Compare commits
7 Commits
Author | SHA1 | Date | |
---|---|---|---|
5c4362d984 | |||
8d065b85a4 | |||
c86466b470 | |||
b8968192ca | |||
4745f0f401 | |||
9f6e7230fa | |||
089a0cf5ac |
@ -8,4 +8,4 @@ ZEBRA_PROPOSALS_PATHS = [
|
||||
f"/afs/psi.ch/project/sinqdata/{year}/zebra/" for year in (2016, 2017, 2018, 2020, 2021)
|
||||
]
|
||||
|
||||
__version__ = "0.4.0"
|
||||
__version__ = "0.5.0"
|
||||
|
@ -8,6 +8,7 @@ from bokeh.models import Tabs, TextAreaInput
|
||||
|
||||
import panel_ccl_integrate
|
||||
import panel_hdf_anatric
|
||||
import panel_hdf_param_study
|
||||
import panel_hdf_viewer
|
||||
import panel_param_study
|
||||
import panel_spind
|
||||
@ -26,15 +27,18 @@ bokeh_logger.addHandler(bokeh_handler)
|
||||
bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
|
||||
|
||||
# Final layout
|
||||
tab_hdf_viewer = panel_hdf_viewer.create()
|
||||
tab_hdf_anatric = panel_hdf_anatric.create()
|
||||
tab_ccl_integrate = panel_ccl_integrate.create()
|
||||
tab_param_study = panel_param_study.create()
|
||||
tab_spind = panel_spind.create()
|
||||
|
||||
doc.add_root(
|
||||
column(
|
||||
Tabs(tabs=[tab_hdf_viewer, tab_hdf_anatric, tab_ccl_integrate, tab_param_study, tab_spind]),
|
||||
Tabs(
|
||||
tabs=[
|
||||
panel_hdf_viewer.create(),
|
||||
panel_hdf_anatric.create(),
|
||||
panel_ccl_integrate.create(),
|
||||
panel_param_study.create(),
|
||||
panel_hdf_param_study.create(),
|
||||
panel_spind.create(),
|
||||
]
|
||||
),
|
||||
row(stdout_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
|
||||
)
|
||||
)
|
||||
|
@ -127,9 +127,9 @@ def create():
|
||||
def file_open_button_callback():
|
||||
nonlocal det_data
|
||||
det_data = []
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
base, ext = os.path.splitext(f_name)
|
||||
for f_path in file_select.value:
|
||||
with open(f_path) as file:
|
||||
base, ext = os.path.splitext(os.path.basename(f_path))
|
||||
if det_data:
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
@ -147,9 +147,9 @@ def create():
|
||||
file_open_button.on_click(file_open_button_callback)
|
||||
|
||||
def file_append_button_callback():
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
_, ext = os.path.splitext(f_name)
|
||||
for f_path in file_select.value:
|
||||
with open(f_path) as file:
|
||||
_, ext = os.path.splitext(f_path)
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
|
623
pyzebra/app/panel_hdf_param_study.py
Normal file
623
pyzebra/app/panel_hdf_param_study.py
Normal file
@ -0,0 +1,623 @@
|
||||
import base64
|
||||
import io
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from bokeh.io import curdoc
|
||||
from bokeh.layouts import column, gridplot, row
|
||||
from bokeh.models import (
|
||||
BasicTicker,
|
||||
BoxZoomTool,
|
||||
Button,
|
||||
CheckboxGroup,
|
||||
ColumnDataSource,
|
||||
DataRange1d,
|
||||
DataTable,
|
||||
Div,
|
||||
FileInput,
|
||||
Grid,
|
||||
MultiSelect,
|
||||
NumberEditor,
|
||||
NumberFormatter,
|
||||
Image,
|
||||
LinearAxis,
|
||||
LinearColorMapper,
|
||||
Panel,
|
||||
PanTool,
|
||||
Plot,
|
||||
Range1d,
|
||||
ResetTool,
|
||||
Scatter,
|
||||
Select,
|
||||
Spinner,
|
||||
TableColumn,
|
||||
Tabs,
|
||||
TextInput,
|
||||
Title,
|
||||
WheelZoomTool,
|
||||
)
|
||||
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
import pyzebra
|
||||
|
||||
IMAGE_W = 256
|
||||
IMAGE_H = 128
|
||||
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
|
||||
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
|
||||
|
||||
|
||||
def create():
|
||||
doc = curdoc()
|
||||
zebra_data = []
|
||||
det_data = {}
|
||||
cami_meta = {}
|
||||
|
||||
num_formatter = NumberFormatter(format="0.00", nan_format="")
|
||||
|
||||
def file_select_update_for_proposal():
|
||||
proposal = proposal_textinput.value.strip()
|
||||
if not proposal:
|
||||
return
|
||||
|
||||
for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
|
||||
proposal_path = os.path.join(zebra_proposals_path, proposal)
|
||||
if os.path.isdir(proposal_path):
|
||||
# found it
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"Can not find data for proposal '{proposal}'.")
|
||||
|
||||
file_list = []
|
||||
for file in os.listdir(proposal_path):
|
||||
if file.endswith(".hdf"):
|
||||
file_list.append((os.path.join(proposal_path, file), file))
|
||||
file_select.options = file_list
|
||||
|
||||
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
|
||||
|
||||
def proposal_textinput_callback(_attr, _old, _new):
|
||||
nonlocal cami_meta
|
||||
cami_meta = {}
|
||||
file_select_update_for_proposal()
|
||||
|
||||
proposal_textinput = TextInput(title="Proposal number:", width=210)
|
||||
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||
|
||||
def upload_button_callback(_attr, _old, new):
|
||||
nonlocal cami_meta
|
||||
proposal_textinput.value = ""
|
||||
with io.StringIO(base64.b64decode(new).decode()) as file:
|
||||
cami_meta = pyzebra.parse_h5meta(file)
|
||||
file_list = cami_meta["filelist"]
|
||||
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
|
||||
|
||||
upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
|
||||
upload_button = FileInput(accept=".cami", width=200)
|
||||
upload_button.on_change("value", upload_button_callback)
|
||||
|
||||
file_select = MultiSelect(title="Available .hdf files:", width=210, height=320)
|
||||
|
||||
def _init_datatable():
|
||||
file_list = []
|
||||
for scan in zebra_data:
|
||||
file_list.append(os.path.basename(scan["original_filename"]))
|
||||
|
||||
scan_table_source.data.update(
|
||||
file=file_list,
|
||||
param=[None] * len(zebra_data),
|
||||
frame=[None] * len(zebra_data),
|
||||
x_pos=[None] * len(zebra_data),
|
||||
y_pos=[None] * len(zebra_data),
|
||||
)
|
||||
scan_table_source.selected.indices = []
|
||||
scan_table_source.selected.indices = [0]
|
||||
|
||||
param_select.value = "user defined"
|
||||
|
||||
def _update_table():
|
||||
frame = []
|
||||
x_pos = []
|
||||
y_pos = []
|
||||
for scan in zebra_data:
|
||||
if "fit" in scan:
|
||||
framei = scan["fit"]["frame"]
|
||||
x_posi = scan["fit"]["x_pos"]
|
||||
y_posi = scan["fit"]["y_pos"]
|
||||
else:
|
||||
framei = x_posi = y_posi = None
|
||||
|
||||
frame.append(framei)
|
||||
x_pos.append(x_posi)
|
||||
y_pos.append(y_posi)
|
||||
|
||||
scan_table_source.data.update(frame=frame, x_pos=x_pos, y_pos=y_pos)
|
||||
|
||||
def file_open_button_callback():
|
||||
nonlocal zebra_data
|
||||
zebra_data = []
|
||||
for f_name in file_select.value:
|
||||
zebra_data.append(pyzebra.read_detector_data(f_name))
|
||||
|
||||
_init_datatable()
|
||||
|
||||
file_open_button = Button(label="Open New", width=100)
|
||||
file_open_button.on_click(file_open_button_callback)
|
||||
|
||||
def file_append_button_callback():
|
||||
for f_name in file_select.value:
|
||||
zebra_data.append(pyzebra.read_detector_data(f_name))
|
||||
|
||||
_init_datatable()
|
||||
|
||||
file_append_button = Button(label="Append", width=100)
|
||||
file_append_button.on_click(file_append_button_callback)
|
||||
|
||||
# Scan select
|
||||
def scan_table_select_callback(_attr, old, new):
|
||||
nonlocal det_data
|
||||
|
||||
if not new:
|
||||
# skip empty selections
|
||||
return
|
||||
|
||||
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||
if len(new) > 1:
|
||||
# drop selection to the previous one
|
||||
scan_table_source.selected.indices = old
|
||||
return
|
||||
|
||||
if len(old) > 1:
|
||||
# skip unnecessary update caused by selection drop
|
||||
return
|
||||
|
||||
det_data = zebra_data[new[0]]
|
||||
|
||||
zebra_mode = det_data["zebra_mode"]
|
||||
if zebra_mode == "nb":
|
||||
metadata_table_source.data.update(geom=["normal beam"])
|
||||
else: # zebra_mode == "bi"
|
||||
metadata_table_source.data.update(geom=["bisecting"])
|
||||
|
||||
update_image(0)
|
||||
update_overview_plot()
|
||||
|
||||
def scan_table_source_callback(_attr, _old, _new):
|
||||
pass
|
||||
|
||||
scan_table_source = ColumnDataSource(dict(file=[], param=[], frame=[], x_pos=[], y_pos=[]))
|
||||
scan_table_source.selected.on_change("indices", scan_table_select_callback)
|
||||
scan_table_source.on_change("data", scan_table_source_callback)
|
||||
|
||||
scan_table = DataTable(
|
||||
source=scan_table_source,
|
||||
columns=[
|
||||
TableColumn(field="file", title="file", width=150),
|
||||
TableColumn(
|
||||
field="param",
|
||||
title="param",
|
||||
formatter=num_formatter,
|
||||
editor=NumberEditor(),
|
||||
width=50,
|
||||
),
|
||||
TableColumn(field="frame", title="Frame", formatter=num_formatter, width=70),
|
||||
TableColumn(field="x_pos", title="X", formatter=num_formatter, width=70),
|
||||
TableColumn(field="y_pos", title="Y", formatter=num_formatter, width=70),
|
||||
],
|
||||
width=470, # +60 because of the index column
|
||||
height=420,
|
||||
editable=True,
|
||||
autosize_mode="none",
|
||||
)
|
||||
|
||||
def param_select_callback(_attr, _old, new):
|
||||
if new == "user defined":
|
||||
param = [None] * len(zebra_data)
|
||||
else:
|
||||
# TODO: which value to take?
|
||||
param = [scan[new][0] for scan in zebra_data]
|
||||
|
||||
scan_table_source.data["param"] = param
|
||||
_update_param_plot()
|
||||
|
||||
param_select = Select(
|
||||
title="Parameter:",
|
||||
options=["user defined", "temp", "mf", "h", "k", "l"],
|
||||
value="user defined",
|
||||
width=145,
|
||||
)
|
||||
param_select.on_change("value", param_select_callback)
|
||||
|
||||
def update_image(index=None):
|
||||
if "mf" in det_data:
|
||||
metadata_table_source.data.update(mf=[det_data["mf"][index]])
|
||||
else:
|
||||
metadata_table_source.data.update(mf=[None])
|
||||
|
||||
if "temp" in det_data:
|
||||
metadata_table_source.data.update(temp=[det_data["temp"][index]])
|
||||
else:
|
||||
metadata_table_source.data.update(temp=[None])
|
||||
|
||||
def update_overview_plot():
|
||||
h5_data = det_data["data"]
|
||||
n_im, n_y, n_x = h5_data.shape
|
||||
overview_x = np.mean(h5_data, axis=1)
|
||||
overview_y = np.mean(h5_data, axis=2)
|
||||
|
||||
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
|
||||
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
|
||||
|
||||
if proj_auto_checkbox.active:
|
||||
im_min = min(np.min(overview_x), np.min(overview_y))
|
||||
im_max = max(np.max(overview_x), np.max(overview_y))
|
||||
|
||||
proj_display_min_spinner.value = im_min
|
||||
proj_display_max_spinner.value = im_max
|
||||
|
||||
overview_plot_x_image_glyph.color_mapper.low = im_min
|
||||
overview_plot_y_image_glyph.color_mapper.low = im_min
|
||||
overview_plot_x_image_glyph.color_mapper.high = im_max
|
||||
overview_plot_y_image_glyph.color_mapper.high = im_max
|
||||
|
||||
frame_range.start = 0
|
||||
frame_range.end = n_im
|
||||
frame_range.reset_start = 0
|
||||
frame_range.reset_end = n_im
|
||||
frame_range.bounds = (0, n_im)
|
||||
|
||||
scan_motor = det_data["scan_motor"]
|
||||
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
|
||||
|
||||
var = det_data[scan_motor]
|
||||
var_start = var[0]
|
||||
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
|
||||
|
||||
scanning_motor_range.start = var_start
|
||||
scanning_motor_range.end = var_end
|
||||
scanning_motor_range.reset_start = var_start
|
||||
scanning_motor_range.reset_end = var_end
|
||||
# handle both, ascending and descending sequences
|
||||
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
|
||||
|
||||
# shared frame ranges
|
||||
frame_range = Range1d(0, 1, bounds=(0, 1))
|
||||
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
|
||||
|
||||
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
|
||||
overview_plot_x = Plot(
|
||||
title=Title(text="Projections on X-axis"),
|
||||
x_range=det_x_range,
|
||||
y_range=frame_range,
|
||||
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
||||
plot_height=400,
|
||||
plot_width=IMAGE_PLOT_W - 3,
|
||||
)
|
||||
|
||||
# ---- tools
|
||||
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
||||
overview_plot_x.toolbar.logo = None
|
||||
overview_plot_x.add_tools(
|
||||
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
|
||||
)
|
||||
overview_plot_x.toolbar.active_scroll = wheelzoomtool
|
||||
|
||||
# ---- axes
|
||||
overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"), place="below")
|
||||
overview_plot_x.add_layout(
|
||||
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
|
||||
)
|
||||
|
||||
# ---- grid lines
|
||||
overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
# ---- rgba image glyph
|
||||
overview_plot_x_image_source = ColumnDataSource(
|
||||
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
|
||||
)
|
||||
|
||||
overview_plot_x_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
||||
overview_plot_x.add_glyph(
|
||||
overview_plot_x_image_source, overview_plot_x_image_glyph, name="image_glyph"
|
||||
)
|
||||
|
||||
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
|
||||
overview_plot_y = Plot(
|
||||
title=Title(text="Projections on Y-axis"),
|
||||
x_range=det_y_range,
|
||||
y_range=frame_range,
|
||||
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
||||
plot_height=400,
|
||||
plot_width=IMAGE_PLOT_H + 22,
|
||||
)
|
||||
|
||||
# ---- tools
|
||||
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
||||
overview_plot_y.toolbar.logo = None
|
||||
overview_plot_y.add_tools(
|
||||
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
|
||||
)
|
||||
overview_plot_y.toolbar.active_scroll = wheelzoomtool
|
||||
|
||||
# ---- axes
|
||||
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
|
||||
overview_plot_y.add_layout(
|
||||
LinearAxis(
|
||||
y_range_name="scanning_motor",
|
||||
axis_label="Scanning motor",
|
||||
major_label_orientation="vertical",
|
||||
),
|
||||
place="right",
|
||||
)
|
||||
|
||||
# ---- grid lines
|
||||
overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
# ---- rgba image glyph
|
||||
overview_plot_y_image_source = ColumnDataSource(
|
||||
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
|
||||
)
|
||||
|
||||
overview_plot_y_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
||||
overview_plot_y.add_glyph(
|
||||
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
|
||||
)
|
||||
|
||||
cmap_dict = {
|
||||
"gray": Greys256,
|
||||
"gray_reversed": Greys256[::-1],
|
||||
"plasma": Plasma256,
|
||||
"cividis": Cividis256,
|
||||
}
|
||||
|
||||
def colormap_callback(_attr, _old, new):
|
||||
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||
|
||||
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), width=210)
|
||||
colormap.on_change("value", colormap_callback)
|
||||
colormap.value = "plasma"
|
||||
|
||||
PROJ_STEP = 0.1
|
||||
|
||||
def proj_auto_checkbox_callback(state):
|
||||
if state:
|
||||
proj_display_min_spinner.disabled = True
|
||||
proj_display_max_spinner.disabled = True
|
||||
else:
|
||||
proj_display_min_spinner.disabled = False
|
||||
proj_display_max_spinner.disabled = False
|
||||
|
||||
update_overview_plot()
|
||||
|
||||
proj_auto_checkbox = CheckboxGroup(
|
||||
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
||||
)
|
||||
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
|
||||
|
||||
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
|
||||
proj_display_min_spinner.high = new_value - PROJ_STEP
|
||||
overview_plot_x_image_glyph.color_mapper.high = new_value
|
||||
overview_plot_y_image_glyph.color_mapper.high = new_value
|
||||
|
||||
proj_display_max_spinner = Spinner(
|
||||
low=0 + PROJ_STEP,
|
||||
value=1,
|
||||
step=PROJ_STEP,
|
||||
disabled=bool(proj_auto_checkbox.active),
|
||||
width=100,
|
||||
height=31,
|
||||
)
|
||||
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
|
||||
|
||||
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
|
||||
proj_display_max_spinner.low = new_value + PROJ_STEP
|
||||
overview_plot_x_image_glyph.color_mapper.low = new_value
|
||||
overview_plot_y_image_glyph.color_mapper.low = new_value
|
||||
|
||||
proj_display_min_spinner = Spinner(
|
||||
low=0,
|
||||
high=1 - PROJ_STEP,
|
||||
value=0,
|
||||
step=PROJ_STEP,
|
||||
disabled=bool(proj_auto_checkbox.active),
|
||||
width=100,
|
||||
height=31,
|
||||
)
|
||||
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
|
||||
|
||||
def fit_event(scan):
|
||||
p0 = [1.0, 0.0, 1.0]
|
||||
maxfev = 100000
|
||||
|
||||
# wave = scan["wave"]
|
||||
# ddist = scan["ddist"]
|
||||
# cell = scan["cell"]
|
||||
|
||||
# gamma = scan["gamma"][0]
|
||||
# omega = scan["omega"][0]
|
||||
# nu = scan["nu"][0]
|
||||
# chi = scan["chi"][0]
|
||||
# phi = scan["phi"][0]
|
||||
|
||||
scan_motor = scan["scan_motor"]
|
||||
var_angle = scan[scan_motor]
|
||||
|
||||
x0 = int(np.floor(det_x_range.start))
|
||||
xN = int(np.ceil(det_x_range.end))
|
||||
y0 = int(np.floor(det_y_range.start))
|
||||
yN = int(np.ceil(det_y_range.end))
|
||||
fr0 = int(np.floor(frame_range.start))
|
||||
frN = int(np.ceil(frame_range.end))
|
||||
data_roi = scan["data"][fr0:frN, y0:yN, x0:xN]
|
||||
|
||||
cnts = np.sum(data_roi, axis=(1, 2))
|
||||
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
|
||||
|
||||
# m = cnts.mean()
|
||||
# sd = cnts.std()
|
||||
# snr_cnts = np.where(sd == 0, 0, m / sd)
|
||||
|
||||
frC = fr0 + coeff[1]
|
||||
var_F = var_angle[math.floor(frC)]
|
||||
var_C = var_angle[math.ceil(frC)]
|
||||
# frStep = frC - math.floor(frC)
|
||||
var_step = var_C - var_F
|
||||
# var_p = var_F + var_step * frStep
|
||||
|
||||
# if scan_motor == "gamma":
|
||||
# gamma = var_p
|
||||
# elif scan_motor == "omega":
|
||||
# omega = var_p
|
||||
# elif scan_motor == "nu":
|
||||
# nu = var_p
|
||||
# elif scan_motor == "chi":
|
||||
# chi = var_p
|
||||
# elif scan_motor == "phi":
|
||||
# phi = var_p
|
||||
|
||||
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
|
||||
|
||||
projX = np.sum(data_roi, axis=(0, 1))
|
||||
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
|
||||
x_pos = x0 + coeff[1]
|
||||
|
||||
projY = np.sum(data_roi, axis=(0, 2))
|
||||
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
|
||||
y_pos = y0 + coeff[1]
|
||||
|
||||
scan["fit"] = {"frame": frC, "x_pos": x_pos, "y_pos": y_pos, "intensity": intensity}
|
||||
|
||||
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
|
||||
metadata_table = DataTable(
|
||||
source=metadata_table_source,
|
||||
columns=[
|
||||
TableColumn(field="geom", title="Geometry", width=100),
|
||||
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
|
||||
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
|
||||
],
|
||||
width=300,
|
||||
height=50,
|
||||
autosize_mode="none",
|
||||
index_position=None,
|
||||
)
|
||||
|
||||
def _update_param_plot():
|
||||
x = []
|
||||
y = []
|
||||
fit_param = fit_param_select.value
|
||||
for s, p in zip(zebra_data, scan_table_source.data["param"]):
|
||||
if "fit" in s and fit_param:
|
||||
x.append(p)
|
||||
y.append(s["fit"][fit_param])
|
||||
param_plot_scatter_source.data.update(x=x, y=y)
|
||||
|
||||
# Parameter plot
|
||||
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
|
||||
|
||||
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
|
||||
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
|
||||
|
||||
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||
|
||||
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[]))
|
||||
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
|
||||
|
||||
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
||||
param_plot.toolbar.logo = None
|
||||
|
||||
def fit_param_select_callback(_attr, _old, _new):
|
||||
_update_param_plot()
|
||||
|
||||
fit_param_select = Select(title="Fit parameter", options=[], width=145)
|
||||
fit_param_select.on_change("value", fit_param_select_callback)
|
||||
|
||||
def proc_all_button_callback():
|
||||
for scan in zebra_data:
|
||||
fit_event(scan)
|
||||
|
||||
_update_table()
|
||||
|
||||
for scan in zebra_data:
|
||||
if "fit" in scan:
|
||||
options = list(scan["fit"].keys())
|
||||
fit_param_select.options = options
|
||||
fit_param_select.value = options[0]
|
||||
break
|
||||
|
||||
_update_param_plot()
|
||||
|
||||
proc_all_button = Button(label="Process All", button_type="primary", width=145)
|
||||
proc_all_button.on_click(proc_all_button_callback)
|
||||
|
||||
def proc_button_callback():
|
||||
fit_event(det_data)
|
||||
|
||||
_update_table()
|
||||
|
||||
for scan in zebra_data:
|
||||
if "fit" in scan:
|
||||
options = list(scan["fit"].keys())
|
||||
fit_param_select.options = options
|
||||
fit_param_select.value = options[0]
|
||||
break
|
||||
|
||||
_update_param_plot()
|
||||
|
||||
proc_button = Button(label="Process Current", width=145)
|
||||
proc_button.on_click(proc_button_callback)
|
||||
|
||||
layout_controls = row(
|
||||
colormap,
|
||||
column(proj_auto_checkbox, row(proj_display_min_spinner, proj_display_max_spinner)),
|
||||
proc_button,
|
||||
proc_all_button,
|
||||
)
|
||||
|
||||
layout_overview = column(
|
||||
gridplot(
|
||||
[[overview_plot_x, overview_plot_y]],
|
||||
toolbar_options=dict(logo=None),
|
||||
merge_tools=True,
|
||||
toolbar_location="left",
|
||||
),
|
||||
layout_controls,
|
||||
)
|
||||
|
||||
# Plot tabs
|
||||
plots = Tabs(
|
||||
tabs=[
|
||||
Panel(child=layout_overview, title="single scan"),
|
||||
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
|
||||
]
|
||||
)
|
||||
|
||||
# Final layout
|
||||
import_layout = column(
|
||||
proposal_textinput,
|
||||
upload_div,
|
||||
upload_button,
|
||||
file_select,
|
||||
row(file_open_button, file_append_button),
|
||||
)
|
||||
|
||||
scan_layout = column(scan_table, row(param_select, metadata_table))
|
||||
|
||||
tab_layout = column(row(import_layout, scan_layout, plots))
|
||||
|
||||
return Panel(child=tab_layout, title="hdf param study")
|
||||
|
||||
|
||||
def gauss(x, *p):
|
||||
"""Defines Gaussian function
|
||||
Args:
|
||||
A - amplitude, mu - position of the center, sigma - width
|
||||
Returns:
|
||||
Gaussian function
|
||||
"""
|
||||
A, mu, sigma = p
|
||||
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
|
@ -54,18 +54,23 @@ import pyzebra
|
||||
from pyzebra.ccl_process import AREA_METHODS
|
||||
|
||||
javaScript = """
|
||||
let j = 0;
|
||||
for (let i = 0; i < js_data.data['fname'].length; i++) {
|
||||
if (js_data.data['content'][i] === "") continue;
|
||||
|
||||
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
|
||||
const link = document.createElement('a');
|
||||
document.body.appendChild(link);
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
link.href = url;
|
||||
link.download = js_data.data['fname'][i];
|
||||
link.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
document.body.removeChild(link);
|
||||
setTimeout(function() {
|
||||
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
|
||||
const link = document.createElement('a');
|
||||
document.body.appendChild(link);
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
link.href = url;
|
||||
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
|
||||
link.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
document.body.removeChild(link);
|
||||
}, 100 * j)
|
||||
|
||||
j++;
|
||||
}
|
||||
"""
|
||||
|
||||
@ -79,7 +84,7 @@ def create():
|
||||
doc = curdoc()
|
||||
det_data = []
|
||||
fit_params = {}
|
||||
js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""]))
|
||||
js_data = ColumnDataSource(data=dict(content=[""], fname=[""], ext=[""]))
|
||||
|
||||
def file_select_update_for_proposal():
|
||||
proposal = proposal_textinput.value.strip()
|
||||
@ -138,9 +143,9 @@ def create():
|
||||
def file_open_button_callback():
|
||||
nonlocal det_data
|
||||
det_data = []
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
base, ext = os.path.splitext(f_name)
|
||||
for f_path in file_select.value:
|
||||
with open(f_path) as file:
|
||||
base, ext = os.path.splitext(os.path.basename(f_path))
|
||||
if det_data:
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
@ -148,7 +153,7 @@ def create():
|
||||
else:
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
|
||||
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
|
||||
js_data.data.update(fname=[base])
|
||||
|
||||
_init_datatable()
|
||||
append_upload_button.disabled = False
|
||||
@ -157,9 +162,9 @@ def create():
|
||||
file_open_button.on_click(file_open_button_callback)
|
||||
|
||||
def file_append_button_callback():
|
||||
for f_name in file_select.value:
|
||||
with open(f_name) as file:
|
||||
_, ext = os.path.splitext(f_name)
|
||||
for f_path in file_select.value:
|
||||
with open(f_path) as file:
|
||||
_, ext = os.path.splitext(f_path)
|
||||
append_data = pyzebra.parse_1D(file, ext)
|
||||
|
||||
pyzebra.normalize_dataset(append_data, monitor_spinner.value)
|
||||
@ -184,7 +189,7 @@ def create():
|
||||
else:
|
||||
det_data = pyzebra.parse_1D(file, ext)
|
||||
pyzebra.normalize_dataset(det_data, monitor_spinner.value)
|
||||
js_data.data.update(fname=[base + ".comm", base + ".incomm"])
|
||||
js_data.data.update(fname=[base])
|
||||
|
||||
_init_datatable()
|
||||
append_upload_button.disabled = False
|
||||
@ -698,34 +703,38 @@ def create():
|
||||
|
||||
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
|
||||
|
||||
export_preview_textinput = TextAreaInput(title="Export file(s) preview:", width=450, height=400)
|
||||
export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
|
||||
|
||||
def _update_preview():
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_file = temp_dir + "/temp"
|
||||
export_data = []
|
||||
for s, export in zip(det_data, scan_table_source.data["export"]):
|
||||
param_data = []
|
||||
for s, p, export in zip(
|
||||
det_data, scan_table_source.data["param"], scan_table_source.data["export"]
|
||||
):
|
||||
if export:
|
||||
export_data.append(s)
|
||||
param_data.append(p)
|
||||
|
||||
# pyzebra.export_1D(export_data, temp_file, "fullprof")
|
||||
pyzebra.export_param_study(export_data, param_data, temp_file)
|
||||
|
||||
exported_content = ""
|
||||
file_content = []
|
||||
for ext in (".comm", ".incomm"):
|
||||
fname = temp_file + ext
|
||||
if os.path.isfile(fname):
|
||||
with open(fname) as f:
|
||||
content = f.read()
|
||||
exported_content += f"{ext} file:\n" + content
|
||||
else:
|
||||
content = ""
|
||||
file_content.append(content)
|
||||
|
||||
fname = temp_file
|
||||
if os.path.isfile(fname):
|
||||
with open(fname) as f:
|
||||
content = f.read()
|
||||
exported_content += content
|
||||
else:
|
||||
content = ""
|
||||
file_content.append(content)
|
||||
|
||||
js_data.data.update(content=file_content)
|
||||
export_preview_textinput.value = exported_content
|
||||
|
||||
save_button = Button(label="Download File(s)", button_type="success", width=220)
|
||||
save_button = Button(label="Download File", button_type="success", width=220)
|
||||
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
|
||||
|
||||
fitpeak_controls = row(
|
||||
|
@ -24,7 +24,7 @@ def create():
|
||||
events_data = doc.events_data
|
||||
|
||||
npeaks_spinner = Spinner(title="Number of peaks from hdf_view panel:", disabled=True)
|
||||
lattice_const_textinput = TextInput(title="Lattice constants:", disabled=True)
|
||||
lattice_const_textinput = TextInput(title="Lattice constants:")
|
||||
max_res_spinner = Spinner(title="max-res:", value=2, step=0.01, width=145)
|
||||
seed_pool_size_spinner = Spinner(title="seed-pool-size:", value=5, step=0.01, width=145)
|
||||
seed_len_tol_spinner = Spinner(title="seed-len-tol:", value=0.02, step=0.01, width=145)
|
||||
|
@ -301,3 +301,31 @@ def export_1D(data, path, export_target, hkl_precision=2):
|
||||
if content:
|
||||
with open(path + ext, "w") as out_file:
|
||||
out_file.writelines(content)
|
||||
|
||||
|
||||
def export_param_study(data, param_data, path):
|
||||
file_content = []
|
||||
for scan, param in zip(data, param_data):
|
||||
if "fit" not in scan:
|
||||
continue
|
||||
|
||||
if not file_content:
|
||||
title_str = f"{'param':12}"
|
||||
for fit_param_name in scan["fit"].params:
|
||||
title_str = title_str + f"{fit_param_name:20}" + f"{'std_' + fit_param_name:20}"
|
||||
title_str = title_str + "file"
|
||||
file_content.append(title_str + "\n")
|
||||
|
||||
param_str = f"{param:<12.2f}"
|
||||
|
||||
fit_str = ""
|
||||
for fit_param in scan["fit"].params.values():
|
||||
fit_str = fit_str + f"{fit_param.value:<20.2f}" + f"{fit_param.stderr:<20.2f}"
|
||||
|
||||
_, fname_str = os.path.split(scan["original_filename"])
|
||||
|
||||
file_content.append(param_str + fit_str + fname_str + "\n")
|
||||
|
||||
if file_content:
|
||||
with open(path, "w") as out_file:
|
||||
out_file.writelines(file_content)
|
||||
|
@ -75,6 +75,7 @@ def read_detector_data(filepath, cami_meta=None):
|
||||
data = data.reshape(n, rows, cols)
|
||||
|
||||
det_data = {"data": data}
|
||||
det_data["original_filename"] = filepath
|
||||
|
||||
if "/entry1/zebra_mode" in h5f:
|
||||
det_data["zebra_mode"] = h5f["/entry1/zebra_mode"][0].decode()
|
||||
|
Reference in New Issue
Block a user