389 lines
15 KiB
Python
389 lines
15 KiB
Python
import pandas as pd
|
|
import h5py
|
|
import os
|
|
#import sys
|
|
#from itertools import product
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
import plotly.express as px
|
|
import plotly.graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
|
|
def read_hdf5_as_dataframe(filename):
|
|
|
|
""" Reconstruct a Matlab Table encoded in a .h5 file as a Pandas DataFrame. The input h5. file
|
|
contains as many groups as rows in the Matlab Table, and each group stores dataset-like variables in the Table as
|
|
Datasets while categorical and numerical variables in the table are represented as attributes of each group.
|
|
|
|
Note:DataFrame is constructed columnwise to ensure homogenous data columns.
|
|
|
|
Parameters:
|
|
|
|
filename (str): .h5 file's name. It may include location-path information.
|
|
|
|
Returns:
|
|
|
|
output_dataframe (pd.DataFrame): Matlab's Table as a Pandas DataFrame
|
|
|
|
"""
|
|
|
|
#contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
|
|
|
|
with h5py.File(filename,'r') as file:
|
|
|
|
# Define group's attributes and datasets. This should hold
|
|
# for all groups. TODO: implement verification and noncompliance error if needed.
|
|
group_list = list(file.keys())
|
|
group_attrs = list(file[group_list[0]].attrs.keys())
|
|
#
|
|
column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
|
|
column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
|
|
|
|
group_datasets = list(file[group_list[0]].keys()) if not 'DS_EMPTY' in file[group_list[0]].keys() else []
|
|
#
|
|
column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
|
|
column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
|
|
|
|
|
|
# Define data_frame as group_attrs + group_datasets
|
|
#pd_series_index = group_attrs + group_datasets
|
|
pd_series_index = column_attr_names + column_dataset_names
|
|
|
|
output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
|
|
|
|
tmp_col = []
|
|
|
|
for meas_prop in group_attrs + group_datasets:
|
|
if meas_prop in group_attrs:
|
|
column_label = meas_prop[meas_prop.find('_')+1:]
|
|
# Create numerical or categorical column from group's attributes
|
|
tmp_col = [file[group_key].attrs[meas_prop][()][0] for group_key in group_list]
|
|
else:
|
|
# Create dataset column from group's datasets
|
|
column_label = file[group_list[0] + '/' + meas_prop].attrs['column_name']
|
|
#tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
|
|
tmp_col = [file[group_key + '/' + meas_prop][()] for group_key in group_list]
|
|
|
|
output_dataframe.loc[:,column_label] = tmp_col
|
|
|
|
return output_dataframe
|
|
|
|
|
|
def is_callable_list(x : list):
|
|
return all([callable(item) for item in x])
|
|
def is_str_list(x : list):
|
|
return all([isinstance(item,str) for item in x])
|
|
def is_nested_hierarchy(df) -> bool:
|
|
"""receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
|
|
That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
|
|
"""
|
|
# TODO: generalize the code to check for deeper group hierachies.
|
|
def are_nested(df, col, col_nxt):
|
|
""" Checks whether low level LL groups can be separated in terms of high level HL groups.
|
|
That is, elements of low-level groups do not belong to more than one HL group."""
|
|
|
|
# Compute higher level group names/categories
|
|
memberships = df[col_nxt].unique().tolist()
|
|
|
|
# Compute upper-level group memberships of low-level groups
|
|
col_avg_memberships = df.groupby(col).mean()[col_nxt].unique()
|
|
|
|
# Check whether all low-level groups have an actual hlg membership. That is, their avg. hlg membership is in the hlg membership.
|
|
return all([col_avg_memberships[group_idx] in memberships for group_idx in range(len(col_avg_memberships))])
|
|
|
|
df_tmp = df.copy()
|
|
|
|
# Create relabeling map
|
|
for column_name in df_tmp.columns:
|
|
category_index = pd.Series(np.arange(len(df_tmp[column_name].unique())), index=df_tmp[column_name].unique())
|
|
df_tmp[column_name] = category_index[df_tmp[column_name].tolist()].tolist()
|
|
|
|
df_tmp.plot()
|
|
|
|
return all([are_nested(df_tmp,'level_'+str(i)+'_groups','level_'+str(i+1)+'_groups') for i in range(len(df_tmp.columns)-1)])
|
|
|
|
|
|
|
|
def get_attr_names(input_data):
|
|
|
|
# TODO: extend this to file-system paths
|
|
if not isinstance(input_data,pd.DataFrame):
|
|
raise ValueError("input_data must be a pd.DataFrame")
|
|
|
|
return input_data.columns
|
|
|
|
def create_group_hierarchy(obj, df, columns):
|
|
|
|
"""
|
|
Input:
|
|
obj (h5py.File or h5py.Group)
|
|
columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
|
|
|
|
"""
|
|
|
|
if not columns:
|
|
return
|
|
|
|
# Determine categories associated with first categorical column
|
|
unique_values = df[columns[0]].unique()
|
|
|
|
for group_name in unique_values:
|
|
|
|
group = obj.require_group(group_name)
|
|
group.attrs.create('column_name', columns[0])
|
|
|
|
sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
|
|
group.attrs.create('count',sub_df.shape[0])
|
|
|
|
#if group_name == 'MgO powder,H2O,HCl':
|
|
# print('Here:',sub_df.shape)
|
|
create_group_hierarchy(group, sub_df, columns[1::])
|
|
|
|
def get_parent_child_relationships(file: h5py.File):
|
|
|
|
nodes = []
|
|
parent = []
|
|
values = []
|
|
|
|
def node_visitor(name,obj):
|
|
if isinstance(obj,h5py.Group):
|
|
nodes.append(obj.name)
|
|
parent.append(obj.parent.name)
|
|
#nodes.append(os.path.split(obj.name)[1])
|
|
#parent.append(os.path.split(obj.parent.name)[1])
|
|
values.append(obj.attrs['count'])
|
|
|
|
file.visititems(node_visitor)
|
|
return nodes, parent, values
|
|
|
|
|
|
def get_groups_at_a_level(file: h5py.File, level: str):
|
|
|
|
groups = []
|
|
def node_selector(name, obj):
|
|
if name.count('/') == level:
|
|
print(name)
|
|
groups.append(obj.name)
|
|
|
|
file.visititems(node_selector)
|
|
#file.visititems()
|
|
return groups
|
|
|
|
def format_group_names(names: list):
|
|
|
|
formated_names = []
|
|
for name in names:
|
|
idx = name.rfind('/')
|
|
if len(name) > 1:
|
|
formated_names.append(name[idx+1::])
|
|
else:
|
|
formated_names.append(name)
|
|
|
|
return pd.DataFrame(formated_names,columns=['formated_names'],index=names)
|
|
|
|
|
|
|
|
def display_group_hierarchy_on_treemap(filename: str):
|
|
|
|
with h5py.File(filename,'r') as file:
|
|
nodes, parents, values = get_parent_child_relationships(file)
|
|
|
|
#formating_df = format_group_names(nodes + ["/"])
|
|
|
|
fig = make_subplots(1, 1, specs=[[{"type": "domain"}]],)
|
|
fig.add_trace(go.Treemap(
|
|
labels=nodes, #formating_df['formated_names'][nodes],
|
|
parents=parents,#formating_df['formated_names'][parents],
|
|
values=values,
|
|
branchvalues='total',
|
|
customdata= pd.Series(nodes),
|
|
#marker=dict(
|
|
# colors=df_all_trees['color'],
|
|
# colorscale='RdBu',
|
|
# cmid=average_score),
|
|
#hovertemplate='<b>%{label} </b> <br> Number of files: %{value}<br> Success rate: %{color:.2f}',
|
|
hovertemplate='<b>%{label} </b> <br> Count: %{value} <br> Path: %{customdata}',
|
|
name=''
|
|
))
|
|
fig.update_layout(width = 800, height= 600, margin = dict(t=50, l=25, r=25, b=25))
|
|
fig.show()
|
|
|
|
def create_hdf5_file(ofilename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
|
|
|
|
""" Creates an hdf5 file with as many levels as indicated by len(group_by_funcs).
|
|
Top level denotes the root group/directory and bottom level denotes measurement level groups.
|
|
|
|
Parameters:
|
|
input_data (pd.DataFrame | file-system path) :
|
|
group_by_funcs (list of callables or strs) : contains a list of callables or dataframe's column names that will be used
|
|
to partition or group files from top to bottom.
|
|
|
|
Callables in the list must assign a categorical value to each file in a file list, internally represented as a DataFrame,
|
|
and they thus return a pd.Series of categorical values.
|
|
|
|
On the other hand, strings in the list refer to the name of categorical columns in the input_data (when this is a DataFrame)
|
|
|
|
Returns:
|
|
|
|
"""
|
|
|
|
# Check whether input_data is a valid file-system path or a DataFrame
|
|
check_possible_path = lambda x : os.path.exists(input_data) if isinstance(input_data,str) else False
|
|
|
|
if check_possible_path(input_data):
|
|
file_list = os.listdir(input_data)
|
|
df = pd.DataFrame(file_list,columns='filename')
|
|
elif isinstance(input_data,pd.DataFrame):
|
|
df = input_data.copy()
|
|
else:
|
|
raise ValueError("input_data must be either a valid file-system path or a dataframe.")
|
|
|
|
#
|
|
if is_callable_list(group_by_funcs):
|
|
grouping_cols = []
|
|
for i, func in enumerate(group_by_funcs):
|
|
grouping_cols.append('level_'+str(i)+'_groups')
|
|
df['level_'+str(i)+'_groups'] = func(df)
|
|
elif is_str_list(group_by_funcs) and all([item in df.columns for item in group_by_funcs]):
|
|
grouping_cols = group_by_funcs
|
|
else:
|
|
raise ValueError("'group_by_funcs' must be a list of callables (or str) that takes input_data as input an returns a valid categorical output.")
|
|
|
|
if approach == 'botton-up':
|
|
# TODO: implement botton-up approach
|
|
if is_nested_hierarchy(df.loc[:,grouping_cols]):
|
|
print('Do something')
|
|
else:
|
|
raise ValueError("group_by_funcs do not define a valid group hierarchy. Please reprocess the input_data or choose different grouping functions.")
|
|
|
|
elif approach == 'top-down':
|
|
# Check the length of group_by_funcs list is at most 2
|
|
#if len(group_by_funcs) > 2:
|
|
# # TODO: extend to more than 2 callable elements.
|
|
# raise ValueError("group_by_funcs can only contain at most two grouping elements.")
|
|
|
|
with h5py.File(ofilename, 'w') as file:
|
|
|
|
create_group_hierarchy(file, df, grouping_cols)
|
|
|
|
file.attrs.create(name='depth', data=len(grouping_cols)-1)
|
|
|
|
#join_path = lambda x,y: '/' + x + '/' + y
|
|
#for group_name in df[grouping_cols[0]].unique():
|
|
# group_filter = df[grouping_cols[0]]==group_name
|
|
# for subgroup_name in df.loc[group_filter,grouping_cols[1]].unique():
|
|
# # Create group subgroup folder structure implicitly.
|
|
# # Explicitly, grp = f.create_group(group_name), subgrp = grp.create_group(subgroup_name)
|
|
# print(join_path(group_name,subgroup_name))
|
|
# f.create_group(join_path(group_name,subgroup_name))
|
|
|
|
# Get groups at the bottom of the hierarchy
|
|
bottom_level_groups = get_groups_at_a_level(file, file.attrs['depth'])
|
|
|
|
nodes, parents, values = get_parent_child_relationships(file)
|
|
print(':)')
|
|
#fig = px.treemap(values=values,names=nodes, parents= parents)
|
|
#fig.update_traces(root_color="lightgrey")
|
|
#fig.update_layout(width = 800, height=600, margin = dict(t=50, l=25, r=25, b=25))
|
|
#fig.show()
|
|
else:
|
|
raise ValueError("'approach' must take values in ['top-down','bottom-up']")
|
|
|
|
|
|
#for i, value in enumerate(df['level_'+str(0)+'_groups'].unique().tolist()):
|
|
|
|
# 2. Validate group hierarchy, lower level groups must be embedded in higher level groups
|
|
|
|
# 3. Create hdf5 file with groups defined by the 'file_group' column
|
|
#
|
|
# Add datasets to groups and the groups and the group's attributes
|
|
|
|
return 0
|
|
|
|
|
|
def augment_with_filetype(df):
|
|
df['filetype'] = [os.path.splitext(item)[1][1::] for item in df['filename']]
|
|
#return [os.path.splitext(item)[1][1::] for item in df['filename']]
|
|
return df
|
|
|
|
def augment_with_filenumber(df):
|
|
df['filenumber'] = [item[0:item.find('_')] for item in df['filename']]
|
|
#return [item[0:item.find('_')] for item in df['filename']]
|
|
return df
|
|
|
|
def group_by_df_column(df, column_name: str):
|
|
"""
|
|
df (pandas.DataFrame):
|
|
column_name (str): column_name of df by which grouping operation will take place.
|
|
"""
|
|
|
|
if not column_name in df.columns:
|
|
raise ValueError("column_name must be in the columns of df.")
|
|
|
|
return df[column_name]
|
|
|
|
def main():
|
|
|
|
# input data frame
|
|
input_data = read_hdf5_as_dataframe('input_files\\BeamTimeMetaData.h5')
|
|
|
|
# Rename column 'name' with 'filename'. get_filetype finds filetypes based on extension of filenames assumed to be located at the column 'filename'.
|
|
input_data = input_data.rename(columns = {'name':'filename'})
|
|
# Add column with filetypes to input_data
|
|
input_data = augment_with_filenumber(input_data)
|
|
input_data = augment_with_filetype(input_data)
|
|
#input_data['filetype'] = get_filetype(input_data)
|
|
print(input_data['filetype'].unique())
|
|
# Reduce input_data to files of ibw type
|
|
input_data = input_data.loc[input_data['filetype']=='ibw', : ]
|
|
#input_data = input_data.loc[input_data['sample']!='' , : ]
|
|
|
|
sample_name = []
|
|
sample_quality = []
|
|
for item in input_data['sample']:
|
|
if item.find('(')!=-1:
|
|
print(item)
|
|
sample_name.append(item[0:item.find('(')])
|
|
sample_quality.append(item[item.find('(')+1:len(item)-1])
|
|
else:
|
|
if item=='':
|
|
sample_name.append('Not yet annotated')
|
|
sample_quality.append('unevaluated')
|
|
else:
|
|
sample_name.append(item)
|
|
sample_quality.append('good data')
|
|
input_data['sample'] = sample_name
|
|
input_data['data_quality'] = sample_quality
|
|
|
|
group_by_sample = lambda x : group_by_df_column(x,'sample')
|
|
group_by_type = lambda x : group_by_df_column(x,'filetype')
|
|
group_by_filenumber = lambda x : group_by_df_column(x,'filenumber')
|
|
|
|
#fig = px.treemap(values=[10,4,3,3,2],names=[1,2,3,4,5], parents=[None,1,1,1,2],hover_name=['si senhor',':)',':)',':)','bottom'])
|
|
|
|
#fig = px.treemap(input_data,path=[px.Constant("BeamtimeMetadata.h5"),'sample','filenumber'])
|
|
#fig.update_traces(root_color = "lightgrey")
|
|
#fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
|
#fig.show()
|
|
success = create_hdf5_file('test.h5',input_data, 'top-down', group_by_funcs = [group_by_sample, group_by_filenumber])
|
|
|
|
display_group_hierarchy_on_treemap('test.h5')
|
|
|
|
print(':)')
|
|
|
|
|
|
#success = create_hdf5_file('test_v2.h5',input_data, 'top-down', group_by_funcs = ['sample','filenumber','filetype'])
|
|
|
|
#df['file_group']
|
|
|
|
#print(df.head())
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|
|
|