diff --git a/g5505_utils.py b/g5505_utils.py
deleted file mode 100644
index 103f529..0000000
--- a/g5505_utils.py
+++ /dev/null
@@ -1,51 +0,0 @@
-import pandas as pd
-import os
-
-
-def is_callable_list(x : list):
- return all([callable(item) for item in x])
-
-def is_str_list(x : list):
- return all([isinstance(item,str) for item in x])
-
-def augment_with_filetype(df):
- df['filetype'] = [os.path.splitext(item)[1][1::] for item in df['filename']]
- #return [os.path.splitext(item)[1][1::] for item in df['filename']]
- return df
-
-def augment_with_filenumber(df):
- df['filenumber'] = [item[0:item.find('_')] for item in df['filename']]
- #return [item[0:item.find('_')] for item in df['filename']]
- return df
-
-def group_by_df_column(df, column_name: str):
- """
- df (pandas.DataFrame):
- column_name (str): column_name of df by which grouping operation will take place.
- """
-
- if not column_name in df.columns:
- raise ValueError("column_name must be in the columns of df.")
-
- return df[column_name]
-
-def split_sample_col_into_sample_and_data_quality_cols(input_data: pd.DataFrame):
-
- sample_name = []
- sample_quality = []
- for item in input_data['sample']:
- if item.find('(')!=-1:
- #print(item)
- sample_name.append(item[0:item.find('(')])
- sample_quality.append(item[item.find('(')+1:len(item)-1])
- else:
- if item=='':
- sample_name.append('Not yet annotated')
- sample_quality.append('unevaluated')
- else:
- sample_name.append(item)
- sample_quality.append('good data')
- input_data['sample'] = sample_name
- input_data['data_quality'] = sample_quality
-
- return input_data
diff --git a/hdf5_lib.py b/hdf5_lib.py
deleted file mode 100644
index 1e83346..0000000
--- a/hdf5_lib.py
+++ /dev/null
@@ -1,535 +0,0 @@
-import pandas as pd
-import h5py
-import os
-#import sys
-#from itertools import product
-import numpy as np
-
-import matplotlib.pyplot as plt
-import plotly.express as px
-import plotly.graph_objects as go
-from plotly.subplots import make_subplots
-
-import g5505_file_reader
-import g5505_utils as utils
-import smog_chamber_group_reader
-
-
-def read_mtable_as_dataframe(filename):
-
- """ Reconstruct a Matlab Table encoded in a .h5 file as a Pandas DataFrame. The input .h5 file
- contains as many groups as rows in the Matlab Table, and each group stores dataset-like variables in the Table as
- Datasets while categorical and numerical variables in the table are represented as attributes of each group.
-
- Note: DataFrame is constructed columnwise to ensure homogenous data columns.
-
- Parameters:
-
- filename (str): .h5 file's name. It may include location-path information.
-
- Returns:
-
- output_dataframe (pd.DataFrame): Matlab's Table as a Pandas DataFrame
-
- """
-
- #contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
-
- with h5py.File(filename,'r') as file:
-
- # Define group's attributes and datasets. This should hold
- # for all groups. TODO: implement verification and noncompliance error if needed.
- group_list = list(file.keys())
- group_attrs = list(file[group_list[0]].attrs.keys())
- #
- column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
- column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
-
- group_datasets = list(file[group_list[0]].keys()) if not 'DS_EMPTY' in file[group_list[0]].keys() else []
- #
- column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
- column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
-
-
- # Define data_frame as group_attrs + group_datasets
- #pd_series_index = group_attrs + group_datasets
- pd_series_index = column_attr_names + column_dataset_names
-
- output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
-
- tmp_col = []
-
- for meas_prop in group_attrs + group_datasets:
- if meas_prop in group_attrs:
- column_label = meas_prop[meas_prop.find('_')+1:]
- # Create numerical or categorical column from group's attributes
- tmp_col = [file[group_key].attrs[meas_prop][()][0] for group_key in group_list]
- else:
- # Create dataset column from group's datasets
- column_label = file[group_list[0] + '/' + meas_prop].attrs['column_name']
- #tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
- tmp_col = [file[group_key + '/' + meas_prop][()] for group_key in group_list]
-
- output_dataframe.loc[:,column_label] = tmp_col
-
- return output_dataframe
-
-def create_group_hierarchy(obj, df, columns):
-
- """
- Input:
- obj (h5py.File or h5py.Group)
- columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
- """
-
- if not columns:
- return
-
- # Determine categories associated with first categorical column
- unique_values = df[columns[0]].unique()
-
- if obj.name == '/':
- obj.attrs.create('count',df.shape[0])
-
- for group_name in unique_values:
-
- group = obj.require_group(group_name)
- group.attrs.create('column_name', columns[0])
-
- sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
- group.attrs.create('count',sub_df.shape[0])
-
- # if group_name == 'MgO powder,H2O,HCl':
- # print('Here:',sub_df.shape)
- create_group_hierarchy(group, sub_df, columns[1::])
-
-def is_nested_hierarchy(df) -> bool:
- """receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
- That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
- """
- # TODO: generalize the code to check for deeper group hierachies.
- def are_nested(df, col, col_nxt):
- """ Checks whether low level LL groups can be separated in terms of high level HL groups.
- That is, elements of low-level groups do not belong to more than one HL group."""
-
- # Compute higher level group names/categories
- memberships = df[col_nxt].unique().tolist()
-
- # Compute upper-level group memberships of low-level groups
- col_avg_memberships = df.groupby(col).mean()[col_nxt].unique()
-
- # Check whether all low-level groups have an actual hlg membership. That is, their avg. hlg membership is in the hlg membership.
- return all([col_avg_memberships[group_idx] in memberships for group_idx in range(len(col_avg_memberships))])
-
- df_tmp = df.copy()
-
- # Create relabeling map
- for column_name in df_tmp.columns:
- category_index = pd.Series(np.arange(len(df_tmp[column_name].unique())), index=df_tmp[column_name].unique())
- df_tmp[column_name] = category_index[df_tmp[column_name].tolist()].tolist()
-
- df_tmp.plot()
-
- return all([are_nested(df_tmp,'level_'+str(i)+'_groups','level_'+str(i+1)+'_groups') for i in range(len(df_tmp.columns)-1)])
-
-def get_attr_names(input_data):
-
- # TODO: extend this to file-system paths
- if not isinstance(input_data,pd.DataFrame):
- raise ValueError("input_data must be a pd.DataFrame")
-
- return input_data.columns
-
-def get_parent_child_relationships(file: h5py.File):
-
- nodes = ['/']
- parent = ['']
- #values = [file.attrs['count']]
- # TODO: maybe we should make this more general and not dependent on file_list attribute?
- if 'file_list' in file.attrs.keys():
- values = [len(file.attrs['file_list'])]
- else:
- values = [1]
-
- def node_visitor(name,obj):
- #if isinstance(obj,h5py.Group):
- nodes.append(obj.name)
- parent.append(obj.parent.name)
- #nodes.append(os.path.split(obj.name)[1])
- #parent.append(os.path.split(obj.parent.name)[1])
- if isinstance(obj,h5py.Dataset) or not 'file_list' in obj.attrs.keys():
- values.append(1)
- else:
- values.append(len(obj.attrs['file_list']))
- file.visititems(node_visitor)
-
- return nodes, parent, values
-
-
-def get_groups_at_a_level(file: h5py.File, level: str):
-
- groups = []
- def node_selector(name, obj):
- if name.count('/') == level:
- print(name)
- groups.append(obj.name)
-
- file.visititems(node_selector)
- #file.visititems()
- return groups
-
-def format_group_names(names: list):
-
- formated_names = []
- for name in names:
- idx = name.rfind('/')
- if len(name) > 1:
- formated_names.append(name[idx+1::])
- else:
- formated_names.append(name)
-
- return pd.DataFrame(formated_names,columns=['formated_names'],index=names)
-
-
-
-def display_group_hierarchy_on_a_treemap(filename: str):
-
- with h5py.File(filename,'r') as file:
- nodes, parents, values = get_parent_child_relationships(file)
-
- metadata_list = []
- metadata_dict={}
- for key in file.attrs.keys():
- if 'metadata' in key:
- metadata_dict[key[key.find('_')+1::]]= file.attrs[key]
- metadata_list.append(key[key.find('_')+1::]+':'+file.attrs[key])
- metadata = '
'.join(['
'] + metadata_list)
-
- customdata_series = pd.Series(nodes)
- customdata_series[0] = metadata
-
- fig = make_subplots(1, 1, specs=[[{"type": "domain"}]],)
- fig.add_trace(go.Treemap(
- labels=nodes, #formating_df['formated_names'][nodes],
- parents=parents,#formating_df['formated_names'][parents],
- values=values,
- branchvalues='remainder',
- customdata= customdata_series,
- #marker=dict(
- # colors=df_all_trees['color'],
- # colorscale='RdBu',
- # cmid=average_score),
- #hovertemplate='%{label}
Number of files: %{value}
Success rate: %{color:.2f}',
- hovertemplate='%{label}
Count: %{value}
Path: %{customdata}',
- name='',
- root_color="lightgrey"
- ))
- fig.update_layout(width = 800, height= 600, margin = dict(t=50, l=25, r=25, b=25))
- fig.show()
-
-def annotate_root_dir(filename,annotation_dict: dict):
- with h5py.File(filename,'r+') as file:
- for key in annotation_dict:
- file.attrs.create('metadata_'+key, annotation_dict[key])
-
-
-import shutil
-
-def create_hdf5_file_from_filesystem_path(ofilename : str, input_file_system_path : str, select_dir_keywords = [], select_file_keywords =[]):
-
- """
- Creates an .h5 file with name ofilename that preserves the directory tree (or folder structure) of given a filesystem path and
- a few file and directory keywords. The keywords enable filtering of directories and files that do not contain the specified keywords.
-
- In the .h5 file, only files that are admissible file formats will be stored in the form of datasets and attributes.
-
- Parameters:
-
- ofilename (str):
-
- input_file_system_path (str) :
-
- select_dir_keywords (list): default value [],
- list of string elements to consider or select only directory paths that contain a word in 'select_dir_keywords'.
- When empty, all directory paths are considered to be included in the hdf5 file group hierarchy.
-
- select_file_keywords (list): default value [],
- list of string elements to consider or select only files that contain a word in 'select_file_keywords'.
- When empty, all files are considered to be stored in the hdf5 file.
-
- Returns:
-
-
- """
-
-
- with h5py.File(ofilename, 'w') as h5file:
-
- root_dir = '?##'
-
- # Visit each subdirectory from top to bottom, root directory defined by input_file_sytem_path to the lower
- # level directories.
- for node_number, node in enumerate(os.walk(input_file_system_path, topdown=True)):
-
- dirpath, dirnames, filenames_list = node
-
- if node_number == 0:
- offset = dirpath.count(os.sep)
-
- # Filter out files with filenames not containing a keyword specified in the parameter 'select_file_keywords'.
- # When select_file_keywords is an empty, i.e., [], do not apply any filter on the filenames.
- if select_file_keywords:
- filtered_filename_list = []
- for filename in filenames_list:
- if any([date in filename for date in select_file_keywords]):
- filtered_filename_list.append(filename)
- else:
- filtered_filename_list = filenames_list.copy()
-
- # Skip subdirectories that do not contain a keyword in the parameter 'select_dir_keywords' when it is nonempty
- if select_dir_keywords:
- if (dirpath.count(os.sep) > offset) and not any([item in dirpath for item in select_dir_keywords]):
- continue
-
- # TODO: i think the below lines can be simplified, or based on the enumeration there is no need for conditionals
- group_name = dirpath.replace(os.sep,'/')
- if root_dir == '?##':
- # Set root_dir to top directory path in input file system
- root_dir = group_name
- group_name = group_name.replace(root_dir,'/')
- #h5file.attrs.create(name='count',data=len(filenames_list))
- h5file.attrs.create(name='file_list',data=filtered_filename_list)
- else:
- group_name = group_name.replace(root_dir+'/','/')
- # Group hierarchy is implicitly defined by the forward slashes
- h5file.create_group(group_name)
- h5file[group_name].attrs.create(name='file_list',data=filtered_filename_list)
-
-
- # TODO: for each "admissible" file in filenames, create an associated dataset in the corresponding group (subdirectory)
-
- tmp_dirpath = os.path.join(os.getcwd(), 'tmp')
-
- if not os.path.exists(tmp_dirpath):
- os.mkdir(tmp_dirpath)
-
- for filename in filtered_filename_list:
-
- if 'ibw' in filename:
- file_dict = g5505_file_reader.read_xps_ibw_file_as_dict(os.path.join(dirpath,filename))
-
- h5file[group_name].create_dataset(name = file_dict['name'],
- data = file_dict['data'],
- #dtype = file_dict['dtype'],
- shape = file_dict['shape'])
-
- #h5file[group_name][file_dict['name']].dims[0] = file_dict['dimension_units']
-
- for key in file_dict['attributes_dict'].keys():
- h5file[group_name][file_dict['name']].attrs.create(name=key,data=file_dict['attributes_dict'][key])
-
- if 'h5' in filename:
-
- # Create copy of original file to avoid possible file corruption and work with it.
- backup_filename = 'backup_'+filename
- # Path
-
- shutil.copy(os.path.join(dirpath,filename), os.path.join(tmp_dirpath,backup_filename))
- # Open backup h5 file and copy complet filesystem directory onto a group in h5file
- with h5py.File(os.path.join(tmp_dirpath,backup_filename),'r') as src_file:
- h5file.copy(source=src_file['/'],dest= group_name +'/'+filename)
-
- # TODO: generilize to multiphase chemistry text and dat files
- # TODO: include header information from files as well
- if ('txt' in filename or 'TXT' in filename) and any([item in os.path.join(dirpath,filename) for item in ['smps','gas']]):
- if 'smps' in os.path.join(dirpath,filename):
- file_dict = smog_chamber_group_reader.read_smog_chamber_txt_files_as_dict(os.path.join(dirpath,filename),'smps')
- elif 'gas' in os.path.join(dirpath,filename):
- file_dict = smog_chamber_group_reader.read_smog_chamber_txt_files_as_dict(os.path.join(dirpath,filename),'gas')
-
- # TODO: create datasets of compound data type to include variable/or column names and datetimestamps
- h5file[group_name].create_group(filename)
- h5file[group_name][filename].create_dataset(name = 'data',
- data = file_dict['data'],
- #dtype = file_dict['dtype'],
- shape = file_dict['data'].shape)
-
-
- h5file[group_name][filename].create_dataset(name = 'data_column_names',
- data = np.array(file_dict['data_column_names']),
- #dtype = file_dict['dtype'],
- shape = np.array(file_dict['data_column_names']).shape)
-
- for key in file_dict['categ_data_dict'].keys():
- h5file[group_name][filename].create_dataset(name=key,data=file_dict['categ_data_dict'][key])
-
-
-def create_hdf5_file_from_dataframe(ofilename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
-
- """ Creates an hdf5 file with as many levels as indicated by len(group_by_funcs).
- Top level denotes the root group/directory and bottom level denotes measurement level groups.
-
- Parameters:
- input_data (pd.DataFrame | file-system path) :
- group_by_funcs (list of callables or strs) : contains a list of callables or dataframe's column names that will be used
- to partition or group files from top to bottom.
-
- Callables in the list must assign a categorical value to each file in a file list, internally represented as a DataFrame,
- and they thus return a pd.Series of categorical values.
-
- On the other hand, strings in the list refer to the name of categorical columns in the input_data (when this is a DataFrame)
-
- Returns:
-
- """
-
- # Check whether input_data is a valid file-system path or a DataFrame
- is_valid_path = lambda x : os.path.exists(input_data) if isinstance(input_data,str) else False
-
- if is_valid_path(input_data):
-
- file_list = os.listdir(input_data)
-
- # Navigates file-system folders/directories from top to bottom.
- #for dirpath, dirnames, filenames in os.walk(input_data,topdown=True):
-
-
- #df = pd.DataFrame(file_list,columns=['filename'])
- df = utils.augment_with_filetype(df)
-
- elif isinstance(input_data,pd.DataFrame):
- df = input_data.copy()
- else:
- raise ValueError("input_data must be either a valid file-system path or a dataframe.")
-
- #
- if utils.is_callable_list(group_by_funcs):
- grouping_cols = []
- for i, func in enumerate(group_by_funcs):
- grouping_cols.append('level_'+str(i)+'_groups')
- df['level_'+str(i)+'_groups'] = func(df)
- elif utils.is_str_list(group_by_funcs) and all([item in df.columns for item in group_by_funcs]):
- grouping_cols = group_by_funcs
- else:
- raise ValueError("'group_by_funcs' must be a list of callables (or str) that takes input_data as input an returns a valid categorical output.")
-
- if approach == 'botton-up':
- # TODO: implement botton-up approach
- if is_nested_hierarchy(df.loc[:,grouping_cols]):
- print('Do something')
- else:
- raise ValueError("group_by_funcs do not define a valid group hierarchy. Please reprocess the input_data or choose different grouping functions.")
-
- elif approach == 'top-down':
- # Check the length of group_by_funcs list is at most 2
- #if len(group_by_funcs) > 2:
- # # TODO: extend to more than 2 callable elements.
- # raise ValueError("group_by_funcs can only contain at most two grouping elements.")
-
- with h5py.File(ofilename, 'w') as file:
-
- create_group_hierarchy(file, df, grouping_cols)
-
- file.attrs.create(name='depth', data=len(grouping_cols)-1)
-
- #join_path = lambda x,y: '/' + x + '/' + y
- #for group_name in df[grouping_cols[0]].unique():
- # group_filter = df[grouping_cols[0]]==group_name
- # for subgroup_name in df.loc[group_filter,grouping_cols[1]].unique():
- # # Create group subgroup folder structure implicitly.
- # # Explicitly, grp = f.create_group(group_name), subgrp = grp.create_group(subgroup_name)
- # print(join_path(group_name,subgroup_name))
- # f.create_group(join_path(group_name,subgroup_name))
-
- # Get groups at the bottom of the hierarchy
- #bottom_level_groups = get_groups_at_a_level(file, file.attrs['depth'])
-
- #nodes, parents, values = get_parent_child_relationships(file)
- print(':)')
- #fig = px.treemap(values=values,names=nodes, parents= parents)
- #fig.update_traces(root_color="lightgrey")
- #fig.update_layout(width = 800, height=600, margin = dict(t=50, l=25, r=25, b=25))
- #fig.show()
- else:
- raise ValueError("'approach' must take values in ['top-down','bottom-up']")
-
-
- #for i, value in enumerate(df['level_'+str(0)+'_groups'].unique().tolist()):
-
- # 2. Validate group hierarchy, lower level groups must be embedded in higher level groups
-
- # 3. Create hdf5 file with groups defined by the 'file_group' column
- #
- # Add datasets to groups and the groups and the group's attributes
-
- #return 0
-
-
-def main_5505():
-
- inputfile_dir = '\\\\fs101\\5505\\People\\Juan\\TypicalBeamTime'
-
- file_dict = g5505_file_reader.read_xps_ibw_file_as_dict(inputfile_dir+'\\SES\\0069069_N1s_495eV.ibw')
- group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
-
- select_dir_keywords = ['NEXAFS', 'Notes', 'Photos', 'Pressure', 'RGA', 'SES']
- create_hdf5_file_from_filesystem_path('test_sls_data.h5',inputfile_dir,select_dir_keywords,select_file_keywords=[])
- display_group_hierarchy_on_a_treemap('test_smog_chamber_v5.h5')
-
- #create_hdf5_file('test', inputfile_dir, 'Topdown', [group_by_type], extract_attrs_func = None)
-
-def main_smog_chamber():
-
- inputfile_dir = '\\\\fs03\\Iron_Sulphate'
- include_list = ['htof','ams', 'ptr', 'gas','smps']
- include_list = ['gas','smps\\20220726','htof\\2022.07.26','ptr\\2022.07.26','ams\\2022.07.26']
- select_date_list = ['20220726','2022.07.26']
-
- create_hdf5_file_from_filesystem_path('test_smog_chamber_v5.h5',inputfile_dir,include_list,select_date_list)
- display_group_hierarchy_on_a_treemap('test_smog_chamber_v5.h5')
-
-def main_mtable_h5_from_dataframe():
- # Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table
- input_data_df = read_mtable_as_dataframe('input_files\\BeamTimeMetaData.h5')
-
- # Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file
- # under certain grouping specificiations.
- input_data_df = input_data_df.rename(columns = {'name':'filename'})
- input_data_df = utils.augment_with_filenumber(input_data_df)
- input_data_df = utils.augment_with_filetype(input_data_df)
- input_data_df = utils.split_sample_col_into_sample_and_data_quality_cols(input_data_df)
- input_data_df['lastModifiedDatestr'] = input_data_df['lastModifiedDatestr'].astype('datetime64[s]')
-
- # Define grouping functions to be passed into create_hdf5_file function. These can also be set
- # as strings refering to categorical columns in input_data_df.
-
- test_grouping_funcs = True
- if test_grouping_funcs:
- group_by_sample = lambda x : utils.group_by_df_column(x,'sample')
- group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
- group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')
- else:
- group_by_sample = 'sample'
- group_by_type = 'filetype'
- group_by_filenumber = 'filenumber'
-
- create_hdf5_file_from_dataframe('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
-
- annotation_dict = {'Campaign name': 'SLS-Campaign-2023',
- 'Users':'Thorsten, Luca, Zoe',
- 'Startdate': str(input_data_df['lastModifiedDatestr'].min()),
- 'Enddate': str(input_data_df['lastModifiedDatestr'].max())
- }
- annotate_root_dir('test.h5',annotation_dict)
-
- display_group_hierarchy_on_a_treemap('test.h5')
-
- print(':)')
-
-
-if __name__ == '__main__':
-
- main_mtable_h5_from_dataframe()
-
- print(':)')
-