Reduced a few lines of code and documented plot_spectra function.
This commit is contained in:
@ -15,10 +15,19 @@ def plot_image(dataframe,filter):
|
||||
ax.imshow(meas['image'],extent = [x_min,x_max,y_min,y_max])
|
||||
ax.set_xlabel('scientaEkin_eV')
|
||||
ax.set_ylabel('Replicates')
|
||||
ax.set_title(meas['name'][0]+ '\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0])
|
||||
ax.set_title(meas['name'][0] + '\n' + meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0])
|
||||
|
||||
def plot_spectrum(dataframe,filter,):
|
||||
def plot_spectra(dataframe,filter):
|
||||
|
||||
""" plot_spectra plots XPS spectra associated to 'dataframe' after row reduced by 'filter'.
|
||||
When more than one row are specified by the 'filter' input, indivial spectrum are superimposed
|
||||
on the same plot.
|
||||
|
||||
Parameters:
|
||||
dataframe (pandas.DataFrame): table with heterogenous entries obtained by read_hdf5_as_dataframe.py.
|
||||
filter (binaray array): binary indexing array with same number of entries as rows in dataframe.
|
||||
|
||||
"""
|
||||
fig = plt.figure()
|
||||
ax = plt.gca()
|
||||
|
||||
@ -32,13 +41,11 @@ def plot_spectrum(dataframe,filter,):
|
||||
y_min, y_max = 0, rows
|
||||
#for i in range(cols):
|
||||
ax.plot(bindingEnergy_eV, spectrum_countsPerSecond,label = meas['name'][0])
|
||||
#ax.plot(bindingEnergy_eV, np.mean(meas['image'],axis=0))
|
||||
ax.set_xlabel('bindingEnergy_eV')
|
||||
ax.set_ylabel('counts Per Second')
|
||||
if len(meas)>1:
|
||||
ax.set_title('\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0])
|
||||
else:
|
||||
ax.set_title(meas['name'][0] + '\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0])
|
||||
|
||||
ax.set_xlabel('bindingEnergy_eV')
|
||||
ax.set_ylabel('counts Per Second')
|
||||
ax.set_title('\n'+meas['sample'][0]+ '\n' + 'PE spectra')
|
||||
#ax.set_title(meas['name'][0] + '\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0])
|
||||
ax.legend()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user