Files
crystfel_tools/reduction_tools/crystfel_split_var.py
Beale John Henry 6d64d9248e more bug fixes
2025-01-22 12:38:25 +01:00

528 lines
18 KiB
Python

#!/usr/bin/python
# author J.Beale
"""
# aim
to process a batch of data very fast by splitting it into a number of chunks and submitting
these jobs separately to the cluster - but now all with the ability to change crystfel parameters
from the command line
# usage
python crystfel_split.py -l <path-to-list-file>
-k <chunk-size> -default 1000
-g <path-to-geom-file>
-c <path-to-cell-file>
-n <job-name> -default split
-t crystfel threshold -default 10
-s crystfel min-snr -default 5
-i crystfel int-radius -default 3,5,9
-m crystfel multi or no-multi (True/False) -default False (no-multi)
-r crystfel retry or no-retry (True/False) -default False (no-retry)
-x crystfel min-pix-count -default 2
# output
a series of stream files from crystfel in the current working directory
"""
# modules
import pandas as pd
import numpy as np
import subprocess
import os, errno
import time
import argparse
from tqdm import tqdm
import regex as re
from loguru import logger
def count_chunks( stream ):
# get number of chunks
# example - ----- Begin chunk -----
# count them
try:
pattern = r"-----\sBegin\schunk\s-----"
chunks = re.findall( pattern, stream )
if AttributeError:
return len( chunks )
except AttributeError:
logger.debug( "count_chunks error" )
return np.nan
def scrub_cells( stream ):
# get uc values from stream file
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
# scrub clen and return - else nan
try:
pattern = r"Cell\sparameters\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
cell_lst = re.findall( pattern, stream )
xtals = len( cell_lst )
if AttributeError:
return cell_lst, xtals
except AttributeError:
logger.debug( "scrub_cells error" )
return np.nan
def scrub_res( stream ):
# get diffraction limit
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
# scrub res_lst or return np.nan
try:
pattern = r"diffraction_resolution_limit\s=\s\d+\.\d+\snm\^-1\sor\s(\d+\.\d+)\sA"
res_lst = re.findall( pattern, stream )
if AttributeError:
return res_lst
except AttributeError:
logger.debug( "scrub_res error" )
return np.nan
def scrub_obs( stream ):
# get number of reflections
# example - num_reflections = 308
# scrub reflections or return np.nan
try:
pattern = r"num_reflections\s=\s(\d+)"
obs_lst = re.findall( pattern, stream )
if AttributeError:
return obs_lst
except AttributeError:
logger.debug( "scrub_obs error" )
return np.nan
def calculate_stats( stream_pwd ):
# open stream file
stream = open( stream_pwd, "r" ).read()
# get total number chunks
chunks = count_chunks( stream )
# get list of cells
cell_lst, xtals = scrub_cells( stream )
# get list of cells
res_lst = scrub_res( stream )
# get list of cells
obs_lst = scrub_obs( stream )
# res_df
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
df = pd.DataFrame( cell_lst, columns=cols )
df[ "resolution" ] = res_lst
df[ "obs" ] = obs_lst
# convert all to floats
df = df.astype(float)
return df, xtals, chunks
def h5_split( lst, chunk_size ):
# read h5.lst - note - removes // from image column
# scrub file name
lst_name = os.path.basename( lst )
cols = [ "h5", "image" ]
df = pd.read_csv( lst, sep="\s//", engine="python", names=cols )
# re-add // to image columm and drop other columns
df[ "h5_path" ] = df.h5 + " //" + df.image.astype( str )
df = df[ [ "h5_path" ] ]
# split df into a lst
list_df = [df[i:i + chunk_size] for i in range( 0, len(df), chunk_size)]
return list_df
def write_crystfel_run( proc_dir, name, chunk, chunk_lst_file,
geom_file, cell_file, indexer, peakfinder,
integrator, tolerance, threshold, min_snr,
int_rad, multi, retry, min_pix, bg_rad, min_res ):
# stream file name
stream_file = "{0}_{1}.stream".format( name, chunk )
# crystfel file name
cryst_run_file = "{0}/{1}_{2}.sh".format( proc_dir, name, chunk )
# write file
run_sh = open( cryst_run_file, "w" )
run_sh.write( "#!/bin/sh\n\n" )
run_sh.write( "module purge\n" )
run_sh.write( "module use MX unstable\n" )
run_sh.write( "module load crystfel/0.10.2-rhel8\n" )
run_sh.write( "indexamajig -i {0} \\\n".format( chunk_lst_file ) )
run_sh.write( " --output={0} \\\n".format( stream_file ) )
run_sh.write( " --geometry={0} \\\n".format( geom_file ) )
run_sh.write( " --pdb={0} \\\n".format( cell_file ) )
run_sh.write( " --indexing={0} \\\n".format( indexer ) )
run_sh.write( " --peaks={0} \\\n".format( peakfinder ) )
run_sh.write( " --integration={0} \\\n".format( integrator ) )
run_sh.write( " --tolerance={0},{1},{2},{3},{4},{5} \\\n".format( tolerance[0], tolerance[1], tolerance[2],
tolerance[3], tolerance[4], tolerance[5] ) )
run_sh.write( " --threshold={0} \\\n".format( threshold ) )
run_sh.write( " --min-snr={0} \\\n".format( min_snr ) )
run_sh.write( " --int-radius={0},{1},{2} \\\n".format( int_rad[0], int_rad[1], int_rad[2] ) )
run_sh.write( " -j 32 \\\n" )
run_sh.write( " --{0} \\\n".format( multi ) )
run_sh.write( " --check-peaks \\\n" )
run_sh.write( " --{0} \\\n".format( retry ) )
run_sh.write( " --max-res=3000 \\\n" )
run_sh.write( " --min-pix-count={0} \\\n".format( min_pix ) )
run_sh.write( " --local-bg-radius={0} \\\n".format( bg_rad ) )
run_sh.write( " --min-res={0}".format( min_res ) )
run_sh.close()
# make file executable
subprocess.call( [ "chmod", "+x", "{0}".format( cryst_run_file ) ] )
# return crystfel file name
return cryst_run_file, stream_file
def make_process_dir( proc_dir ):
# make process directory
try:
os.makedirs( proc_dir )
except OSError as e:
if e.errno != errno.EEXIST:
logger.debug( "making directory error" )
raise
def submit_job( job_file, reservation ):
# submit the job
if reservation:
print( "using a ra beamtime reservation = {0}".format( reservation ) )
logger.info( "using ra reservation to process data = {0}".format( reservation ) )
submit_cmd = [ "sbatch", "-p", "hour", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ]
else:
submit_cmd = [ "sbatch", "-p", "hour", "--cpus-per-task=32", "--" , job_file ]
logger.info( "using slurm command = {0}".format( submit_cmd ) )
try:
job_output = subprocess.check_output( submit_cmd )
logger.info( "submited job = {0}".format( job_output ) )
except subprocess.CalledProcessError as e:
print( "please give the correct ra reservation or remove the -v from the arguements" )
exit()
# scrub job id from - example Submitted batch job 742403
pattern = r"Submitted batch job (\d+)"
job_id = re.search( pattern, job_output.decode().strip() ).group(1)
return int( job_id )
def wait_for_jobs( job_ids, total_jobs ):
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
while job_ids:
completed_jobs = set()
for job_id in job_ids:
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
status = subprocess.check_output(status_cmd)
if not status:
completed_jobs.add(job_id)
pbar.update(1)
job_ids.difference_update(completed_jobs)
time.sleep(2)
def run_splits( list_df, cwd, name, geom_file, cell_file,
indexer, peakfinder, integrator, tolerance, threshold,
min_snr, int_rad, multi, retry, min_pix, bg_rad,
min_res, reservation ):
# set chunk counter
chunk = 0
# submitted job set
submitted_job_ids = set()
# stream file list
stream_lst = []
for chunk_lst in list_df:
logger.info( "chunk {0} = {1} images".format( chunk, len( chunk_lst ) ) )
# define process directory
proc_dir = "{0}/{1}/{1}_{2}".format( cwd, name, chunk )
# make process directory
make_process_dir(proc_dir)
# move to process directory
os.chdir( proc_dir )
# write list to file
chunk_lst_file = "{0}/{1}_{2}.lst".format( proc_dir, name, chunk )
chunk_lst.to_csv( chunk_lst_file, index=False, header=False )
# write crystfel file and append path to list
cryst_run_file, stream_file = write_crystfel_run( proc_dir, name, chunk, chunk_lst_file,
geom_file, cell_file, indexer, peakfinder,
integrator, tolerance, threshold, min_snr,
int_rad, multi, retry, min_pix, bg_rad, min_res )
stream_lst.append( "{0}/{1}".format( proc_dir, stream_file ) )
# submit jobs
job_id = submit_job( cryst_run_file, reservation )
submitted_job_ids.add( job_id )
# increase chunk counter
chunk = chunk +1
# move back to top dir
os.chdir( cwd )
return submitted_job_ids, chunk, stream_lst
def main( cwd, name, lst, chunk_size, geom_file, cell_file,
indexer, peakfinder, integrator, tolerance, threshold,
min_snr, int_rad, multi, retry, min_pix, bg_rad,
min_res, reservation ):
print( "reading SwissFEL lst file" )
print( "creating {0} image chunks of lst".format( chunk_size ) )
list_df = h5_split( lst, chunk_size )
print( "done" )
# run crystfel runs on individual splits
print( "submitting jobs to cluster" )
submitted_job_ids, chunk, stream_lst = run_splits( list_df, cwd, name, geom_file, cell_file,
indexer, peakfinder, integrator, tolerance, threshold,
min_snr, int_rad, multi, retry, min_pix, bg_rad,
min_res, reservation )
# monitor progress of jobs
time.sleep( 30 )
wait_for_jobs( submitted_job_ids, chunk )
print( "done" )
# make composite .stream file
output_file = "{0}.stream".format( name )
print( "concatenating .streams from separate runs." )
try:
# Open the output file in 'append' mode
with open(output_file, "a") as output:
for file_name in stream_lst:
try:
with open(file_name, "r") as input_file:
# Read the contents of the input file and append to the output file
output.write(input_file.read())
except FileNotFoundError:
logger.debug(f"File {file_name} not found. Skipping.")
except IOError as e:
logger.debug(f"An error occurred while appending files: {e}")
print( "done" )
df, xtals, chunks = calculate_stats( output_file )
# stats
index_rate = round( xtals/chunks*100, 2 )
mean_res, std_res = round( df.resolution.mean(), 2 ), round( df.resolution.std(), 2 )
median_res = df.resolution.median()
mean_obs, std_obs = round( df.obs.mean(), 2 ), round( df.obs.std(), 2)
mean_a, std_a = round( df.a.mean()*10, 2 ), round( df.a.std()*10, 2 )
mean_b, std_b = round( df.b.mean()*10, 2 ), round( df.b.std()*10, 2 )
mean_c, std_c = round( df.c.mean()*10, 2 ), round( df.c.std()*10, 2 )
mean_alpha, std_alpha = round( df.alpha.mean(), 2 ), round( df.alpha.std(), 2 )
mean_beta, std_beta = round(df.beta.mean(), 2 ), round( df.beta.std(), 2 )
mean_gamma, std_gamma = round( df.gamma.mean(), 2 ), round( df.gamma.std(), 2 )
logger.info( "image = {0}".format( chunks ) )
logger.info( "crystals = {0}".format( xtals ) )
logger.info( "indexing rate = {0} %".format( index_rate ) )
logger.info( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
logger.info( "median resolution = {0} A".format( median_res ) )
logger.info( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
logger.info( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
logger.info( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
logger.info( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
logger.info( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
logger.info( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
logger.info( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
print( "printing stats" )
print( "image = {0}".format( chunks ) )
print( "crystals = {0}".format( xtals ) )
print( "indexing rate = {0} %".format( index_rate ) )
print( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
print( "median resolution = {0} A".format( median_res ) )
print( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
print( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
print( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
print( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
print( "mean alpha = {0} +/- {1} deg".format( mean_alpha, std_alpha ) )
print( "mean beta = {0} +/- {1} deg".format( mean_beta, std_beta ) )
print( "mean gamma = {0} +/- {1} deg".format( mean_gamma, std_gamma ) )
def list_of_ints(arg):
return list(map(int, arg.split(',')))
def list_of_floats(arg):
return list(map(float, arg.split(',')))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-n",
"--job_name",
help="the name of the job to be done. Default = split",
type=str,
default="split"
)
parser.add_argument(
"-l",
"--lst_file",
help="file from SwissFEL output to be processed quickly. Requried.",
type=os.path.abspath,
required=True
)
parser.add_argument(
"-k",
"--chunk_size",
help="how big should each image split be? Default = 500. Fewer will be faster.",
type=int,
default=500
)
parser.add_argument(
"-g",
"--geom_file",
help="path to geom file to be used in the refinement. Requried.",
type=os.path.abspath,
required=True
)
parser.add_argument(
"-c",
"--cell_file",
help="path to cell file of the crystals used in the refinement. Requried.",
type=os.path.abspath,
required=True
)
parser.add_argument(
"-x",
"--indexer",
help="indexer to use. Default = xgandalf-latt-cell",
type=str,
default="xgandalf-latt-cell"
)
parser.add_argument(
"-f",
"--peakfinder",
help="peakfinder to use. Default = peakfinder8",
type=str,
default="peakfinder8"
)
parser.add_argument(
"-a",
"--integrator",
help="integrator to use. Default = rings-nocen-nograd",
type=str,
default="rings-nocen-nograd"
)
parser.add_argument(
"-y",
"--tolerance",
help="tolerance to use. Default = 10.0,10.0,10.0,2.0,3.0,2.0",
type=list_of_floats,
default=[10.0,10.0,10.0,2.0,3.0,2.0]
)
parser.add_argument(
"-t",
"--threshold",
help="peaks must be above this to be found during spot-finding. Default = 20",
type=int,
default=20
)
parser.add_argument(
"-s",
"--min_snr",
help="peaks must to above this to be counted. Default = 5.",
type=int,
default=5
)
parser.add_argument(
"-i",
"--int_radius",
help="integration ring radii. Default = 2,3,5 = 2 for spot and then 3 and 5 to calculate background.",
type=list_of_ints,
default=[2,3,5]
)
parser.add_argument(
"-m",
"--multi",
help="do you wnat to look for multiple lattices. Default = True",
type=bool,
default=False
)
parser.add_argument(
"-r",
"--retry",
help="do you want to retry failed indexing patterns. Default = False",
type=bool,
default=False
)
parser.add_argument(
"-p",
"--min_pix",
help="minimum number of pixels a spot should contain in peak finding.Default = 2",
type=int,
default=2
)
parser.add_argument(
"-b",
"--bg_rad",
help="radius (in pixels) used for the estimation of the local background. Default = 4",
type=int,
default=4
)
parser.add_argument(
"-q",
"--min_res",
help="min-res for spot-finding in pixels. Default = 85.",
type=int,
default=85
)
parser.add_argument(
"-v",
"--reservation",
help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10",
type=str,
default=None
)
parser.add_argument(
"-d",
"--debug",
help="output debug to terminal.",
type=bool,
default=False
)
args = parser.parse_args()
# run geom converter
cwd = os.getcwd()
# set loguru
if not args.debug:
logger.remove()
logfile = "{0}.log".format( args.job_name )
logger.add( logfile, format="{message}", level="INFO")
# log geometry file
geom = open( args.geom_file, "r" ).read()
logger.info( geom )
if args.multi == True:
multi = "multi"
else:
multi = "no-multi"
if args.retry == True:
retry = "retry"
else:
retry = "no-retry"
main( cwd, args.job_name, args.lst_file, args.chunk_size,
args.geom_file, args.cell_file, args.indexer, args.peakfinder,
args.integrator, args.tolerance, args.threshold,
args.min_snr, args.int_radius, multi, retry, args.min_pix, args.bg_rad,
args.min_res, args.reservation )