set to True.
container if `allow_append` is set to `True`.
If specified keys or indexes do not exist, the function can append new elements to
dictionaries and to lists if `allow_append` is True and the missing element is
exactly the next sequential index (for lists).
Args:
container: dict[str, SerializedObject] | list[SerializedObject]
container:
The container representing serialized data.
key: str
key:
The key name representing the attribute in the dictionary, which may include
direct keys or indexes (e.g., 'attr_name', '["key"]' or '[0]').
allow_append: bool
allow_append:
Flag to allow appending a new entry if the specified index is out of range
by exactly one position.
Returns:
SerializedObject
The dictionary or list item corresponding to the specified attribute and
index.
The dictionary or list item corresponding to the specified attribute and index.
Raises:
SerializationPathError:
If the path composed of `attr_name` and any specified index is invalid, or
leads to an IndexError or KeyError. This error is also raised if an attempt
to access a nonexistent key or index occurs without permission to append.
SerializationValueError:
If the retrieval results in an object that is expected to be a dictionary
but is not, indicating a mismatch between expected and actual serialized
data structure.
"""
processed_key = parse_serialized_key(key)
@@ -475,13 +508,12 @@ def get_data_paths_from_serialized_object( # noqa: C901
Recursively extracts full access paths from a serialized object.
Args:
serialized_obj (SerializedObject):
serialized_obj:
The dictionary representing the serialization of an object. Produced by
`pydase.utils.serializer.Serializer`.
Returns:
list[str]:
A list of strings, each representing a full access path in the serialized
A list of strings, each representing a full access path in the serialized
object.
"""
@@ -522,12 +554,11 @@ def generate_serialized_data_paths(
Recursively extracts full access paths from a serialized DataService class instance.
Args:
data (dict[str, SerializedObject]):
data:
The value of the "value" key of a serialized DataService class instance.
Returns:
list[str]:
A list of strings, each representing a full access path in the serialized
A list of strings, each representing a full access path in the serialized
object.
"""
@@ -546,3 +577,6 @@ def serialized_dict_is_nested_object(serialized_dict: SerializedObject) -> bool:
# We are excluding Quantity here as the value corresponding to the "value" key is
# a dictionary of the form {"magnitude": ..., "unit": ...}
return serialized_dict["type"] != "Quantity" and (isinstance(value, dict | list))
__all__ = ["Serializer", "dump"]

View File

@@ -45,6 +45,11 @@ class SerializedString(SerializedObjectBase):
type: Literal["str"]
class SerializedDatetime(SerializedObjectBase):
type: Literal["datetime"]
value: str
class SerializedEnum(SerializedObjectBase):
name: str
value: str
@@ -93,7 +98,9 @@ class SerializedException(SerializedObjectBase):
type: Literal["Exception"]
DataServiceTypes = Literal["DataService", "Image", "NumberSlider", "DeviceConnection"]
DataServiceTypes = Literal[
"DataService", "Image", "NumberSlider", "DeviceConnection", "Task"
]
class SerializedDataService(SerializedObjectBase):
@@ -107,6 +114,7 @@ SerializedObject = (
| SerializedFloat
| SerializedInteger
| SerializedString
| SerializedDatetime
| SerializedList
| SerializedDict
| SerializedNoneType
@@ -117,3 +125,21 @@ SerializedObject = (
| SerializedQuantity
| SerializedNoValue
)
"""
This type can be any of the following:
- SerializedBool
- SerializedFloat
- SerializedInteger
- SerializedString
- SerializedDatetime
- SerializedList
- SerializedDict
- SerializedNoneType
- SerializedMethod
- SerializedException
- SerializedDataService
- SerializedEnum
- SerializedQuantity
- SerializedNoValue
"""

View File

@@ -7,7 +7,7 @@ import pytest
from pydase.client.proxy_loader import ProxyAttributeError
@pytest.fixture(scope="session")
@pytest.fixture(scope="module")
def pydase_client() -> Generator[pydase.Client, None, Any]:
class SubService(pydase.DataService):
name = "SubService"
@@ -45,7 +45,7 @@ def pydase_client() -> Generator[pydase.Client, None, Any]:
thread = threading.Thread(target=server.run, daemon=True)
thread.start()
client = pydase.Client(hostname="localhost", port=9999)
client = pydase.Client(url="ws://localhost:9999")
yield client
@@ -121,12 +121,16 @@ def test_dict(pydase_client: pydase.Client) -> None:
# pop will remove the dictionary entry on the server
assert list(pydase_client.proxy.dict_attr.keys()) == ["foo"]
pydase_client.proxy.dict_attr["non_existent_key"] = "Hello"
assert pydase_client.proxy.dict_attr["non_existent_key"] == "Hello"
def test_tab_completion(pydase_client: pydase.Client) -> None:
# Tab completion gets its suggestions from the __dir__ class method
assert all(
x in pydase_client.proxy.__dir__()
for x in [
"dict_attr",
"list_attr",
"my_method",
"my_property",

View File

@@ -1,15 +1,13 @@
import asyncio
import logging
import pydase
import pydase.components.device_connection
import pytest
from pydase.task.autostart import autostart_service_tasks
from pytest import LogCaptureFixture
logger = logging.getLogger(__name__)
@pytest.mark.asyncio
@pytest.mark.asyncio(scope="function")
async def test_reconnection(caplog: LogCaptureFixture) -> None:
class MyService(pydase.components.device_connection.DeviceConnection):
def __init__(
@@ -22,10 +20,9 @@ async def test_reconnection(caplog: LogCaptureFixture) -> None:
self._connected = True
service_instance = MyService()
autostart_service_tasks(service_instance)
assert service_instance._connected is False
service_instance._task_manager.start_autostart_tasks()
await asyncio.sleep(0.01)
assert service_instance._connected is True

View File

@@ -1,4 +1,3 @@
import logging
import pydase
import pydase.components
@@ -7,8 +6,6 @@ from pydase.data_service.state_manager import StateManager
from pydase.utils.serialization.serializer import dump
from pytest import LogCaptureFixture
logger = logging.getLogger(__name__)
def test_image_functions(caplog: LogCaptureFixture) -> None:
class MyService(pydase.DataService):

View File

@@ -8,7 +8,7 @@ from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
from pytest import LogCaptureFixture
logger = logging.getLogger(__name__)
logger = logging.getLogger("pydase")
def test_number_slider(caplog: LogCaptureFixture) -> None:

11
tests/conftest.py Normal file
View File

@@ -0,0 +1,11 @@
import logging
import pytest
@pytest.fixture
def caplog(caplog: pytest.LogCaptureFixture):
logger = logging.getLogger("pydase")
logger.propagate = True
yield caplog

View File

@@ -36,8 +36,7 @@ def test_unexpected_type_change_warning(caplog: LogCaptureFixture) -> None:
def test_basic_inheritance_warning(caplog: LogCaptureFixture) -> None:
class SubService(DataService):
...
class SubService(DataService): ...
class SomeEnum(Enum):
HI = 0
@@ -57,11 +56,9 @@ def test_basic_inheritance_warning(caplog: LogCaptureFixture) -> None:
def name(self) -> str:
return self._name
def some_method(self) -> None:
...
def some_method(self) -> None: ...
async def some_task(self) -> None:
...
async def some_task(self) -> None: ...
ServiceClass()
@@ -129,17 +126,12 @@ def test_exposing_methods(caplog: LogCaptureFixture) -> None:
return "some method"
class ClassWithTask(pydase.DataService):
async def some_task(self, sleep_time: int) -> None:
pass
@frontend
def some_method(self) -> str:
return "some method"
ClassWithTask()
assert (
"Async function 'some_task' is defined with at least one argument. If you want "
"to use it as a task, remove the argument(s) from the function definition."
in caplog.text
)
def test_dynamically_added_attribute(caplog: LogCaptureFixture) -> None:
class MyService(DataService):

View File

@@ -1,7 +1,6 @@
import logging
import pydase
import pytest
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
@@ -22,50 +21,14 @@ def test_nested_attributes_cache_callback() -> None:
service_instance.name = "Peepz"
assert (
state_manager._data_service_cache.get_value_dict_from_cache("name")["value"]
state_manager.cache_manager.get_value_dict_from_cache("name")["value"]
== "Peepz"
)
service_instance.class_attr.name = "Ciao"
assert (
state_manager._data_service_cache.get_value_dict_from_cache("class_attr.name")[
state_manager.cache_manager.get_value_dict_from_cache("class_attr.name")[
"value"
]
== "Ciao"
)
@pytest.mark.asyncio
async def test_task_status_update() -> None:
class ServiceClass(pydase.DataService):
name = "World"
async def my_method(self) -> None:
pass
service_instance = ServiceClass()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
assert (
state_manager._data_service_cache.get_value_dict_from_cache("my_method")["type"]
== "method"
)
assert (
state_manager._data_service_cache.get_value_dict_from_cache("my_method")[
"value"
]
is None
)
service_instance.start_my_method() # type: ignore
assert (
state_manager._data_service_cache.get_value_dict_from_cache("my_method")["type"]
== "method"
)
assert (
state_manager._data_service_cache.get_value_dict_from_cache("my_method")[
"value"
]
== "RUNNING"
)

View File

@@ -5,7 +5,7 @@ import pydase
import pytest
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
from pydase.utils.serialization.serializer import SerializationError
from pydase.utils.serialization.serializer import SerializationError, dump
logger = logging.getLogger()
@@ -146,3 +146,41 @@ def test_private_attribute_does_not_have_to_be_serializable() -> None:
service_instance.change_publ_attr()
service_instance.change_priv_attr()
def test_normalized_attr_path_in_dependent_property_changes(
caplog: pytest.LogCaptureFixture,
) -> None:
class SubService(pydase.DataService):
_prop = 10.0
@property
def prop(self) -> float:
return self._prop
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.service_dict = {"one": SubService()}
service_instance = MyService()
state_manager = StateManager(service=service_instance)
observer = DataServiceObserver(state_manager=state_manager)
assert observer.property_deps_dict["service_dict['one']._prop"] == [
"service_dict['one'].prop"
]
# We can use dict key path encoded with double quotes
state_manager.set_service_attribute_value_by_path(
'service_dict["one"]._prop', dump(11.0)
)
assert service_instance.service_dict["one"].prop == 11.0
assert "'service_dict[\"one\"].prop' changed to '11.0'" in caplog.text
# We can use dict key path encoded with single quotes
state_manager.set_service_attribute_value_by_path(
"service_dict['one']._prop", dump(12.0)
)
assert service_instance.service_dict["one"].prop == 12.0
assert "'service_dict[\"one\"].prop' changed to '12.0'" in caplog.text

View File

@@ -1,135 +0,0 @@
import asyncio
import logging
import pydase
import pytest
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
from pytest import LogCaptureFixture
logger = logging.getLogger()
@pytest.mark.asyncio
async def test_autostart_task_callback(caplog: LogCaptureFixture) -> None:
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self._autostart_tasks = { # type: ignore
"my_task": (), # type: ignore
"my_other_task": (), # type: ignore
}
async def my_task(self) -> None:
logger.info("Triggered task.")
async def my_other_task(self) -> None:
logger.info("Triggered other task.")
# Your test code here
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
service_instance._task_manager.start_autostart_tasks()
assert "'my_task' changed to 'TaskStatus.RUNNING'" in caplog.text
assert "'my_other_task' changed to 'TaskStatus.RUNNING'" in caplog.text
@pytest.mark.asyncio
async def test_DataService_subclass_autostart_task_callback(
caplog: LogCaptureFixture,
) -> None:
class MySubService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self._autostart_tasks = { # type: ignore
"my_task": (),
"my_other_task": (),
}
async def my_task(self) -> None:
logger.info("Triggered task.")
async def my_other_task(self) -> None:
logger.info("Triggered other task.")
class MyService(pydase.DataService):
sub_service = MySubService()
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
service_instance._task_manager.start_autostart_tasks()
assert "'sub_service.my_task' changed to 'TaskStatus.RUNNING'" in caplog.text
assert "'sub_service.my_other_task' changed to 'TaskStatus.RUNNING'" in caplog.text
@pytest.mark.asyncio
async def test_DataService_subclass_list_autostart_task_callback(
caplog: LogCaptureFixture,
) -> None:
class MySubService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self._autostart_tasks = { # type: ignore
"my_task": (),
"my_other_task": (),
}
async def my_task(self) -> None:
logger.info("Triggered task.")
async def my_other_task(self) -> None:
logger.info("Triggered other task.")
class MyService(pydase.DataService):
sub_services_list = [MySubService() for i in range(2)]
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
service_instance._task_manager.start_autostart_tasks()
assert (
"'sub_services_list[0].my_task' changed to 'TaskStatus.RUNNING'" in caplog.text
)
assert (
"'sub_services_list[0].my_other_task' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
assert (
"'sub_services_list[1].my_task' changed to 'TaskStatus.RUNNING'" in caplog.text
)
assert (
"'sub_services_list[1].my_other_task' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
@pytest.mark.asyncio
async def test_start_and_stop_task_methods(caplog: LogCaptureFixture) -> None:
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
async def my_task(self) -> None:
while True:
logger.debug("Logging message")
await asyncio.sleep(0.1)
# Your test code here
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
service_instance.start_my_task()
await asyncio.sleep(0.01)
assert "'my_task' changed to 'TaskStatus.RUNNING'" in caplog.text
assert "Logging message" in caplog.text
caplog.clear()
service_instance.stop_my_task()
await asyncio.sleep(0.01)
assert "Task 'my_task' was cancelled" in caplog.text

View File

@@ -73,7 +73,7 @@ def test_validate_set_timeout(caplog: pytest.LogCaptureFixture) -> None:
)
self.thread.start()
def __del__(self) -> None:
def close_connection(self) -> None:
self.loop.call_soon_threadsafe(self.loop.stop)
self.thread.join()
@@ -126,3 +126,4 @@ def test_validate_set_timeout(caplog: pytest.LogCaptureFixture) -> None:
)
service_instance.value_2 = 3.0 # no assertion raised
service_instance._driver.close_connection()

View File

@@ -5,7 +5,7 @@ import pytest
from pydase.observer_pattern.observable import Observable
from pydase.observer_pattern.observer import Observer
logger = logging.getLogger(__name__)
logger = logging.getLogger("pydase")
class MyObserver(Observer):

View File

@@ -5,7 +5,7 @@ import pytest
from pydase.observer_pattern.observable import Observable
from pydase.observer_pattern.observer import Observer
logger = logging.getLogger(__name__)
logger = logging.getLogger("pydase")
class MyObserver(Observer):

View File

@@ -5,7 +5,7 @@ import pytest
from pydase.observer_pattern.observable import Observable
from pydase.observer_pattern.observer import Observer
logger = logging.getLogger(__name__)
logger = logging.getLogger("pydase")
class MyObserver(Observer):

View File

@@ -0,0 +1,194 @@
import json
import threading
from collections.abc import Generator
from typing import Any
import aiohttp
import pydase
import pytest
@pytest.fixture()
def pydase_server() -> Generator[None, None, None]:
class SubService(pydase.DataService):
name = "SubService"
subservice_instance = SubService()
class MyService(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self._readonly_attr = "MyService"
self._my_property = 12.1
self.sub_service = SubService()
self.list_attr = [1, 2]
self.dict_attr = {
"foo": subservice_instance,
"dotted.key": subservice_instance,
}
@property
def my_property(self) -> float:
return self._my_property
@my_property.setter
def my_property(self, value: float) -> None:
self._my_property = value
@property
def readonly_attr(self) -> str:
return self._readonly_attr
def my_method(self, input_str: str) -> str:
return input_str
server = pydase.Server(MyService(), web_port=9998)
thread = threading.Thread(target=server.run, daemon=True)
thread.start()
yield
@pytest.mark.parametrize(
"access_path, expected",
[
(
"readonly_attr",
{
"full_access_path": "readonly_attr",
"doc": None,
"readonly": False,
"type": "str",
"value": "MyService",
},
),
(
"sub_service.name",
{
"full_access_path": "sub_service.name",
"doc": None,
"readonly": False,
"type": "str",
"value": "SubService",
},
),
(
"list_attr[0]",
{
"full_access_path": "list_attr[0]",
"doc": None,
"readonly": False,
"type": "int",
"value": 1,
},
),
(
'dict_attr["foo"]',
{
"full_access_path": 'dict_attr["foo"]',
"doc": None,
"name": "SubService",
"readonly": False,
"type": "DataService",
"value": {
"name": {
"doc": None,
"full_access_path": 'dict_attr["foo"].name',
"readonly": False,
"type": "str",
"value": "SubService",
}
},
},
),
],
)
@pytest.mark.asyncio()
async def test_get_value(
access_path: str,
expected: dict[str, Any],
pydase_server: None,
) -> None:
async with aiohttp.ClientSession("http://localhost:9998") as session:
resp = await session.get(f"/api/v1/get_value?access_path={access_path}")
content = json.loads(await resp.text())
assert content == expected
@pytest.mark.parametrize(
"access_path, new_value, ok",
[
(
"sub_service.name",
{
"full_access_path": "sub_service.name",
"doc": None,
"readonly": False,
"type": "str",
"value": "New Name",
},
True,
),
(
"list_attr[0]",
{
"full_access_path": "list_attr[0]",
"doc": None,
"readonly": False,
"type": "int",
"value": 11,
},
True,
),
(
'dict_attr["foo"].name',
{
"full_access_path": 'dict_attr["foo"].name',
"doc": None,
"readonly": False,
"type": "str",
"value": "foo name",
},
True,
),
(
"readonly_attr",
{
"full_access_path": "readonly_attr",
"doc": None,
"readonly": True,
"type": "str",
"value": "Other Name",
},
False,
),
(
"invalid_attribute",
{
"full_access_path": "invalid_attribute",
"doc": None,
"readonly": False,
"type": "float",
"value": 12.0,
},
False,
),
],
)
@pytest.mark.asyncio()
async def test_update_value(
access_path: str,
new_value: dict[str, Any],
ok: bool,
pydase_server: pydase.DataService,
) -> None:
async with aiohttp.ClientSession("http://localhost:9998") as session:
resp = await session.put(
"/api/v1/update_value",
json={"access_path": access_path, "value": new_value},
)
assert resp.ok == ok
if resp.ok:
resp = await session.get(f"/api/v1/get_value?access_path={access_path}")
content = json.loads(await resp.text())
assert content == new_value

291
tests/task/test_task.py Normal file
View File

@@ -0,0 +1,291 @@
import asyncio
import logging
import pydase
import pytest
from pydase.data_service.data_service_observer import DataServiceObserver
from pydase.data_service.state_manager import StateManager
from pydase.task.autostart import autostart_service_tasks
from pydase.task.decorator import task
from pydase.task.task_status import TaskStatus
from pytest import LogCaptureFixture
logger = logging.getLogger("pydase")
@pytest.mark.asyncio(scope="function")
async def test_start_and_stop_task(caplog: LogCaptureFixture) -> None:
class MyService(pydase.DataService):
@task()
async def my_task(self) -> None:
logger.info("Triggered task.")
while True:
await asyncio.sleep(1)
# Your test code here
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
autostart_service_tasks(service_instance)
await asyncio.sleep(0.1)
assert service_instance.my_task.status == TaskStatus.NOT_RUNNING
service_instance.my_task.start()
await asyncio.sleep(0.1)
assert service_instance.my_task.status == TaskStatus.RUNNING
assert "'my_task.status' changed to 'TaskStatus.RUNNING'" in caplog.text
assert "Triggered task." in caplog.text
caplog.clear()
service_instance.my_task.stop()
await asyncio.sleep(0.1)
assert service_instance.my_task.status == TaskStatus.NOT_RUNNING
assert "Task 'my_task' was cancelled" in caplog.text
@pytest.mark.asyncio(scope="function")
async def test_autostart_task(caplog: LogCaptureFixture) -> None:
class MyService(pydase.DataService):
@task(autostart=True)
async def my_task(self) -> None:
logger.info("Triggered task.")
while True:
await asyncio.sleep(1)
# Your test code here
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
autostart_service_tasks(service_instance)
await asyncio.sleep(0.1)
assert service_instance.my_task.status == TaskStatus.RUNNING
assert "'my_task.status' changed to 'TaskStatus.RUNNING'" in caplog.text
@pytest.mark.asyncio(scope="function")
async def test_nested_list_autostart_task(
caplog: LogCaptureFixture,
) -> None:
class MySubService(pydase.DataService):
@task(autostart=True)
async def my_task(self) -> None:
logger.info("Triggered task.")
while True:
await asyncio.sleep(1)
class MyService(pydase.DataService):
sub_services_list = [MySubService() for i in range(2)]
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
autostart_service_tasks(service_instance)
await asyncio.sleep(0.1)
assert service_instance.sub_services_list[0].my_task.status == TaskStatus.RUNNING
assert service_instance.sub_services_list[1].my_task.status == TaskStatus.RUNNING
assert (
"'sub_services_list[0].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
assert (
"'sub_services_list[1].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
@pytest.mark.asyncio(scope="function")
async def test_nested_dict_autostart_task(
caplog: LogCaptureFixture,
) -> None:
class MySubService(pydase.DataService):
@task(autostart=True)
async def my_task(self) -> None:
logger.info("Triggered task.")
while True:
await asyncio.sleep(1)
class MyService(pydase.DataService):
sub_services_dict = {"first": MySubService(), "second": MySubService()}
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
autostart_service_tasks(service_instance)
await asyncio.sleep(0.1)
assert (
service_instance.sub_services_dict["first"].my_task.status == TaskStatus.RUNNING
)
assert (
service_instance.sub_services_dict["second"].my_task.status
== TaskStatus.RUNNING
)
assert (
"'sub_services_dict[\"first\"].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
assert (
"'sub_services_dict[\"second\"].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
@pytest.mark.asyncio(scope="function")
async def test_manual_start_with_multiple_service_instances(
caplog: LogCaptureFixture,
) -> None:
class MySubService(pydase.DataService):
@task()
async def my_task(self) -> None:
logger.info("Triggered task.")
while True:
await asyncio.sleep(1)
class MyService(pydase.DataService):
sub_services_list = [MySubService() for i in range(2)]
sub_services_dict = {"first": MySubService(), "second": MySubService()}
service_instance = MyService()
state_manager = StateManager(service_instance)
DataServiceObserver(state_manager)
autostart_service_tasks(service_instance)
await asyncio.sleep(0.1)
assert (
service_instance.sub_services_list[0].my_task.status == TaskStatus.NOT_RUNNING
)
assert (
service_instance.sub_services_list[1].my_task.status == TaskStatus.NOT_RUNNING
)
assert (
service_instance.sub_services_dict["first"].my_task.status
== TaskStatus.NOT_RUNNING
)
assert (
service_instance.sub_services_dict["second"].my_task.status
== TaskStatus.NOT_RUNNING
)
service_instance.sub_services_list[0].my_task.start()
await asyncio.sleep(0.01)
assert service_instance.sub_services_list[0].my_task.status == TaskStatus.RUNNING
assert (
"'sub_services_list[0].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
assert (
"'sub_services_list[1].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_dict[\"first\"].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_dict[\"second\"].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
service_instance.sub_services_list[0].my_task.stop()
await asyncio.sleep(0.01)
assert "Task 'my_task' was cancelled" in caplog.text
caplog.clear()
service_instance.sub_services_list[1].my_task.start()
await asyncio.sleep(0.01)
assert service_instance.sub_services_list[1].my_task.status == TaskStatus.RUNNING
assert (
"'sub_services_list[0].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_list[1].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
assert (
"'sub_services_dict[\"first\"].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_dict[\"second\"].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
service_instance.sub_services_list[1].my_task.stop()
await asyncio.sleep(0.01)
assert "Task 'my_task' was cancelled" in caplog.text
caplog.clear()
service_instance.sub_services_dict["first"].my_task.start()
await asyncio.sleep(0.01)
assert (
service_instance.sub_services_dict["first"].my_task.status == TaskStatus.RUNNING
)
assert (
"'sub_services_list[0].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_list[1].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_dict[\"first\"].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
assert (
"'sub_services_dict[\"second\"].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
service_instance.sub_services_dict["first"].my_task.stop()
await asyncio.sleep(0.01)
assert "Task 'my_task' was cancelled" in caplog.text
caplog.clear()
service_instance.sub_services_dict["second"].my_task.start()
await asyncio.sleep(0.01)
assert (
service_instance.sub_services_dict["second"].my_task.status
== TaskStatus.RUNNING
)
assert (
"'sub_services_list[0].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_list[1].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_dict[\"first\"].my_task.status' changed to 'TaskStatus.RUNNING'"
not in caplog.text
)
assert (
"'sub_services_dict[\"second\"].my_task.status' changed to 'TaskStatus.RUNNING'"
in caplog.text
)
service_instance.sub_services_dict["second"].my_task.stop()
await asyncio.sleep(0.01)
assert "Task 'my_task' was cancelled" in caplog.text

View File

@@ -1,4 +1,5 @@
import enum
from datetime import datetime
from typing import Any
import pydase.components
@@ -137,6 +138,16 @@ def test_loads_primitive_types(obj: Any, obj_serialization: SerializedObject) ->
"name": "MyService",
},
),
(
datetime.fromisoformat("2024-07-09 15:37:08.249845"),
{
"full_access_path": "",
"type": "datetime",
"value": "2024-07-09 15:37:08.249845",
"readonly": True,
"doc": None,
},
),
],
)
def test_loads_advanced_types(obj: Any, obj_serialization: SerializedObject) -> None:

View File

@@ -1,5 +1,5 @@
import asyncio
import enum
from datetime import datetime
from enum import Enum
from typing import Any, ClassVar
@@ -7,7 +7,7 @@ import pydase
import pydase.units as u
import pytest
from pydase.components.coloured_enum import ColouredEnum
from pydase.data_service.task_manager import TaskStatus
from pydase.task.task_status import TaskStatus
from pydase.utils.decorators import frontend
from pydase.utils.serialization.serializer import (
SerializationPathError,
@@ -92,6 +92,16 @@ service_instance = ServiceClass()
"doc": None,
},
),
(
datetime.fromisoformat("2024-07-09 15:37:08.249845"),
{
"full_access_path": "",
"type": "datetime",
"value": "2024-07-09 15:37:08.249845",
"readonly": True,
"doc": None,
},
),
],
)
def test_dump(test_input: Any, expected: dict[str, Any]) -> None:
@@ -196,18 +206,16 @@ def test_ColouredEnum_serialize() -> None:
}
@pytest.mark.asyncio
@pytest.mark.asyncio(scope="module")
async def test_method_serialization() -> None:
class ClassWithMethod(pydase.DataService):
def some_method(self) -> str:
return "some method"
async def some_task(self) -> None:
while True:
await asyncio.sleep(10)
pass
instance = ClassWithMethod()
instance.start_some_task() # type: ignore
assert dump(instance)["value"] == {
"some_method": {
@@ -223,7 +231,7 @@ async def test_method_serialization() -> None:
"some_task": {
"full_access_path": "some_task",
"type": "method",
"value": TaskStatus.RUNNING.name,
"value": None,
"readonly": True,
"doc": None,
"async": True,
@@ -476,8 +484,7 @@ def test_derived_data_service_serialization() -> None:
def name(self, value: str) -> None:
self._name = value
class DerivedService(BaseService):
...
class DerivedService(BaseService): ...
base_service_serialization = dump(BaseService())
derived_service_serialization = dump(DerivedService())

View File

@@ -103,9 +103,21 @@ def test_get_object_by_path_parts(path_parts: list[str], expected: Any) -> None:
assert get_object_by_path_parts(service_instance, path_parts) == expected
def test_get_object_by_path_parts_error(caplog: pytest.LogCaptureFixture) -> None:
assert get_object_by_path_parts(service_instance, ["non_existent_attr"]) is None
assert "Attribute 'non_existent_attr' does not exist in the object." in caplog.text
@pytest.mark.parametrize(
"path_parts, expected_exception",
[
(["non_existent_attr"], AttributeError),
(["dict_attr", '["non_existent_key"]'], KeyError),
(["list_attr", "[2]"], IndexError),
(["list_attr", "[1.0]"], TypeError),
(["list_attr", '["string_key"]'], TypeError),
],
)
def test_get_object_by_path_parts_exception(
path_parts: list[str], expected_exception: type[Exception]
) -> None:
with pytest.raises(expected_exception):
get_object_by_path_parts(service_instance, path_parts)
@pytest.mark.parametrize(

View File

@@ -1,12 +1,12 @@
import logging
from pydase.utils.logging import setup_logging
from pytest import LogCaptureFixture
def test_log_error(caplog: LogCaptureFixture):
setup_logging("ERROR")
logger = logging.getLogger()
logger = logging.getLogger("pydase")
logger.setLevel(logging.ERROR)
logger.debug("This is a debug message")
logger.info("This is an info message")
logger.warning("This is a warning message")
@@ -21,8 +21,9 @@ def test_log_error(caplog: LogCaptureFixture):
def test_log_warning(caplog: LogCaptureFixture):
setup_logging("WARNING")
logger = logging.getLogger()
logger = logging.getLogger("pydase")
logger.setLevel(logging.WARNING)
logger.debug("This is a debug message")
logger.info("This is an info message")
logger.warning("This is a warning message")
@@ -37,10 +38,9 @@ def test_log_warning(caplog: LogCaptureFixture):
def test_log_debug(caplog: LogCaptureFixture):
setup_logging("DEBUG")
logger = (
logging.getLogger()
) # Get the root logger or replace with the appropriate logger.
logger = logging.getLogger("pydase")
logger.setLevel(logging.DEBUG)
logger.debug("This is a debug message")
logger.info("This is an info message")
logger.warning("This is a warning message")
@@ -54,10 +54,9 @@ def test_log_debug(caplog: LogCaptureFixture):
def test_log_info(caplog: LogCaptureFixture):
setup_logging("INFO")
logger = (
logging.getLogger()
) # Get the root logger or replace with the appropriate logger.
logger = logging.getLogger("pydase")
logger.setLevel(logging.INFO)
logger.debug("This is a debug message")
logger.info("This is an info message")
logger.warning("This is a warning message")