Compare commits

...

200 Commits
0.6.3 ... main

Author SHA1 Message Date
108c1aae2f Updating for version 0.7.11
All checks were successful
pyzebra CI/CD pipeline / prepare (push) Successful in 1s
pyzebra CI/CD pipeline / prod-env (push) Successful in 1m30s
pyzebra CI/CD pipeline / test-env (push) Has been skipped
pyzebra CI/CD pipeline / cleanup (push) Successful in 1s
2025-04-08 18:19:58 +02:00
b82184b9e7 Switch from miniconda to miniforge
All checks were successful
pyzebra CI/CD pipeline / prepare (push) Successful in 0s
pyzebra CI/CD pipeline / test-env (push) Successful in 1m28s
pyzebra CI/CD pipeline / prod-env (push) Has been skipped
pyzebra CI/CD pipeline / cleanup (push) Successful in 1s
2025-04-08 17:57:53 +02:00
b6a43c3f3b Remove scripts
All checks were successful
pyzebra CI/CD pipeline / prepare (push) Successful in 1s
pyzebra CI/CD pipeline / test-env (push) Successful in 1m42s
pyzebra CI/CD pipeline / prod-env (push) Has been skipped
pyzebra CI/CD pipeline / cleanup (push) Successful in 0s
This is an outdated way of pyzebra deployment
2025-04-08 17:33:37 +02:00
18b692a62e Replace gitlab with gitea workflow
All checks were successful
pyzebra CI/CD pipeline / prepare (push) Successful in 1s
pyzebra CI/CD pipeline / test-env (push) Successful in 1m41s
pyzebra CI/CD pipeline / prod-env (push) Has been skipped
pyzebra CI/CD pipeline / cleanup (push) Successful in 0s
2025-04-08 17:03:01 +02:00
c2d6f6b259 Revert "Install via a direct package path"
This reverts commit dfa6bfe926ef99f9650b7d1d3e99c8373d9c9415.
2025-02-12 11:43:15 +01:00
60b90ec9e5 Always run cleanup job
[skip ci]
2025-02-11 18:12:27 +01:00
1fc30ae3e1 Build conda packages in CI_BUILDS_DIR 2025-02-11 18:10:13 +01:00
dfa6bfe926 Install via a direct package path 2025-02-11 18:07:57 +01:00
ed3f58436b Push release commit and tag
[skip ci]
2024-11-19 16:25:10 +01:00
68f7b429f7 Extract default branch name 2024-11-19 15:29:51 +01:00
e5030902c7 Infer path of file with version from path of release script 2024-11-19 15:26:56 +01:00
60f01d9dd8 Revert "Utility style fix"
This reverts commit dc1f2a92cc454aa045da38210c2b26382dc80264.
2024-09-09 00:06:28 +02:00
bd429393a5 Clean build folder
[skip ci]
2024-09-08 23:50:46 +02:00
9e3ffd6230 Updating for version 0.7.10 2024-09-08 23:40:15 +02:00
bdc71f15c1 Build in separate folders for prod and test envs 2024-09-08 23:39:08 +02:00
c3398ef4e5 Fix anaconda upload 2024-09-08 22:32:51 +02:00
9b33f1152b Fix tagged prod deployments 2024-09-08 22:32:51 +02:00
dc1f2a92cc Utility style fix 2024-09-05 17:26:47 +02:00
e9ae52bb60 Use locally built package in deployment
[skip ci]
2024-09-05 15:00:04 +02:00
982887ab85 Split build-and-publish job
[skip ci]
2024-09-05 14:58:01 +02:00
19e934e873 Run pipeline only on default branch changes 2024-09-05 13:21:11 +02:00
8604d695c6 Extract conda activation into before_script
[skip ci]
2024-09-05 11:11:40 +02:00
a55295829f Add cleanup stage
[skip ci]
2024-09-05 11:05:13 +02:00
4181d597a8 Fix home link
[skip ci]
2024-07-12 11:34:53 +02:00
c4869fb0cd Delay deploy-prod job by 1 min
conda doesn't show a newly uploaded package after only 5 sec
2024-07-12 11:04:54 +02:00
80e75d9ef9 Updating for version 0.7.9 2024-07-12 10:52:07 +02:00
eb2177215b Fix make_release script 2024-07-12 10:52:01 +02:00
89fb4f054f Translate metadata entry zebramode -> zebra_mode 2024-07-11 16:39:37 +02:00
019a36bbb7 Split motors on comma with any whitespace around 2024-06-07 15:57:27 +02:00
58a704764a Fix KeyError if 'mf' or 'temp' not in data 2024-06-04 14:17:34 +02:00
144b37ba09 Use rhel8 builds of anatric and Sxtal_Refgen 2024-05-22 16:34:56 +02:00
48114a0dd9 Rename master -> main in .gitlab-ci.yml 2024-05-22 16:26:55 +02:00
0fee06f2d6 Update .gitlab-ci.yml 2024-05-21 13:34:20 +02:00
31b4b0bb5f Remove github workflow 2024-03-01 10:26:25 +01:00
a6611976e1 Fix missing log args 2023-11-29 14:10:35 +01:00
9b48fb7a24 Isolate loggers per document 2023-11-21 18:54:59 +01:00
14d122b947 Simplify path assembly to app folder 2023-11-21 15:09:51 +01:00
bff44a7461 Don't show server output 2023-11-21 15:09:39 +01:00
eae8a1bde4 Handle NaNs in magnetic_field/temp for hdf data
Fix #58
2023-09-29 17:17:14 +02:00
OZaharko
a1c1de4adf Change Titles 2023-08-16 17:35:58 +02:00
9e6fc04d63 Updating for version 0.7.8 2023-08-16 17:15:16 +02:00
779426f4bb add bokeh word to server output 2023-08-16 16:59:44 +02:00
1a5d61a9f7 Update .gitlab-ci.yml 2023-08-16 14:18:59 +02:00
b41ab102b1 Updating for version 0.7.7 2023-08-03 14:24:39 +02:00
bc791b1028 fix y axis label in projection plot of hdf_param_study
similar to 6164be16f0f3356d22d6195b39a59b08282c36f0
2023-08-03 14:24:06 +02:00
3ab4420912 Update .gitlab-ci.yml 2023-08-02 16:04:53 +02:00
90552cee2c Updating for version 0.7.6 2023-08-02 15:17:06 +02:00
6164be16f0 fix y axis label in projection plot 2023-08-02 14:41:49 +02:00
07f03a2a04 Add .gitlab-ci.yml 2023-07-27 15:17:31 +02:00
f89267b5ec Updating for version 0.7.5 2023-07-02 22:59:36 +02:00
8e6cef32b5 Use libmamba solver 2023-07-02 22:59:11 +02:00
e318055304 Replace depricated dtype aliases
For numpy>=1.20
2023-07-02 22:32:43 +02:00
015eb095a4 Prepare for transition to bokeh/3
* Rename plot_height -> height
* Rename plot_width -> width
* Replace on_click callbacks of RadioGroup and CheckboxGroup
2023-06-20 15:54:47 +02:00
d145f9107d Drop python/3.7 support 2023-06-20 14:52:26 +02:00
d1a0ba6fec Fix for gamma with the new data format
Fix #57
2023-06-06 13:53:10 +02:00
2e2677d856 Set chi=180, phi=0 for nb geometry 2023-06-01 16:18:50 +02:00
a165167902 Updating for version 0.7.4 2023-05-25 13:51:29 +02:00
0b88ab0c7f Use scan["nu"] as a scalar
Fix #53
2023-05-23 08:56:18 +02:00
59d392c9ec Update to a new data format in ccl/dat files 2023-05-16 11:26:08 +02:00
774c1008f5 Updating for version 0.7.3 2023-03-06 13:04:26 +01:00
054bae5b27 Increase marker size on hkl plots 2023-03-03 14:34:13 +01:00
f27cffa4f8 Fix hkl plotting
Fix #51
2023-03-03 14:27:54 +01:00
237b168cc0 Rename 0 index ccl scan to 1
Fix #52
2023-03-02 11:48:36 +01:00
60f565e2b9 Fix typo
1570e17b6f2e7c42d4781dc97fba498f4a3a49d1 continued
For #51
2023-02-20 11:35:11 +01:00
eee9337c72 Optimize display ranges 2023-02-17 13:56:39 +01:00
3293a74017 Add logarithmic color mappers
For #51
2023-02-16 17:55:26 +01:00
f83aad6b76 Add hover tool to display hkl values
For #51
2023-02-16 12:14:53 +01:00
1570e17b6f Fix typo 2023-02-16 12:06:33 +01:00
b72033c6b1 Add colorbar to hkl hdf plot 2023-02-15 16:38:18 +01:00
e1be4276cd Add Show legend control widget
For #51
2023-02-15 14:56:24 +01:00
4dd7644596 Remove hkl arrows 2023-02-15 14:47:37 +01:00
f0488f5648 Hide grid lines and axes for hkl plots 2023-02-15 14:41:21 +01:00
06f89842d6 Update layout
For #51
2023-02-15 14:11:58 +01:00
bb8c158591 Add a possibility to plot (m)hkl with measured data 2023-02-08 10:00:14 +01:00
2a27ef7de1 Fix image update when no hkl are within the cut 2023-02-07 16:51:14 +01:00
cb8fc3f4ff Redraw plots on orth cut value change 2023-02-07 16:33:31 +01:00
6b9555c33c Enable plotting selected list 2023-02-07 15:29:24 +01:00
f6f4f64891 Add hkl/mhkl plotting 2023-02-07 14:53:53 +01:00
9f2585139b Calculate and display y_dir 2023-02-06 16:55:20 +01:00
afea511b2e Add orth cut widget to hdf plot 2023-02-06 16:27:07 +01:00
008b3b13d7 Fix lattice/ub inputs parsing 2023-02-06 16:08:50 +01:00
bc66c593f3 Minor simplifications 2023-02-06 15:32:32 +01:00
dc397062ad Switch to bokeh wrapper for app serving 2023-02-02 14:22:34 +01:00
3458a6c755 Minor parse_1D code refactoring 2023-01-31 13:49:50 +01:00
32aba1e75d Update startup scripts 2023-01-30 17:10:36 +01:00
24fbb8b397 Remove unused func 2023-01-27 14:56:39 +01:00
661aecc3ee Widget size minor fixes 2023-01-27 14:54:16 +01:00
1860bce4c2 Simplify colormap handling 2023-01-27 14:40:56 +01:00
64baeb0373 Remove nu from a list of possible motor names 2023-01-27 14:14:55 +01:00
d57160a712 Make data display plots square 2023-01-26 17:25:59 +01:00
de9ebc419b Add x,y range controls 2023-01-26 15:36:14 +01:00
30d08733a7 Vectorize ang2hkl calculations 2023-01-26 14:45:18 +01:00
4b6994a9f3 Directly create transposed chi/phi matrices 2023-01-25 23:08:09 +01:00
cda8896599 Remove test function 2023-01-25 21:58:14 +01:00
1e3abce5fc njit z4frgn and z1frnb functions 2023-01-25 21:56:14 +01:00
dd262ab6cd Optimize ang2hkl functions to accept inverted UB directly 2023-01-25 20:40:46 +01:00
dfef1eadd9 Add panel_plot_data 2023-01-25 20:22:47 +01:00
4d993280c7 Extract 1D hkl plot into a separate module 2023-01-24 14:59:49 +01:00
18d5bec842 Improve intensity estimation for marker sizes 2023-01-20 18:28:35 +01:00
e563666373 Don't display not required k vectors 2023-01-20 18:28:35 +01:00
32a591136e Add a widget for k-tolerance 2023-01-20 18:28:26 +01:00
831a42ecc0 Code cleanup 2023-01-20 17:00:02 +01:00
ef22d77a5c Fix LegendItem expecting GlyphRenderer 2023-01-20 11:01:51 +01:00
9419b6928a Allow variable number of k vectors 2023-01-20 10:29:04 +01:00
4e34776f97 Extract input controls for 1D data 2023-01-03 16:58:09 +01:00
17c647b60d Extract download files 2022-12-23 20:59:15 +01:00
200e5d0a13 Extract fit controls 2022-12-23 19:22:03 +01:00
0b340d0bb9 Fix colormap low/high updates 2022-12-23 15:26:29 +01:00
5f37e9a57c Simplify plot creation in panel_ccl_prepare 2022-12-16 12:04:16 +01:00
7a7baadc8f Simplify plot creation in panel_hdf_viewer 2022-12-15 19:55:46 +01:00
41f5157ba8 Simplify plot creation in panel_param_study 2022-12-14 20:23:10 +01:00
7503076a1b Simplify plot creation in panel_hdf_param_study 2022-12-14 19:07:34 +01:00
21562ee85b Apply isort 2022-12-14 17:11:02 +01:00
23ba256b6e Simplify plot creation in panel_ccl_integrate 2022-12-14 16:45:10 +01:00
f5814ddd5e Simplify plot creation in panel_ccl_compare 2022-12-14 16:42:46 +01:00
b57348b369 Apply formatting 2022-12-14 16:17:39 +01:00
165c06bc22 Normalize imports 2022-12-14 15:05:27 +01:00
3c127b7f00 Hide server INFO logs 2022-12-09 13:56:42 +01:00
45b091f90b Updating for version 0.7.2 2022-10-10 09:14:48 +02:00
20fc969d60 Allow comma separator between motor steps values 2022-09-30 15:55:32 +02:00
bce8cf3120 Updating for version 0.7.1 2022-08-25 17:04:41 +02:00
56d626e312 Display the same UB matrix as in the spind table 2022-08-25 16:47:15 +02:00
19daa16de7 Treat o2t as om 2022-06-17 10:28:13 +02:00
4bcfaf8c80 Use a dummy UB matrix if it's absent in hdf file 2022-05-30 15:20:59 +02:00
b8cf76220c Updating for version 0.7.0 2022-05-23 09:16:20 +02:00
20e43ecce9 Remove temp and mf from parameters match 2022-05-20 14:56:55 +02:00
bcb6f7bd3b Add a workaround for single motor positions 2022-05-20 14:20:01 +02:00
c3b198f63a Adapt 'temp' to new h5 file format 2022-05-20 12:48:54 +02:00
f044e739a0 Adapt counts to new h5 file format 2022-05-06 16:57:06 +02:00
6f83292d69 Temporary resolve issues with new format metadata 2022-05-06 15:54:12 +02:00
7075e0f42b Assume scan_motor to be "om" if it's not present 2022-05-06 15:29:45 +02:00
1d43c86cff Fix UB matrix read 2022-05-06 15:29:09 +02:00
cde2aa1182 Fix letter case for UB matrix metadata 2022-05-06 14:46:37 +02:00
df9607ceb9 Adapt 'wave' to new h5 file format 2022-05-06 14:20:26 +02:00
5c5be065be Adapt 'monitor' and 'omega' to new h5 file format 2022-05-06 12:27:31 +02:00
279dee3935 Temporary fix for new h5 files
Datasets has changed from a single number to arrays
2022-05-06 12:14:27 +02:00
4ebb343afb Support new UB matrix format in ccl files 2022-05-06 11:19:25 +02:00
2810cf3d2b Fix legend when res_flag is True 2022-05-05 19:04:14 +02:00
585d4b3f54 Code refactoring 2022-05-04 20:01:53 +02:00
72fd54d268 Add legend items for propagation vectors 2022-05-04 17:20:24 +02:00
181c359ef9 Add legend items for file entries 2022-05-04 17:10:18 +02:00
00607d94c7 Add a widget for orthogonal cut value 2022-05-03 17:27:45 +02:00
a192648cc4 Add ccl_prepare plotting functionality
* Based on Camilla's notebook
2022-05-03 17:18:53 +02:00
42adda235b Update ccl_prepare plot widgets 2022-04-30 20:12:24 +02:00
e30035350b Generalize search for proposals
Avoid hardcoding specific years in proposal paths
2022-04-28 16:37:54 +02:00
89fffed5d1 Add 2022 data folder 2022-04-28 15:04:18 +02:00
fae90cbeae Initial version of (m)hkl sorting 2022-04-26 16:37:20 +02:00
7b70d30578 Use uploaded cfl filename as a default for outputs 2022-04-21 18:15:33 +02:00
b26d7005c5 Optimize layout 2022-04-21 17:50:54 +02:00
90021428ee Add support for lattiCE and multiple kvect values 2022-04-21 17:50:50 +02:00
bf97af1949 Treat 2theta as gamma in geom files 2022-04-21 12:00:50 +02:00
098314e30d Performance optimization
Use lists as intermediate data structure to avoid lots of numpy array
allocations
2022-04-20 13:15:48 +02:00
49ff319230 Use TextInput for wavelength widget 2022-04-14 16:14:27 +02:00
9b1e396bdb Disabled currently no-op buttons 2022-04-13 10:15:44 +02:00
d72c1d478e Add download option for hkl/mhkl files 2022-04-13 10:12:30 +02:00
fa73271076 Display created hkl and mhkl lists 2022-04-13 09:16:14 +02:00
4d2a8ecad2 Run sxtal_refgen on GO press 2022-04-12 20:12:11 +02:00
6f1fe1a3d8 Correctly strip lines in read_cfl_file 2022-04-12 19:45:45 +02:00
8d4f4a9b50 Add export_cfl_file function 2022-04-12 19:45:00 +02:00
c94f784373 Keep params as nonlocal var 2022-04-12 18:44:23 +02:00
de2a10b507 Keep ang_lims as nonlocal var 2022-04-12 17:01:21 +02:00
e2220760f0 Save geometry in ang_lims 2022-04-12 16:09:22 +02:00
39b2af60ca Allow export of geom file based on template 2022-04-12 15:11:42 +02:00
94df4869d4 Add ability to load cif data 2022-04-12 12:05:42 +02:00
4131eb31e7 Activate cfl file upload 2022-04-11 16:06:19 +02:00
4ee1f6fb70 Ignore comments in geom and cfl files 2022-04-11 16:04:10 +02:00
fbce5de7b9 Handle default cfl file 2022-04-11 15:16:37 +02:00
636badfba8 Handle different number of angles for geoms 2022-04-11 14:15:45 +02:00
77d6f42e0d Activate initially the first geom selection 2022-04-11 12:29:01 +02:00
166259d669 Merge min/max widgets of ang limits 2022-04-11 12:13:21 +02:00
14d65c9590 Update default geometry files 2022-04-11 11:33:35 +02:00
48b001180f Add default values for ranges 2022-04-07 19:48:06 +02:00
21332b3edc Calculate ub matrix via Sxtal_Refgen 2022-04-07 19:13:04 +02:00
421fc726dd Handle wavelength-related widgets 2022-04-07 17:05:09 +02:00
eb3cc99aeb Implement angular limit updates from geom files 2022-04-06 17:51:41 +02:00
d36686177d Add optional --sxtal-refgen-path cli argument 2022-04-06 17:38:46 +02:00
7e2c6ad21f Add basic functions to handle geom files 2022-04-06 17:38:14 +02:00
03ed97e063 Add panel_ccl_prepare
Basic layout only
2022-03-11 17:05:45 +01:00
234fb1f3b6 Update hdf_view with 2D detector data merging 2022-02-14 11:04:56 +01:00
e8ce57b56b Add functions for 2D detector data merging 2022-02-14 11:04:16 +01:00
ac6f67cc53 Reduce scan motor position precision for merging 2022-02-08 15:23:03 +01:00
3234a544de Cast counts to float64 in h5 data
For correct calculation of count_err
2022-02-03 17:15:42 +01:00
4bd6c6760e Fix parse_h5meta 2022-02-03 17:12:48 +01:00
b401d2f459 Fix param_study for an unconverged fit
For #49
2022-02-02 10:42:44 +01:00
6b8d15234b Fix check for reversed ranges upon scan merging 2022-01-28 15:06:28 +01:00
5cfa5c176d Add counts_err, idx and scan_motors to hdf data 2022-01-28 13:47:57 +01:00
bbe7b7d305 Rename data into counts for hdf5 zebra data 2022-01-28 10:08:27 +01:00
4ba08366df Assign twotheta to polar_angle 2022-01-28 09:55:43 +01:00
51c78ad06b Read monitor value in hdf 2022-01-27 17:45:01 +01:00
bcd594fa7e Utility renames and hdf_param_study simplification 2022-01-27 16:37:55 +01:00
10bcabd7f9 Updating for version 0.6.5 2022-01-21 10:25:01 +01:00
bee8263184 Use dist2 in cami for detector distance 2022-01-21 10:24:30 +01:00
98a76ebf63 Updating for version 0.6.4 2022-01-03 17:34:23 +01:00
12ba0b291b Update overview map plotting 2022-01-03 17:33:37 +01:00
a719f10f4f Replace interp2d with griddata 2022-01-03 16:12:48 +01:00
aaff6032c8 Allow single frame in hdf_viewer 2022-01-03 10:25:19 +01:00
3fb3fe573b Handle single frame h5 files 2021-12-23 20:05:58 +01:00
1687337f26 Report in user output if reading h5 file fails 2021-12-23 17:41:15 +01:00
53ceac21aa Suppress RuntimeWarning in interp2d 2021-12-23 15:37:05 +01:00
741a09819c Fix unpacking from enumerate 2021-12-20 13:10:05 +01:00
34 changed files with 4211 additions and 2331 deletions

View File

@ -0,0 +1,53 @@
name: pyzebra CI/CD pipeline
on:
push:
branches:
- main
tags:
- '*'
env:
CONDA: /opt/miniforge3
jobs:
prepare:
runs-on: pyzebra
steps:
- run: $CONDA/bin/conda config --add channels conda-forge
- run: $CONDA/bin/conda config --set solver libmamba
test-env:
runs-on: pyzebra
needs: prepare
if: github.ref == 'refs/heads/main'
env:
BUILD_DIR: ${{ runner.temp }}/conda_build
steps:
- name: Checkout repository
uses: actions/checkout@v4
- run: $CONDA/bin/conda build --no-anaconda-upload --output-folder $BUILD_DIR ./conda-recipe
- run: $CONDA/bin/conda remove --name test --all --keep-env -y
- run: $CONDA/bin/conda install --name test --channel $BUILD_DIR python=3.8 pyzebra -y
- run: sudo systemctl restart pyzebra-test.service
prod-env:
runs-on: pyzebra
needs: prepare
if: startsWith(github.ref, 'refs/tags/')
env:
BUILD_DIR: ${{ runner.temp }}/conda_build
steps:
- name: Checkout repository
uses: actions/checkout@v4
- run: $CONDA/bin/conda build --token ${{ secrets.ANACONDA_TOKEN }} --output-folder $BUILD_DIR ./conda-recipe
- run: $CONDA/bin/conda remove --name prod --all --keep-env -y
- run: $CONDA/bin/conda install --name prod --channel $BUILD_DIR python=3.8 pyzebra -y
- run: sudo systemctl restart pyzebra-prod.service
cleanup:
runs-on: pyzebra
needs: [test-env, prod-env]
if: always()
steps:
- run: $CONDA/bin/conda build purge-all

View File

@ -1,25 +0,0 @@
name: Deployment
on:
push:
tags:
- '*'
jobs:
publish-conda-package:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Prepare
run: |
$CONDA/bin/conda install --quiet --yes conda-build anaconda-client
$CONDA/bin/conda config --append channels conda-forge
$CONDA/bin/conda config --set anaconda_upload yes
- name: Build and upload
env:
ANACONDA_TOKEN: ${{ secrets.ANACONDA_TOKEN }}
run: |
$CONDA/bin/conda build --token $ANACONDA_TOKEN conda-recipe

View File

@ -15,10 +15,10 @@ build:
requirements:
build:
- python >=3.7
- python >=3.8
- setuptools
run:
- python >=3.7
- python >=3.8
- numpy
- scipy
- h5py
@ -28,7 +28,7 @@ requirements:
about:
home: https://github.com/paulscherrerinstitute/pyzebra
home: https://gitlab.psi.ch/zebra/pyzebra
summary: {{ data['description'] }}
license: GNU GPLv3
license_file: LICENSE

View File

@ -7,18 +7,19 @@ import subprocess
def main():
default_branch = "main"
branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD", shell=True).decode().strip()
if branch != "master":
print("Aborting, not on 'master' branch.")
if branch != default_branch:
print(f"Aborting, not on '{default_branch}' branch.")
return
filepath = "pyzebra/__init__.py"
version_filepath = os.path.join(os.path.basename(os.path.dirname(__file__)), "__init__.py")
parser = argparse.ArgumentParser()
parser.add_argument("level", type=str, choices=["patch", "minor", "major"])
args = parser.parse_args()
with open(filepath) as f:
with open(version_filepath) as f:
file_content = f.read()
version = re.search(r'__version__ = "(.*?)"', file_content).group(1)
@ -36,11 +37,12 @@ def main():
new_version = f"{major}.{minor}.{patch}"
with open(filepath, "w") as f:
with open(version_filepath, "w") as f:
f.write(re.sub(r'__version__ = "(.*?)"', f'__version__ = "{new_version}"', file_content))
os.system(f"git commit {filepath} -m 'Updating for version {new_version}'")
os.system(f"git commit {version_filepath} -m 'Updating for version {new_version}'")
os.system(f"git tag -a {new_version} -m 'Release {new_version}'")
os.system("git push --follow-tags")
if __name__ == "__main__":

View File

@ -2,7 +2,8 @@ from pyzebra.anatric import *
from pyzebra.ccl_io import *
from pyzebra.ccl_process import *
from pyzebra.h5 import *
from pyzebra.sxtal_refgen import *
from pyzebra.utils import *
from pyzebra.xtal import *
__version__ = "0.6.3"
__version__ = "0.7.11"

View File

@ -1,12 +1,10 @@
import logging
import subprocess
import xml.etree.ElementTree as ET
logger = logging.getLogger(__name__)
DATA_FACTORY_IMPLEMENTATION = [
"trics",
"morph",
"d10",
]
DATA_FACTORY_IMPLEMENTATION = ["trics", "morph", "d10"]
REFLECTION_PRINTER_FORMATS = [
"rafin",
@ -21,11 +19,11 @@ REFLECTION_PRINTER_FORMATS = [
"oksana",
]
ANATRIC_PATH = "/afs/psi.ch/project/sinq/rhel7/bin/anatric"
ANATRIC_PATH = "/afs/psi.ch/project/sinq/rhel8/bin/anatric"
ALGORITHMS = ["adaptivemaxcog", "adaptivedynamic"]
def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None):
def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None, log=logger):
comp_proc = subprocess.run(
[anatric_path, config_file],
stdout=subprocess.PIPE,
@ -34,8 +32,8 @@ def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None):
check=True,
text=True,
)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
class AnatricConfig:

View File

@ -0,0 +1,4 @@
from pyzebra.app.download_files import DownloadFiles
from pyzebra.app.fit_controls import FitControls
from pyzebra.app.input_controls import InputControls
from pyzebra.app.plot_hkl import PlotHKL

View File

@ -1,75 +0,0 @@
import logging
import sys
from io import StringIO
import pyzebra
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import Button, Panel, Tabs, TextAreaInput, TextInput
import panel_ccl_integrate
import panel_ccl_compare
import panel_hdf_anatric
import panel_hdf_param_study
import panel_hdf_viewer
import panel_param_study
import panel_spind
doc = curdoc()
sys.stdout = StringIO()
stdout_textareainput = TextAreaInput(title="print output:", height=150)
bokeh_stream = StringIO()
bokeh_handler = logging.StreamHandler(bokeh_stream)
bokeh_handler.setFormatter(logging.Formatter(logging.BASIC_FORMAT))
bokeh_logger = logging.getLogger("bokeh")
bokeh_logger.addHandler(bokeh_handler)
bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
def proposal_textinput_callback(_attr, _old, _new):
apply_button.disabled = False
proposal_textinput = TextInput(title="Proposal number:", name="")
proposal_textinput.on_change("value_input", proposal_textinput_callback)
doc.proposal_textinput = proposal_textinput
def apply_button_callback():
try:
proposal_path = pyzebra.find_proposal_path(proposal_textinput.value)
except ValueError as e:
print(e)
return
proposal_textinput.name = proposal_path
apply_button.disabled = True
apply_button = Button(label="Apply", button_type="primary")
apply_button.on_click(apply_button_callback)
# Final layout
doc.add_root(
column(
Tabs(
tabs=[
Panel(child=column(proposal_textinput, apply_button), title="user config"),
panel_hdf_viewer.create(),
panel_hdf_anatric.create(),
panel_ccl_integrate.create(),
panel_ccl_compare.create(),
panel_param_study.create(),
panel_hdf_param_study.create(),
panel_spind.create(),
]
),
row(stdout_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
)
)
def update_stdout():
stdout_textareainput.value = sys.stdout.getvalue()
bokeh_log_textareainput.value = bokeh_stream.getvalue()
doc.add_periodic_callback(update_stdout, 1000)

View File

@ -1,72 +1,11 @@
import argparse
import logging
import os
from bokeh.application.application import Application
from bokeh.application.handlers import ScriptHandler
from bokeh.server.server import Server
from pyzebra.anatric import ANATRIC_PATH
from pyzebra.app.handler import PyzebraHandler
logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO)
logger = logging.getLogger(__name__)
import subprocess
import sys
def main():
"""The pyzebra command line interface.
This is a wrapper around a bokeh server that provides an interface to launch the application,
bundled with the pyzebra package.
"""
app_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "app.py")
parser = argparse.ArgumentParser(
prog="pyzebra", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--port", type=int, default=5006, help="port to listen on for HTTP requests"
)
parser.add_argument(
"--allow-websocket-origin",
metavar="HOST[:PORT]",
type=str,
action="append",
default=None,
help="hostname that can connect to the server websocket",
)
parser.add_argument(
"--anatric-path", type=str, default=ANATRIC_PATH, help="path to anatric executable",
)
parser.add_argument(
"--spind-path", type=str, default=None, help="path to spind scripts folder",
)
parser.add_argument(
"--args",
nargs=argparse.REMAINDER,
default=[],
help="command line arguments for the pyzebra application",
)
args = parser.parse_args()
logger.info(app_path)
pyzebra_handler = PyzebraHandler(args.anatric_path, args.spind_path)
handler = ScriptHandler(filename=app_path, argv=args.args)
server = Server(
{"/": Application(pyzebra_handler, handler)},
port=args.port,
allow_websocket_origin=args.allow_websocket_origin,
)
server.start()
server.io_loop.start()
app_path = os.path.dirname(os.path.abspath(__file__))
subprocess.run(["bokeh", "serve", app_path, *sys.argv[1:]], check=True)
if __name__ == "__main__":

View File

@ -0,0 +1,45 @@
from bokeh.models import Button, ColumnDataSource, CustomJS
js_code = """
let j = 0;
for (let i = 0; i < source.data['name'].length; i++) {
if (source.data['content'][i] === "") continue;
setTimeout(function() {
const blob = new Blob([source.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = source.data['name'][i] + source.data['ext'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 100 * j)
j++;
}
"""
class DownloadFiles:
def __init__(self, n_files):
self.n_files = n_files
source = ColumnDataSource(
data=dict(content=[""] * n_files, name=[""] * n_files, ext=[""] * n_files)
)
self._source = source
label = "Download File" if n_files == 1 else "Download Files"
button = Button(label=label, button_type="success", width=200)
button.js_on_click(CustomJS(args={"source": source}, code=js_code))
self.button = button
def set_contents(self, contents):
self._source.data.update(content=contents)
def set_names(self, names):
self._source.data.update(name=names)
def set_extensions(self, extensions):
self._source.data.update(ext=extensions)

175
pyzebra/app/fit_controls.py Normal file
View File

@ -0,0 +1,175 @@
import types
from bokeh.io import curdoc
from bokeh.models import (
Button,
CellEditor,
CheckboxEditor,
CheckboxGroup,
ColumnDataSource,
DataTable,
Dropdown,
MultiSelect,
NumberEditor,
RadioGroup,
Spinner,
TableColumn,
TextAreaInput,
)
import pyzebra
def _params_factory(function):
if function == "linear":
param_names = ["slope", "intercept"]
elif function == "gaussian":
param_names = ["amplitude", "center", "sigma"]
elif function == "voigt":
param_names = ["amplitude", "center", "sigma", "gamma"]
elif function == "pvoigt":
param_names = ["amplitude", "center", "sigma", "fraction"]
elif function == "pseudovoigt1":
param_names = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
else:
raise ValueError("Unknown fit function")
n = len(param_names)
params = dict(
param=param_names, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n
)
if function == "linear":
params["value"] = [0, 1]
params["vary"] = [False, True]
params["min"] = [None, 0]
elif function == "gaussian":
params["min"] = [0, None, None]
return params
class FitControls:
def __init__(self):
self.log = curdoc().logger
self.params = {}
def add_function_button_callback(click):
# bokeh requires (str, str) for MultiSelect options
new_tag = f"{click.item}-{function_select.tags[0]}"
function_select.options.append((new_tag, click.item))
self.params[new_tag] = _params_factory(click.item)
function_select.tags[0] += 1
add_function_button = Dropdown(
label="Add fit function",
menu=[
("Linear", "linear"),
("Gaussian", "gaussian"),
("Voigt", "voigt"),
("Pseudo Voigt", "pvoigt"),
# ("Pseudo Voigt1", "pseudovoigt1"),
],
width=145,
)
add_function_button.on_click(add_function_button_callback)
self.add_function_button = add_function_button
def function_list_callback(_attr, old, new):
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
function_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
if new:
params_table_source.data.update(self.params[new[0]])
else:
params_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
function_select = MultiSelect(options=[], height=120, width=145)
function_select.tags = [0]
function_select.on_change("value", function_list_callback)
self.function_select = function_select
def remove_function_button_callback():
if function_select.value:
sel_tag = function_select.value[0]
del self.params[sel_tag]
for elem in function_select.options:
if elem[0] == sel_tag:
function_select.options.remove(elem)
break
function_select.value = []
remove_function_button = Button(label="Remove fit function", width=145)
remove_function_button.on_click(remove_function_button_callback)
self.remove_function_button = remove_function_button
params_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
self.params_table = DataTable(
source=params_table_source,
columns=[
TableColumn(field="param", title="Parameter", editor=CellEditor()),
TableColumn(field="value", title="Value", editor=NumberEditor()),
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
TableColumn(field="min", title="Min", editor=NumberEditor()),
TableColumn(field="max", title="Max", editor=NumberEditor()),
],
height=200,
width=350,
index_position=None,
editable=True,
auto_edit=True,
)
# start with `background` and `gauss` fit functions added
add_function_button_callback(types.SimpleNamespace(item="linear"))
add_function_button_callback(types.SimpleNamespace(item="gaussian"))
function_select.value = ["gaussian-1"] # put selection on gauss
self.from_spinner = Spinner(title="Fit from:", width=145)
self.to_spinner = Spinner(title="to:", width=145)
self.area_method_radiogroup = RadioGroup(labels=["Function", "Area"], active=0, width=145)
self.lorentz_checkbox = CheckboxGroup(
labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5)
)
self.result_textarea = TextAreaInput(title="Fit results:", width=750, height=200)
def _process_scan(self, scan):
pyzebra.fit_scan(
scan,
self.params,
fit_from=self.from_spinner.value,
fit_to=self.to_spinner.value,
log=self.log,
)
pyzebra.get_area(
scan,
area_method=pyzebra.AREA_METHODS[self.area_method_radiogroup.active],
lorentz=self.lorentz_checkbox.active,
)
def fit_scan(self, scan):
self._process_scan(scan)
def fit_dataset(self, dataset):
for scan in dataset:
if scan["export"]:
self._process_scan(scan)
def update_result_textarea(self, scan):
fit = scan.get("fit")
if fit is None:
self.result_textarea.value = ""
else:
self.result_textarea.value = fit.fit_report()

View File

@ -1,32 +0,0 @@
from bokeh.application.handlers import Handler
class PyzebraHandler(Handler):
"""Provides a mechanism for generic bokeh applications to build up new streamvis documents.
"""
def __init__(self, anatric_path, spind_path):
"""Initialize a pyzebra handler for bokeh applications.
Args:
args (Namespace): Command line parsed arguments.
"""
super().__init__() # no-op
self.anatric_path = anatric_path
self.spind_path = spind_path
def modify_document(self, doc):
"""Modify an application document with pyzebra specific features.
Args:
doc (Document) : A bokeh Document to update in-place
Returns:
Document
"""
doc.title = "pyzebra"
doc.anatric_path = self.anatric_path
doc.spind_path = self.spind_path
return doc

View File

@ -0,0 +1,159 @@
import base64
import io
import os
from bokeh.io import curdoc
from bokeh.models import Button, FileInput, MultiSelect, Spinner
import pyzebra
class InputControls:
def __init__(self, dataset, dlfiles, on_file_open=lambda: None, on_monitor_change=lambda: None):
doc = curdoc()
log = doc.logger
def filelist_select_update_for_proposal():
proposal_path = proposal_textinput.name
if proposal_path:
file_list = []
for file in os.listdir(proposal_path):
if file.endswith((".ccl", ".dat")):
file_list.append((os.path.join(proposal_path, file), file))
filelist_select.options = file_list
open_button.disabled = False
append_button.disabled = False
else:
filelist_select.options = []
open_button.disabled = True
append_button.disabled = True
doc.add_periodic_callback(filelist_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
filelist_select_update_for_proposal()
proposal_textinput = doc.proposal_textinput
proposal_textinput.on_change("name", proposal_textinput_callback)
filelist_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
self.filelist_select = filelist_select
def open_button_callback():
new_data = []
for f_path in self.filelist_select.value:
with open(f_path) as file:
f_name = os.path.basename(f_path)
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data, log=log)
dlfiles.set_names([base] * dlfiles.n_files)
else:
pyzebra.merge_datasets(new_data, file_data, log=log)
if new_data:
dataset.clear()
dataset.extend(new_data)
on_file_open()
append_upload_button.disabled = False
open_button = Button(label="Open New", width=100, disabled=True)
open_button.on_click(open_button_callback)
self.open_button = open_button
def append_button_callback():
file_data = []
for f_path in self.filelist_select.value:
with open(f_path) as file:
f_name = os.path.basename(f_path)
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(dataset, file_data, log=log)
if file_data:
on_file_open()
append_button = Button(label="Append", width=100, disabled=True)
append_button.on_click(append_button_callback)
self.append_button = append_button
def upload_button_callback(_attr, _old, _new):
new_data = []
for f_str, f_name in zip(upload_button.value, upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data, log=log)
dlfiles.set_names([base] * dlfiles.n_files)
else:
pyzebra.merge_datasets(new_data, file_data, log=log)
if new_data:
dataset.clear()
dataset.extend(new_data)
on_file_open()
append_upload_button.disabled = False
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
upload_button.on_change("filename", upload_button_callback)
self.upload_button = upload_button
def append_upload_button_callback(_attr, _old, _new):
file_data = []
for f_str, f_name in zip(append_upload_button.value, append_upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(dataset, file_data, log=log)
if file_data:
on_file_open()
append_upload_button = FileInput(
accept=".ccl,.dat", multiple=True, width=200, disabled=True
)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
append_upload_button.on_change("filename", append_upload_button_callback)
self.append_upload_button = append_upload_button
def monitor_spinner_callback(_attr, _old, new):
if dataset:
pyzebra.normalize_dataset(dataset, new)
on_monitor_change()
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
monitor_spinner.on_change("value", monitor_spinner_callback)
self.monitor_spinner = monitor_spinner

112
pyzebra/app/main.py Normal file
View File

@ -0,0 +1,112 @@
import argparse
import logging
from io import StringIO
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import Button, Panel, Tabs, TextAreaInput, TextInput
import pyzebra
from pyzebra.app import (
panel_ccl_compare,
panel_ccl_integrate,
panel_ccl_prepare,
panel_hdf_anatric,
panel_hdf_param_study,
panel_hdf_viewer,
panel_param_study,
panel_plot_data,
panel_spind,
)
doc = curdoc()
doc.title = "pyzebra"
parser = argparse.ArgumentParser()
parser.add_argument(
"--anatric-path", type=str, default=pyzebra.ANATRIC_PATH, help="path to anatric executable"
)
parser.add_argument(
"--sxtal-refgen-path",
type=str,
default=pyzebra.SXTAL_REFGEN_PATH,
help="path to Sxtal_Refgen executable",
)
parser.add_argument("--spind-path", type=str, default=None, help="path to spind scripts folder")
args = parser.parse_args()
doc.anatric_path = args.anatric_path
doc.spind_path = args.spind_path
doc.sxtal_refgen_path = args.sxtal_refgen_path
stream = StringIO()
handler = logging.StreamHandler(stream)
handler.setFormatter(
logging.Formatter(fmt="%(asctime)s %(levelname)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
)
logger = logging.getLogger(str(id(doc)))
logger.setLevel(logging.INFO)
logger.addHandler(handler)
doc.logger = logger
log_textareainput = TextAreaInput(title="Logging output:")
def proposal_textinput_callback(_attr, _old, _new):
apply_button.disabled = False
proposal_textinput = TextInput(title="Proposal number:", name="")
proposal_textinput.on_change("value_input", proposal_textinput_callback)
doc.proposal_textinput = proposal_textinput
def apply_button_callback():
proposal = proposal_textinput.value.strip()
if proposal:
try:
proposal_path = pyzebra.find_proposal_path(proposal)
except ValueError as e:
logger.exception(e)
return
apply_button.disabled = True
else:
proposal_path = ""
proposal_textinput.name = proposal_path
apply_button = Button(label="Apply", button_type="primary")
apply_button.on_click(apply_button_callback)
# Final layout
doc.add_root(
column(
Tabs(
tabs=[
Panel(child=column(proposal_textinput, apply_button), title="user config"),
panel_hdf_viewer.create(),
panel_hdf_anatric.create(),
panel_ccl_prepare.create(),
panel_plot_data.create(),
panel_ccl_integrate.create(),
panel_ccl_compare.create(),
panel_param_study.create(),
panel_hdf_param_study.create(),
panel_spind.create(),
]
),
row(log_textareainput, sizing_mode="scale_both"),
)
)
def update_stdout():
log_textareainput.value = stream.getvalue()
doc.add_periodic_callback(update_stdout, 1000)

View File

@ -2,80 +2,41 @@ import base64
import io
import os
import tempfile
import types
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
Button,
CellEditor,
CheckboxEditor,
CheckboxGroup,
ColumnDataSource,
CustomJS,
DataRange1d,
DataTable,
Div,
Dropdown,
FileInput,
Grid,
Legend,
Line,
LinearAxis,
MultiLine,
MultiSelect,
NumberEditor,
Panel,
PanTool,
Plot,
RadioGroup,
ResetTool,
Scatter,
Select,
Spacer,
Span,
Spinner,
TableColumn,
TextAreaInput,
WheelZoomTool,
Whisker,
)
from bokeh.plotting import figure
import pyzebra
from pyzebra.ccl_io import EXPORT_TARGETS
from pyzebra.ccl_process import AREA_METHODS
javaScript = """
let j = 0;
for (let i = 0; i < js_data.data['fname'].length; i++) {
if (js_data.data['content'][i] === "") continue;
setTimeout(function() {
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 100 * j)
j++;
}
"""
from pyzebra import EXPORT_TARGETS, app
def create():
doc = curdoc()
det_data1 = []
det_data2 = []
fit_params = {}
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""], ext=["", ""]))
log = doc.logger
dataset1 = []
dataset2 = []
app_dlfiles = app.DownloadFiles(n_files=2)
def file_select_update_for_proposal():
proposal_path = proposal_textinput.name
@ -99,17 +60,17 @@ def create():
proposal_textinput.on_change("name", proposal_textinput_callback)
def _init_datatable():
# det_data2 should have the same metadata to det_data1
scan_list = [s["idx"] for s in det_data1]
hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in det_data1]
export = [s["export"] for s in det_data1]
# dataset2 should have the same metadata as dataset1
scan_list = [s["idx"] for s in dataset1]
hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in dataset1]
export = [s["export"] for s in dataset1]
twotheta = [np.median(s["twotheta"]) if "twotheta" in s else None for s in det_data1]
gamma = [np.median(s["gamma"]) if "gamma" in s else None for s in det_data1]
omega = [np.median(s["omega"]) if "omega" in s else None for s in det_data1]
chi = [np.median(s["chi"]) if "chi" in s else None for s in det_data1]
phi = [np.median(s["phi"]) if "phi" in s else None for s in det_data1]
nu = [np.median(s["nu"]) if "nu" in s else None for s in det_data1]
twotheta = [np.median(s["twotheta"]) if "twotheta" in s else None for s in dataset1]
gamma = [np.median(s["gamma"]) if "gamma" in s else None for s in dataset1]
omega = [np.median(s["omega"]) if "omega" in s else None for s in dataset1]
chi = [np.median(s["chi"]) if "chi" in s else None for s in dataset1]
phi = [np.median(s["phi"]) if "phi" in s else None for s in dataset1]
nu = [np.median(s["nu"]) if "nu" in s else None for s in dataset1]
scan_table_source.data.update(
scan=scan_list,
@ -134,7 +95,7 @@ def create():
def file_open_button_callback():
if len(file_select.value) != 2:
print("WARNING: Select exactly 2 .ccl files.")
log.warning("Select exactly 2 .ccl files.")
return
new_data1 = []
@ -144,16 +105,16 @@ def create():
f_name = os.path.basename(f_path)
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
return
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_duplicates(file_data)
pyzebra.merge_duplicates(file_data, log=log)
if ind == 0:
js_data.data.update(fname=[base, base])
app_dlfiles.set_names([base, base])
new_data1 = file_data
else: # ind = 1
new_data2 = file_data
@ -163,9 +124,9 @@ def create():
new_data1 = new_data1[:min_len]
new_data2 = new_data2[:min_len]
nonlocal det_data1, det_data2
det_data1 = new_data1
det_data2 = new_data2
nonlocal dataset1, dataset2
dataset1 = new_data1
dataset2 = new_data2
_init_datatable()
file_open_button = Button(label="Open New", width=100, disabled=True)
@ -173,25 +134,25 @@ def create():
def upload_button_callback(_attr, _old, _new):
if len(upload_button.filename) != 2:
print("WARNING: Upload exactly 2 .ccl files.")
log.warning("Upload exactly 2 .ccl files.")
return
new_data1 = []
new_data2 = []
for ind, f_str, f_name in enumerate(zip(upload_button.value, upload_button.filename)):
for ind, (f_str, f_name) in enumerate(zip(upload_button.value, upload_button.filename)):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
return
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_duplicates(file_data)
pyzebra.merge_duplicates(file_data, log=log)
if ind == 0:
js_data.data.update(fname=[base, base])
app_dlfiles.set_names([base, base])
new_data1 = file_data
else: # ind = 1
new_data2 = file_data
@ -201,9 +162,9 @@ def create():
new_data1 = new_data1[:min_len]
new_data2 = new_data2[:min_len]
nonlocal det_data1, det_data2
det_data1 = new_data1
det_data2 = new_data2
nonlocal dataset1, dataset2
dataset1 = new_data1
dataset2 = new_data2
_init_datatable()
upload_div = Div(text="or upload 2 .ccl files:", margin=(5, 5, 0, 5))
@ -213,31 +174,31 @@ def create():
upload_button.on_change("filename", upload_button_callback)
def monitor_spinner_callback(_attr, old, new):
if det_data1 and det_data2:
pyzebra.normalize_dataset(det_data1, new)
pyzebra.normalize_dataset(det_data2, new)
if dataset1 and dataset2:
pyzebra.normalize_dataset(dataset1, new)
pyzebra.normalize_dataset(dataset2, new)
_update_plot()
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
monitor_spinner.on_change("value", monitor_spinner_callback)
def _update_table():
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data1]
export = [scan["export"] for scan in det_data1]
fit_ok = [(1 if "fit" in scan else 0) for scan in dataset1]
export = [scan["export"] for scan in dataset1]
scan_table_source.data.update(fit=fit_ok, export=export)
def _update_plot():
plot_scatter_source = [plot_scatter1_source, plot_scatter2_source]
plot_fit_source = [plot_fit1_source, plot_fit2_source]
plot_bkg_source = [plot_bkg1_source, plot_bkg2_source]
plot_peak_source = [plot_peak1_source, plot_peak2_source]
scatter_sources = [scatter1_source, scatter2_source]
fit_sources = [fit1_source, fit2_source]
bkg_sources = [bkg1_source, bkg2_source]
peak_sources = [peak1_source, peak2_source]
fit_output = ""
for ind, scan in enumerate(_get_selected_scan()):
scatter_source = plot_scatter_source[ind]
fit_source = plot_fit_source[ind]
bkg_source = plot_bkg_source[ind]
peak_source = plot_peak_source[ind]
scatter_source = scatter_sources[ind]
fit_source = fit_sources[ind]
bkg_source = bkg_sources[ind]
peak_source = peak_sources[ind]
scan_motor = scan["scan_motor"]
y = scan["counts"]
@ -257,7 +218,7 @@ def create():
xs_peak = []
ys_peak = []
comps = fit.eval_components(x=x_fit)
for i, model in enumerate(fit_params):
for i, model in enumerate(app_fitctrl.params):
if "linear" in model:
x_bkg = x_fit
y_bkg = comps[f"f{i}_"]
@ -277,62 +238,59 @@ def create():
bkg_source.data.update(x=[], y=[])
peak_source.data.update(xs=[], ys=[])
fit_output_textinput.value = fit_output
app_fitctrl.result_textarea.value = fit_output
# Main plot
plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(only_visible=True),
plot_height=470,
plot_width=700,
plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=470,
width=700,
tools="pan,wheel_zoom,reset",
)
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
plot_scatter1_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot_scatter1 = plot.add_glyph(
plot_scatter1_source, Scatter(x="x", y="y", line_color="steelblue", fill_color="steelblue")
scatter1_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot.circle(
source=scatter1_source,
line_color="steelblue",
fill_color="steelblue",
legend_label="data 1",
)
plot.add_layout(
Whisker(source=plot_scatter1_source, base="x", upper="y_upper", lower="y_lower")
plot.add_layout(Whisker(source=scatter1_source, base="x", upper="y_upper", lower="y_lower"))
scatter2_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot.circle(
source=scatter2_source,
line_color="firebrick",
fill_color="firebrick",
legend_label="data 2",
)
plot.add_layout(Whisker(source=scatter2_source, base="x", upper="y_upper", lower="y_lower"))
fit1_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(source=fit1_source, legend_label="best fit 1")
fit2_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(source=fit2_source, line_color="firebrick", legend_label="best fit 2")
bkg1_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(
source=bkg1_source, line_color="steelblue", line_dash="dashed", legend_label="linear 1"
)
plot_scatter2_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot_scatter2 = plot.add_glyph(
plot_scatter2_source, Scatter(x="x", y="y", line_color="firebrick", fill_color="firebrick")
)
plot.add_layout(
Whisker(source=plot_scatter2_source, base="x", upper="y_upper", lower="y_lower")
bkg2_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(
source=bkg2_source, line_color="firebrick", line_dash="dashed", legend_label="linear 2"
)
plot_fit1_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_fit1 = plot.add_glyph(plot_fit1_source, Line(x="x", y="y"))
plot_fit2_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_fit2 = plot.add_glyph(plot_fit2_source, Line(x="x", y="y"))
plot_bkg1_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_bkg1 = plot.add_glyph(
plot_bkg1_source, Line(x="x", y="y", line_color="steelblue", line_dash="dashed")
peak1_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot.multi_line(
source=peak1_source, line_color="steelblue", line_dash="dashed", legend_label="peak 1"
)
plot_bkg2_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_bkg2 = plot.add_glyph(
plot_bkg2_source, Line(x="x", y="y", line_color="firebrick", line_dash="dashed")
)
plot_peak1_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot_peak1 = plot.add_glyph(
plot_peak1_source, MultiLine(xs="xs", ys="ys", line_color="steelblue", line_dash="dashed")
)
plot_peak2_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot_peak2 = plot.add_glyph(
plot_peak2_source, MultiLine(xs="xs", ys="ys", line_color="firebrick", line_dash="dashed")
peak2_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot.multi_line(
source=peak2_source, line_color="firebrick", line_dash="dashed", legend_label="peak 2"
)
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
@ -341,25 +299,9 @@ def create():
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_to_span)
plot.add_layout(
Legend(
items=[
("data 1", [plot_scatter1]),
("data 2", [plot_scatter2]),
("best fit 1", [plot_fit1]),
("best fit 2", [plot_fit2]),
("peak 1", [plot_peak1]),
("peak 2", [plot_peak2]),
("linear 1", [plot_bkg1]),
("linear 2", [plot_bkg2]),
],
location="top_left",
click_policy="hide",
)
)
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
plot.y_range.only_visible = True
plot.toolbar.logo = None
plot.legend.click_policy = "hide"
# Scan select
def scan_table_select_callback(_attr, old, new):
@ -382,7 +324,7 @@ def create():
def scan_table_source_callback(_attr, _old, new):
# unfortunately, we don't know if the change comes from data update or user input
# also `old` and `new` are the same for non-scalars
for scan1, scan2, export in zip(det_data1, det_data2, new["export"]):
for scan1, scan2, export in zip(dataset1, dataset2, new["export"]):
scan1["export"] = export
scan2["export"] = export
_update_preview()
@ -426,21 +368,21 @@ def create():
def _get_selected_scan():
ind = scan_table_source.selected.indices[0]
return det_data1[ind], det_data2[ind]
return dataset1[ind], dataset2[ind]
merge_from_select = Select(title="scan:", width=145)
def merge_button_callback():
scan_into1, scan_into2 = _get_selected_scan()
scan_from1 = det_data1[int(merge_from_select.value)]
scan_from2 = det_data2[int(merge_from_select.value)]
scan_from1 = dataset1[int(merge_from_select.value)]
scan_from2 = dataset2[int(merge_from_select.value)]
if scan_into1 is scan_from1:
print("WARNING: Selected scans for merging are identical")
log.warning("Selected scans for merging are identical")
return
pyzebra.merge_scans(scan_into1, scan_from1)
pyzebra.merge_scans(scan_into2, scan_from2)
pyzebra.merge_scans(scan_into1, scan_from1, log=log)
pyzebra.merge_scans(scan_into2, scan_from2, log=log)
_update_table()
_update_plot()
@ -457,136 +399,21 @@ def create():
restore_button = Button(label="Restore scan", width=145)
restore_button.on_click(restore_button_callback)
app_fitctrl = app.FitControls()
def fit_from_spinner_callback(_attr, _old, new):
fit_from_span.location = new
fit_from_spinner = Spinner(title="Fit from:", width=145)
fit_from_spinner.on_change("value", fit_from_spinner_callback)
app_fitctrl.from_spinner.on_change("value", fit_from_spinner_callback)
def fit_to_spinner_callback(_attr, _old, new):
fit_to_span.location = new
fit_to_spinner = Spinner(title="to:", width=145)
fit_to_spinner.on_change("value", fit_to_spinner_callback)
def fitparams_add_dropdown_callback(click):
# bokeh requires (str, str) for MultiSelect options
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
fitparams_select.options.append((new_tag, click.item))
fit_params[new_tag] = fitparams_factory(click.item)
fitparams_select.tags[0] += 1
fitparams_add_dropdown = Dropdown(
label="Add fit function",
menu=[
("Linear", "linear"),
("Gaussian", "gaussian"),
("Voigt", "voigt"),
("Pseudo Voigt", "pvoigt"),
# ("Pseudo Voigt1", "pseudovoigt1"),
],
width=145,
)
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
def fitparams_select_callback(_attr, old, new):
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
fitparams_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
if new:
fitparams_table_source.data.update(fit_params[new[0]])
else:
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_select = MultiSelect(options=[], height=120, width=145)
fitparams_select.tags = [0]
fitparams_select.on_change("value", fitparams_select_callback)
def fitparams_remove_button_callback():
if fitparams_select.value:
sel_tag = fitparams_select.value[0]
del fit_params[sel_tag]
for elem in fitparams_select.options:
if elem[0] == sel_tag:
fitparams_select.options.remove(elem)
break
fitparams_select.value = []
fitparams_remove_button = Button(label="Remove fit function", width=145)
fitparams_remove_button.on_click(fitparams_remove_button_callback)
def fitparams_factory(function):
if function == "linear":
params = ["slope", "intercept"]
elif function == "gaussian":
params = ["amplitude", "center", "sigma"]
elif function == "voigt":
params = ["amplitude", "center", "sigma", "gamma"]
elif function == "pvoigt":
params = ["amplitude", "center", "sigma", "fraction"]
elif function == "pseudovoigt1":
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
else:
raise ValueError("Unknown fit function")
n = len(params)
fitparams = dict(
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
)
if function == "linear":
fitparams["value"] = [0, 1]
fitparams["vary"] = [False, True]
fitparams["min"] = [None, 0]
elif function == "gaussian":
fitparams["min"] = [0, None, None]
return fitparams
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_table = DataTable(
source=fitparams_table_source,
columns=[
TableColumn(field="param", title="Parameter", editor=CellEditor()),
TableColumn(field="value", title="Value", editor=NumberEditor()),
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
TableColumn(field="min", title="Min", editor=NumberEditor()),
TableColumn(field="max", title="Max", editor=NumberEditor()),
],
height=200,
width=350,
index_position=None,
editable=True,
auto_edit=True,
)
# start with `background` and `gauss` fit functions added
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
fitparams_select.value = ["gaussian-1"] # add selection to gauss
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
app_fitctrl.to_spinner.on_change("value", fit_to_spinner_callback)
def proc_all_button_callback():
for scan in [*det_data1, *det_data2]:
if scan["export"]:
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
app_fitctrl.fit_dataset(dataset1)
app_fitctrl.fit_dataset(dataset2)
_update_plot()
_update_table()
@ -595,15 +422,9 @@ def create():
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
for scan in _get_selected_scan():
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
scan1, scan2 = _get_selected_scan()
app_fitctrl.fit_scan(scan1)
app_fitctrl.fit_scan(scan2)
_update_plot()
_update_table()
@ -611,16 +432,11 @@ def create():
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
intensity_diff_div = Div(text="Intensity difference:", margin=(5, 5, 0, 5))
intensity_diff_radiobutton = RadioGroup(
labels=["file1 - file2", "file2 - file1"], active=0, width=145
)
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
export_preview_textinput = TextAreaInput(title="Export file(s) preview:", width=500, height=400)
def _update_preview():
@ -628,7 +444,7 @@ def create():
temp_file = temp_dir + "/temp"
export_data1 = []
export_data2 = []
for scan1, scan2 in zip(det_data1, det_data2):
for scan1, scan2 in zip(dataset1, dataset2):
if scan1["export"]:
export_data1.append(scan1)
export_data2.append(scan2)
@ -656,18 +472,18 @@ def create():
content = ""
file_content.append(content)
js_data.data.update(content=file_content)
app_dlfiles.set_contents(file_content)
export_preview_textinput.value = exported_content
def export_target_select_callback(_attr, _old, new):
js_data.data.update(ext=EXPORT_TARGETS[new])
app_dlfiles.set_extensions(EXPORT_TARGETS[new])
_update_preview()
export_target_select = Select(
title="Export target:", options=list(EXPORT_TARGETS.keys()), value="fullprof", width=80
)
export_target_select.on_change("value", export_target_select_callback)
js_data.data.update(ext=EXPORT_TARGETS[export_target_select.value])
app_dlfiles.set_extensions(EXPORT_TARGETS[export_target_select.value])
def hkl_precision_select_callback(_attr, _old, _new):
_update_preview()
@ -677,22 +493,24 @@ def create():
)
hkl_precision_select.on_change("value", hkl_precision_select_callback)
save_button = Button(label="Download File(s)", button_type="success", width=200)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
column(
app_fitctrl.add_function_button,
app_fitctrl.function_select,
app_fitctrl.remove_function_button,
),
app_fitctrl.params_table,
Spacer(width=20),
column(
fit_from_spinner,
lorentz_checkbox,
app_fitctrl.from_spinner,
app_fitctrl.lorentz_checkbox,
area_method_div,
area_method_radiobutton,
app_fitctrl.area_method_radiogroup,
intensity_diff_div,
intensity_diff_radiobutton,
),
column(fit_to_spinner, proc_button, proc_all_button),
column(app_fitctrl.to_spinner, proc_button, proc_all_button),
)
scan_layout = column(
@ -706,13 +524,15 @@ def create():
export_layout = column(
export_preview_textinput,
row(
export_target_select, hkl_precision_select, column(Spacer(height=19), row(save_button))
export_target_select,
hkl_precision_select,
column(Spacer(height=19), row(app_dlfiles.button)),
),
)
tab_layout = column(
row(import_layout, scan_layout, plot, Spacer(width=30), export_layout),
row(fitpeak_controls, fit_output_textinput),
row(fitpeak_controls, app_fitctrl.result_textarea),
)
return Panel(child=tab_layout, title="ccl compare")

View File

@ -1,115 +1,47 @@
import base64
import io
import os
import tempfile
import types
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
Button,
CellEditor,
CheckboxEditor,
CheckboxGroup,
ColumnDataSource,
CustomJS,
DataRange1d,
DataTable,
Div,
Dropdown,
FileInput,
Grid,
Legend,
Line,
LinearAxis,
MultiLine,
MultiSelect,
NumberEditor,
Panel,
PanTool,
Plot,
RadioGroup,
ResetTool,
Scatter,
Select,
Spacer,
Span,
Spinner,
TableColumn,
TextAreaInput,
WheelZoomTool,
Whisker,
)
from bokeh.plotting import figure
import pyzebra
from pyzebra.ccl_io import EXPORT_TARGETS
from pyzebra.ccl_process import AREA_METHODS
javaScript = """
let j = 0;
for (let i = 0; i < js_data.data['fname'].length; i++) {
if (js_data.data['content'][i] === "") continue;
setTimeout(function() {
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 100 * j)
j++;
}
"""
from pyzebra import EXPORT_TARGETS, app
def create():
doc = curdoc()
det_data = []
fit_params = {}
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""], ext=["", ""]))
def file_select_update_for_proposal():
proposal_path = proposal_textinput.name
if proposal_path:
file_list = []
for file in os.listdir(proposal_path):
if file.endswith((".ccl", ".dat")):
file_list.append((os.path.join(proposal_path, file), file))
file_select.options = file_list
file_open_button.disabled = False
file_append_button.disabled = False
else:
file_select.options = []
file_open_button.disabled = True
file_append_button.disabled = True
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
file_select_update_for_proposal()
proposal_textinput = doc.proposal_textinput
proposal_textinput.on_change("name", proposal_textinput_callback)
log = doc.logger
dataset = []
app_dlfiles = app.DownloadFiles(n_files=2)
def _init_datatable():
scan_list = [s["idx"] for s in det_data]
hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in det_data]
export = [s["export"] for s in det_data]
scan_list = [s["idx"] for s in dataset]
hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in dataset]
export = [s["export"] for s in dataset]
twotheta = [np.median(s["twotheta"]) if "twotheta" in s else None for s in det_data]
gamma = [np.median(s["gamma"]) if "gamma" in s else None for s in det_data]
omega = [np.median(s["omega"]) if "omega" in s else None for s in det_data]
chi = [np.median(s["chi"]) if "chi" in s else None for s in det_data]
phi = [np.median(s["phi"]) if "phi" in s else None for s in det_data]
nu = [np.median(s["nu"]) if "nu" in s else None for s in det_data]
twotheta = [np.median(s["twotheta"]) if "twotheta" in s else None for s in dataset]
gamma = [np.median(s["gamma"]) if "gamma" in s else None for s in dataset]
omega = [np.median(s["omega"]) if "omega" in s else None for s in dataset]
chi = [np.median(s["chi"]) if "chi" in s else None for s in dataset]
phi = [np.median(s["phi"]) if "phi" in s else None for s in dataset]
nu = [np.median(s["nu"]) if "nu" in s else None for s in dataset]
scan_table_source.data.update(
scan=scan_list,
@ -130,125 +62,9 @@ def create():
merge_from_select.options = merge_options
merge_from_select.value = merge_options[0][0]
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
def file_open_button_callback():
nonlocal det_data
new_data = []
for f_path in file_select.value:
with open(f_path) as file:
f_name = os.path.basename(f_path)
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data)
js_data.data.update(fname=[base, base])
else:
pyzebra.merge_datasets(new_data, file_data)
if new_data:
det_data = new_data
_init_datatable()
append_upload_button.disabled = False
file_open_button = Button(label="Open New", width=100, disabled=True)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
file_data = []
for f_path in file_select.value:
with open(f_path) as file:
f_name = os.path.basename(f_path)
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(det_data, file_data)
if file_data:
_init_datatable()
file_append_button = Button(label="Append", width=100, disabled=True)
file_append_button.on_click(file_append_button_callback)
def upload_button_callback(_attr, _old, _new):
nonlocal det_data
new_data = []
for f_str, f_name in zip(upload_button.value, upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data)
js_data.data.update(fname=[base, base])
else:
pyzebra.merge_datasets(new_data, file_data)
if new_data:
det_data = new_data
_init_datatable()
append_upload_button.disabled = False
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
upload_button.on_change("filename", upload_button_callback)
def append_upload_button_callback(_attr, _old, _new):
file_data = []
for f_str, f_name in zip(append_upload_button.value, append_upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(det_data, file_data)
if file_data:
_init_datatable()
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
append_upload_button.on_change("filename", append_upload_button_callback)
def monitor_spinner_callback(_attr, old, new):
if det_data:
pyzebra.normalize_dataset(det_data, new)
_update_plot()
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
monitor_spinner.on_change("value", monitor_spinner_callback)
def _update_table():
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
export = [scan["export"] for scan in det_data]
fit_ok = [(1 if "fit" in scan else 0) for scan in dataset]
export = [scan["export"] for scan in dataset]
scan_table_source.data.update(fit=fit_ok, export=export)
def _update_plot():
@ -260,19 +76,19 @@ def create():
x = scan[scan_motor]
plot.axis[0].axis_label = scan_motor
plot_scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
fit = scan.get("fit")
if fit is not None:
x_fit = np.linspace(x[0], x[-1], 100)
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
x_bkg = []
y_bkg = []
xs_peak = []
ys_peak = []
comps = fit.eval_components(x=x_fit)
for i, model in enumerate(fit_params):
for i, model in enumerate(app_fitctrl.params):
if "linear" in model:
x_bkg = x_fit
y_bkg = comps[f"f{i}_"]
@ -281,49 +97,43 @@ def create():
xs_peak.append(x_fit)
ys_peak.append(comps[f"f{i}_"])
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
fit_output_textinput.value = fit.fit_report()
bkg_source.data.update(x=x_bkg, y=y_bkg)
peak_source.data.update(xs=xs_peak, ys=ys_peak)
else:
plot_fit_source.data.update(x=[], y=[])
plot_bkg_source.data.update(x=[], y=[])
plot_peak_source.data.update(xs=[], ys=[])
fit_output_textinput.value = ""
fit_source.data.update(x=[], y=[])
bkg_source.data.update(x=[], y=[])
peak_source.data.update(xs=[], ys=[])
app_fitctrl.update_result_textarea(scan)
app_inputctrl = app.InputControls(
dataset, app_dlfiles, on_file_open=_init_datatable, on_monitor_change=_update_plot
)
# Main plot
plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(only_visible=True),
plot_height=470,
plot_width=700,
plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=470,
width=700,
tools="pan,wheel_zoom,reset",
)
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot_scatter = plot.add_glyph(
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue", fill_color="steelblue")
scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot.circle(
source=scatter_source, line_color="steelblue", fill_color="steelblue", legend_label="data"
)
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
plot.add_layout(Whisker(source=scatter_source, base="x", upper="y_upper", lower="y_lower"))
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
fit_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(source=fit_source, legend_label="best fit")
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_bkg = plot.add_glyph(
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
)
bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(source=bkg_source, line_color="green", line_dash="dashed", legend_label="linear")
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot_peak = plot.add_glyph(
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
)
peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot.multi_line(source=peak_source, line_color="red", line_dash="dashed", legend_label="peak")
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_from_span)
@ -331,21 +141,9 @@ def create():
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_to_span)
plot.add_layout(
Legend(
items=[
("data", [plot_scatter]),
("best fit", [plot_fit]),
("peak", [plot_peak]),
("linear", [plot_bkg]),
],
location="top_left",
click_policy="hide",
)
)
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
plot.y_range.only_visible = True
plot.toolbar.logo = None
plot.legend.click_policy = "hide"
# Scan select
def scan_table_select_callback(_attr, old, new):
@ -368,7 +166,7 @@ def create():
def scan_table_source_callback(_attr, _old, new):
# unfortunately, we don't know if the change comes from data update or user input
# also `old` and `new` are the same for non-scalars
for scan, export in zip(det_data, new["export"]):
for scan, export in zip(dataset, new["export"]):
scan["export"] = export
_update_preview()
@ -410,19 +208,19 @@ def create():
)
def _get_selected_scan():
return det_data[scan_table_source.selected.indices[0]]
return dataset[scan_table_source.selected.indices[0]]
merge_from_select = Select(title="scan:", width=145)
def merge_button_callback():
scan_into = _get_selected_scan()
scan_from = det_data[int(merge_from_select.value)]
scan_from = dataset[int(merge_from_select.value)]
if scan_into is scan_from:
print("WARNING: Selected scans for merging are identical")
log.warning("Selected scans for merging are identical")
return
pyzebra.merge_scans(scan_into, scan_from)
pyzebra.merge_scans(scan_into, scan_from, log=log)
_update_table()
_update_plot()
@ -437,136 +235,20 @@ def create():
restore_button = Button(label="Restore scan", width=145)
restore_button.on_click(restore_button_callback)
app_fitctrl = app.FitControls()
def fit_from_spinner_callback(_attr, _old, new):
fit_from_span.location = new
fit_from_spinner = Spinner(title="Fit from:", width=145)
fit_from_spinner.on_change("value", fit_from_spinner_callback)
app_fitctrl.from_spinner.on_change("value", fit_from_spinner_callback)
def fit_to_spinner_callback(_attr, _old, new):
fit_to_span.location = new
fit_to_spinner = Spinner(title="to:", width=145)
fit_to_spinner.on_change("value", fit_to_spinner_callback)
def fitparams_add_dropdown_callback(click):
# bokeh requires (str, str) for MultiSelect options
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
fitparams_select.options.append((new_tag, click.item))
fit_params[new_tag] = fitparams_factory(click.item)
fitparams_select.tags[0] += 1
fitparams_add_dropdown = Dropdown(
label="Add fit function",
menu=[
("Linear", "linear"),
("Gaussian", "gaussian"),
("Voigt", "voigt"),
("Pseudo Voigt", "pvoigt"),
# ("Pseudo Voigt1", "pseudovoigt1"),
],
width=145,
)
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
def fitparams_select_callback(_attr, old, new):
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
fitparams_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
if new:
fitparams_table_source.data.update(fit_params[new[0]])
else:
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_select = MultiSelect(options=[], height=120, width=145)
fitparams_select.tags = [0]
fitparams_select.on_change("value", fitparams_select_callback)
def fitparams_remove_button_callback():
if fitparams_select.value:
sel_tag = fitparams_select.value[0]
del fit_params[sel_tag]
for elem in fitparams_select.options:
if elem[0] == sel_tag:
fitparams_select.options.remove(elem)
break
fitparams_select.value = []
fitparams_remove_button = Button(label="Remove fit function", width=145)
fitparams_remove_button.on_click(fitparams_remove_button_callback)
def fitparams_factory(function):
if function == "linear":
params = ["slope", "intercept"]
elif function == "gaussian":
params = ["amplitude", "center", "sigma"]
elif function == "voigt":
params = ["amplitude", "center", "sigma", "gamma"]
elif function == "pvoigt":
params = ["amplitude", "center", "sigma", "fraction"]
elif function == "pseudovoigt1":
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
else:
raise ValueError("Unknown fit function")
n = len(params)
fitparams = dict(
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
)
if function == "linear":
fitparams["value"] = [0, 1]
fitparams["vary"] = [False, True]
fitparams["min"] = [None, 0]
elif function == "gaussian":
fitparams["min"] = [0, None, None]
return fitparams
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_table = DataTable(
source=fitparams_table_source,
columns=[
TableColumn(field="param", title="Parameter", editor=CellEditor()),
TableColumn(field="value", title="Value", editor=NumberEditor()),
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
TableColumn(field="min", title="Min", editor=NumberEditor()),
TableColumn(field="max", title="Max", editor=NumberEditor()),
],
height=200,
width=350,
index_position=None,
editable=True,
auto_edit=True,
)
# start with `background` and `gauss` fit functions added
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
fitparams_select.value = ["gaussian-1"] # add selection to gauss
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
app_fitctrl.to_spinner.on_change("value", fit_to_spinner_callback)
def proc_all_button_callback():
for scan in det_data:
if scan["export"]:
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
app_fitctrl.fit_dataset(dataset)
_update_plot()
_update_table()
@ -575,15 +257,7 @@ def create():
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
scan = _get_selected_scan()
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
app_fitctrl.fit_scan(_get_selected_scan())
_update_plot()
_update_table()
@ -591,18 +265,13 @@ def create():
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
export_preview_textinput = TextAreaInput(title="Export file(s) preview:", width=500, height=400)
def _update_preview():
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/temp"
export_data = []
for scan in det_data:
for scan in dataset:
if scan["export"]:
export_data.append(scan)
@ -625,18 +294,18 @@ def create():
content = ""
file_content.append(content)
js_data.data.update(content=file_content)
app_dlfiles.set_contents(file_content)
export_preview_textinput.value = exported_content
def export_target_select_callback(_attr, _old, new):
js_data.data.update(ext=EXPORT_TARGETS[new])
app_dlfiles.set_extensions(EXPORT_TARGETS[new])
_update_preview()
export_target_select = Select(
title="Export target:", options=list(EXPORT_TARGETS.keys()), value="fullprof", width=80
)
export_target_select.on_change("value", export_target_select_callback)
js_data.data.update(ext=EXPORT_TARGETS[export_target_select.value])
app_dlfiles.set_extensions(EXPORT_TARGETS[export_target_select.value])
def hkl_precision_select_callback(_attr, _old, _new):
_update_preview()
@ -646,42 +315,53 @@ def create():
)
hkl_precision_select.on_change("value", hkl_precision_select_callback)
save_button = Button(label="Download File(s)", button_type="success", width=200)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
column(
app_fitctrl.add_function_button,
app_fitctrl.function_select,
app_fitctrl.remove_function_button,
),
app_fitctrl.params_table,
Spacer(width=20),
column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton),
column(fit_to_spinner, proc_button, proc_all_button),
column(
app_fitctrl.from_spinner,
app_fitctrl.lorentz_checkbox,
area_method_div,
app_fitctrl.area_method_radiogroup,
),
column(app_fitctrl.to_spinner, proc_button, proc_all_button),
)
scan_layout = column(
scan_table,
row(monitor_spinner, column(Spacer(height=19), restore_button)),
row(app_inputctrl.monitor_spinner, column(Spacer(height=19), restore_button)),
row(column(Spacer(height=19), merge_button), merge_from_select),
)
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
import_layout = column(
file_select,
row(file_open_button, file_append_button),
app_inputctrl.filelist_select,
row(app_inputctrl.open_button, app_inputctrl.append_button),
upload_div,
upload_button,
app_inputctrl.upload_button,
append_upload_div,
append_upload_button,
app_inputctrl.append_upload_button,
)
export_layout = column(
export_preview_textinput,
row(
export_target_select, hkl_precision_select, column(Spacer(height=19), row(save_button))
export_target_select,
hkl_precision_select,
column(Spacer(height=19), row(app_dlfiles.button)),
),
)
tab_layout = column(
row(import_layout, scan_layout, plot, Spacer(width=30), export_layout),
row(fitpeak_controls, fit_output_textinput),
row(fitpeak_controls, app_fitctrl.result_textarea),
)
return Panel(child=tab_layout, title="ccl integrate")

View File

@ -0,0 +1,724 @@
import base64
import io
import os
import subprocess
import tempfile
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Arrow,
Button,
CheckboxGroup,
ColumnDataSource,
Div,
FileInput,
HoverTool,
Legend,
LegendItem,
MultiSelect,
NormalHead,
NumericInput,
Panel,
RadioGroup,
Select,
Spacer,
Spinner,
TextAreaInput,
TextInput,
)
from bokeh.palettes import Dark2
from bokeh.plotting import figure
import pyzebra
from pyzebra import app
ANG_CHUNK_DEFAULTS = {"2theta": 30, "gamma": 30, "omega": 30, "chi": 35, "phi": 35, "nu": 10}
SORT_OPT_BI = ["2theta", "chi", "phi", "omega"]
SORT_OPT_NB = ["gamma", "nu", "omega"]
def create():
doc = curdoc()
log = doc.logger
ang_lims = {}
cif_data = {}
params = {}
res_files = {}
_update_slice = None
app_dlfiles = app.DownloadFiles(n_files=1)
anglim_div = Div(text="Angular min/max limits:", margin=(5, 5, 0, 5))
sttgamma_ti = TextInput(title="stt/gamma", width=100)
omega_ti = TextInput(title="omega", width=100)
chinu_ti = TextInput(title="chi/nu", width=100)
phi_ti = TextInput(title="phi", width=100)
def _update_ang_lims(ang_lims):
sttgamma_ti.value = " ".join(ang_lims["gamma"][:2])
omega_ti.value = " ".join(ang_lims["omega"][:2])
if ang_lims["geom"] == "nb":
chinu_ti.value = " ".join(ang_lims["nu"][:2])
phi_ti.value = ""
else: # ang_lims["geom"] == "bi"
chinu_ti.value = " ".join(ang_lims["chi"][:2])
phi_ti.value = " ".join(ang_lims["phi"][:2])
def _update_params(params):
if "WAVE" in params:
wavelen_input.value = params["WAVE"]
if "SPGR" in params:
cryst_space_group.value = params["SPGR"]
if "CELL" in params:
cryst_cell.value = params["CELL"]
if "UBMAT" in params:
ub_matrix.value = " ".join(params["UBMAT"])
if "HLIM" in params:
ranges_hkl.value = params["HLIM"]
if "SRANG" in params:
ranges_srang.value = params["SRANG"]
if "lattiCE" in params:
magstruct_lattice.value = params["lattiCE"]
if "kvect" in params:
magstruct_kvec.value = params["kvect"]
def open_geom_callback(_attr, _old, new):
nonlocal ang_lims
with io.StringIO(base64.b64decode(new).decode()) as fileobj:
ang_lims = pyzebra.read_geom_file(fileobj)
_update_ang_lims(ang_lims)
open_geom_div = Div(text="Open GEOM:")
open_geom = FileInput(accept=".geom", width=200)
open_geom.on_change("value", open_geom_callback)
def open_cfl_callback(_attr, _old, new):
nonlocal params
with io.StringIO(base64.b64decode(new).decode()) as fileobj:
params = pyzebra.read_cfl_file(fileobj)
_update_params(params)
open_cfl_div = Div(text="Open CFL:")
open_cfl = FileInput(accept=".cfl", width=200)
open_cfl.on_change("value", open_cfl_callback)
def open_cif_callback(_attr, _old, new):
nonlocal cif_data
with io.StringIO(base64.b64decode(new).decode()) as fileobj:
cif_data = pyzebra.read_cif_file(fileobj)
_update_params(cif_data)
open_cif_div = Div(text="Open CIF:")
open_cif = FileInput(accept=".cif", width=200)
open_cif.on_change("value", open_cif_callback)
wavelen_div = Div(text="Wavelength:", margin=(5, 5, 0, 5))
wavelen_input = TextInput(title="value", width=70)
def wavelen_select_callback(_attr, _old, new):
if new:
wavelen_input.value = new
else:
wavelen_input.value = ""
wavelen_select = Select(
title="preset", options=["", "0.788", "1.178", "1.383", "2.305"], width=70
)
wavelen_select.on_change("value", wavelen_select_callback)
cryst_div = Div(text="Crystal structure:", margin=(5, 5, 0, 5))
cryst_space_group = TextInput(title="space group", width=100)
cryst_cell = TextInput(title="cell", width=250)
def ub_matrix_calc_callback():
params = dict()
params["SPGR"] = cryst_space_group.value
params["CELL"] = cryst_cell.value
try:
ub = pyzebra.calc_ub_matrix(params, log=log)
except Exception as e:
log.exception(e)
return
ub_matrix.value = " ".join(ub)
ub_matrix_calc = Button(label="UB matrix:", button_type="primary", width=100)
ub_matrix_calc.on_click(ub_matrix_calc_callback)
ub_matrix = TextInput(title="\u200B", width=600)
ranges_div = Div(text="Ranges:", margin=(5, 5, 0, 5))
ranges_hkl = TextInput(title="HKL", value="-25 25 -25 25 -25 25", width=250)
ranges_srang = TextInput(title="sin(​θ​)/λ", value="0.0 0.7", width=100)
magstruct_div = Div(text="Magnetic structure:", margin=(5, 5, 0, 5))
magstruct_lattice = TextInput(title="lattice", width=100)
magstruct_kvec = TextAreaInput(title="k vector", width=150)
def sorting0_callback(_attr, _old, new):
sorting_0_dt.value = ANG_CHUNK_DEFAULTS[new]
def sorting1_callback(_attr, _old, new):
sorting_1_dt.value = ANG_CHUNK_DEFAULTS[new]
def sorting2_callback(_attr, _old, new):
sorting_2_dt.value = ANG_CHUNK_DEFAULTS[new]
sorting_0 = Select(title="1st", width=100)
sorting_0.on_change("value", sorting0_callback)
sorting_0_dt = NumericInput(title="Δ", width=70)
sorting_1 = Select(title="2nd", width=100)
sorting_1.on_change("value", sorting1_callback)
sorting_1_dt = NumericInput(title="Δ", width=70)
sorting_2 = Select(title="3rd", width=100)
sorting_2.on_change("value", sorting2_callback)
sorting_2_dt = NumericInput(title="Δ", width=70)
def geom_radiogroup_callback(_attr, _old, new):
nonlocal ang_lims, params
if new == 0:
geom_file = pyzebra.get_zebraBI_default_geom_file()
sort_opt = SORT_OPT_BI
else:
geom_file = pyzebra.get_zebraNB_default_geom_file()
sort_opt = SORT_OPT_NB
cfl_file = pyzebra.get_zebra_default_cfl_file()
ang_lims = pyzebra.read_geom_file(geom_file)
_update_ang_lims(ang_lims)
params = pyzebra.read_cfl_file(cfl_file)
_update_params(params)
sorting_0.options = sorting_1.options = sorting_2.options = sort_opt
sorting_0.value = sort_opt[0]
sorting_1.value = sort_opt[1]
sorting_2.value = sort_opt[2]
geom_radiogroup_div = Div(text="Geometry:", margin=(5, 5, 0, 5))
geom_radiogroup = RadioGroup(labels=["bisecting", "normal beam"], width=150)
geom_radiogroup.on_change("active", geom_radiogroup_callback)
geom_radiogroup.active = 0
def go_button_callback():
ang_lims["gamma"][0], ang_lims["gamma"][1] = sttgamma_ti.value.strip().split()
ang_lims["omega"][0], ang_lims["omega"][1] = omega_ti.value.strip().split()
if ang_lims["geom"] == "nb":
ang_lims["nu"][0], ang_lims["nu"][1] = chinu_ti.value.strip().split()
else: # ang_lims["geom"] == "bi"
ang_lims["chi"][0], ang_lims["chi"][1] = chinu_ti.value.strip().split()
ang_lims["phi"][0], ang_lims["phi"][1] = phi_ti.value.strip().split()
if cif_data:
params.update(cif_data)
params["WAVE"] = wavelen_input.value
params["SPGR"] = cryst_space_group.value
params["CELL"] = cryst_cell.value
params["UBMAT"] = ub_matrix.value.split()
params["HLIM"] = ranges_hkl.value
params["SRANG"] = ranges_srang.value
params["lattiCE"] = magstruct_lattice.value
kvects = magstruct_kvec.value.split("\n")
with tempfile.TemporaryDirectory() as temp_dir:
geom_path = os.path.join(temp_dir, "zebra.geom")
if open_geom.value:
geom_template = io.StringIO(base64.b64decode(open_geom.value).decode())
else:
geom_template = None
pyzebra.export_geom_file(geom_path, ang_lims, geom_template)
log.info(f"Content of {geom_path}:")
with open(geom_path) as f:
log.info(f.read())
priority = [sorting_0.value, sorting_1.value, sorting_2.value]
chunks = [sorting_0_dt.value, sorting_1_dt.value, sorting_2_dt.value]
if geom_radiogroup.active == 0:
sort_hkl_file = pyzebra.sort_hkl_file_bi
priority.extend(set(SORT_OPT_BI) - set(priority))
else:
sort_hkl_file = pyzebra.sort_hkl_file_nb
# run sxtal_refgen for each kvect provided
for i, kvect in enumerate(kvects, start=1):
params["kvect"] = kvect
if open_cfl.filename:
base_fname = f"{os.path.splitext(open_cfl.filename)[0]}_{i}"
else:
base_fname = f"zebra_{i}"
cfl_path = os.path.join(temp_dir, base_fname + ".cfl")
if open_cfl.value:
cfl_template = io.StringIO(base64.b64decode(open_cfl.value).decode())
else:
cfl_template = None
pyzebra.export_cfl_file(cfl_path, params, cfl_template)
log.info(f"Content of {cfl_path}:")
with open(cfl_path) as f:
log.info(f.read())
comp_proc = subprocess.run(
[pyzebra.SXTAL_REFGEN_PATH, cfl_path],
cwd=temp_dir,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
if i == 1: # all hkl files are identical, so keep only one
hkl_fname = base_fname + ".hkl"
hkl_fpath = os.path.join(temp_dir, hkl_fname)
with open(hkl_fpath) as f:
res_files[hkl_fname] = f.read()
hkl_fname_sorted = base_fname + "_sorted.hkl"
hkl_fpath_sorted = os.path.join(temp_dir, hkl_fname_sorted)
sort_hkl_file(hkl_fpath, hkl_fpath_sorted, priority, chunks)
with open(hkl_fpath_sorted) as f:
res_files[hkl_fname_sorted] = f.read()
mhkl_fname = base_fname + ".mhkl"
mhkl_fpath = os.path.join(temp_dir, mhkl_fname)
with open(mhkl_fpath) as f:
res_files[mhkl_fname] = f.read()
mhkl_fname_sorted = base_fname + "_sorted.mhkl"
mhkl_fpath_sorted = os.path.join(temp_dir, hkl_fname_sorted)
sort_hkl_file(mhkl_fpath, mhkl_fpath_sorted, priority, chunks)
with open(mhkl_fpath_sorted) as f:
res_files[mhkl_fname_sorted] = f.read()
created_lists.options = list(res_files)
go_button = Button(label="GO", button_type="primary", width=50)
go_button.on_click(go_button_callback)
def created_lists_callback(_attr, _old, new):
sel_file = new[0]
file_text = res_files[sel_file]
preview_lists.value = file_text
app_dlfiles.set_contents([file_text])
app_dlfiles.set_names([sel_file])
created_lists = MultiSelect(title="Created lists:", width=200, height=150)
created_lists.on_change("value", created_lists_callback)
preview_lists = TextAreaInput(title="Preview selected list:", width=600, height=150)
def plot_list_callback():
nonlocal _update_slice
fname = created_lists.value
with io.StringIO(preview_lists.value) as fileobj:
fdata = pyzebra.parse_hkl(fileobj, fname)
_update_slice = _prepare_plotting(fname, [fdata])
_update_slice()
plot_list = Button(label="Plot selected list", button_type="primary", width=200)
plot_list.on_click(plot_list_callback)
# Plot
upload_data_div = Div(text="Open hkl/mhkl data:")
upload_data = FileInput(accept=".hkl,.mhkl", multiple=True, width=200)
min_grid_x = -10
max_grid_x = 10
min_grid_y = -10
max_grid_y = 10
cmap = Dark2[8]
syms = ["circle", "inverted_triangle", "square", "diamond", "star", "triangle"]
def _prepare_plotting(filenames, filedata):
orth_dir = list(map(float, hkl_normal.value.split()))
x_dir = list(map(float, hkl_in_plane_x.value.split()))
k = np.array(k_vectors.value.split()).astype(float).reshape(-1, 3)
tol_k = tol_k_ni.value
lattice = list(map(float, cryst_cell.value.strip().split()))
alpha = lattice[3] * np.pi / 180.0
beta = lattice[4] * np.pi / 180.0
gamma = lattice[5] * np.pi / 180.0
# reciprocal angle parameters
beta_star = np.arccos(
(np.cos(alpha) * np.cos(gamma) - np.cos(beta)) / (np.sin(alpha) * np.sin(gamma))
)
gamma_star = np.arccos(
(np.cos(alpha) * np.cos(beta) - np.cos(gamma)) / (np.sin(alpha) * np.sin(beta))
)
# conversion matrix
M = np.array(
[
[1, np.cos(gamma_star), np.cos(beta_star)],
[0, np.sin(gamma_star), -np.sin(beta_star) * np.cos(alpha)],
[0, 0, np.sin(beta_star) * np.sin(alpha)],
]
)
# Get last lattice vector
y_dir = np.cross(x_dir, orth_dir) # Second axes of plotting plane
# Rescale such that smallest element of y-dir vector is 1
y_dir2 = y_dir[y_dir != 0]
min_val = np.min(np.abs(y_dir2))
y_dir = y_dir / min_val
# Possibly flip direction of ydir:
if y_dir[np.argmax(abs(y_dir))] < 0:
y_dir = -y_dir
# Display the resulting y_dir
hkl_in_plane_y.value = " ".join([f"{val:.1f}" for val in y_dir])
# Save length of lattice vectors
x_length = np.linalg.norm(x_dir)
y_length = np.linalg.norm(y_dir)
# Save str for labels
xlabel_str = " ".join(map(str, x_dir))
ylabel_str = " ".join(map(str, y_dir))
# Normalize lattice vectors
y_dir = y_dir / np.linalg.norm(y_dir)
x_dir = x_dir / np.linalg.norm(x_dir)
orth_dir = orth_dir / np.linalg.norm(orth_dir)
# Calculate cartesian equivalents of lattice vectors
x_c = np.matmul(M, x_dir)
y_c = np.matmul(M, y_dir)
o_c = np.matmul(M, orth_dir)
# Calulcate vertical direction in plotting plame
y_vert = np.cross(x_c, o_c) # verical direction in plotting plane
if y_vert[np.argmax(abs(y_vert))] < 0:
y_vert = -y_vert
y_vert = y_vert / np.linalg.norm(y_vert)
# Normalize all directions
y_c = y_c / np.linalg.norm(y_c)
x_c = x_c / np.linalg.norm(x_c)
o_c = o_c / np.linalg.norm(o_c)
# Read all data
hkl_coord = []
intensity_vec = []
k_flag_vec = []
file_flag_vec = []
for j, fdata in enumerate(filedata):
for ind in range(len(fdata["counts"])):
# Recognize k_flag_vec
hkl = np.array([fdata["h"][ind], fdata["k"][ind], fdata["l"][ind]])
reduced_hkl_m = np.minimum(1 - hkl % 1, hkl % 1)
for k_ind, _k in enumerate(k):
if all(np.abs(reduced_hkl_m - _k) < tol_k):
k_flag_vec.append(k_ind)
break
else:
# not required
continue
# Save data
hkl_coord.append(hkl)
intensity_vec.append(fdata["counts"][ind])
file_flag_vec.append(j)
x_spacing = np.dot(M @ x_dir, x_c) * x_length
y_spacing = np.dot(M @ y_dir, y_vert) * y_length
y_spacingx = np.dot(M @ y_dir, x_c) * y_length
# Plot coordinate system
arrow1.x_end = x_spacing
arrow1.y_end = 0
arrow2.x_end = y_spacingx
arrow2.y_end = y_spacing
# Add labels
kvect_source.data.update(
x=[x_spacing / 4, -0.1],
y=[x_spacing / 4 - 0.5, y_spacing / 2],
text=[xlabel_str, ylabel_str],
)
# Plot grid lines
xs, ys = [], []
xs_minor, ys_minor = [], []
for yy in np.arange(min_grid_y, max_grid_y, 1):
# Calculate end and start point
hkl1 = min_grid_x * x_dir + yy * y_dir
hkl2 = max_grid_x * x_dir + yy * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs.append([x1, x2])
ys.append([y1, y2])
for xx in np.arange(min_grid_x, max_grid_x, 1):
# Calculate end and start point
hkl1 = xx * x_dir + min_grid_y * y_dir
hkl2 = xx * x_dir + max_grid_y * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs.append([x1, x2])
ys.append([y1, y2])
for yy in np.arange(min_grid_y, max_grid_y, 0.5):
# Calculate end and start point
hkl1 = min_grid_x * x_dir + yy * y_dir
hkl2 = max_grid_x * x_dir + yy * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs_minor.append([x1, x2])
ys_minor.append([y1, y2])
for xx in np.arange(min_grid_x, max_grid_x, 0.5):
# Calculate end and start point
hkl1 = xx * x_dir + min_grid_y * y_dir
hkl2 = xx * x_dir + max_grid_y * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs_minor.append([x1, x2])
ys_minor.append([y1, y2])
grid_source.data.update(xs=xs, ys=ys)
minor_grid_source.data.update(xs=xs_minor, ys=ys_minor)
def _update_slice():
cut_tol = hkl_delta.value
cut_or = hkl_cut.value
# different symbols based on file number
file_flag = 0 in disting_opt_cb.active
# scale marker size according to intensity
intensity_flag = 1 in disting_opt_cb.active
# use color to mark different propagation vectors
prop_legend_flag = 2 in disting_opt_cb.active
scan_x, scan_y = [], []
scan_m, scan_s, scan_c, scan_l, scan_hkl = [], [], [], [], []
for j in range(len(hkl_coord)):
# Get middle hkl from list
hklm = M @ hkl_coord[j]
# Decide if point is in the cut
proj = np.dot(hklm, o_c)
if abs(proj - cut_or) >= cut_tol:
continue
# Project onto axes
hklmx = np.dot(hklm, x_c)
hklmy = np.dot(hklm, y_vert)
if intensity_flag and max(intensity_vec) != 0:
markersize = max(6, int(intensity_vec[j] / max(intensity_vec) * 30))
else:
markersize = 6
if file_flag:
plot_symbol = syms[file_flag_vec[j]]
else:
plot_symbol = "circle"
if prop_legend_flag:
col_value = cmap[k_flag_vec[j]]
else:
col_value = "black"
# Plot middle point of scan
scan_x.append(hklmx)
scan_y.append(hklmy)
scan_m.append(plot_symbol)
scan_s.append(markersize)
# Color and legend label
scan_c.append(col_value)
scan_l.append(filenames[file_flag_vec[j]])
scan_hkl.append(hkl_coord[j])
scatter_source.data.update(
x=scan_x, y=scan_y, m=scan_m, s=scan_s, c=scan_c, l=scan_l, hkl=scan_hkl
)
# Legend items for different file entries (symbol)
legend_items = []
if file_flag:
labels, inds = np.unique(scatter_source.data["l"], return_index=True)
for label, ind in zip(labels, inds):
legend_items.append(LegendItem(label=label, renderers=[scatter], index=ind))
# Legend items for propagation vector (color)
if prop_legend_flag:
labels, inds = np.unique(scatter_source.data["c"], return_index=True)
for label, ind in zip(labels, inds):
label = f"k={k[cmap.index(label)]}"
legend_items.append(LegendItem(label=label, renderers=[scatter], index=ind))
plot.legend.items = legend_items
return _update_slice
def plot_file_callback():
nonlocal _update_slice
fnames = []
fdata = []
for j, fname in enumerate(upload_data.filename):
with io.StringIO(base64.b64decode(upload_data.value[j]).decode()) as file:
_, ext = os.path.splitext(fname)
try:
file_data = pyzebra.parse_hkl(file, ext)
except Exception as e:
log.exception(e)
return
fnames.append(fname)
fdata.append(file_data)
_update_slice = _prepare_plotting(fnames, fdata)
_update_slice()
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
plot_file.on_click(plot_file_callback)
plot = figure(height=550, width=550 + 32, tools="pan,wheel_zoom,reset")
plot.toolbar.logo = None
plot.xaxis.visible = False
plot.xgrid.visible = False
plot.yaxis.visible = False
plot.ygrid.visible = False
arrow1 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10))
plot.add_layout(arrow1)
arrow2 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10))
plot.add_layout(arrow2)
kvect_source = ColumnDataSource(dict(x=[], y=[], text=[]))
plot.text(source=kvect_source)
grid_source = ColumnDataSource(dict(xs=[], ys=[]))
plot.multi_line(source=grid_source, line_color="gray")
minor_grid_source = ColumnDataSource(dict(xs=[], ys=[]))
plot.multi_line(source=minor_grid_source, line_color="gray", line_dash="dotted")
scatter_source = ColumnDataSource(dict(x=[], y=[], m=[], s=[], c=[], l=[], hkl=[]))
scatter = plot.scatter(
source=scatter_source, marker="m", size="s", fill_color="c", line_color="c"
)
plot.x_range.renderers = [scatter]
plot.y_range.renderers = [scatter]
plot.add_layout(Legend(items=[], location="top_left", click_policy="hide"))
plot.add_tools(HoverTool(renderers=[scatter], tooltips=[("hkl", "@hkl")]))
hkl_div = Div(text="HKL:", margin=(5, 5, 0, 5))
hkl_normal = TextInput(title="normal", value="0 0 1", width=70)
def hkl_cut_callback(_attr, _old, _new):
if _update_slice is not None:
_update_slice()
hkl_cut = Spinner(title="cut", value=0, step=0.1, width=70)
hkl_cut.on_change("value_throttled", hkl_cut_callback)
hkl_delta = NumericInput(title="delta", value=0.1, mode="float", width=70)
hkl_in_plane_x = TextInput(title="in-plane X", value="1 0 0", width=70)
hkl_in_plane_y = TextInput(title="in-plane Y", value="", width=100, disabled=True)
disting_opt_div = Div(text="Distinguish options:", margin=(5, 5, 0, 5))
disting_opt_cb = CheckboxGroup(
labels=["files (symbols)", "intensities (size)", "k vectors nucl/magn (colors)"],
active=[0, 1, 2],
width=200,
)
k_vectors = TextAreaInput(
title="k vectors:", value="0.0 0.0 0.0\n0.5 0.0 0.0\n0.5 0.5 0.0", width=150
)
tol_k_ni = NumericInput(title="k tolerance:", value=0.01, mode="float", width=100)
fileinput_layout = row(open_cfl_div, open_cfl, open_cif_div, open_cif, open_geom_div, open_geom)
geom_layout = column(geom_radiogroup_div, geom_radiogroup)
wavelen_layout = column(wavelen_div, row(wavelen_select, wavelen_input))
anglim_layout = column(anglim_div, row(sttgamma_ti, omega_ti, chinu_ti, phi_ti))
cryst_layout = column(cryst_div, row(cryst_space_group, cryst_cell))
ubmat_layout = row(column(Spacer(height=19), ub_matrix_calc), ub_matrix)
ranges_layout = column(ranges_div, row(ranges_hkl, ranges_srang))
magstruct_layout = column(magstruct_div, row(magstruct_lattice, magstruct_kvec))
sorting_layout = row(
sorting_0,
sorting_0_dt,
Spacer(width=30),
sorting_1,
sorting_1_dt,
Spacer(width=30),
sorting_2,
sorting_2_dt,
)
column1_layout = column(
fileinput_layout,
Spacer(height=10),
row(geom_layout, wavelen_layout, Spacer(width=50), anglim_layout),
cryst_layout,
ubmat_layout,
row(ranges_layout, Spacer(width=50), magstruct_layout),
row(sorting_layout, Spacer(width=30), column(Spacer(height=19), go_button)),
row(created_lists, preview_lists),
row(app_dlfiles.button, plot_list),
)
column2_layout = column(
row(upload_data_div, upload_data, plot_file),
row(
plot,
column(
hkl_div,
row(hkl_normal, hkl_cut, hkl_delta),
row(hkl_in_plane_x, hkl_in_plane_y),
k_vectors,
tol_k_ni,
disting_opt_div,
disting_opt_cb,
),
),
)
tab_layout = row(column1_layout, column2_layout)
return Panel(child=tab_layout, title="ccl prepare")

View File

@ -19,11 +19,12 @@ from bokeh.models import (
)
import pyzebra
from pyzebra.anatric import DATA_FACTORY_IMPLEMENTATION, REFLECTION_PRINTER_FORMATS
from pyzebra import DATA_FACTORY_IMPLEMENTATION, REFLECTION_PRINTER_FORMATS
def create():
doc = curdoc()
log = doc.logger
config = pyzebra.AnatricConfig()
def _load_config_file(file):
@ -169,7 +170,7 @@ def create():
config.dataFactory_implementation = new
dataFactory_implementation_select = Select(
title="DataFactory implement.:", options=DATA_FACTORY_IMPLEMENTATION, width=145,
title="DataFactory implement.:", options=DATA_FACTORY_IMPLEMENTATION, width=145
)
dataFactory_implementation_select.on_change("value", dataFactory_implementation_select_callback)
@ -200,7 +201,7 @@ def create():
config.reflectionPrinter_format = new
reflectionPrinter_format_select = Select(
title="ReflectionPrinter format:", options=REFLECTION_PRINTER_FORMATS, width=145,
title="ReflectionPrinter format:", options=REFLECTION_PRINTER_FORMATS, width=145
)
reflectionPrinter_format_select.on_change("value", reflectionPrinter_format_select_callback)
@ -347,7 +348,11 @@ def create():
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/config.xml"
config.save_as(temp_file)
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path, cwd=temp_dir)
try:
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path, cwd=temp_dir, log=log)
except Exception as e:
log.exception(e)
return
with open(os.path.join(temp_dir, config.logfile)) as f_log:
output_log.value = f_log.read()

View File

@ -6,50 +6,38 @@ import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, gridplot, row
from bokeh.models import (
BasicTicker,
BoxZoomTool,
Button,
CellEditor,
CheckboxGroup,
ColumnDataSource,
DataRange1d,
DataTable,
Div,
FileInput,
Grid,
LinearColorMapper,
MultiSelect,
NumberEditor,
NumberFormatter,
Image,
LinearAxis,
LinearColorMapper,
Panel,
PanTool,
Plot,
Range1d,
ResetTool,
Scatter,
Select,
Spinner,
TableColumn,
Tabs,
Title,
WheelZoomTool,
)
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
from bokeh.plotting import figure
import pyzebra
IMAGE_W = 256
IMAGE_H = 128
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
IMAGE_PLOT_W = int(IMAGE_W * 2.4) + 52
IMAGE_PLOT_H = int(IMAGE_H * 2.4) + 27
def create():
doc = curdoc()
zebra_data = []
det_data = {}
log = doc.logger
dataset = []
cami_meta = {}
num_formatter = NumberFormatter(format="0.00", nan_format="")
@ -108,15 +96,15 @@ def create():
def _init_datatable():
file_list = []
for scan in zebra_data:
for scan in dataset:
file_list.append(os.path.basename(scan["original_filename"]))
scan_table_source.data.update(
file=file_list,
param=[None] * len(zebra_data),
frame=[None] * len(zebra_data),
x_pos=[None] * len(zebra_data),
y_pos=[None] * len(zebra_data),
param=[None] * len(dataset),
frame=[None] * len(dataset),
x_pos=[None] * len(dataset),
y_pos=[None] * len(dataset),
)
scan_table_source.selected.indices = []
scan_table_source.selected.indices = [0]
@ -127,7 +115,7 @@ def create():
frame = []
x_pos = []
y_pos = []
for scan in zebra_data:
for scan in dataset:
if "fit" in scan:
framei = scan["fit"]["frame"]
x_posi = scan["fit"]["x_pos"]
@ -141,30 +129,35 @@ def create():
scan_table_source.data.update(frame=frame, x_pos=x_pos, y_pos=y_pos)
def file_open_button_callback():
nonlocal zebra_data
zebra_data = []
def _file_open():
new_data = []
for f_name in file_select.value:
zebra_data.append(pyzebra.read_detector_data(f_name))
try:
new_data.append(pyzebra.read_detector_data(f_name))
except KeyError as e:
log.exception(e)
return
dataset.extend(new_data)
_init_datatable()
def file_open_button_callback():
nonlocal dataset
dataset = []
_file_open()
file_open_button = Button(label="Open New", width=100)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
for f_name in file_select.value:
zebra_data.append(pyzebra.read_detector_data(f_name))
_init_datatable()
_file_open()
file_append_button = Button(label="Append", width=100)
file_append_button.on_click(file_append_button_callback)
# Scan select
def scan_table_select_callback(_attr, old, new):
nonlocal det_data
if not new:
# skip empty selections
return
@ -179,25 +172,25 @@ def create():
# skip unnecessary update caused by selection drop
return
det_data = zebra_data[new[0]]
scan = dataset[new[0]]
zebra_mode = det_data["zebra_mode"]
zebra_mode = scan["zebra_mode"]
if zebra_mode == "nb":
metadata_table_source.data.update(geom=["normal beam"])
else: # zebra_mode == "bi"
metadata_table_source.data.update(geom=["bisecting"])
if "mf" in det_data:
metadata_table_source.data.update(mf=[det_data["mf"][0]])
if "mf" in scan:
metadata_table_source.data.update(mf=[scan["mf"][0]])
else:
metadata_table_source.data.update(mf=[None])
if "temp" in det_data:
metadata_table_source.data.update(temp=[det_data["temp"][0]])
if "temp" in scan:
metadata_table_source.data.update(temp=[scan["temp"][0]])
else:
metadata_table_source.data.update(temp=[None])
update_overview_plot()
_update_proj_plots()
def scan_table_source_callback(_attr, _old, _new):
pass
@ -233,12 +226,15 @@ def create():
autosize_mode="none",
)
def _get_selected_scan():
return dataset[scan_table_source.selected.indices[0]]
def param_select_callback(_attr, _old, new):
if new == "user defined":
param = [None] * len(zebra_data)
param = [None] * len(dataset)
else:
# TODO: which value to take?
param = [scan[new][0] for scan in zebra_data]
param = [scan[new][0] for scan in dataset]
scan_table_source.data["param"] = param
_update_param_plot()
@ -251,42 +247,38 @@ def create():
)
param_select.on_change("value", param_select_callback)
def update_overview_plot():
h5_data = det_data["data"]
n_im, n_y, n_x = h5_data.shape
overview_x = np.mean(h5_data, axis=1)
overview_y = np.mean(h5_data, axis=2)
def _update_proj_plots():
scan = _get_selected_scan()
counts = scan["counts"]
n_im, n_y, n_x = counts.shape
im_proj_x = np.mean(counts, axis=1)
im_proj_y = np.mean(counts, axis=2)
# normalize for simpler colormapping
overview_max_val = max(np.max(overview_x), np.max(overview_y))
overview_x = 1000 * overview_x / overview_max_val
overview_y = 1000 * overview_y / overview_max_val
im_proj_max_val = max(np.max(im_proj_x), np.max(im_proj_y))
im_proj_x = 1000 * im_proj_x / im_proj_max_val
im_proj_y = 1000 * im_proj_y / im_proj_max_val
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
proj_x_image_source.data.update(image=[im_proj_x], dw=[n_x], dh=[n_im])
proj_y_image_source.data.update(image=[im_proj_y], dw=[n_y], dh=[n_im])
if proj_auto_checkbox.active:
im_min = min(np.min(overview_x), np.min(overview_y))
im_max = max(np.max(overview_x), np.max(overview_y))
im_min = min(np.min(im_proj_x), np.min(im_proj_y))
im_max = max(np.max(im_proj_x), np.max(im_proj_y))
proj_display_min_spinner.value = im_min
proj_display_max_spinner.value = im_max
overview_plot_x_image_glyph.color_mapper.low = im_min
overview_plot_y_image_glyph.color_mapper.low = im_min
overview_plot_x_image_glyph.color_mapper.high = im_max
overview_plot_y_image_glyph.color_mapper.high = im_max
frame_range.start = 0
frame_range.end = n_im
frame_range.reset_start = 0
frame_range.reset_end = n_im
frame_range.bounds = (0, n_im)
scan_motor = det_data["scan_motor"]
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
scan_motor = scan["scan_motor"]
proj_y_plot.yaxis.axis_label = f"Scanning motor, {scan_motor}"
var = det_data[scan_motor]
var = scan[scan_motor]
var_start = var[0]
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
@ -300,148 +292,95 @@ def create():
# shared frame ranges
frame_range = Range1d(0, 1, bounds=(0, 1))
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
color_mapper_proj = LinearColorMapper()
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
overview_plot_x = Plot(
title=Title(text="Projections on X-axis"),
proj_x_plot = figure(
title="Projections on X-axis",
x_axis_label="Coordinate X, pix",
y_axis_label="Frame",
x_range=det_x_range,
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=400,
plot_width=IMAGE_PLOT_W - 3,
height=540,
width=IMAGE_PLOT_W - 3,
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
)
# ---- tools
wheelzoomtool = WheelZoomTool(maintain_focus=False)
overview_plot_x.toolbar.logo = None
overview_plot_x.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
)
overview_plot_x.toolbar.active_scroll = wheelzoomtool
proj_x_plot.yaxis.major_label_orientation = "vertical"
proj_x_plot.toolbar.tools[2].maintain_focus = False
# ---- axes
overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"), place="below")
overview_plot_x.add_layout(
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
)
# ---- grid lines
overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
overview_plot_x_image_source = ColumnDataSource(
proj_x_image_source = ColumnDataSource(
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
)
overview_plot_x_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
overview_plot_x.add_glyph(
overview_plot_x_image_source, overview_plot_x_image_glyph, name="image_glyph"
)
proj_x_plot.image(source=proj_x_image_source, color_mapper=color_mapper_proj)
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
overview_plot_y = Plot(
title=Title(text="Projections on Y-axis"),
proj_y_plot = figure(
title="Projections on Y-axis",
x_axis_label="Coordinate Y, pix",
y_axis_label="Scanning motor",
y_axis_location="right",
x_range=det_y_range,
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=400,
plot_width=IMAGE_PLOT_H + 22,
height=540,
width=IMAGE_PLOT_H + 22,
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
)
# ---- tools
wheelzoomtool = WheelZoomTool(maintain_focus=False)
overview_plot_y.toolbar.logo = None
overview_plot_y.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
)
overview_plot_y.toolbar.active_scroll = wheelzoomtool
proj_y_plot.yaxis.y_range_name = "scanning_motor"
proj_y_plot.yaxis.major_label_orientation = "vertical"
proj_y_plot.toolbar.tools[2].maintain_focus = False
# ---- axes
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
overview_plot_y.add_layout(
LinearAxis(
y_range_name="scanning_motor",
axis_label="Scanning motor",
major_label_orientation="vertical",
),
place="right",
)
# ---- grid lines
overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
overview_plot_y_image_source = ColumnDataSource(
proj_y_image_source = ColumnDataSource(
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
)
overview_plot_y_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
overview_plot_y.add_glyph(
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
proj_y_plot.image(source=proj_y_image_source, color_mapper=color_mapper_proj)
def colormap_select_callback(_attr, _old, new):
color_mapper_proj.palette = new
colormap_select = Select(
title="Colormap:",
options=[("Greys256", "greys"), ("Plasma256", "plasma"), ("Cividis256", "cividis")],
width=210,
)
colormap_select.on_change("value", colormap_select_callback)
colormap_select.value = "Plasma256"
cmap_dict = {
"gray": Greys256,
"gray_reversed": Greys256[::-1],
"plasma": Plasma256,
"cividis": Cividis256,
}
def colormap_callback(_attr, _old, new):
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), width=210)
colormap.on_change("value", colormap_callback)
colormap.value = "plasma"
PROJ_STEP = 1
def proj_auto_checkbox_callback(state):
if state:
def proj_auto_checkbox_callback(_attr, _old, new):
if 0 in new:
proj_display_min_spinner.disabled = True
proj_display_max_spinner.disabled = True
else:
proj_display_min_spinner.disabled = False
proj_display_max_spinner.disabled = False
update_overview_plot()
_update_proj_plots()
proj_auto_checkbox = CheckboxGroup(
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
proj_auto_checkbox.on_change("active", proj_auto_checkbox_callback)
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
proj_display_min_spinner.high = new_value - PROJ_STEP
overview_plot_x_image_glyph.color_mapper.high = new_value
overview_plot_y_image_glyph.color_mapper.high = new_value
def proj_display_max_spinner_callback(_attr, _old, new):
color_mapper_proj.high = new
proj_display_max_spinner = Spinner(
low=0 + PROJ_STEP,
value=1,
step=PROJ_STEP,
disabled=bool(proj_auto_checkbox.active),
width=100,
height=31,
value=1, disabled=bool(proj_auto_checkbox.active), mode="int", width=100
)
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
proj_display_max_spinner.low = new_value + PROJ_STEP
overview_plot_x_image_glyph.color_mapper.low = new_value
overview_plot_y_image_glyph.color_mapper.low = new_value
def proj_display_min_spinner_callback(_attr, _old, new):
color_mapper_proj.low = new
proj_display_min_spinner = Spinner(
low=0,
high=1 - PROJ_STEP,
value=0,
step=PROJ_STEP,
disabled=bool(proj_auto_checkbox.active),
width=100,
height=31,
value=0, disabled=bool(proj_auto_checkbox.active), mode="int", width=100
)
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
@ -463,25 +402,24 @@ def create():
x = []
y = []
fit_param = fit_param_select.value
for s, p in zip(zebra_data, scan_table_source.data["param"]):
for s, p in zip(dataset, scan_table_source.data["param"]):
if "fit" in s and fit_param:
x.append(p)
y.append(s["fit"][fit_param])
param_plot_scatter_source.data.update(x=x, y=y)
param_scatter_source.data.update(x=x, y=y)
# Parameter plot
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
param_plot = figure(
x_axis_label="Parameter",
y_axis_label="Fit parameter",
height=400,
width=700,
tools="pan,wheel_zoom,reset",
)
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
param_scatter_source = ColumnDataSource(dict(x=[], y=[]))
param_plot.circle(source=param_scatter_source)
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[]))
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
param_plot.toolbar.logo = None
def fit_param_select_callback(_attr, _old, _new):
@ -491,7 +429,7 @@ def create():
fit_param_select.on_change("value", fit_param_select_callback)
def proc_all_button_callback():
for scan in zebra_data:
for scan in dataset:
pyzebra.fit_event(
scan,
int(np.floor(frame_range.start)),
@ -504,7 +442,7 @@ def create():
_update_table()
for scan in zebra_data:
for scan in dataset:
if "fit" in scan:
options = list(scan["fit"].keys())
fit_param_select.options = options
@ -517,8 +455,9 @@ def create():
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
scan = _get_selected_scan()
pyzebra.fit_event(
det_data,
scan,
int(np.floor(frame_range.start)),
int(np.ceil(frame_range.end)),
int(np.floor(det_y_range.start)),
@ -529,7 +468,7 @@ def create():
_update_table()
for scan in zebra_data:
for scan in dataset:
if "fit" in scan:
options = list(scan["fit"].keys())
fit_param_select.options = options
@ -542,18 +481,15 @@ def create():
proc_button.on_click(proc_button_callback)
layout_controls = row(
colormap,
colormap_select,
column(proj_auto_checkbox, row(proj_display_min_spinner, proj_display_max_spinner)),
proc_button,
proc_all_button,
)
layout_overview = column(
layout_proj = column(
gridplot(
[[overview_plot_x, overview_plot_y]],
toolbar_options=dict(logo=None),
merge_tools=True,
toolbar_location="left",
[[proj_x_plot, proj_y_plot]], toolbar_options={"logo": None}, toolbar_location="right"
),
layout_controls,
)
@ -561,7 +497,7 @@ def create():
# Plot tabs
plots = Tabs(
tabs=[
Panel(child=layout_overview, title="single scan"),
Panel(child=layout_proj, title="single scan"),
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
]
)

File diff suppressed because it is too large Load Diff

View File

@ -1,78 +1,36 @@
import base64
import io
import itertools
import os
import tempfile
import types
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
Button,
CellEditor,
CheckboxEditor,
CheckboxGroup,
ColumnDataSource,
CustomJS,
DataRange1d,
DataTable,
Div,
Dropdown,
FileInput,
Grid,
HoverTool,
Image,
Legend,
Line,
LinearAxis,
MultiLine,
MultiSelect,
LinearColorMapper,
NumberEditor,
Panel,
PanTool,
Plot,
RadioGroup,
ResetTool,
Scatter,
Range1d,
Select,
Spacer,
Span,
Spinner,
TableColumn,
Tabs,
TextAreaInput,
WheelZoomTool,
Whisker,
)
from bokeh.palettes import Category10, Turbo256
from bokeh.transform import linear_cmap
from bokeh.palettes import Category10, Plasma256
from bokeh.plotting import figure
from scipy import interpolate
import pyzebra
from pyzebra.ccl_process import AREA_METHODS
javaScript = """
let j = 0;
for (let i = 0; i < js_data.data['fname'].length; i++) {
if (js_data.data['content'][i] === "") continue;
setTimeout(function() {
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 100 * j)
j++;
}
"""
from pyzebra import app
def color_palette(n_colors):
@ -82,178 +40,38 @@ def color_palette(n_colors):
def create():
doc = curdoc()
det_data = []
fit_params = {}
js_data = ColumnDataSource(data=dict(content=[""], fname=[""], ext=[""]))
def file_select_update_for_proposal():
proposal_path = proposal_textinput.name
if proposal_path:
file_list = []
for file in os.listdir(proposal_path):
if file.endswith((".ccl", ".dat")):
file_list.append((os.path.join(proposal_path, file), file))
file_select.options = file_list
file_open_button.disabled = False
file_append_button.disabled = False
else:
file_select.options = []
file_open_button.disabled = True
file_append_button.disabled = True
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
file_select_update_for_proposal()
proposal_textinput = doc.proposal_textinput
proposal_textinput.on_change("name", proposal_textinput_callback)
log = doc.logger
dataset = []
app_dlfiles = app.DownloadFiles(n_files=1)
def _init_datatable():
scan_list = [s["idx"] for s in det_data]
export = [s["export"] for s in det_data]
scan_list = [s["idx"] for s in dataset]
export = [s["export"] for s in dataset]
if param_select.value == "user defined":
param = [None] * len(det_data)
param = [None] * len(dataset)
else:
param = [scan[param_select.value] for scan in det_data]
param = [scan[param_select.value] for scan in dataset]
file_list = []
for scan in det_data:
for scan in dataset:
file_list.append(os.path.basename(scan["original_filename"]))
scan_table_source.data.update(
file=file_list, scan=scan_list, param=param, fit=[0] * len(scan_list), export=export,
file=file_list, scan=scan_list, param=param, fit=[0] * len(scan_list), export=export
)
scan_table_source.selected.indices = []
scan_table_source.selected.indices = [0]
scan_motor_select.options = det_data[0]["scan_motors"]
scan_motor_select.value = det_data[0]["scan_motor"]
scan_motor_select.options = dataset[0]["scan_motors"]
scan_motor_select.value = dataset[0]["scan_motor"]
merge_options = [(str(i), f"{i} ({idx})") for i, idx in enumerate(scan_list)]
merge_from_select.options = merge_options
merge_from_select.value = merge_options[0][0]
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
def file_open_button_callback():
nonlocal det_data
new_data = []
for f_path in file_select.value:
with open(f_path) as file:
f_name = os.path.basename(f_path)
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data)
js_data.data.update(fname=[base])
else:
pyzebra.merge_datasets(new_data, file_data)
if new_data:
det_data = new_data
_init_datatable()
append_upload_button.disabled = False
file_open_button = Button(label="Open New", width=100, disabled=True)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
file_data = []
for f_path in file_select.value:
with open(f_path) as file:
f_name = os.path.basename(f_path)
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(det_data, file_data)
if file_data:
_init_datatable()
file_append_button = Button(label="Append", width=100, disabled=True)
file_append_button.on_click(file_append_button_callback)
def upload_button_callback(_attr, _old, _new):
nonlocal det_data
new_data = []
for f_str, f_name in zip(upload_button.value, upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data)
js_data.data.update(fname=[base])
else:
pyzebra.merge_datasets(new_data, file_data)
if new_data:
det_data = new_data
_init_datatable()
append_upload_button.disabled = False
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
upload_button.on_change("filename", upload_button_callback)
def append_upload_button_callback(_attr, _old, _new):
file_data = []
for f_str, f_name in zip(append_upload_button.value, append_upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(det_data, file_data)
if file_data:
_init_datatable()
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
append_upload_button.on_change("filename", append_upload_button_callback)
def monitor_spinner_callback(_attr, _old, new):
if det_data:
pyzebra.normalize_dataset(det_data, new)
_update_single_scan_plot()
_update_overview()
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
monitor_spinner.on_change("value", monitor_spinner_callback)
def scan_motor_select_callback(_attr, _old, new):
if det_data:
for scan in det_data:
if dataset:
for scan in dataset:
scan["scan_motor"] = new
_update_single_scan_plot()
_update_overview()
@ -262,12 +80,12 @@ def create():
scan_motor_select.on_change("value", scan_motor_select_callback)
def _update_table():
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
export = [scan["export"] for scan in det_data]
fit_ok = [(1 if "fit" in scan else 0) for scan in dataset]
export = [scan["export"] for scan in dataset]
if param_select.value == "user defined":
param = [None] * len(det_data)
param = [None] * len(dataset)
else:
param = [scan[param_select.value] for scan in det_data]
param = [scan[param_select.value] for scan in dataset]
scan_table_source.data.update(fit=fit_ok, export=export, param=param)
@ -280,19 +98,19 @@ def create():
x = scan[scan_motor]
plot.axis[0].axis_label = scan_motor
plot_scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
fit = scan.get("fit")
if fit is not None:
x_fit = np.linspace(x[0], x[-1], 100)
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
x_bkg = []
y_bkg = []
xs_peak = []
ys_peak = []
comps = fit.eval_components(x=x_fit)
for i, model in enumerate(fit_params):
for i, model in enumerate(app_fitctrl.params):
if "linear" in model:
x_bkg = x_fit
y_bkg = comps[f"f{i}_"]
@ -301,16 +119,15 @@ def create():
xs_peak.append(x_fit)
ys_peak.append(comps[f"f{i}_"])
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
fit_output_textinput.value = fit.fit_report()
bkg_source.data.update(x=x_bkg, y=y_bkg)
peak_source.data.update(xs=xs_peak, ys=ys_peak)
else:
plot_fit_source.data.update(x=[], y=[])
plot_bkg_source.data.update(x=[], y=[])
plot_peak_source.data.update(xs=[], ys=[])
fit_output_textinput.value = ""
fit_source.data.update(x=[], y=[])
bkg_source.data.update(x=[], y=[])
peak_source.data.update(xs=[], ys=[])
app_fitctrl.update_result_textarea(scan)
def _update_overview():
xs = []
@ -321,7 +138,7 @@ def create():
par = []
for s, p in enumerate(scan_table_source.data["param"]):
if p is not None:
scan = det_data[s]
scan = dataset[s]
scan_motor = scan["scan_motor"]
xs.append(scan[scan_motor])
x.extend(scan[scan_motor])
@ -330,32 +147,39 @@ def create():
param.append(float(p))
par.extend(scan["counts"])
if det_data:
scan_motor = det_data[0]["scan_motor"]
if dataset:
scan_motor = dataset[0]["scan_motor"]
ov_plot.axis[0].axis_label = scan_motor
ov_param_plot.axis[0].axis_label = scan_motor
ov_plot_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
ov_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
ov_param_scatter_source.data.update(x=x, y=y)
if y:
mapper["transform"].low = np.min([np.min(y) for y in ys])
mapper["transform"].high = np.max([np.max(y) for y in ys])
ov_param_plot_scatter_source.data.update(x=x, y=y, param=par)
try:
interp_f = interpolate.interp2d(x, y, par)
x1, x2 = min(x), max(x)
y1, y2 = min(y), max(y)
image = interp_f(
np.linspace(x1, x2, ov_param_plot.inner_width // 10),
np.linspace(y1, y2, ov_param_plot.inner_height // 10),
assume_sorted=True,
grid_x, grid_y = np.meshgrid(
np.linspace(x1, x2, ov_param_plot.inner_width),
np.linspace(y1, y2, ov_param_plot.inner_height),
)
ov_param_plot_image_source.data.update(
image = interpolate.griddata((x, y), par, (grid_x, grid_y))
ov_param_image_source.data.update(
image=[image], x=[x1], y=[y1], dw=[x2 - x1], dh=[y2 - y1]
)
except Exception:
ov_param_plot_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
x_range = ov_param_plot.x_range
x_range.start, x_range.end = x1, x2
x_range.reset_start, x_range.reset_end = x1, x2
x_range.bounds = (x1, x2)
y_range = ov_param_plot.y_range
y_range.start, y_range.end = y1, y2
y_range.reset_start, y_range.reset_end = y1, y2
y_range.bounds = (y1, y2)
else:
ov_param_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
def _update_param_plot():
x = []
@ -363,49 +187,50 @@ def create():
y_lower = []
y_upper = []
fit_param = fit_param_select.value
for s, p in zip(det_data, scan_table_source.data["param"]):
for s, p in zip(dataset, scan_table_source.data["param"]):
if "fit" in s and fit_param:
x.append(p)
param_fit_val = s["fit"].params[fit_param].value
param_fit_std = s["fit"].params[fit_param].stderr
if param_fit_std is None:
param_fit_std = 0
y.append(param_fit_val)
y_lower.append(param_fit_val - param_fit_std)
y_upper.append(param_fit_val + param_fit_std)
param_plot_scatter_source.data.update(x=x, y=y, y_lower=y_lower, y_upper=y_upper)
param_scatter_source.data.update(x=x, y=y, y_lower=y_lower, y_upper=y_upper)
def _monitor_change():
_update_single_scan_plot()
_update_overview()
app_inputctrl = app.InputControls(
dataset, app_dlfiles, on_file_open=_init_datatable, on_monitor_change=_monitor_change
)
# Main plot
plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(only_visible=True),
plot_height=450,
plot_width=700,
plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=450,
width=700,
tools="pan,wheel_zoom,reset",
)
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot_scatter = plot.add_glyph(
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue", fill_color="steelblue")
scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot.circle(
source=scatter_source, line_color="steelblue", fill_color="steelblue", legend_label="data"
)
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
plot.add_layout(Whisker(source=scatter_source, base="x", upper="y_upper", lower="y_lower"))
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
fit_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(source=fit_source, legend_label="best fit")
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_bkg = plot.add_glyph(
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
)
bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
plot.line(source=bkg_source, line_color="green", line_dash="dashed", legend_label="linear")
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot_peak = plot.add_glyph(
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
)
peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot.multi_line(source=peak_source, line_color="red", line_dash="dashed", legend_label="peak")
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_from_span)
@ -413,82 +238,61 @@ def create():
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_to_span)
plot.add_layout(
Legend(
items=[
("data", [plot_scatter]),
("best fit", [plot_fit]),
("peak", [plot_peak]),
("linear", [plot_bkg]),
],
location="top_left",
click_policy="hide",
)
)
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
plot.y_range.only_visible = True
plot.toolbar.logo = None
plot.legend.click_policy = "hide"
# Overview multilines plot
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700)
ov_plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=450,
width=700,
tools="pan,wheel_zoom,reset",
)
ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
ov_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
ov_plot.multi_line(source=ov_mline_source, line_color="color")
ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
ov_plot.add_tools(HoverTool(tooltips=[("param", "@param")]))
ov_plot_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
ov_plot.add_glyph(ov_plot_mline_source, MultiLine(xs="xs", ys="ys", line_color="color"))
hover_tool = HoverTool(tooltips=[("param", "@param")])
ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool())
ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
ov_plot.toolbar.logo = None
# Overview perams plot
ov_param_plot = Plot(
x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700
# Overview params plot
ov_param_plot = figure(
x_axis_label="Scan motor",
y_axis_label="Param",
x_range=Range1d(),
y_range=Range1d(),
height=450,
width=700,
tools="pan,wheel_zoom,reset",
)
ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
color_mapper = LinearColorMapper(palette=Plasma256)
ov_param_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
ov_param_plot.image(source=ov_param_image_source, color_mapper=color_mapper)
ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
ov_param_scatter_source = ColumnDataSource(dict(x=[], y=[]))
ov_param_plot.dot(source=ov_param_scatter_source, size=15, color="black")
ov_param_plot_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
ov_param_plot.add_glyph(
ov_param_plot_image_source, Image(image="image", x="x", y="y", dw="dw", dh="dh")
)
ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[]))
mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50)
ov_param_plot.add_glyph(
ov_param_plot_scatter_source,
Scatter(x="x", y="y", line_color=mapper, fill_color=mapper, size=10),
)
ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
ov_param_plot.toolbar.logo = None
# Parameter plot
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], y_upper=[], y_lower=[]))
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
param_plot.add_layout(
Whisker(source=param_plot_scatter_source, base="x", upper="y_upper", lower="y_lower")
param_plot = figure(
x_axis_label="Parameter",
y_axis_label="Fit parameter",
height=400,
width=700,
tools="pan,wheel_zoom,reset",
)
param_scatter_source = ColumnDataSource(dict(x=[], y=[], y_upper=[], y_lower=[]))
param_plot.circle(source=param_scatter_source)
param_plot.add_layout(
Whisker(source=param_scatter_source, base="x", upper="y_upper", lower="y_lower")
)
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
param_plot.toolbar.logo = None
def fit_param_select_callback(_attr, _old, _new):
@ -528,7 +332,7 @@ def create():
def scan_table_source_callback(_attr, _old, new):
# unfortunately, we don't know if the change comes from data update or user input
# also `old` and `new` are the same for non-scalars
for scan, export in zip(det_data, new["export"]):
for scan, export in zip(dataset, new["export"]):
scan["export"] = export
_update_overview()
_update_param_plot()
@ -557,13 +361,13 @@ def create():
def merge_button_callback():
scan_into = _get_selected_scan()
scan_from = det_data[int(merge_from_select.value)]
scan_from = dataset[int(merge_from_select.value)]
if scan_into is scan_from:
print("WARNING: Selected scans for merging are identical")
log.warning("Selected scans for merging are identical")
return
pyzebra.merge_scans(scan_into, scan_from)
pyzebra.merge_scans(scan_into, scan_from, log=log)
_update_table()
_update_single_scan_plot()
_update_overview()
@ -581,7 +385,7 @@ def create():
restore_button.on_click(restore_button_callback)
def _get_selected_scan():
return det_data[scan_table_source.selected.indices[0]]
return dataset[scan_table_source.selected.indices[0]]
def param_select_callback(_attr, _old, _new):
_update_table()
@ -594,142 +398,26 @@ def create():
)
param_select.on_change("value", param_select_callback)
app_fitctrl = app.FitControls()
def fit_from_spinner_callback(_attr, _old, new):
fit_from_span.location = new
fit_from_spinner = Spinner(title="Fit from:", width=145)
fit_from_spinner.on_change("value", fit_from_spinner_callback)
app_fitctrl.from_spinner.on_change("value", fit_from_spinner_callback)
def fit_to_spinner_callback(_attr, _old, new):
fit_to_span.location = new
fit_to_spinner = Spinner(title="to:", width=145)
fit_to_spinner.on_change("value", fit_to_spinner_callback)
def fitparams_add_dropdown_callback(click):
# bokeh requires (str, str) for MultiSelect options
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
fitparams_select.options.append((new_tag, click.item))
fit_params[new_tag] = fitparams_factory(click.item)
fitparams_select.tags[0] += 1
fitparams_add_dropdown = Dropdown(
label="Add fit function",
menu=[
("Linear", "linear"),
("Gaussian", "gaussian"),
("Voigt", "voigt"),
("Pseudo Voigt", "pvoigt"),
# ("Pseudo Voigt1", "pseudovoigt1"),
],
width=145,
)
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
def fitparams_select_callback(_attr, old, new):
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
fitparams_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
if new:
fitparams_table_source.data.update(fit_params[new[0]])
else:
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_select = MultiSelect(options=[], height=120, width=145)
fitparams_select.tags = [0]
fitparams_select.on_change("value", fitparams_select_callback)
def fitparams_remove_button_callback():
if fitparams_select.value:
sel_tag = fitparams_select.value[0]
del fit_params[sel_tag]
for elem in fitparams_select.options:
if elem[0] == sel_tag:
fitparams_select.options.remove(elem)
break
fitparams_select.value = []
fitparams_remove_button = Button(label="Remove fit function", width=145)
fitparams_remove_button.on_click(fitparams_remove_button_callback)
def fitparams_factory(function):
if function == "linear":
params = ["slope", "intercept"]
elif function == "gaussian":
params = ["amplitude", "center", "sigma"]
elif function == "voigt":
params = ["amplitude", "center", "sigma", "gamma"]
elif function == "pvoigt":
params = ["amplitude", "center", "sigma", "fraction"]
elif function == "pseudovoigt1":
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
else:
raise ValueError("Unknown fit function")
n = len(params)
fitparams = dict(
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
)
if function == "linear":
fitparams["value"] = [0, 1]
fitparams["vary"] = [False, True]
fitparams["min"] = [None, 0]
elif function == "gaussian":
fitparams["min"] = [0, None, None]
return fitparams
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_table = DataTable(
source=fitparams_table_source,
columns=[
TableColumn(field="param", title="Parameter", editor=CellEditor()),
TableColumn(field="value", title="Value", editor=NumberEditor()),
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
TableColumn(field="min", title="Min", editor=NumberEditor()),
TableColumn(field="max", title="Max", editor=NumberEditor()),
],
height=200,
width=350,
index_position=None,
editable=True,
auto_edit=True,
)
# start with `background` and `gauss` fit functions added
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
fitparams_select.value = ["gaussian-1"] # add selection to gauss
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
app_fitctrl.to_spinner.on_change("value", fit_to_spinner_callback)
def proc_all_button_callback():
for scan in det_data:
if scan["export"]:
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
app_fitctrl.fit_dataset(dataset)
_update_single_scan_plot()
_update_overview()
_update_table()
for scan in det_data:
for scan in dataset:
if "fit" in scan:
options = list(scan["fit"].params.keys())
fit_param_select.options = options
@ -740,21 +428,13 @@ def create():
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
scan = _get_selected_scan()
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
app_fitctrl.fit_scan(_get_selected_scan())
_update_single_scan_plot()
_update_overview()
_update_table()
for scan in det_data:
for scan in dataset:
if "fit" in scan:
options = list(scan["fit"].params.keys())
fit_param_select.options = options
@ -764,11 +444,6 @@ def create():
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
def _update_preview():
@ -776,7 +451,7 @@ def create():
temp_file = temp_dir + "/temp"
export_data = []
param_data = []
for scan, param in zip(det_data, scan_table_source.data["param"]):
for scan, param in zip(dataset, scan_table_source.data["param"]):
if scan["export"] and param:
export_data.append(scan)
param_data.append(param)
@ -795,40 +470,49 @@ def create():
content = ""
file_content.append(content)
js_data.data.update(content=file_content)
app_dlfiles.set_contents(file_content)
export_preview_textinput.value = exported_content
save_button = Button(label="Download File", button_type="success", width=220)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
column(
app_fitctrl.add_function_button,
app_fitctrl.function_select,
app_fitctrl.remove_function_button,
),
app_fitctrl.params_table,
Spacer(width=20),
column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton),
column(fit_to_spinner, proc_button, proc_all_button),
column(
app_fitctrl.from_spinner,
app_fitctrl.lorentz_checkbox,
area_method_div,
app_fitctrl.area_method_radiogroup,
),
column(app_fitctrl.to_spinner, proc_button, proc_all_button),
)
scan_layout = column(
scan_table,
row(monitor_spinner, scan_motor_select, param_select),
row(app_inputctrl.monitor_spinner, scan_motor_select, param_select),
row(column(Spacer(height=19), row(restore_button, merge_button)), merge_from_select),
)
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
import_layout = column(
file_select,
row(file_open_button, file_append_button),
app_inputctrl.filelist_select,
row(app_inputctrl.open_button, app_inputctrl.append_button),
upload_div,
upload_button,
app_inputctrl.upload_button,
append_upload_div,
append_upload_button,
app_inputctrl.append_upload_button,
)
export_layout = column(export_preview_textinput, row(save_button))
export_layout = column(export_preview_textinput, row(app_dlfiles.button))
tab_layout = column(
row(import_layout, scan_layout, plots, Spacer(width=30), export_layout),
row(fitpeak_controls, fit_output_textinput),
row(fitpeak_controls, app_fitctrl.result_textarea),
)
return Panel(child=tab_layout, title="param study")

View File

@ -0,0 +1,442 @@
import base64
import io
import os
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Button,
CheckboxGroup,
ColorBar,
ColumnDataSource,
DataRange1d,
Div,
FileInput,
LinearColorMapper,
LogColorMapper,
NumericInput,
Panel,
RadioGroup,
Select,
Spacer,
Spinner,
TextInput,
)
from bokeh.plotting import figure
from scipy import interpolate
import pyzebra
from pyzebra import app
from pyzebra.app.panel_hdf_viewer import calculate_hkl
def create():
doc = curdoc()
log = doc.logger
_update_slice = None
measured_data_div = Div(text="Measured <b>HDF</b> data:")
measured_data = FileInput(accept=".hdf", multiple=True, width=200)
upload_hkl_div = Div(text="Open hkl/mhkl data:")
upload_hkl_fi = FileInput(accept=".hkl,.mhkl", multiple=True, width=200)
def _prepare_plotting():
flag_ub = bool(redef_ub_cb.active)
flag_lattice = bool(redef_lattice_cb.active)
# Define horizontal direction of plotting plane, vertical direction will be calculated
# automatically
x_dir = list(map(float, hkl_in_plane_x.value.split()))
# Define direction orthogonal to plotting plane. Together with orth_cut, this parameter also
# defines the position of the cut, ie cut will be taken at orth_dir = [x,y,z]*orth_cut +- delta,
# where delta is max distance a data point can have from cut in rlu units
orth_dir = list(map(float, hkl_normal.value.split()))
# Load data files
md_fnames = measured_data.filename
md_fdata = measured_data.value
for ind, (fname, fdata) in enumerate(zip(md_fnames, md_fdata)):
# Read data
try:
det_data = pyzebra.read_detector_data(io.BytesIO(base64.b64decode(fdata)))
except Exception as e:
log.exception(e)
return None
if ind == 0:
if not flag_ub:
redef_ub_ti.value = " ".join(map(str, det_data["ub"].ravel()))
if not flag_lattice:
redef_lattice_ti.value = " ".join(map(str, det_data["cell"]))
num_slices = np.shape(det_data["counts"])[0]
# Change parameter
if flag_ub:
ub = list(map(float, redef_ub_ti.value.strip().split()))
det_data["ub"] = np.array(ub).reshape(3, 3)
# Convert h k l for all images in file
h_temp = np.empty(np.shape(det_data["counts"]))
k_temp = np.empty(np.shape(det_data["counts"]))
l_temp = np.empty(np.shape(det_data["counts"]))
for i in range(num_slices):
h_temp[i], k_temp[i], l_temp[i] = calculate_hkl(det_data, i)
# Append to matrix
if ind == 0:
h = h_temp
k = k_temp
l = l_temp
I_matrix = det_data["counts"]
else:
h = np.append(h, h_temp, axis=0)
k = np.append(k, k_temp, axis=0)
l = np.append(l, l_temp, axis=0)
I_matrix = np.append(I_matrix, det_data["counts"], axis=0)
if flag_lattice:
vals = list(map(float, redef_lattice_ti.value.strip().split()))
lattice = np.array(vals)
else:
lattice = det_data["cell"]
# Define matrix for converting to cartesian coordinates and back
alpha = lattice[3] * np.pi / 180.0
beta = lattice[4] * np.pi / 180.0
gamma = lattice[5] * np.pi / 180.0
# reciprocal angle parameters
beta_star = np.arccos(
(np.cos(alpha) * np.cos(gamma) - np.cos(beta)) / (np.sin(alpha) * np.sin(gamma))
)
gamma_star = np.arccos(
(np.cos(alpha) * np.cos(beta) - np.cos(gamma)) / (np.sin(alpha) * np.sin(beta))
)
# conversion matrix:
M = np.array(
[
[1, 1 * np.cos(gamma_star), 1 * np.cos(beta_star)],
[0, 1 * np.sin(gamma_star), -np.sin(beta_star) * np.cos(alpha)],
[0, 0, 1 * np.sin(beta_star) * np.sin(alpha)],
]
)
# Get last lattice vector
y_dir = np.cross(x_dir, orth_dir) # Second axes of plotting plane
# Rescale such that smallest element of y-dir vector is 1
y_dir2 = y_dir[y_dir != 0]
min_val = np.min(np.abs(y_dir2))
y_dir = y_dir / min_val
# Possibly flip direction of ydir:
if y_dir[np.argmax(abs(y_dir))] < 0:
y_dir = -y_dir
# Display the resulting y_dir
hkl_in_plane_y.value = " ".join([f"{val:.1f}" for val in y_dir])
# # Save length of lattice vectors
# x_length = np.linalg.norm(x_dir)
# y_length = np.linalg.norm(y_dir)
# # Save str for labels
# xlabel_str = " ".join(map(str, x_dir))
# ylabel_str = " ".join(map(str, y_dir))
# Normalize lattice vectors
y_dir = y_dir / np.linalg.norm(y_dir)
x_dir = x_dir / np.linalg.norm(x_dir)
orth_dir = orth_dir / np.linalg.norm(orth_dir)
# Calculate cartesian equivalents of lattice vectors
x_c = np.matmul(M, x_dir)
y_c = np.matmul(M, y_dir)
o_c = np.matmul(M, orth_dir)
# Calulcate vertical direction in plotting plame
y_vert = np.cross(x_c, o_c) # verical direction in plotting plane
if y_vert[np.argmax(abs(y_vert))] < 0:
y_vert = -y_vert
y_vert = y_vert / np.linalg.norm(y_vert)
# Normalize all directions
y_c = y_c / np.linalg.norm(y_c)
x_c = x_c / np.linalg.norm(x_c)
o_c = o_c / np.linalg.norm(o_c)
# Convert all hkls to cartesian
hkl = [[h, k, l]]
hkl = np.transpose(hkl)
hkl_c = np.matmul(M, hkl)
# Prepare hkl/mhkl data
hkl_coord = []
for j, fname in enumerate(upload_hkl_fi.filename):
with io.StringIO(base64.b64decode(upload_hkl_fi.value[j]).decode()) as file:
_, ext = os.path.splitext(fname)
try:
fdata = pyzebra.parse_hkl(file, ext)
except Exception as e:
log.exception(e)
return
for ind in range(len(fdata["counts"])):
# Recognize k_flag_vec
hkl = np.array([fdata["h"][ind], fdata["k"][ind], fdata["l"][ind]])
# Save data
hkl_coord.append(hkl)
def _update_slice():
# Where should cut be along orthogonal direction (Mutliplication factor onto orth_dir)
orth_cut = hkl_cut.value
# Width of cut
delta = hkl_delta.value
# Calculate distance of all points to plane
Q = np.array(o_c) * orth_cut
N = o_c / np.sqrt(np.sum(o_c**2))
v = np.empty(np.shape(hkl_c))
v[:, :, :, :, 0] = hkl_c[:, :, :, :, 0] - Q
dist = np.abs(np.dot(N, v))
dist = np.squeeze(dist)
dist = np.transpose(dist)
# Find points within acceptable distance of plane defined by o_c
ind = np.where(abs(dist) < delta)
if ind[0].size == 0:
image_source.data.update(image=[np.zeros((1, 1))])
return
# Project points onto axes
x = np.dot(x_c / np.sqrt(np.sum(x_c**2)), hkl_c)
y = np.dot(y_c / np.sqrt(np.sum(y_c**2)), hkl_c)
# take care of dimensions
x = np.squeeze(x)
x = np.transpose(x)
y = np.squeeze(y)
y = np.transpose(y)
# Get slices:
x_slice = x[ind]
y_slice = y[ind]
I_slice = I_matrix[ind]
# Meshgrid limits for plotting
if auto_range_cb.active:
min_x = np.min(x_slice)
max_x = np.max(x_slice)
min_y = np.min(y_slice)
max_y = np.max(y_slice)
xrange_min_ni.value = min_x
xrange_max_ni.value = max_x
yrange_min_ni.value = min_y
yrange_max_ni.value = max_y
else:
min_x = xrange_min_ni.value
max_x = xrange_max_ni.value
min_y = yrange_min_ni.value
max_y = yrange_max_ni.value
delta_x = xrange_step_ni.value
delta_y = yrange_step_ni.value
# Create interpolated mesh grid for plotting
grid_x, grid_y = np.mgrid[min_x:max_x:delta_x, min_y:max_y:delta_y]
I = interpolate.griddata((x_slice, y_slice), I_slice, (grid_x, grid_y))
# Update plot
display_min_ni.value = 0
display_max_ni.value = np.max(I_slice) * 0.25
image_source.data.update(
image=[I.T], x=[min_x], dw=[max_x - min_x], y=[min_y], dh=[max_y - min_y]
)
scan_x, scan_y = [], []
for j in range(len(hkl_coord)):
# Get middle hkl from list
hklm = M @ hkl_coord[j]
# Decide if point is in the cut
proj = np.dot(hklm, o_c)
if abs(proj - orth_cut) >= delta:
continue
# Project onto axes
hklmx = np.dot(hklm, x_c)
hklmy = np.dot(hklm, y_vert)
# Plot middle point of scan
scan_x.append(hklmx)
scan_y.append(hklmy)
scatter_source.data.update(x=scan_x, y=scan_y)
return _update_slice
def plot_file_callback():
nonlocal _update_slice
_update_slice = _prepare_plotting()
_update_slice()
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
plot_file.on_click(plot_file_callback)
plot = figure(
x_range=DataRange1d(),
y_range=DataRange1d(),
height=550 + 27,
width=550 + 117,
tools="pan,wheel_zoom,reset",
)
plot.toolbar.logo = None
lin_color_mapper = LinearColorMapper(nan_color=(0, 0, 0, 0), low=0, high=1)
log_color_mapper = LogColorMapper(nan_color=(0, 0, 0, 0), low=0, high=1)
image_source = ColumnDataSource(dict(image=[np.zeros((1, 1))], x=[0], y=[0], dw=[1], dh=[1]))
plot_image = plot.image(source=image_source, color_mapper=lin_color_mapper)
lin_color_bar = ColorBar(color_mapper=lin_color_mapper, width=15)
log_color_bar = ColorBar(color_mapper=log_color_mapper, width=15, visible=False)
plot.add_layout(lin_color_bar, "right")
plot.add_layout(log_color_bar, "right")
scatter_source = ColumnDataSource(dict(x=[], y=[]))
plot.scatter(source=scatter_source, size=4, fill_color="green", line_color="green")
hkl_div = Div(text="HKL:", margin=(5, 5, 0, 5))
hkl_normal = TextInput(title="normal", value="0 0 1", width=70)
def hkl_cut_callback(_attr, _old, _new):
if _update_slice is not None:
_update_slice()
hkl_cut = Spinner(title="cut", value=0, step=0.1, width=70)
hkl_cut.on_change("value_throttled", hkl_cut_callback)
hkl_delta = NumericInput(title="delta", value=0.1, mode="float", width=70)
hkl_in_plane_x = TextInput(title="in-plane X", value="1 0 0", width=70)
hkl_in_plane_y = TextInput(title="in-plane Y", value="", width=100, disabled=True)
def redef_lattice_cb_callback(_attr, _old, new):
if 0 in new:
redef_lattice_ti.disabled = False
else:
redef_lattice_ti.disabled = True
redef_lattice_cb = CheckboxGroup(labels=["Redefine lattice:"], width=110)
redef_lattice_cb.on_change("active", redef_lattice_cb_callback)
redef_lattice_ti = TextInput(width=490, disabled=True)
def redef_ub_cb_callback(_attr, _old, new):
if 0 in new:
redef_ub_ti.disabled = False
else:
redef_ub_ti.disabled = True
redef_ub_cb = CheckboxGroup(labels=["Redefine UB:"], width=110)
redef_ub_cb.on_change("active", redef_ub_cb_callback)
redef_ub_ti = TextInput(width=490, disabled=True)
def colormap_select_callback(_attr, _old, new):
lin_color_mapper.palette = new
log_color_mapper.palette = new
colormap_select = Select(
title="Colormap:",
options=[("Greys256", "greys"), ("Plasma256", "plasma"), ("Cividis256", "cividis")],
width=100,
)
colormap_select.on_change("value", colormap_select_callback)
colormap_select.value = "Plasma256"
def display_min_ni_callback(_attr, _old, new):
lin_color_mapper.low = new
log_color_mapper.low = new
display_min_ni = NumericInput(title="Intensity min:", value=0, mode="float", width=70)
display_min_ni.on_change("value", display_min_ni_callback)
def display_max_ni_callback(_attr, _old, new):
lin_color_mapper.high = new
log_color_mapper.high = new
display_max_ni = NumericInput(title="max:", value=1, mode="float", width=70)
display_max_ni.on_change("value", display_max_ni_callback)
def colormap_scale_rg_callback(_attr, _old, new):
if new == 0: # Linear
plot_image.glyph.color_mapper = lin_color_mapper
lin_color_bar.visible = True
log_color_bar.visible = False
else: # Logarithmic
if display_min_ni.value > 0 and display_max_ni.value > 0:
plot_image.glyph.color_mapper = log_color_mapper
lin_color_bar.visible = False
log_color_bar.visible = True
else:
colormap_scale_rg.active = 0
colormap_scale_rg = RadioGroup(labels=["Linear", "Logarithmic"], active=0, width=100)
colormap_scale_rg.on_change("active", colormap_scale_rg_callback)
xrange_min_ni = NumericInput(title="x range min:", value=0, mode="float", width=70)
xrange_max_ni = NumericInput(title="max:", value=1, mode="float", width=70)
xrange_step_ni = NumericInput(title="x mesh:", value=0.01, mode="float", width=70)
yrange_min_ni = NumericInput(title="y range min:", value=0, mode="float", width=70)
yrange_max_ni = NumericInput(title="max:", value=1, mode="float", width=70)
yrange_step_ni = NumericInput(title="y mesh:", value=0.01, mode="float", width=70)
def auto_range_cb_callback(_attr, _old, new):
if 0 in new:
xrange_min_ni.disabled = True
xrange_max_ni.disabled = True
yrange_min_ni.disabled = True
yrange_max_ni.disabled = True
else:
xrange_min_ni.disabled = False
xrange_max_ni.disabled = False
yrange_min_ni.disabled = False
yrange_max_ni.disabled = False
auto_range_cb = CheckboxGroup(labels=["Auto range:"], width=110)
auto_range_cb.on_change("active", auto_range_cb_callback)
auto_range_cb.active = [0]
column1_layout = column(
row(
column(row(measured_data_div, measured_data), row(upload_hkl_div, upload_hkl_fi)),
plot_file,
),
row(
plot,
column(
hkl_div,
row(hkl_normal, hkl_cut, hkl_delta),
row(hkl_in_plane_x, hkl_in_plane_y),
row(colormap_select, column(Spacer(height=15), colormap_scale_rg)),
row(display_min_ni, display_max_ni),
row(column(Spacer(height=19), auto_range_cb)),
row(xrange_min_ni, xrange_max_ni),
row(yrange_min_ni, yrange_max_ni),
row(xrange_step_ni, yrange_step_ni),
),
),
row(column(Spacer(height=7), redef_lattice_cb), redef_lattice_ti),
row(column(Spacer(height=7), redef_ub_cb), redef_ub_ti),
)
column2_layout = app.PlotHKL().layout
tab_layout = row(column1_layout, Spacer(width=50), column2_layout)
return Panel(child=tab_layout, title="plot data")

View File

@ -21,6 +21,7 @@ import pyzebra
def create():
doc = curdoc()
log = doc.logger
events_data = doc.events_data
npeaks_spinner = Spinner(title="Number of peaks from hdf_view panel:", disabled=True)
@ -63,8 +64,8 @@ def create():
stderr=subprocess.STDOUT,
text=True,
)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
# prepare an event file
diff_vec = []
@ -94,9 +95,9 @@ def create():
f"{x_pos} {y_pos} {intensity} {snr_cnts} {dv1} {dv2} {dv3} {d_spacing}\n"
)
print(f"Content of {temp_event_file}:")
log.info(f"Content of {temp_event_file}:")
with open(temp_event_file) as f:
print(f.read())
log.info(f.read())
comp_proc = subprocess.run(
[
@ -123,12 +124,12 @@ def create():
stderr=subprocess.STDOUT,
text=True,
)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
spind_out_file = os.path.join(temp_dir, "spind.txt")
spind_res = dict(
label=[], crystal_id=[], match_rate=[], matched_peaks=[], column_5=[], ub_matrix=[],
label=[], crystal_id=[], match_rate=[], matched_peaks=[], column_5=[], ub_matrix=[]
)
try:
with open(spind_out_file) as f_out:
@ -143,16 +144,15 @@ def create():
# last digits are spind UB matrix
vals = list(map(float, c_rest))
ub_matrix_spind = np.transpose(np.array(vals).reshape(3, 3))
ub_matrix = np.linalg.inv(ub_matrix_spind)
ub_matrices.append(ub_matrix)
ub_matrices.append(ub_matrix_spind)
spind_res["ub_matrix"].append(str(ub_matrix_spind * 1e-10))
print(f"Content of {spind_out_file}:")
log.info(f"Content of {spind_out_file}:")
with open(spind_out_file) as f:
print(f.read())
log.info(f.read())
except FileNotFoundError:
print("No results from spind")
log.warning("No results from spind")
results_table_source.data.update(spind_res)
@ -168,11 +168,11 @@ def create():
def results_table_select_callback(_attr, old, new):
if new:
ind = new[0]
ub_matrix = ub_matrices[ind]
ub_matrix_spind = ub_matrices[ind]
res = ""
for vec in diff_vec:
res += f"{ub_matrix @ vec}\n"
ub_matrix_textareainput.value = str(ub_matrix * 1e10)
res += f"{np.linalg.inv(ub_matrix_spind) @ vec}\n"
ub_matrix_textareainput.value = str(ub_matrix_spind * 1e-10)
hkl_textareainput.value = res
else:
ub_matrix_textareainput.value = ""

549
pyzebra/app/plot_hkl.py Normal file
View File

@ -0,0 +1,549 @@
import base64
import io
import os
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Arrow,
Button,
CheckboxGroup,
ColumnDataSource,
Div,
FileInput,
HoverTool,
Legend,
LegendItem,
NormalHead,
NumericInput,
RadioGroup,
Spinner,
TextAreaInput,
TextInput,
)
from bokeh.palettes import Dark2
from bokeh.plotting import figure
from scipy.integrate import simpson, trapezoid
import pyzebra
class PlotHKL:
def __init__(self):
doc = curdoc()
log = doc.logger
_update_slice = None
measured_data_div = Div(text="Measured <b>CCL</b> data:")
measured_data = FileInput(accept=".ccl", multiple=True, width=200)
upload_hkl_div = Div(text="Open hkl/mhkl data:")
upload_hkl_fi = FileInput(accept=".hkl,.mhkl", multiple=True, width=200)
min_grid_x = -10
max_grid_x = 10
min_grid_y = -10
max_grid_y = 10
cmap = Dark2[8]
syms = ["circle", "inverted_triangle", "square", "diamond", "star", "triangle"]
def _prepare_plotting():
orth_dir = list(map(float, hkl_normal.value.split()))
x_dir = list(map(float, hkl_in_plane_x.value.split()))
k = np.array(k_vectors.value.split()).astype(float).reshape(-1, 3)
tol_k = tol_k_ni.value
# multiplier for resolution function (in case of samples with large mosaicity)
res_mult = res_mult_ni.value
md_fnames = measured_data.filename
md_fdata = measured_data.value
# Load first data file, read angles and define matrices to perform conversion to cartesian
# coordinates and back
with io.StringIO(base64.b64decode(md_fdata[0]).decode()) as file:
_, ext = os.path.splitext(md_fnames[0])
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
return None
alpha = file_data[0]["alpha_cell"] * np.pi / 180.0
beta = file_data[0]["beta_cell"] * np.pi / 180.0
gamma = file_data[0]["gamma_cell"] * np.pi / 180.0
# reciprocal angle parameters
beta_star = np.arccos(
(np.cos(alpha) * np.cos(gamma) - np.cos(beta)) / (np.sin(alpha) * np.sin(gamma))
)
gamma_star = np.arccos(
(np.cos(alpha) * np.cos(beta) - np.cos(gamma)) / (np.sin(alpha) * np.sin(beta))
)
# conversion matrix
M = np.array(
[
[1, np.cos(gamma_star), np.cos(beta_star)],
[0, np.sin(gamma_star), -np.sin(beta_star) * np.cos(alpha)],
[0, 0, np.sin(beta_star) * np.sin(alpha)],
]
)
# Get last lattice vector
y_dir = np.cross(x_dir, orth_dir) # Second axes of plotting plane
# Rescale such that smallest element of y-dir vector is 1
y_dir2 = y_dir[y_dir != 0]
min_val = np.min(np.abs(y_dir2))
y_dir = y_dir / min_val
# Possibly flip direction of ydir:
if y_dir[np.argmax(abs(y_dir))] < 0:
y_dir = -y_dir
# Display the resulting y_dir
hkl_in_plane_y.value = " ".join([f"{val:.1f}" for val in y_dir])
# Save length of lattice vectors
x_length = np.linalg.norm(x_dir)
y_length = np.linalg.norm(y_dir)
# Save str for labels
xlabel_str = " ".join(map(str, x_dir))
ylabel_str = " ".join(map(str, y_dir))
# Normalize lattice vectors
y_dir = y_dir / np.linalg.norm(y_dir)
x_dir = x_dir / np.linalg.norm(x_dir)
orth_dir = orth_dir / np.linalg.norm(orth_dir)
# Calculate cartesian equivalents of lattice vectors
x_c = np.matmul(M, x_dir)
y_c = np.matmul(M, y_dir)
o_c = np.matmul(M, orth_dir)
# Calulcate vertical direction in plotting plame
y_vert = np.cross(x_c, o_c) # verical direction in plotting plane
if y_vert[np.argmax(abs(y_vert))] < 0:
y_vert = -y_vert
y_vert = y_vert / np.linalg.norm(y_vert)
# Normalize all directions
y_c = y_c / np.linalg.norm(y_c)
x_c = x_c / np.linalg.norm(x_c)
o_c = o_c / np.linalg.norm(o_c)
# Read all data
hkl_coord = []
intensity_vec = []
k_flag_vec = []
file_flag_vec = []
res_vec = []
res_N = 10
for j, md_fname in enumerate(md_fnames):
with io.StringIO(base64.b64decode(md_fdata[j]).decode()) as file:
_, ext = os.path.splitext(md_fname)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
return None
pyzebra.normalize_dataset(file_data)
# Loop throguh all data
for scan in file_data:
om = scan["omega"]
gammad = scan["twotheta"]
chi = scan["chi"]
phi = scan["phi"]
nud = 0 # 1d detector
ub_inv = np.linalg.inv(scan["ub"])
counts = scan["counts"]
wave = scan["wavelength"]
# Calculate resolution in degrees
expr = np.tan(gammad / 2 * np.pi / 180)
fwhm = np.sqrt(0.4639 * expr**2 - 0.4452 * expr + 0.1506) * res_mult
res = 4 * np.pi / wave * np.sin(fwhm * np.pi / 180)
# Get first and final hkl
hkl1 = pyzebra.ang2hkl_1d(wave, gammad, om[0], chi, phi, nud, ub_inv)
hkl2 = pyzebra.ang2hkl_1d(wave, gammad, om[-1], chi, phi, nud, ub_inv)
# Get hkl at best intensity
hkl_m = pyzebra.ang2hkl_1d(
wave, gammad, om[np.argmax(counts)], chi, phi, nud, ub_inv
)
# Estimate intensity for marker size scaling
y_bkg = [counts[0], counts[-1]]
x_bkg = [om[0], om[-1]]
c = int(simpson(counts, x=om) - trapezoid(y_bkg, x=x_bkg))
# Recognize k_flag_vec
reduced_hkl_m = np.minimum(1 - hkl_m % 1, hkl_m % 1)
for ind, _k in enumerate(k):
if all(np.abs(reduced_hkl_m - _k) < tol_k):
k_flag_vec.append(ind)
break
else:
# not required
continue
# Save data
hkl_coord.append([hkl1, hkl2, hkl_m])
intensity_vec.append(c)
file_flag_vec.append(j)
res_vec.append(res)
x_spacing = np.dot(M @ x_dir, x_c) * x_length
y_spacing = np.dot(M @ y_dir, y_vert) * y_length
y_spacingx = np.dot(M @ y_dir, x_c) * y_length
# Plot coordinate system
arrow1.x_end = x_spacing
arrow1.y_end = 0
arrow2.x_end = y_spacingx
arrow2.y_end = y_spacing
# Add labels
kvect_source.data.update(
x=[x_spacing / 4, -0.1],
y=[x_spacing / 4 - 0.5, y_spacing / 2],
text=[xlabel_str, ylabel_str],
)
# Plot grid lines
xs, ys = [], []
xs_minor, ys_minor = [], []
for yy in np.arange(min_grid_y, max_grid_y, 1):
# Calculate end and start point
hkl1 = min_grid_x * x_dir + yy * y_dir
hkl2 = max_grid_x * x_dir + yy * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs.append([x1, x2])
ys.append([y1, y2])
for xx in np.arange(min_grid_x, max_grid_x, 1):
# Calculate end and start point
hkl1 = xx * x_dir + min_grid_y * y_dir
hkl2 = xx * x_dir + max_grid_y * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs.append([x1, x2])
ys.append([y1, y2])
for yy in np.arange(min_grid_y, max_grid_y, 0.5):
# Calculate end and start point
hkl1 = min_grid_x * x_dir + yy * y_dir
hkl2 = max_grid_x * x_dir + yy * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs_minor.append([x1, x2])
ys_minor.append([y1, y2])
for xx in np.arange(min_grid_x, max_grid_x, 0.5):
# Calculate end and start point
hkl1 = xx * x_dir + min_grid_y * y_dir
hkl2 = xx * x_dir + max_grid_y * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs_minor.append([x1, x2])
ys_minor.append([y1, y2])
grid_source.data.update(xs=xs, ys=ys)
minor_grid_source.data.update(xs=xs_minor, ys=ys_minor)
# Prepare hkl/mhkl data
hkl_coord2 = []
for j, fname in enumerate(upload_hkl_fi.filename):
with io.StringIO(base64.b64decode(upload_hkl_fi.value[j]).decode()) as file:
_, ext = os.path.splitext(fname)
try:
fdata = pyzebra.parse_hkl(file, ext)
except Exception as e:
log.exception(e)
return
for ind in range(len(fdata["counts"])):
# Recognize k_flag_vec
hkl = np.array([fdata["h"][ind], fdata["k"][ind], fdata["l"][ind]])
# Save data
hkl_coord2.append(hkl)
def _update_slice():
cut_tol = hkl_delta.value
cut_or = hkl_cut.value
# different symbols based on file number
file_flag = 0 in disting_opt_cb.active
# scale marker size according to intensity
intensity_flag = 1 in disting_opt_cb.active
# use color to mark different propagation vectors
prop_legend_flag = 2 in disting_opt_cb.active
# use resolution ellipsis
res_flag = disting_opt_rb.active
el_x, el_y, el_w, el_h, el_c = [], [], [], [], []
scan_xs, scan_ys, scan_x, scan_y = [], [], [], []
scan_m, scan_s, scan_c, scan_l, scan_hkl = [], [], [], [], []
for j in range(len(hkl_coord)):
# Get middle hkl from list
hklm = M @ hkl_coord[j][2]
# Decide if point is in the cut
proj = np.dot(hklm, o_c)
if abs(proj - cut_or) >= cut_tol:
continue
hkl1 = M @ hkl_coord[j][0]
hkl2 = M @ hkl_coord[j][1]
# Project onto axes
hkl1x = np.dot(hkl1, x_c)
hkl1y = np.dot(hkl1, y_vert)
hkl2x = np.dot(hkl2, x_c)
hkl2y = np.dot(hkl2, y_vert)
hklmx = np.dot(hklm, x_c)
hklmy = np.dot(hklm, y_vert)
if intensity_flag:
markersize = max(6, int(intensity_vec[j] / max(intensity_vec) * 30))
else:
markersize = 6
if file_flag:
plot_symbol = syms[file_flag_vec[j]]
else:
plot_symbol = "circle"
if prop_legend_flag:
col_value = cmap[k_flag_vec[j]]
else:
col_value = "black"
if res_flag:
# Generate series of circles along scan line
res = res_vec[j]
el_x.extend(np.linspace(hkl1x, hkl2x, num=res_N))
el_y.extend(np.linspace(hkl1y, hkl2y, num=res_N))
el_w.extend([res / 2] * res_N)
el_h.extend([res / 2] * res_N)
el_c.extend([col_value] * res_N)
else:
# Plot scan line
scan_xs.append([hkl1x, hkl2x])
scan_ys.append([hkl1y, hkl2y])
# Plot middle point of scan
scan_x.append(hklmx)
scan_y.append(hklmy)
scan_m.append(plot_symbol)
scan_s.append(markersize)
# Color and legend label
scan_c.append(col_value)
scan_l.append(md_fnames[file_flag_vec[j]])
scan_hkl.append(hkl_coord[j][2])
ellipse_source.data.update(x=el_x, y=el_y, width=el_w, height=el_h, c=el_c)
scan_source.data.update(
xs=scan_xs,
ys=scan_ys,
x=scan_x,
y=scan_y,
m=scan_m,
s=scan_s,
c=scan_c,
l=scan_l,
hkl=scan_hkl,
)
# Legend items for different file entries (symbol)
legend_items = []
if not res_flag and file_flag:
labels, inds = np.unique(scan_source.data["l"], return_index=True)
for label, ind in zip(labels, inds):
legend_items.append(LegendItem(label=label, renderers=[scatter], index=ind))
# Legend items for propagation vector (color)
if prop_legend_flag:
if res_flag:
source, render = ellipse_source, ellipse
else:
source, render = scan_source, mline
labels, inds = np.unique(source.data["c"], return_index=True)
for label, ind in zip(labels, inds):
label = f"k={k[cmap.index(label)]}"
legend_items.append(LegendItem(label=label, renderers=[render], index=ind))
plot.legend.items = legend_items
scan_x2, scan_y2, scan_hkl2 = [], [], []
for j in range(len(hkl_coord2)):
# Get middle hkl from list
hklm = M @ hkl_coord2[j]
# Decide if point is in the cut
proj = np.dot(hklm, o_c)
if abs(proj - cut_or) >= cut_tol:
continue
# Project onto axes
hklmx = np.dot(hklm, x_c)
hklmy = np.dot(hklm, y_vert)
scan_x2.append(hklmx)
scan_y2.append(hklmy)
scan_hkl2.append(hkl_coord2[j])
scatter_source2.data.update(x=scan_x2, y=scan_y2, hkl=scan_hkl2)
return _update_slice
def plot_file_callback():
nonlocal _update_slice
_update_slice = _prepare_plotting()
_update_slice()
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
plot_file.on_click(plot_file_callback)
plot = figure(height=550, width=550 + 32, tools="pan,wheel_zoom,reset")
plot.toolbar.logo = None
plot.xaxis.visible = False
plot.xgrid.visible = False
plot.yaxis.visible = False
plot.ygrid.visible = False
arrow1 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10))
plot.add_layout(arrow1)
arrow2 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10))
plot.add_layout(arrow2)
kvect_source = ColumnDataSource(dict(x=[], y=[], text=[]))
plot.text(source=kvect_source)
grid_source = ColumnDataSource(dict(xs=[], ys=[]))
plot.multi_line(source=grid_source, line_color="gray")
minor_grid_source = ColumnDataSource(dict(xs=[], ys=[]))
plot.multi_line(source=minor_grid_source, line_color="gray", line_dash="dotted")
ellipse_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[], c=[]))
ellipse = plot.ellipse(source=ellipse_source, fill_color="c", line_color="c")
scan_source = ColumnDataSource(
dict(xs=[], ys=[], x=[], y=[], m=[], s=[], c=[], l=[], hkl=[])
)
mline = plot.multi_line(source=scan_source, line_color="c")
scatter = plot.scatter(
source=scan_source, marker="m", size="s", fill_color="c", line_color="c"
)
scatter_source2 = ColumnDataSource(dict(x=[], y=[], hkl=[]))
scatter2 = plot.scatter(
source=scatter_source2, size=4, fill_color="green", line_color="green"
)
plot.x_range.renderers = [ellipse, mline, scatter, scatter2]
plot.y_range.renderers = [ellipse, mline, scatter, scatter2]
plot.add_layout(Legend(items=[], location="top_left", click_policy="hide"))
plot.add_tools(HoverTool(renderers=[scatter, scatter2], tooltips=[("hkl", "@hkl")]))
hkl_div = Div(text="HKL:", margin=(5, 5, 0, 5))
hkl_normal = TextInput(title="normal", value="0 0 1", width=70)
def hkl_cut_callback(_attr, _old, _new):
if _update_slice is not None:
_update_slice()
hkl_cut = Spinner(title="cut", value=0, step=0.1, width=70)
hkl_cut.on_change("value_throttled", hkl_cut_callback)
hkl_delta = NumericInput(title="delta", value=0.1, mode="float", width=70)
hkl_in_plane_x = TextInput(title="in-plane X", value="1 0 0", width=70)
hkl_in_plane_y = TextInput(title="in-plane Y", value="", width=100, disabled=True)
disting_opt_div = Div(text="Distinguish options:", margin=(5, 5, 0, 5))
disting_opt_cb = CheckboxGroup(
labels=["files (symbols)", "intensities (size)", "k vectors nucl/magn (colors)"],
active=[0, 1, 2],
width=200,
)
disting_opt_rb = RadioGroup(
labels=["scan direction", "resolution ellipsoid"], active=0, width=200
)
k_vectors = TextAreaInput(
title="k vectors:", value="0.0 0.0 0.0\n0.5 0.0 0.0\n0.5 0.5 0.0", width=150
)
res_mult_ni = NumericInput(title="Resolution mult:", value=10, mode="int", width=100)
tol_k_ni = NumericInput(title="k tolerance:", value=0.01, mode="float", width=100)
def show_legend_cb_callback(_attr, _old, new):
plot.legend.visible = 0 in new
show_legend_cb = CheckboxGroup(labels=["Show legend"], active=[0])
show_legend_cb.on_change("active", show_legend_cb_callback)
layout = column(
row(
column(row(measured_data_div, measured_data), row(upload_hkl_div, upload_hkl_fi)),
plot_file,
),
row(
plot,
column(
hkl_div,
row(hkl_normal, hkl_cut, hkl_delta),
row(hkl_in_plane_x, hkl_in_plane_y),
k_vectors,
row(tol_k_ni, res_mult_ni),
disting_opt_div,
disting_opt_cb,
disting_opt_rb,
show_legend_cb,
),
),
)
self.layout = layout

View File

@ -1,47 +1,56 @@
import logging
import os
import re
from ast import literal_eval
from collections import defaultdict
import numpy as np
logger = logging.getLogger(__name__)
META_VARS_STR = (
"instrument",
"title",
"sample",
"comment",
"user",
"ProposalID",
"proposal_id",
"original_filename",
"date",
"zebra_mode",
"proposal",
"proposal_user",
"proposal_title",
"proposal_email",
"detectorDistance",
"zebramode",
"sample_name",
)
META_VARS_FLOAT = (
"omega",
"mf",
"2-theta",
"chi",
"phi",
"nu",
"temp",
"wavelenght",
"a",
"b",
"c",
"alpha",
"beta",
"gamma",
"omega",
"chi",
"phi",
"temp",
"mf",
"temperature",
"magnetic_field",
"cex1",
"cex2",
"wavelength",
"mexz",
"moml",
"mcvl",
"momu",
"mcvu",
"2-theta",
"twotheta",
"nu",
"gamma_angle",
"polar_angle",
"tilt_angle",
"distance",
"distance_an",
"snv",
"snh",
"snvm",
@ -54,9 +63,16 @@ META_VARS_FLOAT = (
"s2vb",
"s2hr",
"s2hl",
"a5",
"a6",
"a4t",
"s2ant",
"s2anb",
"s2anl",
"s2anr",
)
META_UB_MATRIX = ("ub1j", "ub2j", "ub3j")
META_UB_MATRIX = ("ub1j", "ub2j", "ub3j", "UB")
CCL_FIRST_LINE = (("idx", int), ("h", float), ("k", float), ("l", float))
@ -93,47 +109,68 @@ def load_1D(filepath):
"""
with open(filepath, "r") as infile:
_, ext = os.path.splitext(filepath)
det_variables = parse_1D(infile, data_type=ext)
dataset = parse_1D(infile, data_type=ext)
return det_variables
return dataset
def parse_1D(fileobj, data_type):
def parse_1D(fileobj, data_type, log=logger):
metadata = {"data_type": data_type}
# read metadata
for line in fileobj:
if "=" in line:
variable, value = line.split("=", 1)
variable = variable.strip()
value = value.strip()
if variable in META_VARS_STR:
metadata[variable] = value
elif variable in META_VARS_FLOAT:
if variable == "2-theta": # fix that angle name not to be an expression
variable = "twotheta"
if variable in ("a", "b", "c", "alpha", "beta", "gamma"):
variable += "_cell"
metadata[variable] = float(value)
elif variable in META_UB_MATRIX:
if "ub" not in metadata:
metadata["ub"] = np.zeros((3, 3))
row = int(variable[-2]) - 1
metadata["ub"][row, :] = list(map(float, value.split()))
if "#data" in line:
# this is the end of metadata and the start of data section
break
if "=" not in line:
# skip comments / empty lines
continue
var_name, value = line.split("=", 1)
var_name = var_name.strip()
value = value.strip()
if value == "UNKNOWN":
metadata[var_name] = None
continue
try:
if var_name in META_VARS_STR:
if var_name == "zebramode":
var_name = "zebra_mode"
metadata[var_name] = value
elif var_name in META_VARS_FLOAT:
if var_name == "2-theta": # fix that angle name not to be an expression
var_name = "twotheta"
if var_name == "temperature":
var_name = "temp"
if var_name == "magnetic_field":
var_name = "mf"
if var_name in ("a", "b", "c", "alpha", "beta", "gamma"):
var_name += "_cell"
metadata[var_name] = float(value)
elif var_name in META_UB_MATRIX:
if var_name == "UB":
metadata["ub"] = np.array(literal_eval(value)).reshape(3, 3)
else:
if "ub" not in metadata:
metadata["ub"] = np.zeros((3, 3))
row = int(var_name[-2]) - 1
metadata["ub"][row, :] = list(map(float, value.split()))
except Exception:
log.error(f"Error reading {var_name} with value '{value}'")
metadata[var_name] = 0
# handle older files that don't contain "zebra_mode" metadata
if "zebra_mode" not in metadata:
metadata["zebra_mode"] = "nb"
# read data
scan = []
dataset = []
if data_type == ".ccl":
ccl_first_line = CCL_FIRST_LINE + CCL_ANGLES[metadata["zebra_mode"]]
ccl_second_line = CCL_SECOND_LINE
@ -143,57 +180,73 @@ def parse_1D(fileobj, data_type):
if not line or line.isspace():
continue
s = {}
s["export"] = True
scan = {}
scan["export"] = True
# first line
for param, (param_name, param_type) in zip(line.split(), ccl_first_line):
s[param_name] = param_type(param)
scan[param_name] = param_type(param)
# rename 0 index scan to 1
if scan["idx"] == 0:
scan["idx"] = 1
# second line
next_line = next(fileobj)
for param, (param_name, param_type) in zip(next_line.split(), ccl_second_line):
s[param_name] = param_type(param)
scan[param_name] = param_type(param)
if s["scan_motor"] != "om":
if "scan_motor" not in scan:
scan["scan_motor"] = "om"
if scan["scan_motor"] == "o2t":
scan["scan_motor"] = "om"
if scan["scan_motor"] != "om":
raise Exception("Unsupported variable name in ccl file.")
# "om" -> "omega"
s["scan_motor"] = "omega"
s["scan_motors"] = ["omega", ]
scan["scan_motor"] = "omega"
scan["scan_motors"] = ["omega"]
# overwrite metadata, because it only refers to the scan center
half_dist = (s["n_points"] - 1) / 2 * s["angle_step"]
s["omega"] = np.linspace(s["omega"] - half_dist, s["omega"] + half_dist, s["n_points"])
half_dist = (scan["n_points"] - 1) / 2 * scan["angle_step"]
scan["omega"] = np.linspace(
scan["omega"] - half_dist, scan["omega"] + half_dist, scan["n_points"]
)
# subsequent lines with counts
counts = []
while len(counts) < s["n_points"]:
while len(counts) < scan["n_points"]:
counts.extend(map(float, next(fileobj).split()))
s["counts"] = np.array(counts)
s["counts_err"] = np.sqrt(np.maximum(s["counts"], 1))
scan["counts"] = np.array(counts)
scan["counts_err"] = np.sqrt(np.maximum(scan["counts"], 1))
if s["h"].is_integer() and s["k"].is_integer() and s["l"].is_integer():
s["h"], s["k"], s["l"] = map(int, (s["h"], s["k"], s["l"]))
if scan["h"].is_integer() and scan["k"].is_integer() and scan["l"].is_integer():
scan["h"], scan["k"], scan["l"] = map(int, (scan["h"], scan["k"], scan["l"]))
scan.append({**metadata, **s})
dataset.append({**metadata, **scan})
elif data_type == ".dat":
# TODO: this might need to be adapted in the future, when "gamma" will be added to dat files
if metadata["zebra_mode"] == "nb":
metadata["gamma"] = metadata["twotheta"]
if "gamma_angle" in metadata:
# support for the new format
metadata["gamma"] = metadata["gamma_angle"]
else:
metadata["gamma"] = metadata["twotheta"]
s = defaultdict(list)
s["export"] = True
scan = defaultdict(list)
scan["export"] = True
match = re.search("Scanning Variables: (.*), Steps: (.*)", next(fileobj))
motors = [motor.lower() for motor in match.group(1).split(", ")]
steps = [float(step) for step in match.group(2).split()]
motors = [motor.strip().lower() for motor in match.group(1).split(",")]
# Steps can be separated by " " or ", "
steps = [float(step.strip(",")) for step in match.group(2).split()]
match = re.search("(.*) Points, Mode: (.*), Preset (.*)", next(fileobj))
if match.group(2) != "Monitor":
raise Exception("Unknown mode in dat file.")
s["n_points"] = int(match.group(1))
s["monitor"] = float(match.group(3))
scan["n_points"] = int(match.group(1))
scan["monitor"] = float(match.group(3))
col_names = list(map(str.lower, next(fileobj).split()))
@ -203,56 +256,56 @@ def parse_1D(fileobj, data_type):
break
for name, val in zip(col_names, line.split()):
s[name].append(float(val))
scan[name].append(float(val))
for name in col_names:
s[name] = np.array(s[name])
scan[name] = np.array(scan[name])
s["counts_err"] = np.sqrt(np.maximum(s["counts"], 1))
scan["counts_err"] = np.sqrt(np.maximum(scan["counts"], 1))
s["scan_motors"] = []
scan["scan_motors"] = []
for motor, step in zip(motors, steps):
if step == 0:
# it's not a scan motor, so keep only the median value
s[motor] = np.median(s[motor])
scan[motor] = np.median(scan[motor])
else:
s["scan_motors"].append(motor)
scan["scan_motors"].append(motor)
# "om" -> "omega"
if "om" in s["scan_motors"]:
s["scan_motors"][s["scan_motors"].index("om")] = "omega"
s["omega"] = s["om"]
del s["om"]
if "om" in scan["scan_motors"]:
scan["scan_motors"][scan["scan_motors"].index("om")] = "omega"
scan["omega"] = scan["om"]
del scan["om"]
# "tt" -> "temp"
if "tt" in s["scan_motors"]:
s["scan_motors"][s["scan_motors"].index("tt")] = "temp"
s["temp"] = s["tt"]
del s["tt"]
if "tt" in scan["scan_motors"]:
scan["scan_motors"][scan["scan_motors"].index("tt")] = "temp"
scan["temp"] = scan["tt"]
del scan["tt"]
# "mf" stays "mf"
# "phi" stays "phi"
s["scan_motor"] = s["scan_motors"][0]
scan["scan_motor"] = scan["scan_motors"][0]
if "h" not in s:
s["h"] = s["k"] = s["l"] = float("nan")
if "h" not in scan:
scan["h"] = scan["k"] = scan["l"] = float("nan")
for param in ("mf", "temp"):
if param not in metadata:
s[param] = 0
scan[param] = 0
s["idx"] = 1
scan["idx"] = 1
scan.append({**metadata, **s})
dataset.append({**metadata, **scan})
else:
print("Unknown file extention")
log.error("Unknown file extention")
return scan
return dataset
def export_1D(data, path, export_target, hkl_precision=2):
def export_1D(dataset, path, export_target, hkl_precision=2):
"""Exports data in the .comm/.incomm format for fullprof or .col/.incol format for jana.
Scans with integer/real hkl values are saved in .comm/.incomm or .col/.incol files
@ -262,11 +315,11 @@ def export_1D(data, path, export_target, hkl_precision=2):
if export_target not in EXPORT_TARGETS:
raise ValueError(f"Unknown export target: {export_target}.")
zebra_mode = data[0]["zebra_mode"]
zebra_mode = dataset[0]["zebra_mode"]
exts = EXPORT_TARGETS[export_target]
file_content = {ext: [] for ext in exts}
for scan in data:
for scan in dataset:
if "fit" not in scan:
continue
@ -306,7 +359,7 @@ def export_1D(data, path, export_target, hkl_precision=2):
out_file.writelines(content)
def export_ccl_compare(data1, data2, path, export_target, hkl_precision=2):
def export_ccl_compare(dataset1, dataset2, path, export_target, hkl_precision=2):
"""Exports compare data in the .comm/.incomm format for fullprof or .col/.incol format for jana.
Scans with integer/real hkl values are saved in .comm/.incomm or .col/.incol files
@ -316,11 +369,11 @@ def export_ccl_compare(data1, data2, path, export_target, hkl_precision=2):
if export_target not in EXPORT_TARGETS:
raise ValueError(f"Unknown export target: {export_target}.")
zebra_mode = data1[0]["zebra_mode"]
zebra_mode = dataset1[0]["zebra_mode"]
exts = EXPORT_TARGETS[export_target]
file_content = {ext: [] for ext in exts}
for scan1, scan2 in zip(data1, data2):
for scan1, scan2 in zip(dataset1, dataset2):
if "fit" not in scan1:
continue
@ -336,7 +389,7 @@ def export_ccl_compare(data1, data2, path, export_target, hkl_precision=2):
area_n1, area_s1 = scan1["area"]
area_n2, area_s2 = scan2["area"]
area_n = area_n1 - area_n2
area_s = np.sqrt(area_s1 ** 2 + area_s2 ** 2)
area_s = np.sqrt(area_s1**2 + area_s2**2)
area_str = f"{area_n:10.2f}{area_s:10.2f}"
ang_str = ""
@ -363,9 +416,9 @@ def export_ccl_compare(data1, data2, path, export_target, hkl_precision=2):
out_file.writelines(content)
def export_param_study(data, param_data, path):
def export_param_study(dataset, param_data, path):
file_content = []
for scan, param in zip(data, param_data):
for scan, param in zip(dataset, param_data):
if "fit" not in scan:
continue
@ -380,7 +433,11 @@ def export_param_study(data, param_data, path):
fit_str = ""
for fit_param in scan["fit"].params.values():
fit_str = fit_str + f"{fit_param.value:<20.2f}" + f"{fit_param.stderr:<20.2f}"
fit_param_val = fit_param.value
fit_param_std = fit_param.stderr
if fit_param_std is None:
fit_param_std = 0
fit_str = fit_str + f"{fit_param_val:<20.2f}" + f"{fit_param_std:<20.2f}"
_, fname_str = os.path.split(scan["original_filename"])

View File

@ -1,10 +1,13 @@
import logging
import os
import numpy as np
from lmfit.models import Gaussian2dModel, GaussianModel, LinearModel, PseudoVoigtModel, VoigtModel
from lmfit.models import GaussianModel, LinearModel, PseudoVoigtModel, VoigtModel
from scipy.integrate import simpson, trapezoid
from .ccl_io import CCL_ANGLES
from pyzebra import CCL_ANGLES
logger = logging.getLogger(__name__)
PARAM_PRECISIONS = {
"twotheta": 0.1,
@ -18,9 +21,9 @@ PARAM_PRECISIONS = {
"ub": 0.01,
}
MAX_RANGE_GAP = {
"omega": 0.5,
}
MAX_RANGE_GAP = {"omega": 0.5}
MOTOR_POS_PRECISION = 0.01
AREA_METHODS = ("fit_area", "int_area")
@ -33,12 +36,12 @@ def normalize_dataset(dataset, monitor=100_000):
scan["monitor"] = monitor
def merge_duplicates(dataset):
merged = np.zeros(len(dataset), dtype=np.bool)
def merge_duplicates(dataset, log=logger):
merged = np.zeros(len(dataset), dtype=bool)
for ind_into, scan_into in enumerate(dataset):
for ind_from, scan_from in enumerate(dataset[ind_into + 1 :], start=ind_into + 1):
if _parameters_match(scan_into, scan_from) and not merged[ind_from]:
merge_scans(scan_into, scan_from)
merge_scans(scan_into, scan_from, log=log)
merged[ind_from] = True
@ -47,45 +50,58 @@ def _parameters_match(scan1, scan2):
if zebra_mode != scan2["zebra_mode"]:
return False
for param in ("ub", "temp", "mf", *(vars[0] for vars in CCL_ANGLES[zebra_mode])):
for param in ("ub", *(vars[0] for vars in CCL_ANGLES[zebra_mode])):
if param.startswith("skip"):
# ignore skip parameters, like the last angle in 'nb' zebra mode
continue
if param == scan1["scan_motor"] == scan2["scan_motor"]:
# check if ranges of variable parameter overlap
range1 = scan1[param]
range2 = scan2[param]
r1_start, r1_end = scan1[param][0], scan1[param][-1]
r2_start, r2_end = scan2[param][0], scan2[param][-1]
# support reversed ranges
if r1_start > r1_end:
r1_start, r1_end = r1_end, r1_start
if r2_start > r2_end:
r2_start, r2_end = r2_end, r2_start
# maximum gap between ranges of the scanning parameter (default 0)
max_range_gap = MAX_RANGE_GAP.get(param, 0)
if max(range1[0] - range2[-1], range2[0] - range1[-1]) > max_range_gap:
if max(r1_start - r2_end, r2_start - r1_end) > max_range_gap:
return False
elif np.max(np.abs(scan1[param] - scan2[param])) > PARAM_PRECISIONS[param]:
elif (
np.max(np.abs(np.median(scan1[param]) - np.median(scan2[param])))
> PARAM_PRECISIONS[param]
):
return False
return True
def merge_datasets(dataset_into, dataset_from):
def merge_datasets(dataset_into, dataset_from, log=logger):
scan_motors_into = dataset_into[0]["scan_motors"]
scan_motors_from = dataset_from[0]["scan_motors"]
if scan_motors_into != scan_motors_from:
print(f"Scan motors mismatch between datasets: {scan_motors_into} vs {scan_motors_from}")
log.warning(
f"Scan motors mismatch between datasets: {scan_motors_into} vs {scan_motors_from}"
)
return
merged = np.zeros(len(dataset_from), dtype=np.bool)
merged = np.zeros(len(dataset_from), dtype=bool)
for scan_into in dataset_into:
for ind, scan_from in enumerate(dataset_from):
if _parameters_match(scan_into, scan_from) and not merged[ind]:
merge_scans(scan_into, scan_from)
if scan_into["counts"].ndim == 3:
merge_h5_scans(scan_into, scan_from, log=log)
else: # scan_into["counts"].ndim == 1
merge_scans(scan_into, scan_from, log=log)
merged[ind] = True
for scan_from in dataset_from:
dataset_into.append(scan_from)
def merge_scans(scan_into, scan_from):
def merge_scans(scan_into, scan_from, log=logger):
if "init_scan" not in scan_into:
scan_into["init_scan"] = scan_into.copy()
@ -117,7 +133,7 @@ def merge_scans(scan_into, scan_from):
err_tmp = err_all[:1]
num_tmp = np.array([1])
for pos, val, err in zip(pos_all[1:], val_all[1:], err_all[1:]):
if pos - pos_tmp[-1] < 0.0005:
if pos - pos_tmp[-1] < MOTOR_POS_PRECISION:
# the repeated motor position
val_tmp[-1] += val
err_tmp[-1] += err
@ -137,7 +153,71 @@ def merge_scans(scan_into, scan_from):
fname1 = os.path.basename(scan_into["original_filename"])
fname2 = os.path.basename(scan_from["original_filename"])
print(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
log.info(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
def merge_h5_scans(scan_into, scan_from, log=logger):
if "init_scan" not in scan_into:
scan_into["init_scan"] = scan_into.copy()
if "merged_scans" not in scan_into:
scan_into["merged_scans"] = []
for scan in scan_into["merged_scans"]:
if scan_from is scan:
log.warning("Already merged scan")
return
scan_into["merged_scans"].append(scan_from)
scan_motor = scan_into["scan_motor"] # the same as scan_from["scan_motor"]
pos_all = [scan_into["init_scan"][scan_motor]]
val_all = [scan_into["init_scan"]["counts"]]
err_all = [scan_into["init_scan"]["counts_err"] ** 2]
for scan in scan_into["merged_scans"]:
pos_all.append(scan[scan_motor])
val_all.append(scan["counts"])
err_all.append(scan["counts_err"] ** 2)
pos_all = np.concatenate(pos_all)
val_all = np.concatenate(val_all)
err_all = np.concatenate(err_all)
sort_index = np.argsort(pos_all)
pos_all = pos_all[sort_index]
val_all = val_all[sort_index]
err_all = err_all[sort_index]
pos_tmp = [pos_all[0]]
val_tmp = [val_all[:1]]
err_tmp = [err_all[:1]]
num_tmp = [1]
for pos, val, err in zip(pos_all[1:], val_all[1:], err_all[1:]):
if pos - pos_tmp[-1] < MOTOR_POS_PRECISION:
# the repeated motor position
val_tmp[-1] += val
err_tmp[-1] += err
num_tmp[-1] += 1
else:
# a new motor position
pos_tmp.append(pos)
val_tmp.append(val[None, :])
err_tmp.append(err[None, :])
num_tmp.append(1)
pos_tmp = np.array(pos_tmp)
val_tmp = np.concatenate(val_tmp)
err_tmp = np.concatenate(err_tmp)
num_tmp = np.array(num_tmp)
scan_into[scan_motor] = pos_tmp
scan_into["counts"] = val_tmp / num_tmp[:, None, None]
scan_into["counts_err"] = np.sqrt(err_tmp) / num_tmp[:, None, None]
scan_from["export"] = False
fname1 = os.path.basename(scan_into["original_filename"])
fname2 = os.path.basename(scan_from["original_filename"])
log.info(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
def restore_scan(scan):
@ -155,7 +235,7 @@ def restore_scan(scan):
scan["export"] = True
def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
def fit_scan(scan, model_dict, fit_from=None, fit_to=None, log=logger):
if fit_from is None:
fit_from = -np.inf
if fit_to is None:
@ -168,7 +248,7 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
# apply fitting range
fit_ind = (fit_from <= x_fit) & (x_fit <= fit_to)
if not np.any(fit_ind):
print(f"No data in fit range for scan {scan['idx']}")
log.warning(f"No data in fit range for scan {scan['idx']}")
return
y_fit = y_fit[fit_ind]
@ -259,31 +339,3 @@ def get_area(scan, area_method, lorentz):
area_s = np.abs(area_s * corr_factor)
scan["area"] = (area_v, area_s)
def fit_event(scan, fr_from, fr_to, y_from, y_to, x_from, x_to):
data_roi = scan["data"][fr_from:fr_to, y_from:y_to, x_from:x_to]
model = GaussianModel()
fr = np.arange(fr_from, fr_to)
counts_per_fr = np.sum(data_roi, axis=(1, 2))
params = model.guess(counts_per_fr, fr)
result = model.fit(counts_per_fr, x=fr, params=params)
frC = result.params["center"].value
intensity = result.params["height"].value
counts_std = counts_per_fr.std()
counts_mean = counts_per_fr.mean()
snr = 0 if counts_std == 0 else counts_mean / counts_std
model = Gaussian2dModel()
xs, ys = np.meshgrid(np.arange(x_from, x_to), np.arange(y_from, y_to))
xs = xs.flatten()
ys = ys.flatten()
counts = np.sum(data_roi, axis=0).flatten()
params = model.guess(counts, xs, ys)
result = model.fit(counts, x=xs, y=ys, params=params)
xC = result.params["centerx"].value
yC = result.params["centery"].value
scan["fit"] = {"frame": frC, "x_pos": xC, "y_pos": yC, "intensity": intensity, "snr": snr}

View File

@ -1,10 +1,11 @@
import h5py
import numpy as np
from lmfit.models import Gaussian2dModel, GaussianModel
META_MATRIX = ("UB",)
META_CELL = ("cell",)
META_STR = ("name",)
META_MATRIX = ("UB")
META_CELL = ("cell")
META_STR = ("name")
def read_h5meta(filepath):
"""Open and parse content of a h5meta file.
@ -46,9 +47,9 @@ def parse_h5meta(file):
if variable in META_STR:
pass
elif variable in META_CELL:
value = np.array(value.split(",")[:6], dtype=np.float)
value = np.array(value.split(",")[:6], dtype=float)
elif variable in META_MATRIX:
value = np.array(value.split(",")[:9], dtype=np.float).reshape(3, 3)
value = np.array(value.split(",")[:9], dtype=float).reshape(3, 3)
else: # default is a single float number
value = float(value)
content[section][variable] = value
@ -68,71 +69,144 @@ def read_detector_data(filepath, cami_meta=None):
ndarray: A 3D array of data, omega, gamma, nu.
"""
with h5py.File(filepath, "r") as h5f:
data = h5f["/entry1/area_detector2/data"][:]
counts = h5f["/entry1/area_detector2/data"][:].astype(float)
# reshape data to a correct shape (2006 issue)
n, cols, rows = data.shape
data = data.reshape(n, rows, cols)
n, cols, rows = counts.shape
if "/entry1/experiment_identifier" in h5f: # old format
# reshape images (counts) to a correct shape (2006 issue)
counts = counts.reshape(n, rows, cols)
else:
counts = counts.swapaxes(1, 2)
det_data = {"data": data}
det_data["original_filename"] = filepath
scan = {"counts": counts, "counts_err": np.sqrt(np.maximum(counts, 1))}
scan["original_filename"] = filepath
scan["export"] = True
if "/entry1/zebra_mode" in h5f:
det_data["zebra_mode"] = h5f["/entry1/zebra_mode"][0].decode()
scan["zebra_mode"] = h5f["/entry1/zebra_mode"][0].decode()
else:
det_data["zebra_mode"] = "nb"
scan["zebra_mode"] = "nb"
# overwrite zebra_mode from cami
if cami_meta is not None:
if "zebra_mode" in cami_meta:
det_data["zebra_mode"] = cami_meta["zebra_mode"][0]
scan["zebra_mode"] = cami_meta["zebra_mode"][0]
# om, sometimes ph
if det_data["zebra_mode"] == "nb":
det_data["omega"] = h5f["/entry1/area_detector2/rotation_angle"][:]
else: # bi
det_data["omega"] = h5f["/entry1/sample/rotation_angle"][:]
if "/entry1/control/Monitor" in h5f:
scan["monitor"] = h5f["/entry1/control/Monitor"][0]
else: # old path
scan["monitor"] = h5f["/entry1/control/data"][0]
det_data["gamma"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:] # gammad
det_data["nu"] = h5f["/entry1/ZEBRA/area_detector2/tilt_angle"][:] # nud
det_data["ddist"] = h5f["/entry1/ZEBRA/area_detector2/distance"][:]
det_data["wave"] = h5f["/entry1/ZEBRA/monochromator/wavelength"][:]
det_data["chi"] = h5f["/entry1/sample/chi"][:] # ch
det_data["phi"] = h5f["/entry1/sample/phi"][:] # ph
det_data["ub"] = h5f["/entry1/sample/UB"][:].reshape(3, 3)
det_data["name"] = h5f["/entry1/sample/name"][0].decode()
det_data["cell"] = h5f["/entry1/sample/cell"][:]
scan["idx"] = 1
for var in ("omega", "gamma", "nu", "chi", "phi"):
if abs(det_data[var][0] - det_data[var][-1]) > 0.1:
det_data["scan_motor"] = var
break
if "/entry1/sample/rotation_angle" in h5f:
scan["omega"] = h5f["/entry1/sample/rotation_angle"][:]
else:
raise ValueError("No angles that vary")
scan["omega"] = h5f["/entry1/area_detector2/rotation_angle"][:]
if len(scan["omega"]) == 1:
scan["omega"] = np.ones(n) * scan["omega"]
scan["gamma"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:]
scan["twotheta"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:]
if len(scan["gamma"]) == 1:
scan["gamma"] = np.ones(n) * scan["gamma"]
scan["twotheta"] = np.ones(n) * scan["twotheta"]
scan["nu"] = h5f["/entry1/ZEBRA/area_detector2/tilt_angle"][0]
scan["ddist"] = h5f["/entry1/ZEBRA/area_detector2/distance"][0]
scan["wave"] = h5f["/entry1/ZEBRA/monochromator/wavelength"][0]
if scan["zebra_mode"] == "nb":
scan["chi"] = np.array([180])
scan["phi"] = np.array([0])
elif scan["zebra_mode"] == "bi":
scan["chi"] = h5f["/entry1/sample/chi"][:]
scan["phi"] = h5f["/entry1/sample/phi"][:]
if len(scan["chi"]) == 1:
scan["chi"] = np.ones(n) * scan["chi"]
if len(scan["phi"]) == 1:
scan["phi"] = np.ones(n) * scan["phi"]
if h5f["/entry1/sample/UB"].size == 0:
scan["ub"] = np.eye(3) * 0.177
else:
scan["ub"] = h5f["/entry1/sample/UB"][:].reshape(3, 3)
scan["name"] = h5f["/entry1/sample/name"][0].decode()
scan["cell"] = h5f["/entry1/sample/cell"][:]
if n == 1:
# a default motor for a single frame file
scan["scan_motor"] = "omega"
else:
for var in ("omega", "gamma", "chi", "phi"): # TODO: also nu?
if abs(scan[var][0] - scan[var][-1]) > 0.1:
scan["scan_motor"] = var
break
else:
raise ValueError("No angles that vary")
scan["scan_motors"] = [scan["scan_motor"]]
# optional parameters
if "/entry1/sample/magnetic_field" in h5f:
det_data["mf"] = h5f["/entry1/sample/magnetic_field"][:]
scan["mf"] = h5f["/entry1/sample/magnetic_field"][:]
if "mf" in scan:
# TODO: NaNs are not JSON compliant, so replace them with None
# this is not a great solution, but makes it safe to use the array in bokeh
scan["mf"] = np.where(np.isnan(scan["mf"]), None, scan["mf"])
if "/entry1/sample/temperature" in h5f:
det_data["temp"] = h5f["/entry1/sample/temperature"][:]
scan["temp"] = h5f["/entry1/sample/temperature"][:]
elif "/entry1/sample/Ts/value" in h5f:
scan["temp"] = h5f["/entry1/sample/Ts/value"][:]
if "temp" in scan:
# TODO: NaNs are not JSON compliant, so replace them with None
# this is not a great solution, but makes it safe to use the array in bokeh
scan["temp"] = np.where(np.isnan(scan["temp"]), None, scan["temp"])
# overwrite metadata from .cami
if cami_meta is not None:
if "crystal" in cami_meta:
cami_meta_crystal = cami_meta["crystal"]
if "name" in cami_meta_crystal:
det_data["name"] = cami_meta_crystal["name"]
scan["name"] = cami_meta_crystal["name"]
if "UB" in cami_meta_crystal:
det_data["ub"] = cami_meta_crystal["UB"]
scan["ub"] = cami_meta_crystal["UB"]
if "cell" in cami_meta_crystal:
det_data["cell"] = cami_meta_crystal["cell"]
scan["cell"] = cami_meta_crystal["cell"]
if "lambda" in cami_meta_crystal:
det_data["wave"] = cami_meta_crystal["lambda"]
scan["wave"] = cami_meta_crystal["lambda"]
if "detector parameters" in cami_meta:
cami_meta_detparam = cami_meta["detector parameters"]
if "dist1" in cami_meta_detparam:
det_data["ddist"] = cami_meta_detparam["dist1"]
if "dist2" in cami_meta_detparam:
scan["ddist"] = cami_meta_detparam["dist2"]
return det_data
return scan
def fit_event(scan, fr_from, fr_to, y_from, y_to, x_from, x_to):
data_roi = scan["counts"][fr_from:fr_to, y_from:y_to, x_from:x_to]
model = GaussianModel()
fr = np.arange(fr_from, fr_to)
counts_per_fr = np.sum(data_roi, axis=(1, 2))
params = model.guess(counts_per_fr, fr)
result = model.fit(counts_per_fr, x=fr, params=params)
frC = result.params["center"].value
intensity = result.params["height"].value
counts_std = counts_per_fr.std()
counts_mean = counts_per_fr.mean()
snr = 0 if counts_std == 0 else counts_mean / counts_std
model = Gaussian2dModel()
xs, ys = np.meshgrid(np.arange(x_from, x_to), np.arange(y_from, y_to))
xs = xs.flatten()
ys = ys.flatten()
counts = np.sum(data_roi, axis=0).flatten()
params = model.guess(counts, xs, ys)
result = model.fit(counts, x=xs, y=ys, params=params)
xC = result.params["centerx"].value
yC = result.params["centery"].value
scan["fit"] = {"frame": frC, "x_pos": xC, "y_pos": yC, "intensity": intensity, "snr": snr}

486
pyzebra/sxtal_refgen.py Normal file
View File

@ -0,0 +1,486 @@
import io
import logging
import os
import subprocess
import tempfile
from math import ceil, floor
import numpy as np
logger = logging.getLogger(__name__)
SXTAL_REFGEN_PATH = "/afs/psi.ch/project/sinq/rhel8/bin/Sxtal_Refgen"
_zebraBI_default_geom = """GEOM 2 Bissecting - HiCHI
BLFR z-up
DIST_UNITS mm
ANGL_UNITS deg
DET_TYPE Point ipsd 1
DIST_DET 488
DIM_XY 1.0 1.0 1 1
GAPS_DET 0 0
SETTING 1 0 0 0 1 0 0 0 1
NUM_ANG 4
ANG_LIMITS Min Max Offset
Gamma 0.0 128.0 0.00
Omega 0.0 64.0 0.00
Chi 80.0 211.0 0.00
Phi 0.0 360.0 0.00
DET_OFF 0 0 0
"""
_zebraNB_default_geom = """GEOM 3 Normal Beam
BLFR z-up
DIST_UNITS mm
ANGL_UNITS deg
DET_TYPE Point ipsd 1
DIST_DET 448
DIM_XY 1.0 1.0 1 1
GAPS_DET 0 0
SETTING 1 0 0 0 1 0 0 0 1
NUM_ANG 3
ANG_LIMITS Min Max Offset
Gamma 0.0 128.0 0.00
Omega -180.0 180.0 0.00
Nu -15.0 15.0 0.00
DET_OFF 0 0 0
"""
_zebra_default_cfl = """TITLE mymaterial
SPGR P 63 2 2
CELL 5.73 5.73 11.89 90 90 120
WAVE 1.383
UBMAT
0.000000 0.000000 0.084104
0.000000 0.174520 -0.000000
0.201518 0.100759 0.000000
INSTR zebra.geom
ORDER 1 2 3
ANGOR gamma
HLIM -25 25 -25 25 -25 25
SRANG 0.0 0.7
Mag_Structure
lattiCE P 1
kvect 0.0 0.0 0.0
magcent
symm x,y,z
msym u,v,w, 0.0
End_Mag_Structure
"""
def get_zebraBI_default_geom_file():
return io.StringIO(_zebraBI_default_geom)
def get_zebraNB_default_geom_file():
return io.StringIO(_zebraNB_default_geom)
def get_zebra_default_cfl_file():
return io.StringIO(_zebra_default_cfl)
def read_geom_file(fileobj):
ang_lims = dict()
for line in fileobj:
if "!" in line: # remove comments that start with ! sign
line, _ = line.split(sep="!", maxsplit=1)
if line.startswith("GEOM"):
_, val = line.split(maxsplit=1)
if val.startswith("2"):
ang_lims["geom"] = "bi"
else: # val.startswith("3")
ang_lims["geom"] = "nb"
elif line.startswith("ANG_LIMITS"):
# read angular limits
for line in fileobj:
if not line or line.isspace():
break
ang, ang_min, ang_max, ang_offset = line.split()
ang_lims[ang.lower()] = [ang_min, ang_max, ang_offset]
if "2theta" in ang_lims: # treat 2theta as gamma
ang_lims["gamma"] = ang_lims.pop("2theta")
return ang_lims
def export_geom_file(path, ang_lims, template=None):
if ang_lims["geom"] == "bi":
template_file = get_zebraBI_default_geom_file()
n_ang = 4
else: # ang_lims["geom"] == "nb"
template_file = get_zebraNB_default_geom_file()
n_ang = 3
if template is not None:
template_file = template
with open(path, "w") as out_file:
for line in template_file:
out_file.write(line)
if line.startswith("ANG_LIMITS"):
for _ in range(n_ang):
next_line = next(template_file)
ang, _, _, _ = next_line.split()
if ang == "2theta": # treat 2theta as gamma
ang = "Gamma"
vals = ang_lims[ang.lower()]
out_file.write(f"{'':<8}{ang:<10}{vals[0]:<10}{vals[1]:<10}{vals[2]:<10}\n")
def calc_ub_matrix(params, log=logger):
with tempfile.TemporaryDirectory() as temp_dir:
cfl_file = os.path.join(temp_dir, "ub_matrix.cfl")
with open(cfl_file, "w") as fileobj:
for key, value in params.items():
fileobj.write(f"{key} {value}\n")
comp_proc = subprocess.run(
[SXTAL_REFGEN_PATH, cfl_file],
cwd=temp_dir,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
sfa_file = os.path.join(temp_dir, "ub_matrix.sfa")
ub_matrix = []
with open(sfa_file, "r") as fileobj:
for line in fileobj:
if "BL_M" in line: # next 3 lines contain the matrix
for _ in range(3):
next_line = next(fileobj)
*vals, _ = next_line.split(maxsplit=3)
ub_matrix.extend(vals)
return ub_matrix
def read_cfl_file(fileobj):
params = {
"SPGR": None,
"CELL": None,
"WAVE": None,
"UBMAT": None,
"HLIM": None,
"SRANG": None,
"lattiCE": None,
"kvect": None,
}
param_names = tuple(params)
for line in fileobj:
line = line.strip()
if "!" in line: # remove comments that start with ! sign
line, _ = line.split(sep="!", maxsplit=1)
if line.startswith(param_names):
if line.startswith("UBMAT"): # next 3 lines contain the matrix
param, val = "UBMAT", []
for _ in range(3):
next_line = next(fileobj).strip()
val.extend(next_line.split(maxsplit=2))
else:
param, val = line.split(maxsplit=1)
params[param] = val
return params
def read_cif_file(fileobj):
params = {"SPGR": None, "CELL": None, "ATOM": []}
cell_params = {
"_cell_length_a": None,
"_cell_length_b": None,
"_cell_length_c": None,
"_cell_angle_alpha": None,
"_cell_angle_beta": None,
"_cell_angle_gamma": None,
}
cell_param_names = tuple(cell_params)
atom_param_pos = {
"_atom_site_label": 0,
"_atom_site_type_symbol": None,
"_atom_site_fract_x": None,
"_atom_site_fract_y": None,
"_atom_site_fract_z": None,
"_atom_site_U_iso_or_equiv": None,
"_atom_site_occupancy": None,
}
atom_param_names = tuple(atom_param_pos)
for line in fileobj:
line = line.strip()
if line.startswith("_space_group_name_H-M_alt"):
_, val = line.split(maxsplit=1)
params["SPGR"] = val.strip("'")
elif line.startswith(cell_param_names):
param, val = line.split(maxsplit=1)
cell_params[param] = val
elif line.startswith("_atom_site_label"): # assume this is the start of atom data
for ind, line in enumerate(fileobj, start=1):
line = line.strip()
# read fields
if line.startswith("_atom_site"):
if line.startswith(atom_param_names):
atom_param_pos[line] = ind
continue
# read data till an empty line
if not line:
break
vals = line.split()
params["ATOM"].append(" ".join([vals[ind] for ind in atom_param_pos.values()]))
if None not in cell_params.values():
params["CELL"] = " ".join(cell_params.values())
return params
def export_cfl_file(path, params, template=None):
param_names = tuple(params)
if template is None:
template_file = get_zebra_default_cfl_file()
else:
template_file = template
atom_done = False
with open(path, "w") as out_file:
for line in template_file:
if line.startswith(param_names):
if line.startswith("UBMAT"): # only UBMAT values are not on the same line
out_file.write(line)
for i in range(3):
next(template_file)
out_file.write(" ".join(params["UBMAT"][3 * i : 3 * (i + 1)]) + "\n")
elif line.startswith("ATOM"):
if "ATOM" in params:
# replace all ATOM with values in params
while line.startswith("ATOM"):
line = next(template_file)
for atom_line in params["ATOM"]:
out_file.write(f"ATOM {atom_line}\n")
atom_done = True
else:
param, _ = line.split(maxsplit=1)
out_file.write(f"{param} {params[param]}\n")
elif line.startswith("INSTR"):
# replace it with a default name
out_file.write("INSTR zebra.geom\n")
else:
out_file.write(line)
# append ATOM data if it's present and a template did not contain it
if "ATOM" in params and not atom_done:
out_file.write("\n")
for atom_line in params["ATOM"]:
out_file.write(f"ATOM {atom_line}\n")
def sort_hkl_file_bi(file_in, file_out, priority, chunks):
with open(file_in) as fileobj:
file_in_data = fileobj.readlines()
data = np.genfromtxt(file_in, skip_header=3)
stt = data[:, 4]
omega = data[:, 5]
chi = data[:, 6]
phi = data[:, 7]
lines = file_in_data[3:]
lines_update = []
angles = {"2theta": stt, "omega": omega, "chi": chi, "phi": phi}
# Reverse flag
to_reverse = False
to_reverse_p2 = False
to_reverse_p3 = False
# Get indices within first priority
ang_p1 = angles[priority[0]]
begin_p1 = floor(min(ang_p1))
end_p1 = ceil(max(ang_p1))
delta_p1 = chunks[0]
for p1 in range(begin_p1, end_p1, delta_p1):
ind_p1 = [j for j, x in enumerate(ang_p1) if p1 <= x and x < p1 + delta_p1]
stt_new = [stt[x] for x in ind_p1]
omega_new = [omega[x] for x in ind_p1]
chi_new = [chi[x] for x in ind_p1]
phi_new = [phi[x] for x in ind_p1]
lines_new = [lines[x] for x in ind_p1]
angles_p2 = {"stt": stt_new, "omega": omega_new, "chi": chi_new, "phi": phi_new}
# Get indices for second priority
ang_p2 = angles_p2[priority[1]]
if len(ang_p2) > 0 and to_reverse_p2:
begin_p2 = ceil(max(ang_p2))
end_p2 = floor(min(ang_p2))
delta_p2 = -chunks[1]
elif len(ang_p2) > 0 and not to_reverse_p2:
end_p2 = ceil(max(ang_p2))
begin_p2 = floor(min(ang_p2))
delta_p2 = chunks[1]
else:
end_p2 = 0
begin_p2 = 0
delta_p2 = 1
to_reverse_p2 = not to_reverse_p2
for p2 in range(begin_p2, end_p2, delta_p2):
min_p2 = min([p2, p2 + delta_p2])
max_p2 = max([p2, p2 + delta_p2])
ind_p2 = [j for j, x in enumerate(ang_p2) if min_p2 <= x and x < max_p2]
stt_new2 = [stt_new[x] for x in ind_p2]
omega_new2 = [omega_new[x] for x in ind_p2]
chi_new2 = [chi_new[x] for x in ind_p2]
phi_new2 = [phi_new[x] for x in ind_p2]
lines_new2 = [lines_new[x] for x in ind_p2]
angles_p3 = {"stt": stt_new2, "omega": omega_new2, "chi": chi_new2, "phi": phi_new2}
# Get indices for third priority
ang_p3 = angles_p3[priority[2]]
if len(ang_p3) > 0 and to_reverse_p3:
begin_p3 = ceil(max(ang_p3)) + chunks[2]
end_p3 = floor(min(ang_p3)) - chunks[2]
delta_p3 = -chunks[2]
elif len(ang_p3) > 0 and not to_reverse_p3:
end_p3 = ceil(max(ang_p3)) + chunks[2]
begin_p3 = floor(min(ang_p3)) - chunks[2]
delta_p3 = chunks[2]
else:
end_p3 = 0
begin_p3 = 0
delta_p3 = 1
to_reverse_p3 = not to_reverse_p3
for p3 in range(begin_p3, end_p3, delta_p3):
min_p3 = min([p3, p3 + delta_p3])
max_p3 = max([p3, p3 + delta_p3])
ind_p3 = [j for j, x in enumerate(ang_p3) if min_p3 <= x and x < max_p3]
angle_new3 = [angles_p3[priority[3]][x] for x in ind_p3]
ind_final = [x for _, x in sorted(zip(angle_new3, ind_p3), reverse=to_reverse)]
to_reverse = not to_reverse
for i in ind_final:
lines_update.append(lines_new2[i])
with open(file_out, "w") as fileobj:
for _ in range(3):
fileobj.write(file_in_data.pop(0))
fileobj.writelines(lines_update)
def sort_hkl_file_nb(file_in, file_out, priority, chunks):
with open(file_in) as fileobj:
file_in_data = fileobj.readlines()
data = np.genfromtxt(file_in, skip_header=3)
gamma = data[:, 4]
omega = data[:, 5]
nu = data[:, 6]
lines = file_in_data[3:]
lines_update = []
angles = {"gamma": gamma, "omega": omega, "nu": nu}
to_reverse = False
to_reverse_p2 = False
# Get indices within first priority
ang_p1 = angles[priority[0]]
begin_p1 = floor(min(ang_p1))
end_p1 = ceil(max(ang_p1))
delta_p1 = chunks[0]
for p1 in range(begin_p1, end_p1, delta_p1):
ind_p1 = [j for j, x in enumerate(ang_p1) if p1 <= x and x < p1 + delta_p1]
# Get angles from within nu range
lines_new = [lines[x] for x in ind_p1]
gamma_new = [gamma[x] for x in ind_p1]
omega_new = [omega[x] for x in ind_p1]
nu_new = [nu[x] for x in ind_p1]
angles_p2 = {"gamma": gamma_new, "omega": omega_new, "nu": nu_new}
# Get indices for second priority
ang_p2 = angles_p2[priority[1]]
if len(gamma_new) > 0 and to_reverse_p2:
begin_p2 = ceil(max(ang_p2))
end_p2 = floor(min(ang_p2))
delta_p2 = -chunks[1]
elif len(gamma_new) > 0 and not to_reverse_p2:
end_p2 = ceil(max(ang_p2))
begin_p2 = floor(min(ang_p2))
delta_p2 = chunks[1]
else:
end_p2 = 0
begin_p2 = 0
delta_p2 = 1
to_reverse_p2 = not to_reverse_p2
for p2 in range(begin_p2, end_p2, delta_p2):
min_p2 = min([p2, p2 + delta_p2])
max_p2 = max([p2, p2 + delta_p2])
ind_p2 = [j for j, x in enumerate(ang_p2) if min_p2 <= x and x < max_p2]
angle_new2 = [angles_p2[priority[2]][x] for x in ind_p2]
ind_final = [x for _, x in sorted(zip(angle_new2, ind_p2), reverse=to_reverse)]
to_reverse = not to_reverse
for i in ind_final:
lines_update.append(lines_new[i])
with open(file_out, "w") as fileobj:
for _ in range(3):
fileobj.write(file_in_data.pop(0))
fileobj.writelines(lines_update)

View File

@ -1,20 +1,36 @@
import os
ZEBRA_PROPOSALS_PATHS = [
f"/afs/psi.ch/project/sinqdata/{year}/zebra/" for year in (2016, 2017, 2018, 2020, 2021)
]
import numpy as np
SINQ_PATH = "/afs/psi.ch/project/sinqdata"
ZEBRA_PROPOSALS_PATH = os.path.join(SINQ_PATH, "{year}/zebra/{proposal}")
def find_proposal_path(proposal):
proposal = proposal.strip()
if proposal:
for zebra_proposals_path in ZEBRA_PROPOSALS_PATHS:
proposal_path = os.path.join(zebra_proposals_path, proposal)
for entry in os.scandir(SINQ_PATH):
if entry.is_dir() and len(entry.name) == 4 and entry.name.isdigit():
proposal_path = ZEBRA_PROPOSALS_PATH.format(year=entry.name, proposal=proposal)
if os.path.isdir(proposal_path):
# found it
break
else:
raise ValueError(f"Can not find data for proposal '{proposal}'.")
else:
proposal_path = ""
raise ValueError(f"Can not find data for proposal '{proposal}'")
return proposal_path
def parse_hkl(fileobj, data_type):
next(fileobj)
fields = map(str.lower, next(fileobj).strip("!").strip().split())
next(fileobj)
data = np.loadtxt(fileobj, unpack=True)
res = dict(zip(fields, data))
# adapt to .ccl/.dat files naming convention
res["counts"] = res.pop("f2")
if data_type == ".hkl":
for ind in ("h", "k", "l"):
res[ind] = res[ind].astype(int)
return res

View File

@ -2,8 +2,16 @@ import numpy as np
from numba import njit
pi_r = 180 / np.pi
IMAGE_W = 256
IMAGE_H = 128
XNORM = 128
YNORM = 64
XPIX = 0.734
YPIX = 1.4809
@njit(cache=True)
def z4frgn(wave, ga, nu):
"""CALCULATES DIFFRACTION VECTOR IN LAB SYSTEM FROM GA AND NU
@ -15,36 +23,34 @@ def z4frgn(wave, ga, nu):
"""
ga_r = ga / pi_r
nu_r = nu / pi_r
z4 = [0.0, 0.0, 0.0]
z4[0] = (np.sin(ga_r) * np.cos(nu_r)) / wave
z4[1] = (np.cos(ga_r) * np.cos(nu_r) - 1.0) / wave
z4[2] = (np.sin(nu_r)) / wave
z4 = [np.sin(ga_r) * np.cos(nu_r), np.cos(ga_r) * np.cos(nu_r) - 1.0, np.sin(nu_r)]
return z4
return np.array(z4) / wave
@njit(cache=True)
def phimat(phi):
"""BUSING AND LEVY CONVENTION ROTATION MATRIX FOR PHI OR OMEGA
def phimat_T(phi):
"""TRANSPOSED BUSING AND LEVY CONVENTION ROTATION MATRIX FOR PHI OR OMEGA
Args:
PHI
Returns:
DUM
DUM_T
"""
ph_r = phi / pi_r
dum = np.zeros(9).reshape(3, 3)
dum = np.zeros((3, 3))
dum[0, 0] = np.cos(ph_r)
dum[0, 1] = np.sin(ph_r)
dum[1, 0] = -dum[0, 1]
dum[1, 0] = np.sin(ph_r)
dum[0, 1] = -dum[1, 0]
dum[1, 1] = dum[0, 0]
dum[2, 2] = 1
return dum
@njit(cache=True)
def z1frnb(wave, ga, nu, om):
"""CALCULATE DIFFRACTION VECTOR Z1 FROM GA, OM, NU, ASSUMING CH=PH=0
@ -55,30 +61,28 @@ def z1frnb(wave, ga, nu, om):
Z1
"""
z4 = z4frgn(wave, ga, nu)
dum = phimat(phi=om)
dumt = np.transpose(dum)
z3 = dumt.dot(z4)
z3 = phimat_T(phi=om).dot(z4)
return z3
@njit(cache=True)
def chimat(chi):
"""BUSING AND LEVY CONVENTION ROTATION MATRIX FOR CHI
def chimat_T(chi):
"""TRANSPOSED BUSING AND LEVY CONVENTION ROTATION MATRIX FOR CHI
Args:
CHI
Returns:
DUM
DUM_T
"""
ch_r = chi / pi_r
dum = np.zeros(9).reshape(3, 3)
dum = np.zeros((3, 3))
dum[0, 0] = np.cos(ch_r)
dum[0, 2] = np.sin(ch_r)
dum[2, 0] = np.sin(ch_r)
dum[1, 1] = 1
dum[2, 0] = -dum[0, 2]
dum[0, 2] = -dum[2, 0]
dum[2, 2] = dum[0, 0]
return dum
@ -94,13 +98,8 @@ def z1frz3(z3, chi, phi):
Returns:
Z1
"""
dum1 = chimat(chi)
dum2 = np.transpose(dum1)
z2 = dum2.dot(z3)
dum1 = phimat(phi)
dum2 = np.transpose(dum1)
z1 = dum2.dot(z2)
z2 = chimat_T(chi).dot(z3)
z1 = phimat_T(phi).dot(z2)
return z1
@ -282,115 +281,81 @@ def fixdnu(wave, z1, ch2, ph2, nu):
return ch, ph, ga, om
# for test run:
# angtohkl(wave=1.18,ddist=616,gammad=48.66,om=-22.80,ch=0,ph=0,nud=0,x=128,y=64)
def angtohkl(wave, ddist, gammad, om, ch, ph, nud, x, y):
"""finds hkl-indices of a reflection from its position (x,y,angles) at the 2d-detector
Args:
gammad, om, ch, ph, nud, xobs, yobs
Returns:
"""
# define ub matrix if testing angtohkl(wave=1.18,ddist=616,gammad=48.66,om=-22.80,ch=0,ph=0,nud=0,x=128,y=64) against f90:
# ub = np.array([-0.0178803,-0.0749231,0.0282804,-0.0070082,-0.0368001,-0.0577467,0.1609116,-0.0099281,0.0006274]).reshape(3,3)
ub = np.array(
[0.04489, 0.02045, -0.2334, -0.06447, 0.00129, -0.16356, -0.00328, 0.2542, 0.0196]
).reshape(3, 3)
print(
"The input values are: ga=",
gammad,
", om=",
om,
", ch=",
ch,
", ph=",
ph,
", nu=",
nud,
", x=",
x,
", y=",
y,
)
ga, nu = det2pol(ddist, gammad, nud, x, y)
print(
"The calculated actual angles are: ga=",
ga,
", om=",
om,
", ch=",
ch,
", ph=",
ph,
", nu=",
nu,
)
z1 = z1frmd(wave, ga, om, ch, ph, nu)
print("The diffraction vector is:", z1[0], z1[1], z1[2])
ubinv = np.linalg.inv(ub)
h = ubinv[0, 0] * z1[0] + ubinv[0, 1] * z1[1] + ubinv[0, 2] * z1[2]
k = ubinv[1, 0] * z1[0] + ubinv[1, 1] * z1[1] + ubinv[1, 2] * z1[2]
l = ubinv[2, 0] * z1[0] + ubinv[2, 1] * z1[1] + ubinv[2, 2] * z1[2]
print("The Miller indexes are:", h, k, l)
ch2, ph2 = eqchph(z1)
ch, ph, ga, om = fixdnu(wave, z1, ch2, ph2, nu)
print(
"Bisecting angles to put reflection into the detector center: ga=",
ga,
", om=",
om,
", ch=",
ch,
", ph=",
ph,
", nu=",
nu,
)
def ang2hkl(wave, ddist, gammad, om, ch, ph, nud, ub, x, y):
"""Calculate hkl-indices of a reflection from its position (x,y,angles) at the 2d-detector
"""
def ang2hkl(wave, ddist, gammad, om, ch, ph, nud, ub_inv, x, y):
"""Calculate hkl-indices of a reflection from its position (x,y,angles) at the 2d-detector"""
ga, nu = det2pol(ddist, gammad, nud, x, y)
z1 = z1frmd(wave, ga, om, ch, ph, nu)
ubinv = np.linalg.inv(ub)
hkl = ubinv @ z1
hkl = ub_inv @ z1
return hkl
def ang2hkl_det(wave, ddist, gammad, om, chi, phi, nud, ub_inv):
"""Calculate hkl-indices of a reflection from its position (x,y,angles) at the 2d-detector"""
xv, yv = np.meshgrid(range(IMAGE_W), range(IMAGE_H))
xobs = (xv.ravel() - XNORM) * XPIX
yobs = (yv.ravel() - YNORM) * YPIX
a = xobs
b = ddist * np.cos(yobs / ddist)
z = ddist * np.sin(yobs / ddist)
d = np.sqrt(a * a + b * b)
gamma = gammad + np.arctan2(a, b) * pi_r
nu = nud + np.arctan2(z, d) * pi_r
gamma_r = gamma / pi_r
nu_r = nu / pi_r
z4 = np.vstack(
(
np.sin(gamma_r) * np.cos(nu_r) / wave,
(np.cos(gamma_r) * np.cos(nu_r) - 1) / wave,
np.sin(nu_r) / wave,
)
)
om_r = om / pi_r
dum3 = np.zeros((3, 3))
dum3[0, 0] = np.cos(om_r)
dum3[1, 0] = np.sin(om_r)
dum3[0, 1] = -dum3[1, 0]
dum3[1, 1] = dum3[0, 0]
dum3[2, 2] = 1
chi_r = chi / pi_r
dum2 = np.zeros((3, 3))
dum2[0, 0] = np.cos(chi_r)
dum2[2, 0] = np.sin(chi_r)
dum2[1, 1] = 1
dum2[0, 2] = -dum2[2, 0]
dum2[2, 2] = dum2[0, 0]
phi_r = phi / pi_r
dum1 = np.zeros((3, 3))
dum1[0, 0] = np.cos(phi_r)
dum1[1, 0] = np.sin(phi_r)
dum1[0, 1] = -dum1[1, 0]
dum1[1, 1] = dum1[0, 0]
dum1[2, 2] = 1
hkl = (ub_inv @ dum1 @ dum2 @ dum3 @ z4).reshape(3, IMAGE_H, IMAGE_W)
return hkl
def ang2hkl_1d(wave, ga, om, ch, ph, nu, ub_inv):
"""Calculate hkl-indices of a reflection from its position (angles) at the 1d-detector"""
z1 = z1frmd(wave, ga, om, ch, ph, nu)
hkl = ub_inv @ z1
return hkl
def ang_proc(wave, ddist, gammad, om, ch, ph, nud, x, y):
"""Utility function to calculate ch, ph, ga, om
"""
"""Utility function to calculate ch, ph, ga, om"""
ga, nu = det2pol(ddist, gammad, nud, x, y)
z1 = z1frmd(wave, ga, om, ch, ph, nu)
ch2, ph2 = eqchph(z1)
ch, ph, ga, om = fixdnu(wave, z1, ch2, ph2, nu)
return ch, ph, ga, om
def gauss(x, *p):
"""Defines Gaussian function
Args:
A - amplitude, mu - position of the center, sigma - width
Returns:
Gaussian function
"""
A, mu, sigma = p
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))

View File

@ -1,4 +0,0 @@
source /home/pyzebra/miniconda3/etc/profile.d/conda.sh
conda activate prod
pyzebra --port=80 --allow-websocket-origin=pyzebra.psi.ch:80 --spind-path=/home/pyzebra/spind

View File

@ -1,4 +0,0 @@
source /home/pyzebra/miniconda3/etc/profile.d/conda.sh
conda activate test
python ~/pyzebra/pyzebra/app/cli.py --allow-websocket-origin=pyzebra.psi.ch:5006 --spind-path=/home/pyzebra/spind

View File

@ -1,11 +0,0 @@
[Unit]
Description=pyzebra-test web server (runs on port 5006)
[Service]
Type=simple
User=pyzebra
ExecStart=/bin/bash /usr/local/sbin/pyzebra-test-start.sh
Restart=always
[Install]
WantedBy=multi-user.target

View File

@ -1,10 +0,0 @@
[Unit]
Description=pyzebra web server
[Service]
Type=simple
ExecStart=/bin/bash /usr/local/sbin/pyzebra-start.sh
Restart=always
[Install]
WantedBy=multi-user.target