Files
crystfel_tools/convert-scan-for-pyfai.py
Beale John Henry 9fb67f4302 first scripts
2023-03-09 15:00:55 +01:00

76 lines
1.8 KiB
Python

#!/usr/bin/env python
"""
# aim
make image file for input into pyFAI for initial detector
# protocol
take scan of LaB6
vanile settings for crystallina 8M are 100 scan positions, 10 shots per position
run this on output
# usage
python make-tiff.py -j <jugfrau-name> -s <path to scan file> -n <name of output file>
# output
creates a .npy file that can be loaded directly into pyFAI
"""
# modules
from matplotlib import pyplot as plt
import numpy as np
from sfdata import SFScanInfo
from tqdm import tqdm
import argparse
def convert_image( path_to_json, jungfrau, name ):
# opens scan
scan = SFScanInfo( path_to_json )
# step through scan and average files from each positions
mean_image = []
for step in tqdm( enumerate(scan) ):
# step is a SFDataFiles object
subset = step[1]
mean = np.mean( subset[ jungfrau ].data, axis=0 )
mean_image.append(mean)
# sum averaged imaged
sum_image = np.sum( mean_image, axis=0 )
# output to file
np.save( "{0}.npy".format( name ), sum_image )
# create plot of summed, averaged scan
fig, ax = plt.subplots()
ax.imshow(sum_image, vmin=0, vmax=1000)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-j",
"--jungfrau",
help="name of the jungfrau used",
type=str,
default="JF17T16V01"
)
parser.add_argument(
"-s",
"--scan",
help="path to json scan file",
type=str,
default="/sf/cristallina/data/p20590/raw/run0003/meta/scan.json"
)
parser.add_argument(
"-n",
"--name",
help="name of output file",
type=str,
default="sum_mean_scan"
)
args = parser.parse_args()
convert_image( args.scan, args.jungfrau, args.name )