Removed files will be shortly relocated into newly created src folder
This commit is contained in:
@ -1,51 +0,0 @@
|
||||
import pandas as pd
|
||||
import os
|
||||
|
||||
|
||||
def is_callable_list(x : list):
|
||||
return all([callable(item) for item in x])
|
||||
|
||||
def is_str_list(x : list):
|
||||
return all([isinstance(item,str) for item in x])
|
||||
|
||||
def augment_with_filetype(df):
|
||||
df['filetype'] = [os.path.splitext(item)[1][1::] for item in df['filename']]
|
||||
#return [os.path.splitext(item)[1][1::] for item in df['filename']]
|
||||
return df
|
||||
|
||||
def augment_with_filenumber(df):
|
||||
df['filenumber'] = [item[0:item.find('_')] for item in df['filename']]
|
||||
#return [item[0:item.find('_')] for item in df['filename']]
|
||||
return df
|
||||
|
||||
def group_by_df_column(df, column_name: str):
|
||||
"""
|
||||
df (pandas.DataFrame):
|
||||
column_name (str): column_name of df by which grouping operation will take place.
|
||||
"""
|
||||
|
||||
if not column_name in df.columns:
|
||||
raise ValueError("column_name must be in the columns of df.")
|
||||
|
||||
return df[column_name]
|
||||
|
||||
def split_sample_col_into_sample_and_data_quality_cols(input_data: pd.DataFrame):
|
||||
|
||||
sample_name = []
|
||||
sample_quality = []
|
||||
for item in input_data['sample']:
|
||||
if item.find('(')!=-1:
|
||||
#print(item)
|
||||
sample_name.append(item[0:item.find('(')])
|
||||
sample_quality.append(item[item.find('(')+1:len(item)-1])
|
||||
else:
|
||||
if item=='':
|
||||
sample_name.append('Not yet annotated')
|
||||
sample_quality.append('unevaluated')
|
||||
else:
|
||||
sample_name.append(item)
|
||||
sample_quality.append('good data')
|
||||
input_data['sample'] = sample_name
|
||||
input_data['data_quality'] = sample_quality
|
||||
|
||||
return input_data
|
535
hdf5_lib.py
535
hdf5_lib.py
@ -1,535 +0,0 @@
|
||||
import pandas as pd
|
||||
import h5py
|
||||
import os
|
||||
#import sys
|
||||
#from itertools import product
|
||||
import numpy as np
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
import g5505_file_reader
|
||||
import g5505_utils as utils
|
||||
import smog_chamber_group_reader
|
||||
|
||||
|
||||
def read_mtable_as_dataframe(filename):
|
||||
|
||||
""" Reconstruct a Matlab Table encoded in a .h5 file as a Pandas DataFrame. The input .h5 file
|
||||
contains as many groups as rows in the Matlab Table, and each group stores dataset-like variables in the Table as
|
||||
Datasets while categorical and numerical variables in the table are represented as attributes of each group.
|
||||
|
||||
Note: DataFrame is constructed columnwise to ensure homogenous data columns.
|
||||
|
||||
Parameters:
|
||||
|
||||
filename (str): .h5 file's name. It may include location-path information.
|
||||
|
||||
Returns:
|
||||
|
||||
output_dataframe (pd.DataFrame): Matlab's Table as a Pandas DataFrame
|
||||
|
||||
"""
|
||||
|
||||
#contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
|
||||
|
||||
with h5py.File(filename,'r') as file:
|
||||
|
||||
# Define group's attributes and datasets. This should hold
|
||||
# for all groups. TODO: implement verification and noncompliance error if needed.
|
||||
group_list = list(file.keys())
|
||||
group_attrs = list(file[group_list[0]].attrs.keys())
|
||||
#
|
||||
column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
|
||||
column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
|
||||
|
||||
group_datasets = list(file[group_list[0]].keys()) if not 'DS_EMPTY' in file[group_list[0]].keys() else []
|
||||
#
|
||||
column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
|
||||
column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
|
||||
|
||||
|
||||
# Define data_frame as group_attrs + group_datasets
|
||||
#pd_series_index = group_attrs + group_datasets
|
||||
pd_series_index = column_attr_names + column_dataset_names
|
||||
|
||||
output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
|
||||
|
||||
tmp_col = []
|
||||
|
||||
for meas_prop in group_attrs + group_datasets:
|
||||
if meas_prop in group_attrs:
|
||||
column_label = meas_prop[meas_prop.find('_')+1:]
|
||||
# Create numerical or categorical column from group's attributes
|
||||
tmp_col = [file[group_key].attrs[meas_prop][()][0] for group_key in group_list]
|
||||
else:
|
||||
# Create dataset column from group's datasets
|
||||
column_label = file[group_list[0] + '/' + meas_prop].attrs['column_name']
|
||||
#tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
|
||||
tmp_col = [file[group_key + '/' + meas_prop][()] for group_key in group_list]
|
||||
|
||||
output_dataframe.loc[:,column_label] = tmp_col
|
||||
|
||||
return output_dataframe
|
||||
|
||||
def create_group_hierarchy(obj, df, columns):
|
||||
|
||||
"""
|
||||
Input:
|
||||
obj (h5py.File or h5py.Group)
|
||||
columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
|
||||
"""
|
||||
|
||||
if not columns:
|
||||
return
|
||||
|
||||
# Determine categories associated with first categorical column
|
||||
unique_values = df[columns[0]].unique()
|
||||
|
||||
if obj.name == '/':
|
||||
obj.attrs.create('count',df.shape[0])
|
||||
|
||||
for group_name in unique_values:
|
||||
|
||||
group = obj.require_group(group_name)
|
||||
group.attrs.create('column_name', columns[0])
|
||||
|
||||
sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
|
||||
group.attrs.create('count',sub_df.shape[0])
|
||||
|
||||
# if group_name == 'MgO powder,H2O,HCl':
|
||||
# print('Here:',sub_df.shape)
|
||||
create_group_hierarchy(group, sub_df, columns[1::])
|
||||
|
||||
def is_nested_hierarchy(df) -> bool:
|
||||
"""receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
|
||||
That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
|
||||
"""
|
||||
# TODO: generalize the code to check for deeper group hierachies.
|
||||
def are_nested(df, col, col_nxt):
|
||||
""" Checks whether low level LL groups can be separated in terms of high level HL groups.
|
||||
That is, elements of low-level groups do not belong to more than one HL group."""
|
||||
|
||||
# Compute higher level group names/categories
|
||||
memberships = df[col_nxt].unique().tolist()
|
||||
|
||||
# Compute upper-level group memberships of low-level groups
|
||||
col_avg_memberships = df.groupby(col).mean()[col_nxt].unique()
|
||||
|
||||
# Check whether all low-level groups have an actual hlg membership. That is, their avg. hlg membership is in the hlg membership.
|
||||
return all([col_avg_memberships[group_idx] in memberships for group_idx in range(len(col_avg_memberships))])
|
||||
|
||||
df_tmp = df.copy()
|
||||
|
||||
# Create relabeling map
|
||||
for column_name in df_tmp.columns:
|
||||
category_index = pd.Series(np.arange(len(df_tmp[column_name].unique())), index=df_tmp[column_name].unique())
|
||||
df_tmp[column_name] = category_index[df_tmp[column_name].tolist()].tolist()
|
||||
|
||||
df_tmp.plot()
|
||||
|
||||
return all([are_nested(df_tmp,'level_'+str(i)+'_groups','level_'+str(i+1)+'_groups') for i in range(len(df_tmp.columns)-1)])
|
||||
|
||||
def get_attr_names(input_data):
|
||||
|
||||
# TODO: extend this to file-system paths
|
||||
if not isinstance(input_data,pd.DataFrame):
|
||||
raise ValueError("input_data must be a pd.DataFrame")
|
||||
|
||||
return input_data.columns
|
||||
|
||||
def get_parent_child_relationships(file: h5py.File):
|
||||
|
||||
nodes = ['/']
|
||||
parent = ['']
|
||||
#values = [file.attrs['count']]
|
||||
# TODO: maybe we should make this more general and not dependent on file_list attribute?
|
||||
if 'file_list' in file.attrs.keys():
|
||||
values = [len(file.attrs['file_list'])]
|
||||
else:
|
||||
values = [1]
|
||||
|
||||
def node_visitor(name,obj):
|
||||
#if isinstance(obj,h5py.Group):
|
||||
nodes.append(obj.name)
|
||||
parent.append(obj.parent.name)
|
||||
#nodes.append(os.path.split(obj.name)[1])
|
||||
#parent.append(os.path.split(obj.parent.name)[1])
|
||||
if isinstance(obj,h5py.Dataset) or not 'file_list' in obj.attrs.keys():
|
||||
values.append(1)
|
||||
else:
|
||||
values.append(len(obj.attrs['file_list']))
|
||||
file.visititems(node_visitor)
|
||||
|
||||
return nodes, parent, values
|
||||
|
||||
|
||||
def get_groups_at_a_level(file: h5py.File, level: str):
|
||||
|
||||
groups = []
|
||||
def node_selector(name, obj):
|
||||
if name.count('/') == level:
|
||||
print(name)
|
||||
groups.append(obj.name)
|
||||
|
||||
file.visititems(node_selector)
|
||||
#file.visititems()
|
||||
return groups
|
||||
|
||||
def format_group_names(names: list):
|
||||
|
||||
formated_names = []
|
||||
for name in names:
|
||||
idx = name.rfind('/')
|
||||
if len(name) > 1:
|
||||
formated_names.append(name[idx+1::])
|
||||
else:
|
||||
formated_names.append(name)
|
||||
|
||||
return pd.DataFrame(formated_names,columns=['formated_names'],index=names)
|
||||
|
||||
|
||||
|
||||
def display_group_hierarchy_on_a_treemap(filename: str):
|
||||
|
||||
with h5py.File(filename,'r') as file:
|
||||
nodes, parents, values = get_parent_child_relationships(file)
|
||||
|
||||
metadata_list = []
|
||||
metadata_dict={}
|
||||
for key in file.attrs.keys():
|
||||
if 'metadata' in key:
|
||||
metadata_dict[key[key.find('_')+1::]]= file.attrs[key]
|
||||
metadata_list.append(key[key.find('_')+1::]+':'+file.attrs[key])
|
||||
metadata = '<br>'.join(['<br>'] + metadata_list)
|
||||
|
||||
customdata_series = pd.Series(nodes)
|
||||
customdata_series[0] = metadata
|
||||
|
||||
fig = make_subplots(1, 1, specs=[[{"type": "domain"}]],)
|
||||
fig.add_trace(go.Treemap(
|
||||
labels=nodes, #formating_df['formated_names'][nodes],
|
||||
parents=parents,#formating_df['formated_names'][parents],
|
||||
values=values,
|
||||
branchvalues='remainder',
|
||||
customdata= customdata_series,
|
||||
#marker=dict(
|
||||
# colors=df_all_trees['color'],
|
||||
# colorscale='RdBu',
|
||||
# cmid=average_score),
|
||||
#hovertemplate='<b>%{label} </b> <br> Number of files: %{value}<br> Success rate: %{color:.2f}',
|
||||
hovertemplate='<b>%{label} </b> <br> Count: %{value} <br> Path: %{customdata}',
|
||||
name='',
|
||||
root_color="lightgrey"
|
||||
))
|
||||
fig.update_layout(width = 800, height= 600, margin = dict(t=50, l=25, r=25, b=25))
|
||||
fig.show()
|
||||
|
||||
def annotate_root_dir(filename,annotation_dict: dict):
|
||||
with h5py.File(filename,'r+') as file:
|
||||
for key in annotation_dict:
|
||||
file.attrs.create('metadata_'+key, annotation_dict[key])
|
||||
|
||||
|
||||
import shutil
|
||||
|
||||
def create_hdf5_file_from_filesystem_path(ofilename : str, input_file_system_path : str, select_dir_keywords = [], select_file_keywords =[]):
|
||||
|
||||
"""
|
||||
Creates an .h5 file with name ofilename that preserves the directory tree (or folder structure) of given a filesystem path and
|
||||
a few file and directory keywords. The keywords enable filtering of directories and files that do not contain the specified keywords.
|
||||
|
||||
In the .h5 file, only files that are admissible file formats will be stored in the form of datasets and attributes.
|
||||
|
||||
Parameters:
|
||||
|
||||
ofilename (str):
|
||||
|
||||
input_file_system_path (str) :
|
||||
|
||||
select_dir_keywords (list): default value [],
|
||||
list of string elements to consider or select only directory paths that contain a word in 'select_dir_keywords'.
|
||||
When empty, all directory paths are considered to be included in the hdf5 file group hierarchy.
|
||||
|
||||
select_file_keywords (list): default value [],
|
||||
list of string elements to consider or select only files that contain a word in 'select_file_keywords'.
|
||||
When empty, all files are considered to be stored in the hdf5 file.
|
||||
|
||||
Returns:
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
with h5py.File(ofilename, 'w') as h5file:
|
||||
|
||||
root_dir = '?##'
|
||||
|
||||
# Visit each subdirectory from top to bottom, root directory defined by input_file_sytem_path to the lower
|
||||
# level directories.
|
||||
for node_number, node in enumerate(os.walk(input_file_system_path, topdown=True)):
|
||||
|
||||
dirpath, dirnames, filenames_list = node
|
||||
|
||||
if node_number == 0:
|
||||
offset = dirpath.count(os.sep)
|
||||
|
||||
# Filter out files with filenames not containing a keyword specified in the parameter 'select_file_keywords'.
|
||||
# When select_file_keywords is an empty, i.e., [], do not apply any filter on the filenames.
|
||||
if select_file_keywords:
|
||||
filtered_filename_list = []
|
||||
for filename in filenames_list:
|
||||
if any([date in filename for date in select_file_keywords]):
|
||||
filtered_filename_list.append(filename)
|
||||
else:
|
||||
filtered_filename_list = filenames_list.copy()
|
||||
|
||||
# Skip subdirectories that do not contain a keyword in the parameter 'select_dir_keywords' when it is nonempty
|
||||
if select_dir_keywords:
|
||||
if (dirpath.count(os.sep) > offset) and not any([item in dirpath for item in select_dir_keywords]):
|
||||
continue
|
||||
|
||||
# TODO: i think the below lines can be simplified, or based on the enumeration there is no need for conditionals
|
||||
group_name = dirpath.replace(os.sep,'/')
|
||||
if root_dir == '?##':
|
||||
# Set root_dir to top directory path in input file system
|
||||
root_dir = group_name
|
||||
group_name = group_name.replace(root_dir,'/')
|
||||
#h5file.attrs.create(name='count',data=len(filenames_list))
|
||||
h5file.attrs.create(name='file_list',data=filtered_filename_list)
|
||||
else:
|
||||
group_name = group_name.replace(root_dir+'/','/')
|
||||
# Group hierarchy is implicitly defined by the forward slashes
|
||||
h5file.create_group(group_name)
|
||||
h5file[group_name].attrs.create(name='file_list',data=filtered_filename_list)
|
||||
|
||||
|
||||
# TODO: for each "admissible" file in filenames, create an associated dataset in the corresponding group (subdirectory)
|
||||
|
||||
tmp_dirpath = os.path.join(os.getcwd(), 'tmp')
|
||||
|
||||
if not os.path.exists(tmp_dirpath):
|
||||
os.mkdir(tmp_dirpath)
|
||||
|
||||
for filename in filtered_filename_list:
|
||||
|
||||
if 'ibw' in filename:
|
||||
file_dict = g5505_file_reader.read_xps_ibw_file_as_dict(os.path.join(dirpath,filename))
|
||||
|
||||
h5file[group_name].create_dataset(name = file_dict['name'],
|
||||
data = file_dict['data'],
|
||||
#dtype = file_dict['dtype'],
|
||||
shape = file_dict['shape'])
|
||||
|
||||
#h5file[group_name][file_dict['name']].dims[0] = file_dict['dimension_units']
|
||||
|
||||
for key in file_dict['attributes_dict'].keys():
|
||||
h5file[group_name][file_dict['name']].attrs.create(name=key,data=file_dict['attributes_dict'][key])
|
||||
|
||||
if 'h5' in filename:
|
||||
|
||||
# Create copy of original file to avoid possible file corruption and work with it.
|
||||
backup_filename = 'backup_'+filename
|
||||
# Path
|
||||
|
||||
shutil.copy(os.path.join(dirpath,filename), os.path.join(tmp_dirpath,backup_filename))
|
||||
# Open backup h5 file and copy complet filesystem directory onto a group in h5file
|
||||
with h5py.File(os.path.join(tmp_dirpath,backup_filename),'r') as src_file:
|
||||
h5file.copy(source=src_file['/'],dest= group_name +'/'+filename)
|
||||
|
||||
# TODO: generilize to multiphase chemistry text and dat files
|
||||
# TODO: include header information from files as well
|
||||
if ('txt' in filename or 'TXT' in filename) and any([item in os.path.join(dirpath,filename) for item in ['smps','gas']]):
|
||||
if 'smps' in os.path.join(dirpath,filename):
|
||||
file_dict = smog_chamber_group_reader.read_smog_chamber_txt_files_as_dict(os.path.join(dirpath,filename),'smps')
|
||||
elif 'gas' in os.path.join(dirpath,filename):
|
||||
file_dict = smog_chamber_group_reader.read_smog_chamber_txt_files_as_dict(os.path.join(dirpath,filename),'gas')
|
||||
|
||||
# TODO: create datasets of compound data type to include variable/or column names and datetimestamps
|
||||
h5file[group_name].create_group(filename)
|
||||
h5file[group_name][filename].create_dataset(name = 'data',
|
||||
data = file_dict['data'],
|
||||
#dtype = file_dict['dtype'],
|
||||
shape = file_dict['data'].shape)
|
||||
|
||||
|
||||
h5file[group_name][filename].create_dataset(name = 'data_column_names',
|
||||
data = np.array(file_dict['data_column_names']),
|
||||
#dtype = file_dict['dtype'],
|
||||
shape = np.array(file_dict['data_column_names']).shape)
|
||||
|
||||
for key in file_dict['categ_data_dict'].keys():
|
||||
h5file[group_name][filename].create_dataset(name=key,data=file_dict['categ_data_dict'][key])
|
||||
|
||||
|
||||
def create_hdf5_file_from_dataframe(ofilename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
|
||||
|
||||
""" Creates an hdf5 file with as many levels as indicated by len(group_by_funcs).
|
||||
Top level denotes the root group/directory and bottom level denotes measurement level groups.
|
||||
|
||||
Parameters:
|
||||
input_data (pd.DataFrame | file-system path) :
|
||||
group_by_funcs (list of callables or strs) : contains a list of callables or dataframe's column names that will be used
|
||||
to partition or group files from top to bottom.
|
||||
|
||||
Callables in the list must assign a categorical value to each file in a file list, internally represented as a DataFrame,
|
||||
and they thus return a pd.Series of categorical values.
|
||||
|
||||
On the other hand, strings in the list refer to the name of categorical columns in the input_data (when this is a DataFrame)
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
# Check whether input_data is a valid file-system path or a DataFrame
|
||||
is_valid_path = lambda x : os.path.exists(input_data) if isinstance(input_data,str) else False
|
||||
|
||||
if is_valid_path(input_data):
|
||||
|
||||
file_list = os.listdir(input_data)
|
||||
|
||||
# Navigates file-system folders/directories from top to bottom.
|
||||
#for dirpath, dirnames, filenames in os.walk(input_data,topdown=True):
|
||||
|
||||
|
||||
#df = pd.DataFrame(file_list,columns=['filename'])
|
||||
df = utils.augment_with_filetype(df)
|
||||
|
||||
elif isinstance(input_data,pd.DataFrame):
|
||||
df = input_data.copy()
|
||||
else:
|
||||
raise ValueError("input_data must be either a valid file-system path or a dataframe.")
|
||||
|
||||
#
|
||||
if utils.is_callable_list(group_by_funcs):
|
||||
grouping_cols = []
|
||||
for i, func in enumerate(group_by_funcs):
|
||||
grouping_cols.append('level_'+str(i)+'_groups')
|
||||
df['level_'+str(i)+'_groups'] = func(df)
|
||||
elif utils.is_str_list(group_by_funcs) and all([item in df.columns for item in group_by_funcs]):
|
||||
grouping_cols = group_by_funcs
|
||||
else:
|
||||
raise ValueError("'group_by_funcs' must be a list of callables (or str) that takes input_data as input an returns a valid categorical output.")
|
||||
|
||||
if approach == 'botton-up':
|
||||
# TODO: implement botton-up approach
|
||||
if is_nested_hierarchy(df.loc[:,grouping_cols]):
|
||||
print('Do something')
|
||||
else:
|
||||
raise ValueError("group_by_funcs do not define a valid group hierarchy. Please reprocess the input_data or choose different grouping functions.")
|
||||
|
||||
elif approach == 'top-down':
|
||||
# Check the length of group_by_funcs list is at most 2
|
||||
#if len(group_by_funcs) > 2:
|
||||
# # TODO: extend to more than 2 callable elements.
|
||||
# raise ValueError("group_by_funcs can only contain at most two grouping elements.")
|
||||
|
||||
with h5py.File(ofilename, 'w') as file:
|
||||
|
||||
create_group_hierarchy(file, df, grouping_cols)
|
||||
|
||||
file.attrs.create(name='depth', data=len(grouping_cols)-1)
|
||||
|
||||
#join_path = lambda x,y: '/' + x + '/' + y
|
||||
#for group_name in df[grouping_cols[0]].unique():
|
||||
# group_filter = df[grouping_cols[0]]==group_name
|
||||
# for subgroup_name in df.loc[group_filter,grouping_cols[1]].unique():
|
||||
# # Create group subgroup folder structure implicitly.
|
||||
# # Explicitly, grp = f.create_group(group_name), subgrp = grp.create_group(subgroup_name)
|
||||
# print(join_path(group_name,subgroup_name))
|
||||
# f.create_group(join_path(group_name,subgroup_name))
|
||||
|
||||
# Get groups at the bottom of the hierarchy
|
||||
#bottom_level_groups = get_groups_at_a_level(file, file.attrs['depth'])
|
||||
|
||||
#nodes, parents, values = get_parent_child_relationships(file)
|
||||
print(':)')
|
||||
#fig = px.treemap(values=values,names=nodes, parents= parents)
|
||||
#fig.update_traces(root_color="lightgrey")
|
||||
#fig.update_layout(width = 800, height=600, margin = dict(t=50, l=25, r=25, b=25))
|
||||
#fig.show()
|
||||
else:
|
||||
raise ValueError("'approach' must take values in ['top-down','bottom-up']")
|
||||
|
||||
|
||||
#for i, value in enumerate(df['level_'+str(0)+'_groups'].unique().tolist()):
|
||||
|
||||
# 2. Validate group hierarchy, lower level groups must be embedded in higher level groups
|
||||
|
||||
# 3. Create hdf5 file with groups defined by the 'file_group' column
|
||||
#
|
||||
# Add datasets to groups and the groups and the group's attributes
|
||||
|
||||
#return 0
|
||||
|
||||
|
||||
def main_5505():
|
||||
|
||||
inputfile_dir = '\\\\fs101\\5505\\People\\Juan\\TypicalBeamTime'
|
||||
|
||||
file_dict = g5505_file_reader.read_xps_ibw_file_as_dict(inputfile_dir+'\\SES\\0069069_N1s_495eV.ibw')
|
||||
group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
|
||||
|
||||
select_dir_keywords = ['NEXAFS', 'Notes', 'Photos', 'Pressure', 'RGA', 'SES']
|
||||
create_hdf5_file_from_filesystem_path('test_sls_data.h5',inputfile_dir,select_dir_keywords,select_file_keywords=[])
|
||||
display_group_hierarchy_on_a_treemap('test_smog_chamber_v5.h5')
|
||||
|
||||
#create_hdf5_file('test', inputfile_dir, 'Topdown', [group_by_type], extract_attrs_func = None)
|
||||
|
||||
def main_smog_chamber():
|
||||
|
||||
inputfile_dir = '\\\\fs03\\Iron_Sulphate'
|
||||
include_list = ['htof','ams', 'ptr', 'gas','smps']
|
||||
include_list = ['gas','smps\\20220726','htof\\2022.07.26','ptr\\2022.07.26','ams\\2022.07.26']
|
||||
select_date_list = ['20220726','2022.07.26']
|
||||
|
||||
create_hdf5_file_from_filesystem_path('test_smog_chamber_v5.h5',inputfile_dir,include_list,select_date_list)
|
||||
display_group_hierarchy_on_a_treemap('test_smog_chamber_v5.h5')
|
||||
|
||||
def main_mtable_h5_from_dataframe():
|
||||
# Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table
|
||||
input_data_df = read_mtable_as_dataframe('input_files\\BeamTimeMetaData.h5')
|
||||
|
||||
# Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file
|
||||
# under certain grouping specificiations.
|
||||
input_data_df = input_data_df.rename(columns = {'name':'filename'})
|
||||
input_data_df = utils.augment_with_filenumber(input_data_df)
|
||||
input_data_df = utils.augment_with_filetype(input_data_df)
|
||||
input_data_df = utils.split_sample_col_into_sample_and_data_quality_cols(input_data_df)
|
||||
input_data_df['lastModifiedDatestr'] = input_data_df['lastModifiedDatestr'].astype('datetime64[s]')
|
||||
|
||||
# Define grouping functions to be passed into create_hdf5_file function. These can also be set
|
||||
# as strings refering to categorical columns in input_data_df.
|
||||
|
||||
test_grouping_funcs = True
|
||||
if test_grouping_funcs:
|
||||
group_by_sample = lambda x : utils.group_by_df_column(x,'sample')
|
||||
group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
|
||||
group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')
|
||||
else:
|
||||
group_by_sample = 'sample'
|
||||
group_by_type = 'filetype'
|
||||
group_by_filenumber = 'filenumber'
|
||||
|
||||
create_hdf5_file_from_dataframe('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
|
||||
|
||||
annotation_dict = {'Campaign name': 'SLS-Campaign-2023',
|
||||
'Users':'Thorsten, Luca, Zoe',
|
||||
'Startdate': str(input_data_df['lastModifiedDatestr'].min()),
|
||||
'Enddate': str(input_data_df['lastModifiedDatestr'].max())
|
||||
}
|
||||
annotate_root_dir('test.h5',annotation_dict)
|
||||
|
||||
display_group_hierarchy_on_a_treemap('test.h5')
|
||||
|
||||
print(':)')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
main_mtable_h5_from_dataframe()
|
||||
|
||||
print(':)')
|
||||
|
Reference in New Issue
Block a user