diff --git a/napp_plotlib.py b/napp_plotlib.py index f1580d6..063b57a 100644 --- a/napp_plotlib.py +++ b/napp_plotlib.py @@ -15,10 +15,19 @@ def plot_image(dataframe,filter): ax.imshow(meas['image'],extent = [x_min,x_max,y_min,y_max]) ax.set_xlabel('scientaEkin_eV') ax.set_ylabel('Replicates') - ax.set_title(meas['name'][0]+ '\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0]) + ax.set_title(meas['name'][0] + '\n' + meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0]) -def plot_spectrum(dataframe,filter,): +def plot_spectra(dataframe,filter): + """ plot_spectra plots XPS spectra associated to 'dataframe' after row reduced by 'filter'. + When more than one row are specified by the 'filter' input, indivial spectrum are superimposed + on the same plot. + + Parameters: + dataframe (pandas.DataFrame): table with heterogenous entries obtained by read_hdf5_as_dataframe.py. + filter (binaray array): binary indexing array with same number of entries as rows in dataframe. + + """ fig = plt.figure() ax = plt.gca() @@ -32,13 +41,11 @@ def plot_spectrum(dataframe,filter,): y_min, y_max = 0, rows #for i in range(cols): ax.plot(bindingEnergy_eV, spectrum_countsPerSecond,label = meas['name'][0]) - #ax.plot(bindingEnergy_eV, np.mean(meas['image'],axis=0)) - ax.set_xlabel('bindingEnergy_eV') - ax.set_ylabel('counts Per Second') - if len(meas)>1: - ax.set_title('\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0]) - else: - ax.set_title(meas['name'][0] + '\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0]) + + ax.set_xlabel('bindingEnergy_eV') + ax.set_ylabel('counts Per Second') + ax.set_title('\n'+meas['sample'][0]+ '\n' + 'PE spectra') + #ax.set_title(meas['name'][0] + '\n'+meas['sample'][0]+ '\n' + meas['lastModifiedDatestr'][0]) ax.legend()