Simplify plot creation in panel_param_study
This commit is contained in:
parent
7503076a1b
commit
41f5157ba8
@ -9,35 +9,23 @@ import numpy as np
|
||||
from bokeh.io import curdoc
|
||||
from bokeh.layouts import column, row
|
||||
from bokeh.models import (
|
||||
BasicTicker,
|
||||
Button,
|
||||
CellEditor,
|
||||
CheckboxEditor,
|
||||
CheckboxGroup,
|
||||
ColumnDataSource,
|
||||
CustomJS,
|
||||
DataRange1d,
|
||||
DataTable,
|
||||
Div,
|
||||
Dropdown,
|
||||
FileInput,
|
||||
Grid,
|
||||
HoverTool,
|
||||
Image,
|
||||
Legend,
|
||||
Line,
|
||||
LinearAxis,
|
||||
LinearColorMapper,
|
||||
MultiLine,
|
||||
MultiSelect,
|
||||
NumberEditor,
|
||||
Panel,
|
||||
PanTool,
|
||||
Plot,
|
||||
RadioGroup,
|
||||
Range1d,
|
||||
ResetTool,
|
||||
Scatter,
|
||||
Select,
|
||||
Spacer,
|
||||
Span,
|
||||
@ -45,10 +33,10 @@ from bokeh.models import (
|
||||
TableColumn,
|
||||
Tabs,
|
||||
TextAreaInput,
|
||||
WheelZoomTool,
|
||||
Whisker,
|
||||
)
|
||||
from bokeh.palettes import Category10, Plasma256
|
||||
from bokeh.plotting import figure
|
||||
from scipy import interpolate
|
||||
|
||||
import pyzebra
|
||||
@ -123,7 +111,7 @@ def create():
|
||||
file_list.append(os.path.basename(scan["original_filename"]))
|
||||
|
||||
scan_table_source.data.update(
|
||||
file=file_list, scan=scan_list, param=param, fit=[0] * len(scan_list), export=export,
|
||||
file=file_list, scan=scan_list, param=param, fit=[0] * len(scan_list), export=export
|
||||
)
|
||||
scan_table_source.selected.indices = []
|
||||
scan_table_source.selected.indices = [0]
|
||||
@ -281,12 +269,12 @@ def create():
|
||||
x = scan[scan_motor]
|
||||
|
||||
plot.axis[0].axis_label = scan_motor
|
||||
plot_scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
|
||||
scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
|
||||
|
||||
fit = scan.get("fit")
|
||||
if fit is not None:
|
||||
x_fit = np.linspace(x[0], x[-1], 100)
|
||||
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
|
||||
fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
|
||||
|
||||
x_bkg = []
|
||||
y_bkg = []
|
||||
@ -302,15 +290,15 @@ def create():
|
||||
xs_peak.append(x_fit)
|
||||
ys_peak.append(comps[f"f{i}_"])
|
||||
|
||||
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
|
||||
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
|
||||
bkg_source.data.update(x=x_bkg, y=y_bkg)
|
||||
peak_source.data.update(xs=xs_peak, ys=ys_peak)
|
||||
|
||||
fit_output_textinput.value = fit.fit_report()
|
||||
|
||||
else:
|
||||
plot_fit_source.data.update(x=[], y=[])
|
||||
plot_bkg_source.data.update(x=[], y=[])
|
||||
plot_peak_source.data.update(xs=[], ys=[])
|
||||
fit_source.data.update(x=[], y=[])
|
||||
bkg_source.data.update(x=[], y=[])
|
||||
peak_source.data.update(xs=[], ys=[])
|
||||
fit_output_textinput.value = ""
|
||||
|
||||
def _update_overview():
|
||||
@ -336,9 +324,9 @@ def create():
|
||||
ov_plot.axis[0].axis_label = scan_motor
|
||||
ov_param_plot.axis[0].axis_label = scan_motor
|
||||
|
||||
ov_plot_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
|
||||
ov_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
|
||||
|
||||
ov_param_plot_scatter_source.data.update(x=x, y=y)
|
||||
ov_param_scatter_source.data.update(x=x, y=y)
|
||||
|
||||
if y:
|
||||
x1, x2 = min(x), max(x)
|
||||
@ -348,7 +336,7 @@ def create():
|
||||
np.linspace(y1, y2, ov_param_plot.inner_height),
|
||||
)
|
||||
image = interpolate.griddata((x, y), par, (grid_x, grid_y))
|
||||
ov_param_plot_image_source.data.update(
|
||||
ov_param_image_source.data.update(
|
||||
image=[image], x=[x1], y=[y1], dw=[x2 - x1], dh=[y2 - y1]
|
||||
)
|
||||
|
||||
@ -363,7 +351,7 @@ def create():
|
||||
y_range.bounds = (y1, y2)
|
||||
|
||||
else:
|
||||
ov_param_plot_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
|
||||
ov_param_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
|
||||
|
||||
def _update_param_plot():
|
||||
x = []
|
||||
@ -382,40 +370,31 @@ def create():
|
||||
y_lower.append(param_fit_val - param_fit_std)
|
||||
y_upper.append(param_fit_val + param_fit_std)
|
||||
|
||||
param_plot_scatter_source.data.update(x=x, y=y, y_lower=y_lower, y_upper=y_upper)
|
||||
param_scatter_source.data.update(x=x, y=y, y_lower=y_lower, y_upper=y_upper)
|
||||
|
||||
# Main plot
|
||||
plot = Plot(
|
||||
x_range=DataRange1d(),
|
||||
y_range=DataRange1d(only_visible=True),
|
||||
plot = figure(
|
||||
x_axis_label="Scan motor",
|
||||
y_axis_label="Counts",
|
||||
plot_height=450,
|
||||
plot_width=700,
|
||||
tools="pan,wheel_zoom,reset",
|
||||
)
|
||||
|
||||
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
||||
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
|
||||
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
|
||||
plot_scatter = plot.add_glyph(
|
||||
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue", fill_color="steelblue")
|
||||
scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
|
||||
plot.circle(
|
||||
source=scatter_source, line_color="steelblue", fill_color="steelblue", legend_label="data"
|
||||
)
|
||||
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
|
||||
plot.add_layout(Whisker(source=scatter_source, base="x", upper="y_upper", lower="y_lower"))
|
||||
|
||||
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
|
||||
fit_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot.line(source=fit_source, legend_label="best fit")
|
||||
|
||||
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot_bkg = plot.add_glyph(
|
||||
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
|
||||
)
|
||||
bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
|
||||
plot.line(source=bkg_source, line_color="green", line_dash="dashed", legend_label="linear")
|
||||
|
||||
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
|
||||
plot_peak = plot.add_glyph(
|
||||
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
|
||||
)
|
||||
peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
|
||||
plot.multi_line(source=peak_source, line_color="red", line_dash="dashed", legend_label="peak")
|
||||
|
||||
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(fit_from_span)
|
||||
@ -423,80 +402,61 @@ def create():
|
||||
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
|
||||
plot.add_layout(fit_to_span)
|
||||
|
||||
plot.add_layout(
|
||||
Legend(
|
||||
items=[
|
||||
("data", [plot_scatter]),
|
||||
("best fit", [plot_fit]),
|
||||
("peak", [plot_peak]),
|
||||
("linear", [plot_bkg]),
|
||||
],
|
||||
location="top_left",
|
||||
click_policy="hide",
|
||||
)
|
||||
)
|
||||
|
||||
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
plot.y_range.only_visible = True
|
||||
plot.toolbar.logo = None
|
||||
plot.legend.click_policy = "hide"
|
||||
|
||||
# Overview multilines plot
|
||||
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700)
|
||||
ov_plot = figure(
|
||||
x_axis_label="Scan motor",
|
||||
y_axis_label="Counts",
|
||||
plot_height=450,
|
||||
plot_width=700,
|
||||
tools="pan,wheel_zoom,reset",
|
||||
)
|
||||
|
||||
ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
||||
ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
ov_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
|
||||
ov_plot.multi_line(source=ov_mline_source, line_color="color")
|
||||
|
||||
ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
ov_plot.add_tools(HoverTool(tooltips=[("param", "@param")]))
|
||||
|
||||
ov_plot_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
|
||||
ov_plot.add_glyph(ov_plot_mline_source, MultiLine(xs="xs", ys="ys", line_color="color"))
|
||||
|
||||
hover_tool = HoverTool(tooltips=[("param", "@param")])
|
||||
ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool())
|
||||
|
||||
ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
ov_plot.toolbar.logo = None
|
||||
|
||||
# Overview perams plot
|
||||
ov_param_plot = Plot(x_range=Range1d(), y_range=Range1d(), plot_height=450, plot_width=700)
|
||||
|
||||
ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
|
||||
ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
||||
|
||||
ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
# Overview params plot
|
||||
ov_param_plot = figure(
|
||||
x_axis_label="Scan motor",
|
||||
y_axis_label="Param",
|
||||
x_range=Range1d(),
|
||||
y_range=Range1d(),
|
||||
plot_height=450,
|
||||
plot_width=700,
|
||||
tools="pan,wheel_zoom,reset",
|
||||
)
|
||||
|
||||
color_mapper = LinearColorMapper(palette=Plasma256)
|
||||
ov_param_plot_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
|
||||
ov_param_plot.add_glyph(
|
||||
ov_param_plot_image_source,
|
||||
Image(image="image", x="x", y="y", dw="dw", dh="dh", color_mapper=color_mapper),
|
||||
)
|
||||
ov_param_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
|
||||
ov_param_plot.image(source=ov_param_image_source, color_mapper=color_mapper)
|
||||
|
||||
ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[]))
|
||||
ov_param_plot.add_glyph(
|
||||
ov_param_plot_scatter_source, Scatter(x="x", y="y", marker="dot", size=15),
|
||||
)
|
||||
ov_param_scatter_source = ColumnDataSource(dict(x=[], y=[]))
|
||||
ov_param_plot.dot(source=ov_param_scatter_source, size=15, color="black")
|
||||
|
||||
ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
ov_param_plot.toolbar.logo = None
|
||||
|
||||
# Parameter plot
|
||||
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
|
||||
|
||||
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
|
||||
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
|
||||
|
||||
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], y_upper=[], y_lower=[]))
|
||||
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
|
||||
param_plot.add_layout(
|
||||
Whisker(source=param_plot_scatter_source, base="x", upper="y_upper", lower="y_lower")
|
||||
param_plot = figure(
|
||||
x_axis_label="Parameter",
|
||||
y_axis_label="Fit parameter",
|
||||
plot_height=400,
|
||||
plot_width=700,
|
||||
tools="pan,wheel_zoom,reset",
|
||||
)
|
||||
|
||||
param_scatter_source = ColumnDataSource(dict(x=[], y=[], y_upper=[], y_lower=[]))
|
||||
param_plot.circle(source=param_scatter_source)
|
||||
param_plot.add_layout(
|
||||
Whisker(source=param_scatter_source, base="x", upper="y_upper", lower="y_lower")
|
||||
)
|
||||
|
||||
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
param_plot.toolbar.logo = None
|
||||
|
||||
def fit_param_select_callback(_attr, _old, _new):
|
||||
@ -684,7 +644,7 @@ def create():
|
||||
|
||||
n = len(params)
|
||||
fitparams = dict(
|
||||
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
|
||||
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n
|
||||
)
|
||||
|
||||
if function == "linear":
|
||||
|
Loading…
x
Reference in New Issue
Block a user