Implemented a few new features such as create_group_hierarchy of any depth, get_parent_child_relationships, and display_group_hierarchy_on_a_treemap. Additionally, unified read_hdf5_as_dataframe's and documented it better.
This commit is contained in:
262
hdf5_lib.py
262
hdf5_lib.py
@ -1,73 +1,34 @@
|
||||
import pandas as pd
|
||||
import h5py
|
||||
import os
|
||||
import sys
|
||||
#import sys
|
||||
#from itertools import product
|
||||
import numpy as np
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def is_wrapped(value):
|
||||
"""returns True if value is contained in a 1 by 1 array, or False otherwise."""
|
||||
if not isinstance(value,np.ndarray):
|
||||
return False
|
||||
elif sum(value.shape)==2:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
def read_hdf5_as_dataframe(filename):
|
||||
|
||||
with h5py.File(filename,'r') as file:
|
||||
|
||||
# Define group's attributes and datasets. This should hold
|
||||
# for all groups. TODO: implement verification and noncompliance error if needed.
|
||||
group_list = list(file.keys())
|
||||
group_attrs = list(file[group_list[0]].attrs.keys())
|
||||
#
|
||||
column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
|
||||
column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
|
||||
""" Reconstruct a Matlab Table encoded in a .h5 file as a Pandas DataFrame. The input h5. file
|
||||
contains as many groups as rows in the Matlab Table, and each group stores dataset-like variables in the Table as
|
||||
Datasets while categorical and numerical variables in the table are represented as attributes of each group.
|
||||
|
||||
Note:DataFrame is constructed columnwise to ensure homogenous data columns.
|
||||
|
||||
Parameters:
|
||||
|
||||
filename (str): .h5 file's name. It may include location-path information.
|
||||
|
||||
Returns:
|
||||
|
||||
output_dataframe (pd.DataFrame): Matlab's Table as a Pandas DataFrame
|
||||
|
||||
"""
|
||||
|
||||
group_datasets = list(file[group_list[0]].keys())
|
||||
#
|
||||
column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
|
||||
column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
|
||||
|
||||
|
||||
# Define data_frame as group_attrs + group_datasets
|
||||
#pd_series_index = group_attrs + group_datasets
|
||||
pd_series_index = column_attr_names + column_dataset_names
|
||||
|
||||
output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
|
||||
|
||||
for group_key in group_list:
|
||||
# Print group_name
|
||||
#print(group_key)
|
||||
tmp_row = []
|
||||
for attr_key in group_attrs:
|
||||
#print(type(file[group_key].attrs[attr_key]))
|
||||
df_entry = file[group_key].attrs[attr_key][()]
|
||||
tmp_row.append(df_entry)
|
||||
|
||||
for ds_key in group_datasets:
|
||||
# Check dataset's type by uncommenting the line below
|
||||
# print(type(file[group_key][ds_key][()]))
|
||||
|
||||
# Append to list the value of the file at dataset /group/ds
|
||||
#tmp_row.append(file[group_key][ds_key][()])
|
||||
#tmp_row.append(file[group_key+'/'+ds_key][()])
|
||||
tmp_row.append(file[group_key+'/'+ds_key][()])
|
||||
|
||||
# Create pandas Series/measurement
|
||||
row = pd.Series(data=tmp_row,index=pd_series_index, name = group_key)
|
||||
output_dataframe.loc[group_key,:] = row
|
||||
|
||||
return output_dataframe
|
||||
|
||||
def read_hdf5_as_dataframe_v2(filename):
|
||||
|
||||
"""contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
|
||||
#contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
|
||||
|
||||
with h5py.File(filename,'r') as file:
|
||||
|
||||
@ -96,10 +57,13 @@ def read_hdf5_as_dataframe_v2(filename):
|
||||
for meas_prop in group_attrs + group_datasets:
|
||||
if meas_prop in group_attrs:
|
||||
column_label = meas_prop[meas_prop.find('_')+1:]
|
||||
# Create numerical or categorical column from group's attributes
|
||||
tmp_col = [file[group_key].attrs[meas_prop][()][0] for group_key in group_list]
|
||||
else:
|
||||
# Create dataset column from group's datasets
|
||||
column_label = file[group_list[0] + '/' + meas_prop].attrs['column_name']
|
||||
tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
|
||||
#tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
|
||||
tmp_col = [file[group_key + '/' + meas_prop][()] for group_key in group_list]
|
||||
|
||||
output_dataframe.loc[:,column_label] = tmp_col
|
||||
|
||||
@ -114,9 +78,7 @@ def is_nested_hierarchy(df) -> bool:
|
||||
"""receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
|
||||
That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
|
||||
"""
|
||||
|
||||
# TODO: generalize the code to check for deeper group hierachies.
|
||||
|
||||
def are_nested(df, col, col_nxt):
|
||||
""" Checks whether low level LL groups can be separated in terms of high level HL groups.
|
||||
That is, elements of low-level groups do not belong to more than one HL group."""
|
||||
@ -150,20 +112,10 @@ def get_attr_names(input_data):
|
||||
raise ValueError("input_data must be a pd.DataFrame")
|
||||
|
||||
return input_data.columns
|
||||
|
||||
def create_group_hierarchy(obj, df, columns):
|
||||
|
||||
from itertools import product
|
||||
|
||||
def set_group_hierarchy(file: h5py.File, df):
|
||||
|
||||
args = [df[col].unique().tolist() for col in df.columns]
|
||||
group_paths = ['/'+'/'.join(item) for item in list(product(*args))]
|
||||
|
||||
return group_paths
|
||||
|
||||
def create_group_hierarchy(obj, columns, df):
|
||||
|
||||
"""
|
||||
|
||||
"""
|
||||
Input:
|
||||
obj (h5py.File or h5py.Group)
|
||||
columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
|
||||
@ -179,22 +131,104 @@ def create_group_hierarchy(obj, columns, df):
|
||||
for group_name in unique_values:
|
||||
|
||||
group = obj.require_group(group_name)
|
||||
group.attrs.create('column_name', columns[0])
|
||||
|
||||
sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
|
||||
group.attrs.create('count',sub_df.shape[0])
|
||||
|
||||
#if group_name == 'MgO powder,H2O,HCl':
|
||||
# print('Here:',sub_df.shape)
|
||||
create_group_hierarchy(group, columns[1::], sub_df)
|
||||
create_group_hierarchy(group, sub_df, columns[1::])
|
||||
|
||||
def get_parent_child_relationships(file: h5py.File):
|
||||
|
||||
nodes = []
|
||||
parent = []
|
||||
values = []
|
||||
|
||||
def node_visitor(name,obj):
|
||||
if isinstance(obj,h5py.Group):
|
||||
nodes.append(obj.name)
|
||||
parent.append(obj.parent.name)
|
||||
#nodes.append(os.path.split(obj.name)[1])
|
||||
#parent.append(os.path.split(obj.parent.name)[1])
|
||||
values.append(obj.attrs['count'])
|
||||
|
||||
file.visititems(node_visitor)
|
||||
return nodes, parent, values
|
||||
|
||||
|
||||
def get_groups_at_a_level(file: h5py.File, level: str):
|
||||
|
||||
groups = []
|
||||
def node_selector(name, obj):
|
||||
if name.count('/') == level:
|
||||
print(name)
|
||||
groups.append(obj.name)
|
||||
|
||||
file.visititems(node_selector)
|
||||
#file.visititems()
|
||||
return groups
|
||||
|
||||
def format_group_names(names: list):
|
||||
|
||||
formated_names = []
|
||||
for name in names:
|
||||
idx = name.rfind('/')
|
||||
if len(name) > 1:
|
||||
formated_names.append(name[idx+1::])
|
||||
else:
|
||||
formated_names.append(name)
|
||||
|
||||
return pd.DataFrame(formated_names,columns=['formated_names'],index=names)
|
||||
|
||||
|
||||
|
||||
def display_group_hierarchy_on_treemap(filename: str):
|
||||
|
||||
with h5py.File(filename,'r') as file:
|
||||
nodes, parents, values = get_parent_child_relationships(file)
|
||||
|
||||
#formating_df = format_group_names(nodes + ["/"])
|
||||
|
||||
fig = make_subplots(1, 1, specs=[[{"type": "domain"}]],)
|
||||
fig.add_trace(go.Treemap(
|
||||
labels=nodes, #formating_df['formated_names'][nodes],
|
||||
parents=parents,#formating_df['formated_names'][parents],
|
||||
values=values,
|
||||
branchvalues='total',
|
||||
customdata= pd.Series(nodes),
|
||||
#marker=dict(
|
||||
# colors=df_all_trees['color'],
|
||||
# colorscale='RdBu',
|
||||
# cmid=average_score),
|
||||
#hovertemplate='<b>%{label} </b> <br> Number of files: %{value}<br> Success rate: %{color:.2f}',
|
||||
hovertemplate='<b>%{label} </b> <br> Count: %{value} <br> Path: %{customdata}',
|
||||
name=''
|
||||
))
|
||||
fig.update_layout(width = 800, height= 600, margin = dict(t=50, l=25, r=25, b=25))
|
||||
fig.show()
|
||||
|
||||
def create_hdf5_file(filename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
|
||||
def create_hdf5_file(ofilename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
|
||||
|
||||
""" Creates an hdf5 file with at most three group levels, bottom, middle, and top level groups, where the top level group is the root '/' group.
|
||||
""" Creates an hdf5 file with as many levels as indicated by len(group_by_funcs).
|
||||
Top level denotes the root group/directory and bottom level denotes measurement level groups.
|
||||
|
||||
Parameters:
|
||||
input_data (pd.DataFrame | file-system path) :
|
||||
group_by_funcs (list of callables or strs) : returns a pd.Series, from input_data elements to group labels. input data elements with same label belong to the same group.
|
||||
group_by_funcs (list of callables or strs) : contains a list of callables or dataframe's column names that will be used
|
||||
to partition or group files from top to bottom.
|
||||
|
||||
Callables in the list must assign a categorical value to each file in a file list, internally represented as a DataFrame,
|
||||
and they thus return a pd.Series of categorical values.
|
||||
|
||||
On the other hand, strings in the list refer to the name of categorical columns in the input_data (when this is a DataFrame)
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
# Check whether input_data is a valid file system path or a dataframe
|
||||
# Check whether input_data is a valid file-system path or a DataFrame
|
||||
check_possible_path = lambda x : os.path.exists(input_data) if isinstance(input_data,str) else False
|
||||
|
||||
if check_possible_path(input_data):
|
||||
@ -229,9 +263,11 @@ def create_hdf5_file(filename, input_data, approach : str, group_by_funcs : list
|
||||
# # TODO: extend to more than 2 callable elements.
|
||||
# raise ValueError("group_by_funcs can only contain at most two grouping elements.")
|
||||
|
||||
with h5py.File(filename, 'w') as f:
|
||||
with h5py.File(ofilename, 'w') as file:
|
||||
|
||||
create_group_hierarchy(f, grouping_cols, df)
|
||||
create_group_hierarchy(file, df, grouping_cols)
|
||||
|
||||
file.attrs.create(name='depth', data=len(grouping_cols)-1)
|
||||
|
||||
#join_path = lambda x,y: '/' + x + '/' + y
|
||||
#for group_name in df[grouping_cols[0]].unique():
|
||||
@ -241,9 +277,16 @@ def create_hdf5_file(filename, input_data, approach : str, group_by_funcs : list
|
||||
# # Explicitly, grp = f.create_group(group_name), subgrp = grp.create_group(subgroup_name)
|
||||
# print(join_path(group_name,subgroup_name))
|
||||
# f.create_group(join_path(group_name,subgroup_name))
|
||||
|
||||
# Get groups at the bottom of the hierarchy
|
||||
bottom_level_groups = get_groups_at_a_level(file, file.attrs['depth'])
|
||||
|
||||
nodes, parents, values = get_parent_child_relationships(file)
|
||||
print(':)')
|
||||
|
||||
#fig = px.treemap(values=values,names=nodes, parents= parents)
|
||||
#fig.update_traces(root_color="lightgrey")
|
||||
#fig.update_layout(width = 800, height=600, margin = dict(t=50, l=25, r=25, b=25))
|
||||
#fig.show()
|
||||
else:
|
||||
raise ValueError("'approach' must take values in ['top-down','bottom-up']")
|
||||
|
||||
@ -256,13 +299,18 @@ def create_hdf5_file(filename, input_data, approach : str, group_by_funcs : list
|
||||
#
|
||||
# Add datasets to groups and the groups and the group's attributes
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
def augment_with_filetype(df):
|
||||
df['filetype'] = [os.path.splitext(item)[1][1::] for item in df['filename']]
|
||||
#return [os.path.splitext(item)[1][1::] for item in df['filename']]
|
||||
return df
|
||||
|
||||
def get_filetype(df):
|
||||
return [os.path.splitext(item)[1][1::] for item in df['filename']]
|
||||
|
||||
def group_by_filenumber(df):
|
||||
return [item[0:item.find('_')] for item in df['filename']]
|
||||
def augment_with_filenumber(df):
|
||||
df['filenumber'] = [item[0:item.find('_')] for item in df['filename']]
|
||||
#return [item[0:item.find('_')] for item in df['filename']]
|
||||
return df
|
||||
|
||||
def group_by_df_column(df, column_name: str):
|
||||
"""
|
||||
@ -272,18 +320,20 @@ def group_by_df_column(df, column_name: str):
|
||||
|
||||
if not column_name in df.columns:
|
||||
raise ValueError("column_name must be in the columns of df.")
|
||||
|
||||
|
||||
return df[column_name]
|
||||
|
||||
def main():
|
||||
|
||||
# input data frame
|
||||
input_data = read_hdf5_as_dataframe_v2('input_files\\BeamTimeMetaData.h5')
|
||||
input_data = read_hdf5_as_dataframe('input_files\\BeamTimeMetaData.h5')
|
||||
|
||||
# Rename column 'name' with 'filename'. get_filetype finds filetypes based on extension of filenames assumed to be located at the column 'filename'.
|
||||
input_data = input_data.rename(columns = {'name':'filename'})
|
||||
# Add column with filetypes to input_data
|
||||
input_data['filetype'] = get_filetype(input_data)
|
||||
input_data = augment_with_filenumber(input_data)
|
||||
input_data = augment_with_filetype(input_data)
|
||||
#input_data['filetype'] = get_filetype(input_data)
|
||||
print(input_data['filetype'].unique())
|
||||
# Reduce input_data to files of ibw type
|
||||
input_data = input_data.loc[input_data['filetype']=='ibw', : ]
|
||||
@ -296,8 +346,7 @@ def main():
|
||||
print(item)
|
||||
sample_name.append(item[0:item.find('(')])
|
||||
sample_quality.append(item[item.find('(')+1:len(item)-1])
|
||||
else:
|
||||
|
||||
else:
|
||||
if item=='':
|
||||
sample_name.append('Not yet annotated')
|
||||
sample_quality.append('unevaluated')
|
||||
@ -307,21 +356,28 @@ def main():
|
||||
input_data['sample'] = sample_name
|
||||
input_data['data_quality'] = sample_quality
|
||||
|
||||
#input_data = input_data.loc[input_data['sample']!='' , : ]
|
||||
|
||||
#group_by_func = lambda df: [item[0:item.find('_')] for item in df['name']]
|
||||
|
||||
#group_by_func
|
||||
|
||||
group_by_sample = lambda x : group_by_df_column(x,'sample')
|
||||
group_by_type = lambda x : group_by_df_column(x,'filetype')
|
||||
group_by_filenumber = lambda x : group_by_df_column(x,'filenumber')
|
||||
|
||||
#fig = px.treemap(values=[10,4,3,3,2],names=[1,2,3,4,5], parents=[None,1,1,1,2],hover_name=['si senhor',':)',':)',':)','bottom'])
|
||||
|
||||
#fig = px.treemap(input_data,path=[px.Constant("BeamtimeMetadata.h5"),'sample','filenumber'])
|
||||
#fig.update_traces(root_color = "lightgrey")
|
||||
#fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
||||
#fig.show()
|
||||
success = create_hdf5_file('test.h5',input_data, 'top-down', group_by_funcs = [group_by_sample, group_by_filenumber])
|
||||
|
||||
display_group_hierarchy_on_treemap('test.h5')
|
||||
|
||||
print(':)')
|
||||
|
||||
|
||||
df = create_hdf5_file('test.h5',input_data, 'top-down', group_by_funcs = [group_by_sample, group_by_filenumber,group_by_type])
|
||||
#success = create_hdf5_file('test_v2.h5',input_data, 'top-down', group_by_funcs = ['sample','filenumber','filetype'])
|
||||
|
||||
df['file_group']
|
||||
#df['file_group']
|
||||
|
||||
print(df.head())
|
||||
#print(df.head())
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user