#!/usr/bin/python # author J.Beale """ # aim to process a batch of data very fast by splitting it into a number of chunks and submitting these jobs separately to the cluster - but now all with the ability to change crystfel parameters from the command line # usage python crystfel_split.py -l -k -default 1000 -g -c -n -default split -t crystfel threshold -default 10 -s crystfel min-snr -default 5 -i crystfel int-radius -default 3,5,9 -m crystfel multi or no-multi (True/False) -default False (no-multi) -r crystfel retry or no-retry (True/False) -default False (no-retry) -x crystfel min-pix-count -default 2 # output a series of stream files from crystfel in the current working directory """ # modules import pandas as pd import numpy as np import subprocess import os, errno import time import argparse from tqdm import tqdm import regex as re from loguru import logger def count_chunks( stream ): # get number of chunks # example - ----- Begin chunk ----- # count them try: pattern = r"-----\sBegin\schunk\s-----" chunks = re.findall( pattern, stream ) if AttributeError: return len( chunks ) except AttributeError: logger.debug( "count_chunks error" ) return np.nan def scrub_cells( stream ): # get uc values from stream file # example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg # scrub clen and return - else nan try: pattern = r"Cell\sparameters\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg" cell_lst = re.findall( pattern, stream ) xtals = len( cell_lst ) if AttributeError: return cell_lst, xtals except AttributeError: logger.debug( "scrub_cells error" ) return np.nan def scrub_res( stream ): # get diffraction limit # example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A # scrub res_lst or return np.nan try: pattern = r"diffraction_resolution_limit\s=\s\d+\.\d+\snm\^-1\sor\s(\d+\.\d+)\sA" res_lst = re.findall( pattern, stream ) if AttributeError: return res_lst except AttributeError: logger.debug( "scrub_res error" ) return np.nan def scrub_obs( stream ): # get number of reflections # example - num_reflections = 308 # scrub reflections or return np.nan try: pattern = r"num_reflections\s=\s(\d+)" obs_lst = re.findall( pattern, stream ) if AttributeError: return obs_lst except AttributeError: logger.debug( "scrub_obs error" ) return np.nan def calculate_stats( stream_pwd ): # open stream file stream = open( stream_pwd, "r" ).read() # get total number chunks chunks = count_chunks( stream ) # get list of cells cell_lst, xtals = scrub_cells( stream ) # get list of cells res_lst = scrub_res( stream ) # get list of cells obs_lst = scrub_obs( stream ) # res_df cols = [ "a", "b", "c", "alpha", "beta", "gamma" ] df = pd.DataFrame( cell_lst, columns=cols ) df[ "resolution" ] = res_lst df[ "obs" ] = obs_lst # convert all to floats df = df.astype(float) return df, xtals, chunks def h5_split( lst, chunk_size ): # read h5.lst - note - removes // from image column # scrub file name lst_name = os.path.basename( lst ) cols = [ "h5", "image" ] df = pd.read_csv( lst, sep="\s//", engine="python", names=cols ) # re-add // to image columm and drop other columns df[ "h5_path" ] = df.h5 + " //" + df.image.astype( str ) df = df[ [ "h5_path" ] ] # split df into a lst list_df = [df[i:i + chunk_size] for i in range( 0, len(df), chunk_size)] return list_df def write_crystfel_run( proc_dir, name, chunk, chunk_lst_file, geom_file, cell_file, indexer, peakfinder, integrator, tolerance, threshold, min_snr, int_rad, multi, retry, min_pix, bg_rad, min_res ): # stream file name stream_file = "{0}_{1}.stream".format( name, chunk ) # crystfel file name cryst_run_file = "{0}/{1}_{2}.sh".format( proc_dir, name, chunk ) # write file run_sh = open( cryst_run_file, "w" ) run_sh.write( "#!/bin/sh\n\n" ) run_sh.write( "module purge\n" ) run_sh.write( "module use MX unstable\n" ) run_sh.write( "module load crystfel/0.10.2-rhel8\n" ) run_sh.write( "indexamajig -i {0} \\\n".format( chunk_lst_file ) ) run_sh.write( " --output={0} \\\n".format( stream_file ) ) run_sh.write( " --geometry={0} \\\n".format( geom_file ) ) run_sh.write( " --pdb={0} \\\n".format( cell_file ) ) run_sh.write( " --indexing={0} \\\n".format( indexer ) ) run_sh.write( " --peaks={0} \\\n".format( peakfinder ) ) run_sh.write( " --integration={0} \\\n".format( integrator ) ) run_sh.write( " --tolerance={0},{1},{2},{3},{4},{5} \\\n".format( tolerance[0], tolerance[1], tolerance[2], tolerance[3], tolerance[4], tolerance[5] ) ) run_sh.write( " --threshold={0} \\\n".format( threshold ) ) run_sh.write( " --min-snr={0} \\\n".format( min_snr ) ) run_sh.write( " --int-radius={0},{1},{2} \\\n".format( int_rad[0], int_rad[1], int_rad[2] ) ) run_sh.write( " -j 32 \\\n" ) run_sh.write( " --{0} \\\n".format( multi ) ) run_sh.write( " --check-peaks \\\n" ) run_sh.write( " --{0} \\\n".format( retry ) ) run_sh.write( " --max-res=3000 \\\n" ) run_sh.write( " --min-pix-count={0} \\\n".format( min_pix ) ) run_sh.write( " --local-bg-radius={0} \\\n".format( bg_rad ) ) run_sh.write( " --min-res={0}".format( min_res ) ) run_sh.close() # make file executable subprocess.call( [ "chmod", "+x", "{0}".format( cryst_run_file ) ] ) # return crystfel file name return cryst_run_file, stream_file def make_process_dir( proc_dir ): # make process directory try: os.makedirs( proc_dir ) except OSError as e: if e.errno != errno.EEXIST: logger.debug( "making directory error" ) raise def submit_job( job_file, reservation ): # submit the job if reservation: print( "using a ra beamtime reservation = {0}".format( reservation ) ) logger.info( "using ra reservation to process data = {0}".format( reservation ) ) submit_cmd = [ "sbatch", "-p", "hour", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ] else: submit_cmd = [ "sbatch", "-p", "hour", "--cpus-per-task=32", "--" , job_file ] logger.info( "using slurm command = {0}".format( submit_cmd ) ) try: job_output = subprocess.check_output( submit_cmd ) logger.info( "submited job = {0}".format( job_output ) ) except subprocess.CalledProcessError as e: print( "please give the correct ra reservation or remove the -v from the arguements" ) exit() # scrub job id from - example Submitted batch job 742403 pattern = r"Submitted batch job (\d+)" job_id = re.search( pattern, job_output.decode().strip() ).group(1) return int( job_id ) def wait_for_jobs( job_ids, total_jobs ): with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar: while job_ids: completed_jobs = set() for job_id in job_ids: status_cmd = [ "squeue", "-h", "-j", str( job_id ) ] status = subprocess.check_output(status_cmd) if not status: completed_jobs.add(job_id) pbar.update(1) job_ids.difference_update(completed_jobs) time.sleep(2) def run_splits( list_df, cwd, name, geom_file, cell_file, indexer, peakfinder, integrator, tolerance, threshold, min_snr, int_rad, multi, retry, min_pix, bg_rad, min_res, reservation ): # set chunk counter chunk = 0 # submitted job set submitted_job_ids = set() # stream file list stream_lst = [] for chunk_lst in list_df: logger.info( "chunk {0} = {1} images".format( chunk, len( chunk_lst ) ) ) # define process directory proc_dir = "{0}/{1}/{1}_{2}".format( cwd, name, chunk ) # make process directory make_process_dir(proc_dir) # move to process directory os.chdir( proc_dir ) # write list to file chunk_lst_file = "{0}/{1}_{2}.lst".format( proc_dir, name, chunk ) chunk_lst.to_csv( chunk_lst_file, index=False, header=False ) # write crystfel file and append path to list cryst_run_file, stream_file = write_crystfel_run( proc_dir, name, chunk, chunk_lst_file, geom_file, cell_file, indexer, peakfinder, integrator, tolerance, threshold, min_snr, int_rad, multi, retry, min_pix, bg_rad, min_res ) stream_lst.append( "{0}/{1}".format( proc_dir, stream_file ) ) # submit jobs job_id = submit_job( cryst_run_file, reservation ) submitted_job_ids.add( job_id ) # increase chunk counter chunk = chunk +1 # move back to top dir os.chdir( cwd ) return submitted_job_ids, chunk, stream_lst def main( cwd, name, lst, chunk_size, geom_file, cell_file, indexer, peakfinder, integrator, tolerance, threshold, min_snr, int_rad, multi, retry, min_pix, bg_rad, min_res, reservation ): print( "reading SwissFEL lst file" ) print( "creating {0} image chunks of lst".format( chunk_size ) ) list_df = h5_split( lst, chunk_size ) print( "done" ) # run crystfel runs on individual splits print( "submitting jobs to cluster" ) submitted_job_ids, chunk, stream_lst = run_splits( list_df, cwd, name, geom_file, cell_file, indexer, peakfinder, integrator, tolerance, threshold, min_snr, int_rad, multi, retry, min_pix, bg_rad, min_res, reservation ) # monitor progress of jobs time.sleep( 30 ) wait_for_jobs( submitted_job_ids, chunk ) print( "done" ) # make composite .stream file output_file = "{0}.stream".format( name ) print( "concatenating .streams from separate runs." ) try: # Open the output file in 'append' mode with open(output_file, "a") as output: for file_name in stream_lst: try: with open(file_name, "r") as input_file: # Read the contents of the input file and append to the output file output.write(input_file.read()) except FileNotFoundError: logger.debug(f"File {file_name} not found. Skipping.") except IOError as e: logger.debug(f"An error occurred while appending files: {e}") print( "done" ) df, xtals, chunks = calculate_stats( output_file ) # stats index_rate = round( xtals/chunks*100, 2 ) mean_res, std_res = round( df.resolution.mean(), 2 ), round( df.resolution.std(), 2 ) median_res = df.resolution.median() mean_obs, std_obs = round( df.obs.mean(), 2 ), round( df.obs.std(), 2) mean_a, std_a = round( df.a.mean()*10, 2 ), round( df.a.std()*10, 2 ) mean_b, std_b = round( df.b.mean()*10, 2 ), round( df.b.std()*10, 2 ) mean_c, std_c = round( df.c.mean()*10, 2 ), round( df.c.std()*10, 2 ) mean_alpha, std_alpha = round( df.alpha.mean(), 2 ), round( df.alpha.std(), 2 ) mean_beta, std_beta = round(df.beta.mean(), 2 ), round( df.beta.std(), 2 ) mean_gamma, std_gamma = round( df.gamma.mean(), 2 ), round( df.gamma.std(), 2 ) logger.info( "image = {0}".format( chunks ) ) logger.info( "crystals = {0}".format( xtals ) ) logger.info( "indexing rate = {0} %".format( index_rate ) ) logger.info( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) ) logger.info( "median resolution = {0} A".format( median_res ) ) logger.info( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) ) logger.info( "mean a = {0} +/- {1} A".format( mean_a, std_a ) ) logger.info( "mean b = {0} +/- {1} A".format( mean_b, std_b ) ) logger.info( "mean c = {0} +/- {1} A".format( mean_c, std_c ) ) logger.info( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) ) logger.info( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) ) logger.info( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) ) print( "printing stats" ) print( "image = {0}".format( chunks ) ) print( "crystals = {0}".format( xtals ) ) print( "indexing rate = {0} %".format( index_rate ) ) print( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) ) print( "median resolution = {0} A".format( median_res ) ) print( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) ) print( "mean a = {0} +/- {1} A".format( mean_a, std_a ) ) print( "mean b = {0} +/- {1} A".format( mean_b, std_b ) ) print( "mean c = {0} +/- {1} A".format( mean_c, std_c ) ) print( "mean alpha = {0} +/- {1} deg".format( mean_alpha, std_alpha ) ) print( "mean beta = {0} +/- {1} deg".format( mean_beta, std_beta ) ) print( "mean gamma = {0} +/- {1} deg".format( mean_gamma, std_gamma ) ) def list_of_ints(arg): return list(map(int, arg.split(','))) def list_of_floats(arg): return list(map(float, arg.split(','))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-n", "--job_name", help="the name of the job to be done. Default = split", type=str, default="split" ) parser.add_argument( "-l", "--lst_file", help="file from SwissFEL output to be processed quickly. Requried.", type=os.path.abspath, required=True ) parser.add_argument( "-k", "--chunk_size", help="how big should each image split be? Default = 500. Fewer will be faster.", type=int, default=500 ) parser.add_argument( "-g", "--geom_file", help="path to geom file to be used in the refinement. Requried.", type=os.path.abspath, required=True ) parser.add_argument( "-c", "--cell_file", help="path to cell file of the crystals used in the refinement. Requried.", type=os.path.abspath, required=True ) parser.add_argument( "-x", "--indexer", help="indexer to use. Default = xgandalf-latt-cell", type=str, default="xgandalf-latt-cell" ) parser.add_argument( "-f", "--peakfinder", help="peakfinder to use. Default = peakfinder8", type=str, default="peakfinder8" ) parser.add_argument( "-a", "--integrator", help="integrator to use. Default = rings-nocen-nograd", type=str, default="rings-nocen-nograd" ) parser.add_argument( "-y", "--tolerance", help="tolerance to use. Default = 10.0,10.0,10.0,2.0,3.0,2.0", type=list_of_floats, default=[10.0,10.0,10.0,2.0,3.0,2.0] ) parser.add_argument( "-t", "--threshold", help="peaks must be above this to be found during spot-finding. Default = 20", type=int, default=20 ) parser.add_argument( "-s", "--min_snr", help="peaks must to above this to be counted. Default = 5.", type=int, default=5 ) parser.add_argument( "-i", "--int_radius", help="integration ring radii. Default = 2,3,5 = 2 for spot and then 3 and 5 to calculate background.", type=list_of_ints, default=[2,3,5] ) parser.add_argument( "-m", "--multi", help="do you wnat to look for multiple lattices. Default = True", type=bool, default=False ) parser.add_argument( "-r", "--retry", help="do you want to retry failed indexing patterns. Default = False", type=bool, default=False ) parser.add_argument( "-p", "--min_pix", help="minimum number of pixels a spot should contain in peak finding.Default = 2", type=int, default=2 ) parser.add_argument( "-b", "--bg_rad", help="radius (in pixels) used for the estimation of the local background. Default = 4", type=int, default=4 ) parser.add_argument( "-q", "--min_res", help="min-res for spot-finding in pixels. Default = 85.", type=int, default=85 ) parser.add_argument( "-v", "--reservation", help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10", type=str, default=None ) parser.add_argument( "-d", "--debug", help="output debug to terminal.", type=bool, default=False ) args = parser.parse_args() # run geom converter cwd = os.getcwd() # set loguru if not args.debug: logger.remove() logfile = "{0}.log".format( args.job_name ) logger.add( logfile, format="{message}", level="INFO") # log geometry file geom = open( args.geom_file, "r" ).read() logger.info( geom ) if args.multi == True: multi = "multi" else: multi = "no-multi" if args.retry == True: retry = "retry" else: retry = "no-retry" main( cwd, args.job_name, args.lst_file, args.chunk_size, args.geom_file, args.cell_file, args.indexer, args.peakfinder, args.integrator, args.tolerance, args.threshold, args.min_snr, args.int_radius, multi, retry, args.min_pix, args.bg_rad, args.min_res, args.reservation )