Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
3c619713d5 | |||
3d5a4ed6aa | |||
b2129805dc | |||
92765b5665 |
@ -5,4 +5,4 @@ from pyzebra.h5 import *
|
||||
from pyzebra.utils import *
|
||||
from pyzebra.xtal import *
|
||||
|
||||
__version__ = "0.6.1"
|
||||
__version__ = "0.6.3"
|
||||
|
@ -170,7 +170,7 @@ def parse_1D(fileobj, data_type):
|
||||
while len(counts) < s["n_points"]:
|
||||
counts.extend(map(float, next(fileobj).split()))
|
||||
s["counts"] = np.array(counts)
|
||||
s["counts_err"] = np.sqrt(s["counts"])
|
||||
s["counts_err"] = np.sqrt(np.maximum(s["counts"], 1))
|
||||
|
||||
if s["h"].is_integer() and s["k"].is_integer() and s["l"].is_integer():
|
||||
s["h"], s["k"], s["l"] = map(int, (s["h"], s["k"], s["l"]))
|
||||
@ -208,7 +208,7 @@ def parse_1D(fileobj, data_type):
|
||||
for name in col_names:
|
||||
s[name] = np.array(s[name])
|
||||
|
||||
s["counts_err"] = np.sqrt(s["counts"])
|
||||
s["counts_err"] = np.sqrt(np.maximum(s["counts"], 1))
|
||||
|
||||
s["scan_motors"] = []
|
||||
for motor, step in zip(motors, steps):
|
||||
|
@ -131,7 +131,7 @@ def merge_scans(scan_into, scan_from):
|
||||
|
||||
scan_into[scan_motor] = pos_tmp
|
||||
scan_into["counts"] = val_tmp / num_tmp
|
||||
scan_into["counts_err"] = np.sqrt(err_tmp)
|
||||
scan_into["counts_err"] = np.sqrt(err_tmp) / num_tmp
|
||||
|
||||
scan_from["export"] = False
|
||||
|
||||
@ -220,8 +220,7 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
|
||||
else:
|
||||
model += _model
|
||||
|
||||
weights = [1 / y_err if y_err != 0 else 1 for y_err in y_err]
|
||||
scan["fit"] = model.fit(y_fit, x=x_fit, weights=weights)
|
||||
scan["fit"] = model.fit(y_fit, x=x_fit, weights=1 / y_err)
|
||||
|
||||
|
||||
def get_area(scan, area_method, lorentz):
|
||||
|
Reference in New Issue
Block a user